Murdoch

UNIVERSITY

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination.

The definitive version is available at
http://dx.doi.org/10.1139/cjfas-2015-0422

Hordyk, A.R., Ono, K., Prince, J.D. and Walters, C.J. (2016) A simple length-structured model based on life history ratios and incorporating size-dependent selectivity: application to spawning potential ratios for data-poor stocks. Canadian J ournal of Fisheries and Aquatic Sciences, 73 (12). pp. 1787-1799.
http://researchrepository.murdoch.edu.au/34644/

Copyright: © 2016, Canadian Science Publishing.
It is posted here for your personal use. No further distribution is permitted.

Canadian Journal of Fisheries and Aquatic Sciences

A simple length-structured model based on life history ratios and incorporating size-dependent selectivity: application to spawning potential ratios for data-poor stocks

Journal:	Canadian Journal of Fisheries and Aquatic Sciences
Manuscript ID	cjfas-2015-0422.R2
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Hordyk, Adrian; Murdoch University, Centre for Fish and Fisheries Research Ono, Kotaro; University of Washington, School of Aquatic and Fishery Sciences Prince, Jeremy; Biospherics Pty Ltd. Walters, Carl; University of British Columbia, Fisheries Centre
Keyword:	LIFE HISTORY < General, MODELS < General, MORTALITY < General, SIZE DISTRIBUTION < General, STOCK ASSESSMENT < General

SCHOLARONE ${ }^{m}$
Manuscripts

Title Page

A simple length-structured model based on life history ratios and incorporating sizedependent selectivity: application to spawning potential ratios for data-poor stocks

Authors:
Adrian R. Hordyk ${ }^{1 *}$, Kotaro Ono ${ }^{2}$, Jeremy D. Prince ${ }^{1,3}$, and Carl J. Walters ${ }^{4}$

Author affiliations:

*Corresponding author, tel: +61 893606685; fax: +618 9360 6303; e-mail:
a.hordyk@murdoch.edu.au

1. Centre for Fish and Fisheries Research, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
2. School of Aquatic and Fishery Sciences

Box 355020, University of Washington, Seattle, WA 98195-5020, U.S.A., kotarono@uw.edu
3. Biospherics Pty Ltd, PO Box 168, South Fremantle, WA 6162, Australia, biospherics@ozemail.com.au
4. Fisheries Centre, University of British Columbia, Vancouver B.C. V6T1Z4, Canada, c.walters@fisheries.ubc.ca

Abstract

Selectivity in fish is often size-dependent, which results in differential fishing mortality rates across fish of the same age; an effect known as "Lee's Phenomenon". We extend previous work on using length composition to estimate the spawning potential ratio (SPR) for data-limited stocks by developing a computationally efficient length-structured perrecruit model that splits the population into a number of sub-cohorts, or growth-type-groups, to account for size-dependent fishing mortality rates. Two simple recursive equations, using the life-history ratio of the natural mortality rate to the von Bertalanffy growth parameter (M / K), were developed to generate length composition data, reducing the complexity of the previous approach. Using simulated and empirical data we demonstrate that ignoring Lee's Phenomenon results in over-estimates of fishing mortality and negatively biased estimates of SPR. We also explored the behaviour of the model under various scenarios, including alternative life-history strategies, and the presence of size-dependent natural mortality. The model developed in this paper may be a useful tool to estimate the spawning potential ratio for data-limited stock where it is not possible to apply more conventional methods.

Key words: stock assessment; data-poor; simulation; growth-type-groups

Introduction

In order to maintain the long-term stability of yield from capture fisheries, the dynamics of fish populations and the impact of harvesting these populations must be understood. While there have been some notable failures, the quantitative methods of fisheries science are generally accepted as reliable and useful tools for managing fisheries (Hilborn 2007, Hilborn and Ovando 2014). However, many conventional methods require large amounts of data, including reliable biological information on the exploited stock and a historical time series of total removals (Kelly et al. 2006, Bentley 2015). Many fisheries, particularly in (but certainly not restricted to) developing regions, do not have the data required for conventional methods and are considered data-limited or data-poor (Bentley 2015, Costello et al. 2015). The severity of the problem is further exemplified by the fact that many of the world's data-poor stocks are in areas of high marine biodiversity, high population density, low management capacity, and considerable poverty (Andrew et al. 2007, Worm and Branch 2012, Pitcher and Cheung 2013). Furthermore, the inhabitants of these nations are often disproportionally reliant on fish as vital sources of protein, and fisheries play an important role providing livelihoods for millions of people (Kent 1997, Béné 2003, Walmsley et al. 2006). The immensity of the problem faced by managers of data-poor fisheries is recognised by the fisheries science community, and an increasing literature on the development of alternative methods for data-poor fisheries has been building in recent years (e.g., Honey et al. 2010, Dowling et al. 2015, Kokkalis et al. 2015, Jardim et al. 2015, Hordyk et al. 2015a, Thorson and Cope 2015, Prince et al. 2015a, Roa-Ureta et al. 2015, Roa-Ureta 2015, Needle 2015).

The length-based spawning potential ratio (LB-SPR) method is an example of an assessment method that was recently developed as a tool for assessing and managing datapoor fisheries (Hordyk et al. 2015b, 2015b, Prince et al. 2015b). The LB-SPR method uses estimates of the life history ratio of natural mortality (M) to the K parameter from the von Bertalanffy growth equation (M / K) to estimate the spawning potential ratio (SPR) from size composition data of an exploited stock. The M / K ratio is known to vary less within stocks of the same species, or closely related species, than the individual M and K parameters (Beverton 1992), and can be estimated from meta-analysis or comparative studies (Prince et al. 2015a, 2015b). By using the life-history ratio M / K, the LB-SPR model avoids the reliance on the natural mortality parameter, which, especially for exploited stocks, is notoriously difficult to estimate (Kenchington 2014). Furthermore, the length frequency of the catch is
one of the cheapest and easiest forms of data to collect (Quinn and Deriso 1999), although careful and well-structured sampling is required to ensure that the data are representative (Erzini 1990, Gerritsen and McGrath 2006, Heery and Berkson 2009).

Hordyk et al. (2015b) demonstrated that, with the assumption of a knife-edge selectivity pattern, the expected size frequency of the catch and the spawning potential ratio of the stock could be represented by simple analytical models using the ratios M / K, relative fishing mortality to natural mortality (F / M), and the relative size at first capture to the asymptotic length $\left(L_{c} / L_{\infty}\right)$, without requiring estimates of the individual parameters M, F or K. Incorporating non-knife-edge selectivity patterns was more complex, and an age-structured model parametrized in terms of the life history ratios was required (Hordyk et al. 2015b, 2015c). In this paper we develop a per-recruit length-structured model which can account for a range of selectivity patterns and can be represented by two simple recursive equations.

It is often assumed in fisheries assessment models that length-at-age is normally distributed, with the mean length-at-age described by the von Bertalanffy growth equation. Selectivity is often, although not always, observed to be size-related rather than dependent on age (Francis 2015), and faster growing fish are expected to reach the length at which they are vulnerable to the fishing gear before the slower growing individuals, and thus are exposed to a higher cumulative fishing mortality throughout their lifetime. As a result, when subject to fishing mortality, the size-at-age distribution of older age classes is no longer normally distributed, as the larger individuals in each age class are reduced in number relative to the smaller individuals in the same age class. This effect, first documented over 100 years ago (Lee 1912), has since become referred to as "Lee's Phenomenon". Although the effect is often ignored in age-structured models, a number of techniques have been developed to account for Lee's Phenomenon in fisheries assessments by dividing the modelled fish population into a number of sub-populations and tracking the sub-cohorts over time (Punt et al. 2002, Walters and Martell 2004, McGarvey et al. 2007, Taylor and Methot 2013). The age-structured LB-SPR model did not account for Lee's Phenomenon, and is therefore expected to over-estimate fishing mortality when selectivity is size-dependent. In this paper, we extend the new length-structured model using the growth-type-group (GTG) approach of Walters and Martell (2004) to account for Lee's Phenomenon. This new per-recruit model (referred to as the GTG LB-SPR model) uses the life history ratio M / K, together with estimates of size-at-maturity and asymptotic size (L_{∞}) and length composition data, to estimate the spawning potential ratio of data-limited stocks with size-dependent selectivity patterns.

We first used a simulation model to explore the effect of the different parameters of the GTG LB-SPR model on the predicted equilibrium size composition and the resulting level of SPR. We then compared the estimates of the newly developed GTG LB-SPR model, and the original LB-SPR model (Hordyk et al. 2015b, 2015c), by applying the two methods to both simulated and empirical data sets. Similar to the LB-SPR model, the GTG LB-SPR model developed here assumes known life history parameters, and uses an equilibrium perrecruit model to estimate the relative fishing mortality, selectivity-at-length, and the spawning potential ratio, from representative catch-at-length data.

Methods

Derivation of Length-Structured Per-Recruit Model to Predict Size Composition

Per-recruit number at length

Fish growth is typically described by the von Bertalanffy growth equation, which is commonly written as:

$$
\begin{equation*}
L(a)=L_{\infty}\left(1-e^{-K\left(a-t_{0}\right)}\right) \tag{1}
\end{equation*}
$$

where $L(a)$ is the length at age a, L_{∞} is the mean asymptotic length, K is the von Bertalanffy growth parameter, and t_{0} is the hypothetical, usually negative, age at which length is zero.

The von Bertalanffy growth model can be reparametrized by replacing t_{0} with a more biologically meaningful parameter L_{0}, the initial length at age 0 :

$$
\begin{equation*}
L(a)=L_{\infty}\left(1-\left(1-\frac{L_{0}}{L_{\infty}}\right) e^{-K a}\right) \tag{2}
\end{equation*}
$$

Assuming for simplicity that L_{0} is zero gives:

$$
\begin{equation*}
L(a)=L_{\infty}\left(1-e^{-K a}\right) \tag{3}
\end{equation*}
$$

The rate at which the numbers-at-age in a population (N) are decreasing can be written as:

$$
\begin{equation*}
\frac{d N}{d a}=-Z N \tag{4}
\end{equation*}
$$

where Z is the instantaneous total mortality rate. The rate of change of numbers alive with respect to length can be written using the chain rule as:

$$
\begin{equation*}
\frac{d N}{d L}=\frac{d N}{d a} \frac{d a}{d L} \tag{5}
\end{equation*}
$$

where $\frac{d a}{d L}$ is the inverse of the von Bertalanffy growth equation (Equation 3):

$$
\begin{equation*}
\frac{d a}{d L}=\frac{1}{K\left(L_{\infty}-L\right)} \tag{6}
\end{equation*}
$$

This gives:

$$
\begin{equation*}
\frac{d N}{d L}=-\frac{Z}{K} \frac{N}{\left(L_{\infty}-L\right)} \tag{7}
\end{equation*}
$$

which demonstrates that, on a per-recruit basis, the $\frac{Z}{K}$ ratio determines the number of animals at length. By applying a separation of variables method Equation 7 can be rearranged as:

$$
\begin{equation*}
\frac{d N}{N}=-\frac{Z}{K} \frac{1}{\left(L_{\infty}-L\right)} d L \tag{8}
\end{equation*}
$$

which, by integrating both sides of the equation, gives:

$$
\begin{equation*}
\ln N_{L}=\frac{Z}{K} \ln \left(L_{\infty}-L\right)+C \quad \text { for } L<L_{\infty} \tag{9}
\end{equation*}
$$

Assuming a per-recruit model, the initial condition is $\mathrm{N}_{\mathrm{L}=0}=1$, which can be used to determine the value of C, and replacing it in Equation 9 gives:

$$
\begin{equation*}
\ln N_{L}=\frac{Z}{K} \ln \left(\frac{L_{\infty}-L}{L_{\infty}}\right) \tag{10}
\end{equation*}
$$

Exponentiation of Equation 10 results in:

$$
\begin{equation*}
N_{L}=\left(\frac{L_{\infty}-L}{L_{\infty}}\right)^{\frac{Z}{K}} \tag{11}
\end{equation*}
$$

It follows that the number-per-recruit that are alive at $L+d L$ (where $d L$ is a small increment in length) is:

$$
\begin{equation*}
N_{L+d L}=\left(\frac{L_{\infty}-L-d L}{L_{\infty}}\right)^{\frac{Z}{K}} \tag{12}
\end{equation*}
$$

Re-arranging these equations gives:

$$
\begin{equation*}
N_{L+d L}=N_{L}\left(\frac{L_{\infty}-L-d L}{L_{\infty}-L}\right)^{\frac{Z}{K}} \quad \text { for } L<L_{\infty} \tag{13}
\end{equation*}
$$

This simple recursive equation demonstrates that the number per-recruit that are alive at each length (L) can be determined by the $\frac{Z}{K}$ ratio and the L_{∞} parameter.

Including size-dependent mortality
Equation 13 assumes that total mortality is independent of size, and that the Z / K ratio remains constant for all size classes. The total mortality rate is usually separated into two sources: fishing mortality (F) which is imposed by the fishing activity, and natural mortality (M) which generally includes all sources of mortality not associated with the fishing. Fishing mortality is often size dependent, with small individuals often less likely to be vulnerable to
the fishing gear and selected by the fishery than larger fish. The fishing mortality at size L can be described as:

$$
\begin{equation*}
F_{L}=F V_{L} \tag{14}
\end{equation*}
$$

where F is the fully selected fishing mortality, and V_{L} is the vulnerability of an individual at length L. Assuming a logistic selectivity curve V_{L} is given by:

$$
\begin{equation*}
V_{L}=\frac{1}{1+e^{\left(-\ln (19)\left[\frac{L-S_{L 50}}{S_{L 95}-S_{L 50}}\right]\right.}} \tag{15}
\end{equation*}
$$

where $S_{L 50}$ and $S_{L 95}$ are the lengths at which 50% and 95% of the fish are vulnerable respectively. Other selectivity patterns, e.g., dome-shaped or knife-edge, can easily be incorporated by modifying Equation 15.

Total mortality at length is then given by:

$$
\begin{equation*}
Z_{L}=F_{L}+M_{L} \tag{16}
\end{equation*}
$$

where M_{L} is the natural mortality rate at length L. Natural mortality is notoriously difficult to estimate, and many stock assessment and bio-energetic models assume that this rate is constant for all ages and size classes. However, there is evidence that natural mortality is higher for smaller individuals, and tends to decrease as the animals grow to larger sizes (with a possible increase again towards the end of life; Charnov et al. 2013, Charnov 2014). This relationship can be described by:

$$
\begin{equation*}
M_{L}=M_{L_{\infty}}\left(\frac{L_{\infty}}{L}\right)^{c} \tag{17}
\end{equation*}
$$

where $M_{L_{\infty}}$ is the natural mortality rate for adults near maximum size, and $c \geq 0$ is the allometric exponent for the mortality-length relationship (Lorenzen 1996, 2000).

If the length increment $d L$ is small enough, it may be reasonable to assume that both the natural and fishing mortality rates are constant within a size class. This assumption allows size-specific mortality rates to be incorporated into Equation 13:

$$
\begin{equation*}
N_{L+d L}=N_{L}\left(\frac{L_{\infty}-L-d L}{L_{\infty}-L}\right)^{\frac{Z_{L}}{K}} \quad \text { for } L<L_{\infty} \tag{18}
\end{equation*}
$$

Prediction of size composition
Equation 18 can be used to calculate the number-per-recruit that survive to each length class given a size-dependent mortality rate. However, as the rate of growth tends to decrease as fish get older, the amount of time an individual spends in each length class changes throughout its life; that is, the time to grow from L to $L+d L$ typically increases for older age classes. Therefore, to calculate the expected per-recruit number-at-length within
each length class, it is necessary to integrate over the amount of time the animal spends in each size class.

The age at length L can be calculated by re-arranging Equation 3 to give:

$$
\begin{equation*}
a=-\frac{1}{K} \ln \left(1-\frac{L}{L_{\infty}}\right) \tag{19}
\end{equation*}
$$

To calculate the numbers at age over each length interval we must integrate the number-atlength $\left(N_{L}\right)$ over the increment in age within the length interval:

$$
D_{L+d L}=\int_{-\frac{1}{K} \ln \left(1-\frac{L}{L_{\infty}}\right)}^{-\frac{1}{K} \ln \left(1-\frac{L+d L}{L_{\infty}}\right)} e^{-Z a} d a
$$

where $D_{L+d L}$ is the cumulative 'density' of animals between the length classes L and $L+d L$. Solving this equation and simplifying gives:

$$
\begin{equation*}
D_{L+d L}=\frac{1}{Z}\left(N_{L}-N_{L+d L}\right) \tag{21}
\end{equation*}
$$

Similar to the situation described above, if we assume that $d L$ is small enough so that the mortality rate is constant within the length class, the above equation can be modified to account for size-dependent mortality:

$$
\begin{equation*}
D_{L+d L}=\frac{1}{Z_{L}}\left(N_{L}-N_{L+d L}\right) \tag{22}
\end{equation*}
$$

As it is a per-recruit model, Equation 22 can be standardized to sum to one across the length classes:

$$
\begin{equation*}
\widetilde{D}_{L+d L}=\frac{\frac{1}{Z_{L}}\left(N_{L}-N_{L+d L}\right)}{\sum_{L} \frac{1}{Z_{L}}\left(N_{L}-N_{L+d L}\right)} \tag{23}
\end{equation*}
$$

Equation 23 now predicts the expected proportion of the population in each size class in terms of L_{∞}, Z and K (see Equation 18) in recursive fashion. However, it can be simplified further to make the predicted proportions depend on the $\frac{Z}{K}$ ratio instead of the specific value of Z. Multiply the numerator and denominator in the right hand side of Equation 23 by K, which leads to:

$$
\begin{equation*}
\widetilde{D}_{L+d L}=\frac{\frac{1}{\theta_{L}}\left(N_{L}-N_{L+d L}\right)}{\sum_{L} \frac{1}{\theta_{L}}\left(N_{L}-N_{L+d L}\right)} \tag{24}
\end{equation*}
$$

where θ_{L} is the ratio $\frac{Z_{L}}{K}$, enabling the expected per-recruit size composition to be constructed in terms of just L_{∞} and $\frac{Z_{L}}{K}$.

Growth-Type-Group Model

The model so far assumes a single growth trajectory for all individuals in the population, and does not account for individual variation in growth. One way to incorporate variability in growth would be to assume that Equation 18 describes the mean length, and that individuals are randomly distributed (e.g., Gaussian distribution) around this mean length. This approach would essentially be identical to the age-structured LBSPR model (Hordyk et al. 2015b, 2015c), which assumed individuals were normally distributed around a mean length-at-age. However, a shortcoming of this approach is that it fails to adequately account for the cumulative effects of size-based fishing mortality on the size structure of the stock, although admittedly some form of truncation could be adopted within this simple statistical approach. Here we develop a more biologically-oriented methodology based on the concept of growth-type-groups.

To account for size-dependent fishing mortality, one option is that the population model keeps track of the cumulative fishing mortality rates on several groups of individuals with assumed different growth patterns within a single cohort. These growth-type groups are similar to the super-individual concept in individual-based models (Scheffer et al 1995), although the growth-type groups are simpler to implement. Here we tackle Lee's Phenomenon within the LB-SPR model by recourse to the concept of growth-type-groups (Walters and Martell 2004).

To account for variability in individual growth patterns, we assumed that there are G sub-cohorts, and each growth-type-group g has a different $L_{\infty}\left(L_{\infty, g}\right)$ but a shared K parameter. Equation 18 can then be written as:

$$
\begin{equation*}
N_{L+d L, g}=N_{L, g}\left(\frac{L_{\infty, g}-L-d L}{L_{\infty, g}-L}\right)^{\frac{Z_{L, g}}{K}} \quad \text { for } L<L_{\infty, g} \tag{25}
\end{equation*}
$$

and Equation 24 as:

$$
\begin{equation*}
\widetilde{D}_{L+d L, g}=\frac{\frac{1}{\theta_{L}}\left(N_{L, g}-N_{L+d L, g}\right)}{\sum_{L} \frac{1}{\theta_{L}}\left(N_{L, g}-N_{L+d L, g}\right)} \tag{26}
\end{equation*}
$$

The initial condition for Equation 25 is:

$$
\begin{equation*}
N_{L=0, g}=R_{0} p_{g} \tag{27}
\end{equation*}
$$

where $R_{0}=1$ for a per-recruit model, and, assuming that $L_{\infty, g}$ is normally distributed across the growth-type-groups, p_{g} is the fraction of recruits to group g and is proportional to a normal probability density function with mean \bar{L}_{∞} and variance $\sigma_{L_{\infty}}^{2}$.

The expected length structure of the stock can then be constructed by summing across the G growth-type-groups the number of individuals in each length class:

$$
\begin{equation*}
\ddot{D}=\left\{\sum_{1}^{G} \widetilde{D}_{L+d L, g}\right\}_{L \in\left[0, L_{\infty}, g\right]} \tag{28}
\end{equation*}
$$

The Spawning Potential Ratio

The length-based growth-type-group model described above can be used to calculate the spawning potential ratio (SPR). The length-weight relationship is often described by $W_{L}=a L^{b}$, where a is a species-specific constant, and the exponent b is often close to 3 . Maturity-at-size (Mat_{L}) can be modelled as a logistic function following Equation 15, by replacing $S_{L 50}$ and $S_{L 95}$ with the average length at $50 \%\left(\bar{L}_{50}\right)$ and $95 \%\left(\bar{L}_{95}\right)$ maturity respectively. To account for the variable growth trajectories, the relative size-at-maturity is assumed to be constant across all GTG, with cohorts with smaller and larger asymptotic sizes reaching maturity at smaller and larger absolute lengths respectively. The size-at-maturity for each growth-type-group is then given by:

$$
\begin{align*}
& L_{50, g}=\frac{\bar{L}_{50}}{\bar{L}_{\infty}} L_{\infty, g} \\
& L_{95, g}=\frac{\bar{L}_{95}}{\bar{L}_{\infty}} L_{\infty, g} \tag{29}
\end{align*}
$$

where \bar{L}_{50} and \bar{L}_{95} are the mean length at 50% and 95% maturity respectively. Equation 15 is then used to calculate the maturity schedule for each GTG.

Assuming that egg production is proportional to the size of mature fish, relative fecundity-at-size is given by:

$$
\begin{equation*}
\mathrm{Fec}_{L, g}=\mathrm{Mat}_{L, g} L^{\beta} \tag{30}
\end{equation*}
$$

The value of the exponent β in Equation 30 can be changed to reflect different sizefecundity relationships. For example, setting β to zero assumes that the reproductive output of mature individuals is constant and independent of size, perhaps more appropriate for some sharks and other elasmobranchs.

The SPR can be calculated using the above equations, as the proportion of reproduction in the fished state relative to the unfished state:

$$
\begin{equation*}
\mathrm{SPR}=\frac{\sum_{g} \sum_{L} \frac{1}{\left(M_{L, g}+F_{L}\right)}\left(\widetilde{D}_{L, g}-\widetilde{D}_{L+d L, g}\right) \mathrm{Fec}_{L}}{\sum_{g} \sum_{L} \frac{1}{M_{L, g}}\left(\widetilde{D}_{L, g}-\widetilde{D}_{L+d L, g}\right) \mathrm{Fec}_{L}} \tag{31}
\end{equation*}
$$

As was done when passing from Equation 23 to Equation 24, multiply the numerator and denominator on the right hand side of Equation 31 by K. In addition, multiply the $\frac{F_{L}}{K}$ term in the numerator by $\frac{M}{M}$, to get:

$$
\begin{equation*}
\mathrm{SPR}=\frac{\sum_{g} \sum_{L} \frac{1}{\left(\left[\frac{M}{K}\right]_{L, g}+V_{L}\left[\frac{F}{M}\right]\left[\frac{M}{K}\right]_{L, g}\right)}\left(\widetilde{D}_{L, g}-\widetilde{D}_{L+d L, g}\right) \mathrm{Fec}_{L}}{\sum_{g} \sum_{L} \frac{1}{\left[\frac{M}{K}\right]_{L, g}}\left(\widetilde{D}_{L, g}-\widetilde{D}_{L+d L, g}\right) \mathrm{Fec}_{L}} \tag{32}
\end{equation*}
$$

Growth-Type-Group Length-Based SPR Assessment Model

Assuming reasonable estimates of the M / K ratio, L_{∞} and $\sigma_{L_{\infty}}^{2}$ (or $C V_{L_{\infty}}$), size-atmaturity, the parameters $F / M, S_{L 50}$, and $S_{L 95}$ can be estimated from a representative sample of the length structure of the catch, by minimizing the following multinomial negative loglikelihood function (NLL):

$$
\begin{equation*}
\mathrm{NLL}=\underset{\frac{F}{M}, S_{L 50, S_{L 95}}}{\operatorname{argmin}} \sum_{i} O_{i} \ln \frac{\tilde{P}_{i}}{\tilde{O}_{i}} \tag{33}
\end{equation*}
$$

where O_{i} and \tilde{O}_{i} are the observed number and proportion in length class i respectively, and \tilde{P}_{i} is the model estimate of the probability in length class $i . \tilde{P}$ can be calculated by multiplying \ddot{D} from Equation 28 by the estimated selectivity curve, and standardized to sum to one. The spawning potential ratio can be calculated from Equation 32 using the model estimates of F / M and selectivity-at-length parameters, and the input parameters $M / K, L_{\infty}$ and $C V_{L \infty}$, and size-at-maturity parameters (Table 1).

This new model, referred to as the growth-type-group length-based SPR (GTG LBSPR), model shares many of the assumptions of the LB-SPR model (Hordyk et al. 2015b, 2015c), including the typical per-recruit model assumption that the stock is in steady state, and that growth patterns are static and adequately described by the von Bertalanffy equation. While the model can account for size-dependant natural mortality and dome-shaped selectivity curves, these phenomena are difficult to identify from size data alone. Therefore, the default assumption of the model is that natural mortality is constant for all size classes (at
least those observed in the catch) and that the selectivity curve is asymptotic. If information exists to estimate the size-dependent natural mortality relationship or selectivity pattern, this information can be incorporated into the model.

Simulation and Evaluation of the GTG LB-SPR Model

A simulation framework was used to examine the effect of the different parameters of the GTG LB-SPR model to the predicted size distribution. We also generated size data from both the GTG LB-SPR and the LB-SPR models, and applied the two estimation models to the simulated data sets to evaluate the impact of accounting for and ignoring Lee's Phenomenon. All simulation was conducted using the statistical programming language R (R Core Team 2015), and the R code for the simulation and estimation models is available on the lead author's GitHub account (https://github.com/AdrianHordyk/GTG_LBSPR).

Life History Parameters

Previous work has demonstrated that the expected unfished size distribution is dependent primarily on the M / K ratio, with L_{∞} working effectively as a scaling parameter (Hordyk et al. 2015b, Prince et al. 2015b). Although the M / K ratio for fish stocks is often assumed to be around 1.5 , Prince et al. (2015a) demonstrated that this ratio is much more variable in fish stocks, and ranges from around 0.5 to above 3.0. Values of M / K around 1.5 2.0 and lower appear to be most common (Prince et al. 2015b), and consequently we examined a range of M / K ratios ($0.5,1.0,1.5$ and 2.0) in the simulations, but used generic default values for the other life history parameters (Table 1). The population L_{∞} was fixed at 100 , in arbitrary units, and the coefficient of variation in asymptotic length $\left(C V_{L_{\infty}}\right)$ set to 0.1 . Selectivity-at-length was assumed to be equal to length-at-maturity, which was set at 50 and 55 for L_{50} and L_{95} respectively. The generated length data was binned into classes of width ($d L$) 5 , in the same units as L_{∞} and represents a measurement resolution of 5% of asymptotic length. The life history parameters were systemically adjusted from these default values in the specific simulation tests.

Evaluation of model behaviour

The GTG LB-SPR model is based on the same principles as the LB-SPR model, and requires the same input parameters: $M / K, L_{\infty}, C V_{L \infty}, L_{50}$ and L_{95}. The underlying population dynamics of the two models is essentially the same, with the extra addition of the growth-
type-groups to deal with Lee's Phenomenon. Therefore, the new GTG LB-SPR model is expected to display similar sensitivities to misspecification in the input parameters and violations of the assumptions of the model (Hordyk et al. 2015c). However, the new model introduces an extra parameter which needs to be specified, the number of growth-typegroups. We used simulation to evaluate the effect of this parameter on the equilibrium length structure generated by the GTG LB-SPR model.

Number of growth-type-groups

The number of growth-type-groups (G) determines the value of the individual $L_{\infty, g}$ parameters. For example, in the extreme case of $G=1$, the model would only include a single group and account for no variation in length-at-age. Variability could be added by assuming a probability distribution of length-at-age around this single group. However, the model would then be essentially identical to the LB-SPR model and not account for Lee's Phenomenon.

Increasing the number of sub-cohorts increases the resolution of the generated length data, by dividing the different growth trajectories of the model into finer increments; i.e., smaller increments between the individual $L_{\infty, g}$ of the groups $\left(\Delta L_{\infty}\right)$. However, the increased number of sub-cohorts also increases the computational requirements of the model. A tradeoff exists in determining the number of growth-type-groups which can adequately generate a smooth size composition, without unnecessarily consuming excess computing power.

We examined the effect of G on the size distribution predicted by the model. Fewer G was expected to decrease the resolution of the model and result in an increasingly irregular size distribution. The relationship between G and ΔL_{∞} is given by:

$$
\begin{equation*}
G=\left\lceil\frac{2 \lambda \sigma_{L_{\infty}}+1}{\Delta L_{\infty}}\right\rceil \tag{34}
\end{equation*}
$$

where G is rounded up to the nearest integer, and λ is the maximum deviation in units of $\sigma_{L_{\infty}}$ from \bar{L}_{∞} for the smallest and largest group-type-groups (fixed at 2 in these simulations). We assumed a maximum simulation resolution of $\Delta L_{\infty}=1$, which represents 41 growth-typegroups with L_{∞} ranging from 80 to 120 . We systemically varied G under a range of different life-history and fishing mortality conditions, and compared the resulting size composition with that obtained at maximum resolution $(G=41)$.

Size-dependent natural mortality

The default value of the size-dependent natural mortality parameter (c) was set at 0 for the simulations, representing constant natural mortality for all size classes (Table 1). The impact of variation of this parameter on the expected unfished size distribution was examined by running the model with a range of values of c : the base case $c=0$, and $c=0.1,0.2$ and 0.3 , and the four different values of M / K (Table 1$)$.

Comparison of LB-SPR models

One of the key issues of the model presented in Hordyk et al. (2015c) was that it did not account for the cumulative effect of fishing mortality on the expected length structure of the stock. As a result, the model is expected to estimate higher fishing mortality, and lower SPR, for a given size structure compared to a model that appropriately accounts for Lee's Phenomenon. We compared the estimates of the LB-SPR model, as described by Hordyk et al. (2015c), with the GTG LB-SPR model presented in this paper by applying the two models to both simulated and empirical data.

Four sets of equilibrium size distributions, representing the four different life history types (Table 1), were generated with both the LB-SPR model (Hordyk et al. 2015b, 2015c) and the GTG LB-SPR model. Each set contained twenty simulated size composition data with fishing mortality ranging from 0.1 to 3.0 . Each estimation model was applied to the dataset generated from the other model, and the resulting bias in estimated parameters was examined. Natural mortality was assumed be constant for all size classes (i.e., $\mathrm{c}=0$; Table 1). All input parameters of the estimation models were fixed at the true values.

Recently Prince et al. (2015b) applied the LB-SPR method to twelve tropical reef species from northern Palau. These species are known to be heavily fished in the region, however little biological data exists for local stocks, and few assessments or estimates of the status of these stocks have been conducted previously. Here we applied both the LB-SPR and the GTG LB-SPR models to the four datasets with the largest sample size ($n>400$), and compared the resulting estimates of F / M and SPR. The four species were Hipposcarus longiceps, Lutjanus gibbus, Lethrinus rubrioperculatus, and Variola louti.

Although little biological data exists for these species in Palau, based on the literature for these and related species Prince et al. (2015b) estimated likely ranges for the biological parameters required for the LB-SPR model, and accounted for the uncertainty in these parameters with Monte Carlo simulation. As the purpose of the current exercise was to
compare the results of the two models (with and without accounting for Lee's Phenomenon), we fixed the input parameters of the estimation model at the best estimates determined by Prince et al. (2015b), and compared the resulting point estimates (Table 2).

Results

Simulation Tests

Figure 1 shows the von Bertalanffy growth curves for each sub-cohort, and the resulting equilibrium size composition, when the number of growth-type-groups (G) was set to 41,9 and 5 for the four values of the M / K ratio: $0.5,1.0,1.5$, and 2.0 . Reducing the value of G from the highest resolution ($G=41, \Delta L_{\infty}=1$) did not significantly affect the quality of the generated size composition until G was about 7 or lower. The life histories with lower M / K ratios were most sensitive to the number of growth-type-groups. For example, Figure 1a-d shows the von Bertalanffy growth curves of each sub-cohort, and the resulting size composition when G was set to 41,9 and 5 and $M / K=0.5$. The large number of growth-typegroups used in the highest resolution case ($G=41$; Figure 1a) generated a smooth equilibrium size composition (grey bars in Figure 1d). There was virtually no distinguishable difference in the size composition that was generated when G was reduced to nine (Figure 1 b and solid line in Figure 1d). However, a further reduction to $G=5$, resulted in a highly serrated size structure, as the resolution of the model was too coarse to adequately represent the continuous size composition (Figure 1c and dashed line in Figure 1d).

The impact of a lower value for G was less severe for the simulations with $M / K=1.0$, although the size composition generated when $G=5$ was slightly deformed compared to that produced when $G=41$ (Figure 1h dashed line and grey bars respectively). However, the size composition generated with nine growth-type-groups was very similar to that produced when $G=41$ (Figure 1 h solid line and grey bars respectively. The number of growth-type-groups had the least impact on the simulations with the higher values of M / K, where the generated size compositions were effectively identical under a wide range of values of G (Figure 1i-1 and Figure $1 \mathrm{~m}-\mathrm{p}$ for $M / K=1.5$ and 2.0 respectively).

Sensitivity to this result was examined by re-running the model with different values of mean L_{∞} as well as increased values of $C V_{L_{\infty}}$, however the general pattern was consistent. There was no discernible reduction in the quality of the size composition when the step size of L_{∞} between the growth-type-groups (ΔL_{∞}) was less than or equal to the width of the length class $(d L)$ into which the length data was binned. For the remainder of the
simulations we set $\Delta L_{\infty}=0.5 d L$. With the parameters used in these simulations $\left(C V_{L_{\infty}}=\right.$ 0.1 and $d L=5$; Table 1), this resulted in seventeen growth-type-groups (Equation 34).

Figure 2 demonstrates the effect of size-dependent natural mortality on the equilibrium unfished size composition for the four values of M / K (Figure 2a, b, cand d respectively) and increasing values of size-dependent $M(c=0,0.1,0.2$ and 0.3$)$. In the base case, natural mortality was constant $(c=0)$ for all individuals, with the resulting size composition equivalent to that predicted by the age-structured LB-SPR model (Prince et al. 2015b) for the different values of M / K (Figure 2 solid black lines). Increasing the natural mortality (specifically M / K in this model) for the smaller size classes by increasing the value of c resulted in the smaller individuals contributing proportionally more to the population (Figure 2 dashed, dotted and dash-dotted lines for $c=0.1,0.2$, and 0.3 respectively). This effect was especially noticeable for the higher M / K where the size-dependent natural mortality changed the shape of the expected size distribution considerably (Figure 2 bottom row).

To investigate the effect of size-dependent natural mortality on the expected size structure of the catch, the model was re-run for the four different life-history parameters at a level of fishing mortality that resulted in $\mathrm{SPR}=0.5$ (Figure $3 \mathrm{a}, \mathrm{b}, \mathrm{c}$ and d for $M / K=0.5,1.0$, 1.5 , and 2.0 respectively). The influence of size-dependent natural mortality on the expected size structure of the catch was effectively indistinguishable under these simulations. It was hypothesised that the impact of size dependent mortality on the size composition of the catch would be more significant when the selection pattern of the fishery included more of the smaller size classes. This was investigated by setting the parameters of the selectivity curve to smaller values ($S_{L 50}$ and $S_{L 95}$ set at 10 and 15 respectively) and re-running the model with the four different scenarios of size-dependent natural mortality and four sets of life-history parameters (Figure 4). As expected, the effect of the size-dependent mortality was more noticeable in the size structure of the catch under these conditions. This was especially the case for the higher M / K simulations, where the expected size structure of the catch consisted of a proportionally greater number of smaller sized individuals and with increased sizedependent natural mortality (Figure 4 c and d).

Simulation and Empirical Comparison of Estimation Models

The LB-SPR assessment model over-estimated the fishing mortality when it was applied to length data generated with the growth-type-group model (Figure 5a). This bias
was especially noticeable at higher levels of fishing mortality $(F / M>1)$ and higher values of the M / K ratio (dotted and dash-dotted lines in Figure 5a). The over-estimation of fishing mortality resulted in a negative bias in the estimated SPR, especially at higher levels of fishing mortality (Figure 5c). However, due to the asymptotic relationship between fishing mortality and SPR, the negative bias in SPR was less pronounced than the positive bias in the fishing mortality.

The reverse pattern was observed when the GTG LB-SPR assessment model was applied to length data generated with the assumption of age-based selectivity (i.e., Lee's Phenomenon is not occurring). Because of the assumption of Lee's Phenomenon built into the GTG LB-SPR model, the assessment model expects the size distribution to truncate under lower levels of fishing mortality. Here the assessment model tended to under-estimate the fishing mortality, especially at higher levels of fishing mortality (Figure 5b). Likewise, the GTG LB-SPR model over-estimated the SPR of the stock over the entire range (Figure 5d). The bias was most pronounced at lower levels of SPR and higher values of M / K (Figure 5d).

A similar relationship between the two estimation models was observed with the four empirical data sets, with the GTG LB-SPR model consistently estimating values of F / M that were between 65% and 85% of those estimated by the LB-SPR model (Table 2). Likewise, the GTG LB-SPR model estimated a higher level of SPR for all four species, compared to the results of the LB-SPR model (Table 2). This was especially the case for L. rubrioperculatus, where the GTG LB-SPR model estimated $\operatorname{SPR}=0.39$, while the LB-SPR model estimated $\operatorname{SPR}=0.26$. The estimated fishing mortality was much higher for the other three species, and the differences in estimated SPR between the two models was much less pronounced. The estimates of the selectivity parameters were very similar between the two models, although the GTG LB-SPR model tended to estimated selectivity parameters that were slightly lower than those from the LB-SPR model.

Discussion

The model developed in this study simplifies and improves the LB-SPR model described by Hordyk et al. (2015b, 2015c) to estimate the relative fishing mortality (F / M), the selectivity-at-length parameters, and the SPR of an exploited stock from representative size composition data and assumed known biological parameters. In particular, by using the growth-type-group approach, and splitting the population into a number of separate subcohorts, this model accounts for the effect of size-dependent fishing mortality on the size
structure of the stock (Walters and Martell 2004). Furthermore, by using a length-structured model to generate the expected equilibrium size composition, the GTG LB-SPR model circumvents the complexities of the generic and scaleless age-structured approach used previously (Hordyk et al. 2015b, 2015c).

Many age-structured population models that are commonly used in stock assessment assume that all individuals share the same mean growth curve with some variance in size-atage. These models ignore the effects of size-based fishing mortality on the age and size structure of the stock. The inclusion of growth-type-groups arguably improves model realism, and this idea has been incorporated into several other age-based and length-based assessment models. For example, Sullivan et al. (1990) use a length-based model that accounts for the effects of size dependent mortality by tracking the abundance in each length class. Both Stock Synthesis and CASAL allow for the presence of growth groups (called 'morphs' or 'platoons' in Stock Synthesis (Methot and Wetzel, 2013) and 'growth paths' in CASAL (Bull et al. 2012)). In these models, the size-at-age of each sub-cohort, or growth group, is assumed to follow a statistical distribution (e.g., Taylor and Methot, 2013). McGarvey et al. (2007) describe a 'cohort slicing' method, where the normal distribution of length-at-age is sliced into several sub-cohorts, and abundance is tracked for each sub-cohort.

The GTG LB-SPR model is similar to the McGarvey et al. (2007) approach in that the growth-type-groups are an intrinsic, rather than optional, part of the model. However, apart from the presence of the growth-type-groups, the GTG LB-SPR model is essentially identical to the LB-SPR model, which does not account for Lee's Phenomenon. Lee's Phenomenon will only occur when selectivity is size-based, and it is important to note that the GTG LBSPR model assumes that all biological and fishery processes are size- rather than agedependent. Selectivity processes in fisheries are generally thought to be primarily sizedependent, but there are scenarios where this assumption is likely to be violated. For example, species that have an ontogenetic migration may be better described by age-based selectivity, or a combination of the two (Punt et al. 2013, Francis 2015).

The new GTG LB-SPR model and the original LB-SPR model were compared by applying both models to simulated data, and length data from four reef fish species from Palau in the western Pacific (Prince et al. 2015a). These results demonstrate the GTG LBSPR model consistently estimates a lower relative fishing mortality (F / M) and higher SPR compared to the LB-SPR model. The difference between the two models was greatest at higher levels of fishing mortality, and more pronounced in the estimates of F / M than the estimates of SPR. If selectivity is actually size-based, these results suggest that ignoring

Lee's Phenomenon is likely to result in over-estimates of fishing mortality by about 15%. Conversely, if size-based selectivity is assumed where in fact it is not occuring, the assessment model is likely to under-estimate the fishing mortality. While the GTG LB-SPR model consistently estimated lower F / M values, the difference between the two methods was relatively minor. In the data-limited situations where these methods could be applied, researchers may prefer the more conservative estimates of the LB-SPR model unless there was sufficient evidence that selectivity was primarily a function of size.

The bias is less severe in the estimates of the spawning potential ratio. At low levels of fishing mortality, the presence (or absence) of size-based fishing mortality has little impact on the size structure of the stock. At high levels of fishing mortality, the non-linear asymptotic relationship between fishing mortality and SPR means that, although the estimate of fishing mortality may be biased, there is only a marginal difference in SPR. This suggests that accounting for Lee's Phenomenon is most important when directly using the estimate of fishing mortality (or F / M) that is produced by the model, for example to determine appropriate catch recommendations. In situations where it is not clear whether selectivity is predominantly size-based or age-based, we suggest applying both the GTG LB-SPR and the LB-SPR models, and evaluating the magnitude and significance of the difference in results.

The GTG LB-SPR model belongs in the per-recruit family of methods and is based on the same principles as the LB-SPR model (Hordyk et al. 2015b, 2015c). The new model shares many of the same behaviours as the LB-SPR model, including sensitivities to missspecification in the life history parameters (especially L_{∞}) and violations to the equilibrium assumption (Hordyk et al. 2015c). The sensitivity to non-equilibrium conditions is common to all per-recruit methods, and the equilibrium assumption is likely to be often violated (Hilborn and Walters, 1992). Hordyk et al. (2015a) examined the effects of non-equilibrium dynamics on the estimates of the LBSPR model and found that, although unbiased on average, individual estimates of SPR could at times vary considerably from the true values. Averaging length data over a number of years, particularly for short lived species, may be an effective way to mitigate this issue (Punt et al. 2013). Furthermore, recent work has shown that if a stock is out of equilibrium primarily due to the effect of fishing, an iterative effortbased control rule based on the LB-SPR method can still be effective in incrementally adjusting fishing pressure until the SPR and size structure of the stock stabilises around target levels (Hordyk et al. 2015a). The equilibrium assumption may also be dealt with by incorporating a time series of length composition data, as well as estimates of recent recruitment trends. However, such a model would also necessarily require some estimate of
the time-scale of the species, (e.g. natural mortality and growth rates) which is more data intensive then the method presented here.

While the growth-type-group approach could be incorporated into a fully dynamic model, the simple recursive equations of the length-structured model developed here would no longer apply. In a dynamic model, the abundance of animals in each length class is no longer determined solely by the abundance in the previous length class, and the growth and mortality patterns, but also by year-to-year variation in recruitment and other sources in interannual variability. For example, the dynamic model could track the impact of time-varying natural mortality, selectivity, or growth patterns. An age-structured model could be developed which tracks abundance in a number of growth-type-groups in a similar manner to that done in the GTG LB-SPR model: numerous growth-type-groups, each with their own von Bertalanffy growth curve, and annual recruitment distributed across these groups. However, the number of growth-type-groups would have to be much higher in an agestructured model, and the time-step in the age-based model would have to be small enough to adequately model continuous fish growth, especially for life-histories where growth is rapid in the first few years of life. The dynamic, age-structured GTG model would require additional computational power, and further research is required to determine if this approach offers significant advantages over the statistical distribution method used by Stock Synthesis 3 and CASAL.

Although developed for data-limited situations, where there is limited biological information and possibly only a few years of size data available, the approach developed in the GTG LB-SPR model may still be useful to data-rich stock assessment modelling, and the calculation of biological reference points. For example, the model can be used to evaluate the effect on alternative selectivity patterns on the expected spawning potential ratio of the stock. Furthermore, it is straightforward to include Botsfords' method of integrating perrecruit dynamics and the Beverton-Holt stock-recruitment function, to determine the relative expected yield for a given selectivity pattern and fishing mortality (Botsford and Wickham 1979, Botsford 1981a, b, Walters and Martell 2004). This approach allows analysts to incorporate knowledge of the stock-recruitment dynamics into the per-recruit model to evaluate alternative harvest policies in terms of both spawning potential and relative yield. We intend to explore this in future research.

The L_{∞} and K parameters are frequently assumed to be negatively correlated, and some may believe that ignoring this correlation is a serious shortcoming of the GTG LB-SPR model. However, the negative correlation commonly observed in estimates of these two
parameters is primarily a result of the estimation process, where the same data can be fitted just as well under a range of values of L_{∞} and K (Pilling et al. 1990, Evenson et al. 2007). There appears to be no biological reason why individuals with a lower than average L_{∞} should have a higher than average K, or vice versa (Evenson et al. 2007). Furthermore, the longitudinal growth data required to estimate this correlation is rarely available for fish stocks (Evenson et al. 2007). Finally, the observed covariation between L_{∞} and K is typically based on observations across species and populations, not among individuals within populations. The growth coefficient K represents the metabolic rate, and appears to vary little among individuals in many fish stocks (Sainsbury 1980). Wang and Thomas (1995) hypothesize that L_{∞} is genetically determined and thus fixed for individuals throughout their life, while the metabolic rate K is environmentally driven and likely to be shared amongst individuals of a cohort. Simulation studies have demonstrated that, while in reality both parameters are likely to vary amongst individuals, it is generally sufficient to allow variability in individual L_{∞} while maintaining a shared (possibly time-varying) K for all individuals (Sainsbury 1980; Wang et al 1995; Wang and Ellis 1998; Eveson et al. 2007). The biological drivers behind the variability in individual growth are not well understood, and the topic is an active area of research (see Shelton et al. 2013 and references therein). It is common to account for variable growth by assuming a single K and variable L_{∞} in simulation and assessment models (Sainsbury 1980, Wang and Thomas 1995, Wang and Ellis 1998). We followed this same approach in the per-recruit model by assuming that K is shared by all sub-cohorts, and each growth-type-group has an individual L_{∞} which is normally distributed around the mean asymptotic length of the population.

However, the splitting a population into several growth groups introduces another issue which we believe has not been previously recognized or addressed. Natural mortality is commonly assumed to be constant for all individuals within a cohort. However, the faster growing individuals reach a larger maximum size, and produce considerably more eggs-perrecruit (a proxy for fitness) compared to the slower growing sub-cohorts. This disparity in per-recruit egg production would lead to significant selection pressure towards the faster growing individuals. The persistence of individual variation within a population suggests there is equivalent fitness between these alternative life-history strategies.

One hypothesis to balance the fitness between growth-type-groups is for the faster growing groups to experience relatively greater rates of natural mortality than the slower growing groups. The mechanism can be explained as follows. Faster growing groups of
individuals must consume greater amounts of food compared to slower growing individuals of the same cohort, and must therefore venture farther for food and expose themselves to higher levels of predation. Conversely, portions of a cohort which stay within the safe habitat may be protected from increased predation risk, but will grow slower due to the decreased availability of food. This issue is further complicated by the fact that natural mortality in fish is often observed to decrease as individuals grow larger (see below). A further complicating factor is that individuals reaching a larger size sooner within the same cohort may find refuge from predation, and therefore experience less natural mortality (Pennings 1990).

We modified the GTG LB-SPR model by assuming a linear increase in natural mortality across the growth-type-groups, and used the numerical optimisation routine optim, part of the base R package stats (R Core Team 2015), to search for the natural mortality pattern which resulted in approximately equal fitness across the GTGs, while maintaining the mean length-at-age of the unfished population following the specified von Bertalanffy growth curve. We compared the shape of the generated size composition both with and without accounting for the differential in fitness, and applied the estimation model to the size data generated under both scenarios. The results of this analysis found that there was very little difference in the resulting estimates of F / M, selectivity parameters and SPR, and this difference is likely to be insignificant compared to the other sources of variability that are likely in an application of this methodology. Varying the natural mortality to ensure fitness-per-recruit is approximately equal across the GTGs is arguably more realistic, but this approach adds considerable extra complexity to the model, and does not significantly impact the results of the estimation model. The biological mechanisms that must exist to maintain individual variability in growth are not well understood. Regardless of the mechanisms involved, evolutionary theory suggests that relative fitness across different sub-cohorts must be approximately equal for individual variability in growth to persist in a population (Mangel et al. 2006). We believe that this is an important area for further research.

Life history theory suggests that M is likely to be higher for smaller, younger individuals, and decrease with increasing size (Lorenzen 2000, Andersen and Beyer 2013). However, stock assessment models often do not incorporate age or size-specific mortality directly, perhaps because of the paucity of data for estimating natural mortality rates (Maunder and Punt 2013, Punt et al. 2013, Prince et al. 2015b). Our results demonstrate that the presence of size-specific M has a direct impact on the shape of the expected unfished size composition. The effect is less significant on the expected size structure of the catch, especially if fishing mortality is significant and the fishery targets only relatively large
individuals. There are fisheries where juveniles and small individuals contribute to a significant proportion of the catch; e.g., tuna fisheries, where M is known to be sizedependent and fisheries often target juveniles (Hampton 2000). The GTG LB-SPR allows the flexibility of including size-dependent M, and sensitivity to this parameter should be explored when applying the model to empirical data.

Evaluating the uncertainty caused by poorly known biological parameters is also important. A reliable estimate of the asymptotic size of the species is critical for reliable estimates of the fishing mortality and SPR. These biological parameters are likely to be poorly known, especially in the data-poor situations where such a model may be applied. Monte Carlo simulations with random draws of parameters over a range of likely values is a useful way to capture some of the uncertainty arising from poorly understood biology (Prince et al. 2015a). Incorporating the model into a Bayesian framework, using Markov chain Monte-Carlo sampling, would also be an important development for this methodology, and provide Bayesian measures of uncertainty (Punt and Hilborn 1997, Magnusson et al. 2013). This approach would be particularly advantageous in a data-poor situation, where prior information on the biological parameters can be incorporated into the model. However, a good understanding of the biology of the exploited species is still very important, particularly for the L_{∞} parameter. Often the GTG LB-SPR model can fit equally well to the data for a range of different values of L_{∞}, with considerable variation in the resulting estimates of SPR.

In many of the situations where the LB-SPR model would be applied, length-at-age data are not available, and it may not be possible to estimate the growth curve directly for the stock. In such circumstances the life history parameters would have to be 'borrowed' from other stocks or closely related species. This reinforces the critical importance of high quality biological studies of fish stocks, as well as the utility of comparative studies for understanding patterns in life-history and borrowing parameters from other stocks or regions (Prince et al. 2015b).

The effect of Lee's Phenomenon of differential cumulative fishing mortality for different sub-cohorts also impacts the estimation of biological parameters. For example, the removal of larger fish from the population is likely to bias the estimated parameters of the growth curve. Figure 6 shows the relative error in the estimated L_{∞} and K parameters from fitting a von Bertalanffy growth curve to mean length-at-age data from a simulated population under increasing levels of fishing mortality. As fishing mortality was increased, the L_{∞} parameter was consistently under-estimated and the estimates of the K parameter were positively biased. This was especially the case for species with a high M / K ratio, where
there are relatively few larger sized individuals even in the unfished state (see Figure 2), and the relative error in L_{∞} and K were -0.09 and 0.06 respectively under the highest level of fishing mortality. The bias in the estimates of the growth parameters is likely to be a function of both the fishing mortality, and the selectivity pattern of the fishery. Here, we explored only a simple case with one selectivity pattern. However, these results conform with the findings from more elaborate simulation studies (Vaughan and Burton 1994, Goodyear 1995). Data sets from which growth can be estimated are likely to come from conditions where fishing impacts have already substantially affected the size and age structure of the stock. Using negatively biased estimates of the L_{∞} parameter in the LB-SPR model can result in substantial over-estimates of the SPR (Hordyk et al. 2015c).

When estimates of growth curves exist for a stock, and Lee's Phenomenon has not been taken into account, one approach to address this issue is to iteratively re-fit the GTG LB-SPR model while adjusting the von Bertalanffy growth parameters until the predicted mean length-at-age in the fished state matches that observed in the exploited fishery. For example, the GTG LB-SPR model would first be fitted to the length data with the estimated von Bertalanffy growth parameters. Given the estimated selectivity pattern and fishing mortality, the expected mean length-at-age of the fished population could be calculated from the model. The change in the growth parameters required for the expected mean length-atage to match that observed in the data could be calculated, and then the model re-fitted with these updated estimates. The process would be repeated until the predicted mean length-atage matched that observed in the data, and the estimates of F / M and SPR remained unchanged. The result of this method would be to back-calculate the von Bertalanffy growth parameters for the stock in the unfished state, and remove the downward bias in the estimated F / M.

Acknowledgments

We are grateful to the David and Lucille Packard Foundation for funding and support for this study. AH was also supported by Murdoch University. We thank J. Cope, T. Gedamke, H. Geremont, N. Gutiérrez, A. MacCall and S. Valencia for valuable comments and suggestions in a workshop relating to this research. N. Loneragan also provided useful comments which improved the quality of the paper. We are grateful to the editor and three anonymous reviewers, whose comments and suggestions greatly improved the paper.

References

Andersen, K.H., and Beyer, J.E. 2013. Size structure, not metabolic scaling rules, determines fisheries reference points. Fish Fish.: 1-22. doi: 10.1111/faf. 12042.

Andrew, N.L., Béné, C., Hall, S.J., Allison, E.H., Heck, S., and Ratner, B.D. 2007. Diagnosis and management of small-scale fisheries in developing countries. Fish Fish. 8: 227-240. doi: 10.1111/j.1467-2679.2007.00252.x.

Béné, C. 2003. When Fishery Rhymes with Poverty: A First Step Beyond the Old Paradigm on Poverty in Small-Scale Fisheries. World Dev. 31: 949-975. doi: 10.1016/S0305-750X(03)00045-7.

Bentley, N. 2015. Data and time poverty in fisheries estimation: potential approaches and solutions. ICES J. Mar. Sci. 72: 186-193.

Beverton, R.J.H. 1992. Patterns of reproductive strategy parameters in some marine teleost fishes. J. Fish Biol. 41: 137-160.

Botsford, L. W. (1981a). Optimal fishery policy for size-specific density-dependent population models. Journal of Mathematical Biology 12: 265-293. doi:10.1007/BF00276917

Botsford, L. W. (1981b). The effects of increased individual growth rates on depressed population size. American Naturalist 117: 38-63. doi:10.1086/283685

Botsford, L. W., and Wickham, D. E. (1979). Population cycles caused by inter-age, densitydependent mortality in young fish and crustaceans. Cyclic phenomena in marine plants and animals. In 'Proceedings of the 13th European Marine Biology Symposium', 27 September-4 October 1978, Isle of Man, UK. (Eds E. Naylor and R. G. Hartnoll.) pp. 73-82. (Permagon: New York.)

Bull, B. Francis, R.I.C.C. Dunn, A. McKenzie, A. Gilbert, D.J.; Smith, M.H. Bian, R. Fu, D. (2012). CASAL (C++ algorithmic stock assessment laboratory): CASAL User Manual v2.30-2012/03/21. NIWA Technical Report 135.275 p.

Charnov, E.L. 2014. Gompertz mortality, natural selection, and the "shape of ageing." Evol. Ecol. Res. 16: 435-439.

Charnov, E.L., Gislason, H., and Pope, J.G. 2013. Evolutionary assembly rules for fish life histories. Fish Fish. 14: 213-224. doi: 10.1111/j.1467-2979.2012.00467.x.

Costello, C., Ovando, D., Hilborn, R., Gaines, S.D., Deschenes, O., and Lester, S.E. 2015. Status and solutions for the world's unassessed fisheries. Science. 338: 517-20. doi: 10.1126/science. 1223389 .

Dowling, N.A., Dichmont, C.M., Haddon, M., Smith, D.C., Smith, A.D.M., and Sainsbury, K. 2015. Empirical harvest strategies for data-poor fisheries: A review of the literature. Fish. Res. 171: 141-153. doi: 10.1016/j.fishres.2014.11.005.

Erzini, K. 1990. Sample size and grouping of data for length-frequency analysis. Fish. Res. 9: 355-366. doi: 10.1016/0165-7836(90)90053-X.

Eveson, J.P., Polacheck, T., and Laslett, G.M. 2007. Consequences of assuming an incorrect error structure in von Bertalanffy growth models: a simulation study. Can. J. Fish. Aquat. Sci. 64: 602-617. doi: 10.1139/f07-036.

Francis, R.I.C.C. 2015. Growth in age-structured stock assessment models. Fish. Res. Elsevier B.V. doi: 10.1016/j.fishres.2015.02.018.

Gerritsen, H.D., and McGrath, D. 2006. Precision estimates and suggested sample sizes for length-frequency data. Fish. Bull. 106: 116-120.

Goodyear, C.P. 1995. Mean Size at Age: An Evaluation of Sampling Strategies with Simulated Red Grouper Data. Trans. Am. Fish. Soc. 124: 746-755.

Hampton, J. 2000. Natural mortality rates in tropical tunas: size really does matter. Can. J. Fish. Aquat. Sci. 57: 1002-1010. doi: 10.1139/f99-287.

Heery, E.C., and Berkson, J. 2009. Systematic errors in length frequency data and their effect on age-structured stock assessment models and management. Trans. Am. Fish. Soc. 138: 218-232. doi: 10.1577/T07-226.1.

Hilborn, R. 2007. Moving to sustainability by learning from successful fisheries. Ambio 36: 296-303.

Hilborn, R., and Ovando, D. 2014. Reflections on the success of traditional fisheries management. ICES J. Mar. Sci. 71: 1040-1046.

Hilborn, R., and Walters, C.J. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman and Hall, New York.

Honey, K., Moxley, J., and Fujita, R. 2010. From rags to fishes: data-poor methods for fishery managers. In Managing Data-Poor Fisheries Workshop: Case Studies, Models and Solutions. California Sea Grant College Program. pp. 159-184.

Hordyk, A.R., Loneragan, N.R., and Prince, J.D. 2015a. An evaluation of an iterative harvest strategy for data-poor fisheries using the length-based spawning potential ratio assessment methodology. Fish. Res. 171: 20-32.

Hordyk, A.R., Ono, K., Sainsbury, K.J., Loneragan, N., and Prince, J.D. 2015b. Some explorations of the life history ratios to describe length composition, spawning-perrecruit, and the spawning potential ratio. ICES J. Mar. Sci. 72: 204-216.

Hordyk, A.R., Ono, K., Valencia, S.R., Loneragan, N.R., and Prince, J.D. 2015c. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES J. Mar. Sci. 72: 217-231.

Jardim, E., Azevedo, M., and Brites, N.M. 2015. Harvest control rules for data limited stocks using length-based reference points and survey biomass indices. Fish. Res. 171: 12-19. doi: 10.1016/j.fishres.2014.11.013.

Kelly, C.J., Codling, E.A. 2006. "Cheap and dirty" fisheries science and management in the North Atlantic. Fish. Res. 79: 233-238. doi: 10.1016/j.fishres.2006.03.007.

Kenchington, T.J. 2014. Natural mortality estimators for information-limited fisheries. Fish Fish. 15: 1-30. doi: $10.1111 /$ faf. 12027.

Kent, G. 1997. Fisheries, food security, and the poor. Food Policy 22: 393-404.

Kokkalis, A., Thygesen, U.H., Nielsen, A., and Andersen, K.H. 2015. Limits to the reliability of size-based fishing status estimation for data-poor stocks. Fish. Res. 171: 4-11. doi: 10.1016/j.fishres.2014.10.007.

Lee, R.M. 1912. An investigation into the methods of growth determination in fishes by means of scales. J Cons Int. Explor Mer. s1: 3-34. doi: 10.1093/icesjms/s1.63.3.

Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural. J. Fish Biol. 49: 627-647. doi: 10.1111/j.10958649.1996.tb00060.x.

Lorenzen, K. 2000. Allometry of natural mortality as a basis for assessing optimal release size in fish-stocking programmes. Can. J. Fish. Aquat. Sci. 57: 2374-2381. doi: 10.1139/f00-215.

Magnusson, A., Punt, A.E., and Hilborn, R. 2013. Measuring uncertainty in fisheries stock assessment: The delta method, bootstrap, and MCMC. Fish Fish. 14: 325-342. doi: 10.1111/j.1467-2979.2012.00473.x.

Mangel, M., Kindsvater, H.K., and Bonsall, M.B. 2007. Evolutionary analysis of life span, competition, and adaptive radiation, motivated by the Pacific rockfishes (Sebastes). Evolution. 61: 1208-1224. doi: 10.1111/j.1558-5646.2007.00094.x.

Maunder, M.N., and Punt, A.E. 2013. A review of integrated analysis in fisheries stock assessment. Fish. Res. 142: 61-74.

McGarvey, R., Feenstra, J.E., and Ye, Q. 2007. Modeling fish numbers dynamically by age and length: partitioning cohorts into "slices." Can. J. Fish. Aquat. Sci. 64: 1157-1173. doi: 10.1139/f07-080.

Methot, R.D., and Wetzel, C. 2013. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fish. Res. 142: 86-99. Elsevier B.V. doi: 10.1016/j.fishres.2012.10.012.

Needle, C.L. 2015. Using self-testing to validate the SURBAR survey-based assessment model. Fish. Res. 171: 78-86. doi: 10.1016/j.fishres.2015.03.001.

Pennings, S.C. 1990. Predator-prey interactions in opisthobranch gastropods: effects of prey body size and habitat complexity. Mar. Ecol. Prog. Ser. 62: 95-101.

Pilling, G.G.M., Kirkwood, G.P., and Walker, S.G. 2002. An improved method for estimating individual growth variability in fish, and the correlation between von Bertalanffy growth parameters. Can. J. Fish. Aquat. Sci. 59: 424-432.

Pitcher, T.J., and Cheung, W.W.L. 2013. Fisheries: Hope or despair? Mar. Pollut. Bull. 74: 506-516. doi: 10.1016/j.marpolbul.2013.05.045.

Prince, J.D., Victor, S., Kloulchad, V., and Hordyk, A.R. 2015a. Length based SPR assessment of eleven Indo-Pacific coral reef fish populations in Palau. Fish. Res. 171: 42-58. doi: 10.1016/j.fishres.2015.06.008.

Prince, J.D., Hordyk, A.R., Valencia, S.R., Loneragan, N.R., and Sainsbury, K.J. 2015 b. Revisiting the concept of Beverton-Holt life-history invariants with the aim of informing data-poor fisheries assessment. ICES J. Mar. Sci. 72: 194-203.

Punt, A.E., and Hilborn, R. 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Rev. Fish Biol. Fish. 63: 35-63.

Punt, A.E., Huang, T., and Maunder, M.N. 2013. Review of integrated size-structured models for stock assessment of hard-to-age crustacean and mollusc species. ICES J. Mar. Sci. 70: 16-33. doi: 10.1093/icesjms/fst048.

Punt, A.E., Smith, A.D.M., and Cui, G. 2002. Evaluation of management tools for Australia's South East Fishery 1. Modelling the South East Fishery taking account of technical interactions. Mar. Freshw. Res. 53: 615-629. doi: 10.1071/MF01007.

Quinn, T.J., and Deriso, R.B. 1999. Quantitative Fish Dynamics. Oxford University Press, New York.

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from www.R-project.org.

Roa-Ureta, R.H. 2015. Stock assessment of the Spanish mackerel (Scomberomorus commerson) in Saudi waters of the Arabian Gulf with generalized depletion models under data-limited conditions. Fish. Res. 171: 68-77. doi: 10.1016/j.fishres.2014.08.014.

Roa-Ureta, R.H., Molinet, C., Barahona, N., and Araya, P. 2015. Hierarchical statistical framework to combine generalized depletion models and biomass dynamic models in the stock assessment of the Chilean sea urchin (Loxechinus albus) fishery. Fish. Res. 171: 59-67. doi: 10.1016/j.fishres.2014.12.006.

Sainsbury, K.J. 1980. Effect of Individual Variability on the von Bertalanffy Growth Equation. Can. J. Fish. Aquat. Sci. 37: 241-247.

Scheffer, M., Baveco, J.M., Deangelis, D.L., Rose, K. a, and Vannes, E.H. 1995. SuperIndividuals A Simple Solution For Modeling Large Populations On An Individual Basis. Ecol. Modell. 80: 161-170. doi: 10.1016/0304-3800(94)00055-M.

Shelton, A.O., Satterthwaite, W.H., Beakes, M.P., Munch, S.B., Sogard, S.M., and Mangel, M. 2013. Separating intrinsic and environmental contributions to growth and their population consequences. Am. Nat. 181: 799-814. doi: 10.1086/670198.

Sullivan, P.J., Lai, H.-L., and Gallucci, V.F. 1990. A catch-at-length analysis that incorporates a stochastic model of growth. Can. J. Fish. Aquat. Sci. 47: 184-198. doi: 10.1139/f90-021.

Taylor, I.G., and Methot, R.D. 2013. Hiding or dead? A computationally efficient model of selective fisheries mortality. Fish. Res. 142: 75-85. Elsevier B.V. doi: 10.1016/j.fishres.2012.08.021.

Thorson, J.T., and Cope, J.M. 2015. Catch curve stock-reduction analysis: An alternative solution to the catch equations. Fish. Res. 171: 33-41. doi: 10.1016/j.fishres.2014.03.024.

Vaughan, D.S., and Burton, M.L. 1994. Estimation of von Bertalanffy growth parameters in the presence of size-selective mortality: A simulated example with red grouper. Trans. Am. Fish. Soc. 123: 1-8.

Walmsley, S., Purvis, J., and Ninnes, C. 2006. The role of small-scale fisheries management in the poverty reduction strategies in the Western Indian Ocean region. Ocean Coast. Manag. 49: 812-833. doi: 10.1016/j.ocecoaman.2006.08.006.

Walters, C.J., and Martell, S.J.D. 2004. Fisheries ecology and management. Princeton University Press, Princeton, USA.

Wang, Y.-G., and Thomas, M. 1995. Accounting for individual variability in the von Bertalanffy growth model. Can. J. Fish. Aquat. Sci. 52: 1368-1375.

Wang, Y.-G., Thomas, M.R., and Somers, I.F. 1995. A maximum likelihood approach for estimating growth from tag-recapture data. Can. J. Fish. Aquat. Sci. 52: 252-259. doi: 10.1139/f95-025.

Wang, Y.-G., and Ellis, N. 1998. Effect of individual variability on estimation of population parameters from length-frequency data. Can. J. Fish. Aquat. Sci. 55: 2393-2401. doi: 10.1139/cjfas-55-11-2393.Worm, B., and Branch, T.A. 2012. The future of fish. Trends Ecol. Evol. 27: 594-9. doi: 10.1016/j.tree.2012.07.005.

Figures Captions

Figure 1 The individual von Bertalanffy growth curves of simulations with 41, 9 and 5 growth-type-groups (G ; columns 1, 2 and 3 respectively) and the resulting expected size composition (column 4) with grey bars representing the size structure generated with $\mathrm{G}=41$, solid black line when $\mathrm{G}=9$, and dashed black line when $\mathrm{G}=5$. Panels a-d show the simulations when $M / K=0.5$, e-h $M / K=1.0$, i-1 $M / K=1.5$, and m-p $M / K=2.0$. Due to the small interval between the growth-type-groups, it is not possible to distinguish the 41
individual growth curves in column 1 . The thick line in columns 2 and 3 represent the central growth-type-group which shares the L_{∞} parameter with the population as a whole.

Figure 2 Simulations from the GTG LB-SPR model showing the expected equilibrium unfished length composition for four different values of $M / K(0.5,1.0,1.5$, and 2.0 for a, b, c, and d respectively) and increasing values of c, the parameter controlling size-dependent natural mortality.

Figure 3 The expected equilibrium size composition of the catch for a) $M / K=0.5, b) 1.0$, c) 1.5 and d) 2.0 , at $\mathrm{SPR}=0.50$, with four different values of size-dependent natural mortality coefficient (solid, dashed, dotted, and dash-dotted lines for $c=0,0.1,0.2$, and 0.3 respectively). The differences between the four size-dependant natural mortality rates are almost indistinguishable on the plot. The other life history parameters are shown in Table 1.

Figure 4 The expected equilibrium size composition of the catch for a) $M / K=0.5$, b) 1.0 , c) 1.5 and d) 2.0 , at $\mathrm{SPR}=0.50$, and with a smaller size at selectivity ($S_{L 50}$ and $S_{L 95}$ set to 10 and 15 respectively, and with four different values of size-dependent natural mortality coefficient (solid, dashed, dotted, and dash-dotted lines for $c=0,0.1,0.2$, and 0.3 respectively). The differences between the four size-dependant natural mortality rates are more clearly visible in these simulations. The other life history parameters are shown in Table 1.

Figure 5 The simulated (x-axis) and estimated (y-axis) values of F / M and SPR when the size data was generated with the GTG LB-SPR model and the parameters estimated with the LBSPR model (panels a and c) and vice versa (panels b and d), for four ratios of $M / K(M / K=$ $0.5,1.0,1.5$ and 2.0 for the solid, dashed, dotted, and dash-dotted lines respectively.

Figure 6 The relative error in the estimated L_{∞} and K parameters when the von Bertalanffy growth equation is fitted to length-at-age data from a population under increasing levels of exploitation. Lee's Phenomenon results in the selective removal of faster growing individuals from the population, which depresses the observed mean length-at-age and results in biased estimates of the growth parameters, especially for the highest M / K species under high fishing mortality. Four different life history types were examined: $M / K=0.5,1.0,1.5$, and 2.0 (solid, dashed, dotted, and dash-dotted lines respectively). See Table 1 for other biological parameters.

Table 1 The biological, selectivity and other parameters of the growth-type-group model describing the four different life history types that were used in the simulations of the GTG LB-SPR model.

Parameter	Value	Description
Input Parameters		
M/K	$0.5,1.0,1.5,2.0$	Ratio of natural mortality (M) to the von Bertalanffy K parameter. Four different values represent a range of life-histories commonly observed in fish.
\bar{L}_{∞}	100	The mean asymptotic length of unfished population.
$C V_{L \infty}$	0.1	Coefficient of variation of L_{∞}, which defines the variation in asymptotic length across the sub-cohorts in the growth-type-group model.
\bar{L}_{50}	50	Mean length at which 50% of the population is mature.
\bar{L}_{95}	55	Mean length at which 95% of the population is mature.
β	3	The exponent of the length-fecundity relationship, set to 3 as fecundity assumed to be proportional to weight.
c	0	Exponent of natural mortality-at-length (or M / K at length). Set to 0 (constant M) for most simulations, but examined at $0.1,0.2$, and 0.3 .
G	17	Number of growth-type-groups in the model. Default value of 17, but examined at range of different values.
$d L$	5	Width of the size classes in the generated length data.
Estimated Parameters		
$S L_{50}$	50	Length at which 50\% of the population is selected by the fishery.
SL95	55	Length at which 95% of the population is selected by the fishery.
F / M	-	Ratio of fishing mortality (F) to the natural mortality rate. Set at various levels in the simulations.
SPR	-	The spawning potential ratio. Calculated from the input biological parameters and the estimated exploitation parameters.

Table 2 The estimated F / M, selectivity parameters, and the resulting estimate of the spawning potential ratio from the LB-SPR and the GTG LBSPR estimation models for the four reef fish species from Palau. The input parameters were fixed at the most likely values identified for these species by Prince et al. (2015a).

Species		Estimated Parameters				Input Parameters				
		SPR	F/M	$S_{L 50}(\mathrm{~mm})$	$S_{\text {L95 }}(\mathrm{mm})$	M/K	$L_{\infty}(\mathrm{mm})$	CVL ${ }_{\infty}$	$L_{50}(\mathrm{~mm})$	$L_{95}(\mathrm{~mm})$
H. longiceps	LB-SPR	0.05	6.6	277	315	1.07	423	0.1	300	330
	GTG LB-SPR	0.11	4.3	271	312					
L. gibbus	LB-SPR	0.08	4.4	221	251	0.41	343	0.1	257	320
	GTG LB-SPR	0.12	3.4	218	248					
L. rubrioperculatus	LB-SPR	0.26	2.5	232	268	0.62	306	0.1	214	270
	GTG LB-SPR	0.39	1.7	229	267					
V. Iouti	LB-SPR	0.04	4.1	208	274	0.86	483	0.1	285	350
	GTG LB-SPR	0.06	3.5	201	266					

Figure 1. The individual von Bertalanffy growth curves of simulations with 41, 9 and 5 growth-type-groups (G ; columns 1, 2 and 3 respectively) and the resulting expected size composition (column 4) with grey bars representing the size structure generated with $\mathrm{G}=41$, solid black line when $\mathrm{G}=9$, and dashed black line when
$\mathrm{G}=5$. Panels a-d show the simulations when $M / K=0.5$, e-h $M / K=1.0, \mathrm{i}-I M / K=1.5$, and $\mathrm{m}-\mathrm{p} M / K=$
2.0. Due to the small interval between the growth-type-groups, it is not possible to distinguish the 41 individual growth curves in column 1. The thick line in columns 2 and 3 represent the central growth-typegroup which shares the L_{∞} parameter with the population as a whole.

Figure 2. Simulations from the GTG LB-SPR model showing the expected equilibrium \r\nunfished length composition for four different values of $M / K(0.5,1.0,1.5$, and 2.0 for a, b, c, and d respectively) and increasing values of c, the parameter controlling size-dependent natural mortality.

Figure 3. The expected equilibrium size composition of the catch for a) $M / K=0.5, b) 1.0$, c) 1.5 and d) 2.0 , at SPR=0.50, with four different values of size-dependent natural mortality coefficient (solid, dashed, dotted, and dash-dotted lines for $\mathrm{c}=0,0.1,0.2$, and 0.3 respectively). The differences between the four size-dependant natural mortality rates are almost indistinguishable on the plot. The other life history parameters are shown in Table 1.
$99 \times 99 \mathrm{~mm}$ (300×300 DPI)

Figure 4. The expected equilibrium size composition of the catch for a) $M / K=0.5, b) 1.0, ~ c) 1.5$ and d) 2.0 , at $\mathrm{SPR}=0.50$, and with a smaller size at selectivity ($\mathrm{S}_{\mathrm{L} 50}$ and $\mathrm{S}_{\mathrm{L} 95}$ set to 10 and 15 respectively, and with four different values of size-dependent natural mortality coefficient (solid, dashed, dotted, and dash-dotted lines for $\mathrm{c}=0,0.1,0.2$, and 0.3 respectively). The differences between the four size-dependant natural mortality rates are more clearly visible in these simulations. The other life history parameters are shown in Table 1.

Figure 5. The simulated (x-axis) and estimated (y-axis) values of F / M and SPR when the size data was generated with the GTG LB-SPR model and the parameters estimated with the LB-SPR model (panels a and c) and vice versa (panels b and d), for four ratios of $M / K(M / K=0.5,1.0,1.5$ and 2.0 for the solid, dashed, dotted, and dash-dotted lines respectively.
$159 \times 159 \mathrm{~mm}(300 \times 300$ DPI)

Figure 6. The relative error in the estimated L_{∞} and K parameters when the von Bertalanffy growth equation is fitted to length-at-age data from a population under increasing levels of exploitation. Lee's Phenomenon results in the selective removal of faster growing individuals from the population, which depresses the observed mean length-at-age and results in biased estimates of the growth parameters, especially for the highest M / K species under high fishing mortality. Four different life history types were examined: $M / K=$ $0.5,1.0,1.5$, and 2.0 (solid, dashed, dotted, and dash-dotted lines respectively). See Table 1 for other biological parameters.
$149 \times 74 \mathrm{~mm}$ (300×300 DPI)

