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Abstract 

High-throughput sequencing technologies have become fundamental for the identification of 

disease-causing mutations in human genetic diseases both in research and clinical testing contexts. 

The cumulative number of genes linked to rare diseases is now close to 3,500 with more than 1,000 

genes identified between 2010 and 2014 thanks to the early adoption of Exome Sequencing 

technologies. However, despite these encouraging figures, the success rate of clinical exome 

diagnosis remains low due to several factors including wrong variant annotation and non-optimal 

filtration practices which may lead to misinterpretation of disease-causing mutations. 
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In this review, we describe the critical steps of variant annotation and filtration processes to 

highlight a handful of potential disease-causing mutations for downstream analysis. We report the 

key annotation elements to gather at multiple levels for each mutation, and which systems are 

designed to help in collecting this mandatory information. We describe the filtration options, their 

efficiency and limits and provide a generic filtration workflow and highlight potential pitfalls through 

a use case. 

Keywords 

high-throughput sequencing, variant annotation, variant filtration, good practices, pathogenic 

mutation 

 

1. Introduction 

The identification of human disease-causing mutations has relied for decades on Sanger sequencing 

and pre-screening technologies such as Single Strand Conformational Polymorphism (SSCP) or 

Denaturating Gradient Gel Electrophoresis (DGGE). This process was very slow and costly especially 

when genetic heterogeneity occurred. More importantly, it was difficult to apply this approach to 

large genes such as DMD (79 exons) or TTN (363 exons). With the rapidly developing high 

throughput solid phase sequencing technologies also known as Next Generation Sequencing (NGS), 

the strategy of gene hunting and diagnosis has drastically improved. In fact, in less than ten years, 

these NGS technologies have moved from gene panel sequencing (100 Mb for the Roche GS FLX 

system) to whole genome sequencing (1500 Gb for the Illumina HiSeq4000) and from research 

context only to clinical practice. The limitation is no longer the sequencing of one, many or all genes, 

but rather the sequence analysis and interpretation. Traditionally, scientists were afforded the 

luxury to develop expertise in a limited number of disease genes over a significant period of time. 

Unfortunately, they are now facing the daunting "all genes data deluge" (Schatz and Langmead 
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2013) where the expectation is to understand and interpret the suite of genes and their network of 

interactions implicated in disease. This next generation sequencing revolution now relies heavily on 

the field of bioinformatics, its tools, methods and analysis strategies to gather, store, analyze and 

mine the data in order to make informed decisions. 

Despite the tens of thousands of exomes and genomes that have been studied (for instance, Exome 

Aggregation Consortium (ExAC), Cambridge, MA (URL: http://exac.broadinstitute.org), we have only 

a limited understanding of the molecular mechanisms underpinning the human genome variability, 

especially in the context of rare human genetic diseases (see article from Collod-Béroud et al. in this 

issue). In fact, most disease-causing mutations are private (specific to a family) and the availability of 

functional tests to demonstrate their pathogenicity is limited. As such, distinguishing neutral 

mutations from disease-causing ones is challenging. This is even amplified for rare diseases, which 

are defined in Europe as conditions with a frequency below 1:2000 (Regulation (EC) N°141/2000 of 

the European Parliament and of the Council of 16 December 1999 on orphan medicinal products, 

http://ec.europa.eu/health/files/eudralex/vol- 1/reg_2000_141/reg_2000_141_en.pdf). It is 

estimated that more than 7,000 rare human genetic diseases exist (https://globalgenes.org/rare-

diseases-facts-statistics/), most of them being very rare. A review from Orphanet 

(http://orphadata.org/data/xml/en_product2_prev.xml) revealed that the majority consist of a 

handful of published reports describing a few individuals with a previously unidentified genetic 

syndrome, see Figure 1.  

 

Despite this apparent low number of affected individuals, it is estimated that all together the rare 

diseases account for up to 6-8% of the global population having a strong socio-economic impact 

(http://www.ema.europa.eu). To diagnose most of these rare diseases by 2020, the International 

Rare Diseases Research Consortium (IRDiRC) was launched in April 2011. It supports international 

collaboration and data sharing (Thompson et al. 2014) as well as large scale sequencing projects 
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(Turner et al. 2015). At the time of writing this manuscript, the cumulative number of new genes 

linked to rare diseases was 3,350 with 1,000 identified between 2010 and 2014, while 350 new rare 

diseases were described during this period (http://irdirc.org). Most of these genes have been 

identified as a result of both the revolution of NGS and advanced bioinformatics techniques. 

In contrast, this success is tempered by clinical exome diagnosis which has a success rate of only 26% 

(Yang et al. 2013). This relatively low success rate may be due to a number of factors, namely: a) 

technical limitations such as the absence of the disease-causing mutation in the captured DNA; b) a 

poor capture of some exonic regions (GC-reach regions); c) a low sequencing depth; c) a poor 

sequencing quality of read extremities; d) a mutation type not compatible with NGS technologies 

such as triplet expansion or large structural genomic variation (Gilissen et al. 2012); e) limitation of 

the bioinformatics data analysis pipeline; f) presence of pseudogenes or repeated regions, which 

may lead to inadequate mapping and wrong calling of mutations (false positives); g) limitation of the 

mapping process as no "gold standard" exist and a compromise has to be made between speed and 

accuracy, or h) wrong annotation in databases which may lead to misinterpretation of a disease-

causing mutation. 

The objective of this paper is to review the critical steps of variant annotations and filtration in order 

to guide users to collect the most appropriate elements related to each mutation and apply the 

proper filtration options to rapidly select a handful of candidate disease-causing mutations for 

downstream validation.  

 

2. Variants annotation 

The variant annotation process places mutations identified by the variant calling step (see Beltran et 

al. in this issue) into their biological context. This step is a requirement for the identification of 
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variants of interest based upon a combined filtration of the collected data from one or multiple 

samples. 

The main objective of this process is to gather substantial information at the variant and the gene 

levels. This will include the variants’ data quality, their localization at the genomic, gene and 

transcripts levels, their genotype, their frequency in the general population, their impact at the 

mRNA and protein levels, the conservation among species of the affected protein residues, the 

variant pathogenicity prediction and reported associations with diseases. At the gene level, they 

include the gene function, its spatiotemporal expression pattern, its involvement in various 

pathways and its involvement in various phenotypes/diseases. 

 

2.1 Annotations at the variant level 

Currently, several methods are available for variant quality assessment depending on the variant 

calling tool such as UnifiedGenotyper GATK and HaplotypeCaller GATK (McKenna et al. 2010), 

SamTools (Li et al. 2009) or Platypus (Rimmer et al. 2014). These bioinformatics tools provide two 

scores: i) the variant quality score or the probability that this variation is real. It is provided as a 

Phred quality score (Q score) (Ewing and Green 1998) to assess the probability that a given base is 

called incorrectly; and ii) the genotype quality score, which is also a Phred quality score  to assess 

the probability that the given genotype is incorrect. 

The description of the localization of the mutation includes various stages. The first stage is the 

genomic coordinates of the variation and is dependent of the version of Human Genome assembly, 

currently GRCh37 or GRCh38. The second stage is the localization at the gene and transcripts level. It 

is dependent of the selected annotation of the human reference genome. It is provided by Ensembl, 

the University of California Santa Cruz (UCSC), or the National Center for Biotechnology Information 

(NCBI). As demonstrated by Zhao et al. these annotations strongly differ at the transcript level with 
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only 53% of junction reads mapping at the same genomic location depending of the used gene 

model (Zhao and Zhang 2015). It is thus usually recommended for protein coding genes to use the 

Consensus Coding Sequence (CCDS), which is the result of a collaborative effort to maintain a 

dataset of protein-coding regions that are identically annotated on the human and mouse reference 

genome assemblies. CCDS are consistently represented by the NCBI, Ensembl, and UCSC Genome 

Browsers (Pruitt et al. 2009). When combining data from different sources, it is highly recommended 

to use annotations performed using the same reference genome. 

Once the genomic coordinates have been determined, the HGVS nomenclature is usually used to 

name the mutations at the cDNA level for all transcripts and protein level for coding genes. Once 

again, the translation from a genomic nomenclature to a cDNA nomenclature may result in 

differences based on the variant caller and the annotation tool. This is especially true for insertions 

and deletions in a repeated sequence. It may thus be interesting to control mutations nomenclature 

after the initial annotation step using a system able to correct such errors. One such tool is the 

Variant Effect Predictor from Ensembl (VEP) (Yates et al. 2015). In an attempt to evaluate the impact 

of functional annotation using various reference systems and tools, McCarthy et al. quantified the 

extent of differences in annotation of 80 million variants from a whole-genome sequencing study. 

They compared results from the ANNOVAR and VEP software using REFSEQ and ENSEMBL 

transcripts. They reported only 44% agreement in annotations for putative loss-of-function variants 

using ANNOVAR. They also support data from Zhao et al. (Zhao and Zhang 2015) showing that the 

splicing variants were the category with the greatest discrepancy. They concluded that the 

annotation step must be considered carefully, and that a conscious choice should be made to select 

transcript set and software for annotation (McCarthy et al. 2014). 

 

Variant frequency 
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Another key annotation element is the frequency of the variant in the general population. If ideally 

this general population should match the sample's origin, it is usually not available and data is 

captured from large scale projects such as the 1000 genome project (1000 Genomes Project 

Consortium et al. 2015), dbSNP (Sherry et al. 2001), the EVS (http://evs.gs.washington.edu/EVS/) or 

the EXAC consortium (Lek et al. 2015). It is important to recognise that these datasets are not 

mutually exclusive as there is significant overlap and should therefore not be simply combined to 

extrapolate a global frequency. In addition, these datasets are not representative of a global 

population per se as they contain "assumed to be healthy" individuals and samples from selected 

individuals with a particular condition. Note that laboratories, which routinely perform high-though 

put sequencing usually build internal frequency databases to exclude potential artefacts. 

Variant nomenclature and localization 

The annotation of the impact of the DNA mutation at the mRNA and the protein levels is complex. If 

the consequence at the protein level is easy to predict and report using the HGVS nomenclature (p.), 

it is only a prediction and should be considered as such. For example, a frameshift mutation 

predicted to result in a premature termination codon and therefore to a shorter protein, usually 

does not exist in reality because of the nonsense mediated decay phenomenon (Miller and Pearce 

2014). Another example is the prediction of a protein harboring a missense mutation that indeed 

does not exist as its primary impact is at the mRNA level as exemplified by the c.2167G>A 

(p.Asp723Asn) of the FBN1 gene that lead to the exon 17 skipping (Evangelisti et al. 2010). The 

impact of mutations at the mRNA level is even less documented as it is annotated as splicing 

mutation if localized in the donor or acceptor splice site regions, while the splicing machinery 

recognizes many signals such as exonic splicing enhancers and silencers and is considered as one of 

the most complex process of the cell (Nilsen 2003). Only few annotation tools are now including data 

from the Human Splicing Finder system that provides predictions for the impact of any mutation on 

all splicing signals (Desmet et al. 2009). The ANNOVAR system provides splice sites effect predictions 
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by AdaBoost and Random Forest from dbscSNV (Wang et al. 2010). The VEP system integrates 

various modules allowing to run external algorithms such as MaxEntScan (Yeo and Burge 2004), 

GeneSplicer (Pertea et al. 2001) or the dbNSFP (Liu et al. 2016) for splice sites effect predictions. 

Affected protein residue annotation 

The next annotation for variations is the conservation of affected protein residues. This information 

is usually restricted to single nucleotide variations that may result in missense mutations. It could be 

used as the result of selection pressure to maintain a specific amino acid at a given position because 

of its importance for the structure or the function of the protein. Typically, the higher the 

conservation, the higher the probability that a missense could impact the protein function. Most 

annotators are using conservation data extracted from the dbNSFP (Liu et al. 2016) that colligate 

data from PhyloP (Pollard et al. 2010), PhastCons (Siepel et al. 2006), GERP++ (Davydov et al. 2010) 

and Siphy (Garber et al. 2009). This gives access to conservation data from 27, 46 and 100 species, 

respectively, when using the GRCh37/38 reference genome. 

Variant pathogenicity 

Variants are also annotated for their potential pathogenicity using multiple algorithms and systems. 

Most annotator systems provide access to the following predictors: SIFT (Sim et al. 2012) Polyphen2 

(Adzhubei et al. 2010), LRT (Chun and Fay 2009), MutationTaster (Schwarz et al. 2014), Mutation 

Assessor (Reva et al. 2011), FATHMM (Shihab et al. 2013), MetaSVM and MetaLR (Dong et al. 2015), 

CADD (Kircher et al. 2014), VEST3 (Carter et al. 2013), PROVEAN (Choi et al. 2012), fitCons (Gulko et 

al. 2015), fathmm-MKL (Shihab et al. 2015), and DANN (Quang et al. 2015). Only the VarAFT 

annotator (http://varaft.eu) provides annotations from the most efficient predictor for cDNA 

substitutions: UMD-Predictor (Salgado et al. 2016). 

The final annotation at the variant level corresponds to its association with diseases. This 

information is usually extracted from various databases such as ClinVar (Landrum et al. 2014), 
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COSMIC (Forbes et al. 2015), UNIPROT (UniProt Consortium 2014) or HGMD (Stenson et al. 2003). It 

is important to keep in mind that the quality of these associations is highly variable and that some 

resources are not freely available. 

2.2 Annotations at the gene level 

As many variations are new or lacking annotation, it is useful to access data at the gene level. Global 

functional information is provided by the Gene Ontology at the cellular component, molecular 

function and biological process levels (Gene Ontology Consortium 2015). Additionally, data from 

tissue expression can be obtained from the Genotype Tissue Expression resource (GTEx) (Carithers et 

al. 2015), the Gene Expression Atlas (Petryszak et al. 2016) and organism model databases such as 

the Mouse Genome Institute (Bult et al. 2016). Unfortunately, the ability to integrated this data is 

not available for most annotators and often requires developing specific plugins such as the VEP 

annotator GXA.pm plugin to gather data from the Gene Expression Atlas.  

Another level of genes annotation is their involvement in various pathways, these data can be found 

in BioCarta (Nishimura 2001), the Pathway Interaction Database (PID) (Schaefer et al. 2009), the 

Reactome (Fabregat et al. 2016), the WikiPathways (Kutmon et al. 2016), and KEGG (Kanehisa et al. 

2016). Despite their utility for gene hunting, the information captured in these tools are not 

automatically incorporated during the annotation process. They are only available through external 

links. 

As for annotations at the variant level, it is important to capture the phenotypes associated to 

mutations from a particular gene. The Online Mendelian Inheritance in Man (OMIM) resource is 

providing such information (Amberger et al. 2014). Other resources such as ClinVar, HGMD might 

also be used as part of the annotation process. 

2.3 Annotation software 
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Different types of annotation software are available either through command line, webservices or 

web interface. They require data in different format, most allowing direct annotation of VCF files. 

They are compatible with either a single or multiple release versions of the human reference 

genome and allow annotation of SNP, Indels and CNV for only a limited number. As discussed, no 

system is providing annotations at all levels (Table 1). To easily handle annotations at the variant and 

gene levels most of the systems rely on the dbNSFP database developed for functional prediction 

and annotation of all potential non-synonymous single-nucleotide variants in the human genome 

(Liu et al. 2016). 

3. Selection of potential disease-causing mutations  

Once annotations at the gene and variant levels have been performed, the user needs to reduce the 

significant number of variations (usually in the tens of thousands) to a small, manageable number of 

putative candidate disease-causing mutations for further experimental validation. This filtering 

process is likely the most critical process of NGS analysis. The aim is to combine filtration criteria to 

exclude spurious variants by taking into account various parameters such as: the mode of 

inheritance, the disease frequency, the pathogenicity prediction of variations, the gene expression 

pattern, known relations between the observed phenotype and gene mutations, and so forth. 

Currently, as there is no gold standard describing an optimized filtration process for all situations, 

there are two options to proceed. Option one is to employ a semi-automatic prioritization systems 

such as eXtasy (Sifrim et al. 2013), OMIM Explorer (James et al. 2016) or Exomiser (Smedley et al. 

2015). This approach is proven to be very useful in situations where the phenotype is clearly 

described (mostly available in clinical diagnostic context) using the proper ontology such as the 

Human Phenotype Ontology (HPO) (Köhler et al. 2014) or the disease name (Amberger et al. 2014), 

as well as for gene hunting for the most advanced systems such as Exomiser and Phenolyzer  (Yang 

et al. 2015).  
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The alternate option is to adopt a fully manual prioritization procedure based on expert knowledge 

related to the disease phenotype and genes functions. This approach is greatly facilitated by the use 

of user friendly filtration tools such as VarAFT (http://varaft.eu), FM Filter (Akgün et al. 2016), 

VarSifter (Teer et al. 2012), ExomeSuite (Maranhao et al. 2014), wKGGSeq (Li et al. 2015) or 

customizable filtration tools that require advance knowledge in informatics as they must be used 

through command-line scripts such as ANNOVAR (Wang et al. 2010) or GEMINI (Paila et al. 2013). 

The semi-automatic prioritization systems use different prioritization algorithms and data. As 

reported by Rehm et al., the choice of the filtering process may differ across case types and requires 

a high level of expertise in genetics and molecular biology (Rehm et al. 2013). We will here describe 

the various steps that may be combined for manual prioritization. Table 2 lists some filtration 

systems and available filtration options.  

3.1 Mode of inheritance 

The initial step is linked to the mode of inheritance allowing the selection of either homozygous, 

heterozygous or compound heterozygous mutations either inherited or de novo. This selection 

process is facilitated when multiple samples from the family (trio) or the patient (somatic events) are 

available. As reported by Farwell et al., the diagnostic rate is higher among families undergoing a trio 

Whole Exome Sequencing (WES) (37%) as compared to a singleton (21%) (Farwell et al. 2015).These 

data were confirmed by Sawyer et al., reporting WES success rates of 23% for singletons, 32% for 

sibling pairs, and 34% for families (Sawyer et al. 2016). For instance, in the case of recessive 

conditions, the disease-causing mutations mainly correspond to compound heterozygous mutations 

for non-consanguineous families except for situations where a mutations is frequent in the 

population such as the ∆F508 mutation (NM_000492.3: c.1521_1523del) of the CFTR gene (Alfonso-

Sánchez et al. 2010) and to homozygous mutations for consanguineous families. The most advanced 

systems such as VarAFT allow supporting of these hypotheses in difficult missing data contexts 

where one parent might be not sufficiently covered in one specific region. 
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3.2 Mutation localization 

The mutation localization is usually the second parameter. Variants from key genomic regions 

(exons, splice sites) are usually selected while variants from other genomic regions (3' and 5'UTR, 

intronic regions) are discarded. In fact, if pathogenic mutations have been reported in 3' and 5' UTR, 

they mainly correspond to trinucleotide repeat expansions as illustrated by Spinocerebellar Ataxia 

type12 (#604326) and Fragile X tremor/Ataxia syndrome (#300625) for 5'UTR and Spinocerebellar 

Ataxia type 8  (#608768), Myotonic Dystrophy 1 (#160900) or Huntington disease like 2 (#606438) 

for 3' UTR (Richards et al. 2013). Nevertheless, it is important to keep in mind that these repeat 

expansions are not captured by most NGS technologies such as Illumina or Proton that generate only 

short reads. Other variants from these regions may be subsequently analyzed when no meaningful 

result is obtained.  

 

3.3 Mutation type 

It is well recognized that not all mutation types might result in an equal effect on proteins and 

diseases. Thus, it is usually considered that nonsense mutations as well as frameshift mutations have 

a strong impact while at the other end of the spectrum, synonymous changes usually have no impact 

at the protein level but may affect mRNA maturation. If in the past, synonymous changes have been 

frequently filtered-out, they are today conserved during this selection process. It is recommended to 

remove only variants belonging to the "unknown" or "in-frame deletions and insertions" mutation 

types. Other variants will be excluded through other filtration process such as pathogenicity 

predictions and frequency. 
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3.4 Mutation frequency 

As most genetic diseases are rare, mutation frequency could be used to exclude frequent variations 

(see paper from Collod et al. in this issue). Ideally, this information should be captured from a 

matched population. In practice it is rarely feasible and users rely on frequencies from 1000 genome 

project (1000 Genomes Project Consortium et al. 2015), dbSNP (Sherry et al. 2001), the EVS 

(http://evs.gs.washington.edu/EVS/) or the EXAC consortium (Lek et al. 2015) as mentioned in the 

annotation section. Additionally, some large scale sequencing analysis project, such as ExAC, allow at 

the same time to combine the frequency data with the level of coverage observed in order to 

provide an accurate reflection of a specific variant within a population. Depending on the mode of 

inheritance and the frequency of the disease, it is possible to calculate the theoretical threshold of 

the disease-causing mutation frequency under the assumption that all observed cases harbor a 

single mutation. For example, for an autosomal dominant disease with a frequency of 1:10000, the 

allele frequency threshold is 0.01% while for an autosomal recessive disease with the same 

frequency, the threshold is 1%.  However, obtaining this information for genetically heterogeneous 

disorders with overlapping clinical phenotypes might be challenging. 

 

3.5 Pathogenicity predictions 

During the last few years, various systems have been developed to predict the pathogenicity of 

mutation from human genes. They contain predictions for synonymous and non-synonymous 

changes, mutations potentially affecting mRNA splicing motifs as well as regulatory regions including 

miRNA binding sites, transcription Factor binding sites (Boyle et al. 2012), chromatin states (Ward 

and Kellis 2016) and non-coding regions (Kircher et al. 2014; Ritchie et al. 2014). It is essential for a 

critical interpretation of results to understand the strengths and limitations of each system. For 

example, predictions of the impact of mutations on splice sites and branch points are very accurate, 
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while they are less efficient for splicing auxiliary splicing sequences (Desmet et al. 2010). Similarly, 

predictions of the pathogenicity of missense mutations could be performed with a wide range of 

systems with accuracy ranging from 72% to 85% on a dataset of 17,329 variants (Salgado et al. 

2016). Some authors have proposed to integrate individual predictions into meta systems such as 

PON-P (Olatubosun et al. 2012) and Condell (González-Pérez and Lopez-Bigas 2011) but consensus is 

only achieved for a subset of mutations, which are often relatively easy to predict. Therefore, it is 

better to use a limited set of predictors for filtration rather than combining all predictions, which 

may result in many situations with discrepancies between predictors. For example the 

NM_022124.5:c.4488G>C (p.Gln1496His) mutation of the CDH23 gene has been reported as a 

pathogenic mutation (Bolz et al. 2001). Only the CADD, UMD-Predictor and Mutation Taster systems 

predicted this variant as pathogenic while the SIFT, Polyphen2, Condel, Provean and Mutation 

Assessor systems predicted it as a non-pathogenic mutation. In Figure 1 a Venn diagram is presented 

highlighting the predictions from the most frequently used predictors on a subset of randomly 

chosen 5,000 variations from the Uniprot dataset (Salgado et al. 2016). The 6 predictors reach 

consensus for only 3074 (61.5%) of variants, while if using only the 2 most efficient systems (UMD-

Predictor and CADD), consensus is achieved for 4275 (85.5%) variants. 

 

 

3.6 Functional evidences 

Numerous studies have resulted in functional annotations of genes in various species and a specific 

ontology has been developed to described these functional annotations: Gene Ontology (Gene 

Ontology Consortium 2015). In parallel, genes have been classified in various pathways (Nishimura 

2001; Fabregat et al. 2016; Kanehisa et al. 2016) in order to capture relationships and facilitate gene 

hunting. Furthermore, spatiotemporal expression patterns have been established for many genes in 
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various species using a number of different high throughput techniques such as in situ hybridization 

(Tomancak et al. 2002), micro arrays (Petryszak et al. 2016) and RNA-seq (GTEx Consortium 2013). 

Unfortunately, despite the importance of these data they are usually not available for filtration. 

 

3.7 Previous description in databases 

As mentioned in the beginning of this section, the description of mutations might be helpful for 

variant prioritization. In addition to variants' frequency, the availability of curated and previously 

annotated data is of primary importance. Such data can be found in Locus Specific DataBases (LSDB) 

such as LOVD (Fokkema et al. 2005), UMD (Béroud et al. 2005) and others 

(http://www.hgvs.org/locus-specific-mutation-databases) or Core databases such as HGMD (Stenson 

et al. 2003), ClinVar (Landrum et al. 2014), OMIM (Amberger et al. 2014), Uniprot (UniProt 

Consortium 2014) or RDRF (Bellgard et al. 2014). These annotations are of different qualities due to 

different curation modes ranging from full curation by experts to direct submission without review. 

In this context it is important to do not consider annotations as definitive answers but rather as 

evidences of causality. These data are usually not available for filtration but as additional 

annotations. 

 

3.8 Proposed Filtration Flowcharts 

Figure 3 proposes a standard filtration flowchart to identify disease-causing mutations in a context 

of a trio analysis for the recessive mode of inheritance. The samples were described by Kamphans et 

al. (Kamphans et al. 2013) and correspond to a family with one daughter (sample ID #464) affected 

by Mabry syndrome and her two healthy parents (samples ID #466 and 467). The flowchart is 

composed of 5 steps, however, the fifth step could be divided into functional evidences and previous 

description in databases. As illustrated, the availability of the trio allows a drastic reduction of the 
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candidate variations/genes during the first step where the compound heterozygous hypothesis has 

been selected. Alternative hypothesis such as homozygous mutation in the daughter with 

heterozygous parents for the mutation as well as more complex hypothesis where one of the two 

parents has insufficient sequencing quality resulting in missing data, should also be investigated in 

parallel (see below). In the second step, only mutations localized in exons and their vicinity are 

conserved. This parameter corresponds to the most frequent situation and can be adjusted on a 

case by case basis especially for genes where mutations in UTR regions have been reported with a 

high frequency. The third step uses frequency information from the 3 most popular databases (EVS, 

1000 genomes and ExAC) even if they overlap (see above). The frequency threshold can be adjusted 

if the disease frequency is known or arbitrarily fixed to 1% in case of a recessive condition. For the 

fourth step, we selected only predictions from the UMD-Predictor and CADD systems. Based on user 

experience, the selection of predictors might vary. Note that in this use case, one of the two disease-

causing mutations from the PIGO gene is a missense variation (NM_032634, c.2869C>T, 

p.Leu957Phe) for which pathogenicity predictions are available, the second one being a frameshift 

deletion (NM_032634, c.2355dupC). It is important to note that in this case, the use of more 

predictions algorithms might have resulted in loss of this candidate gene as this mutation is 

predicted as being non-pathogenic by SIFT and Mutation Taster. The final step corresponds to the 

collection of additional evidence. Here only two candidate genes with compound heterozygous 

mutations were present: the AFF1 and the PIGO genes. After collection of evidences from OMIM, the 

PIGO gene can be selected as the only hypothesis compatible with the phenotype. 

In this use case the disease-causing mutations were efficiently captured which is only true for a 

limited number of situations as reported by the clinical exome diagnosis success rate of only 26% 

(Yang et al. 2013). For the negative cases it is important to consider the following hypothesis.  

Hypothesis 1: poor sequence quality in one sample leading to missing data. Only few filtration tools 

allow the handling of missing data and might lead to candidate exclusion.  
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Hypothesis 2: wrong genotype. For instance, considering only compound heterozygous hypothesis in 

a case of recessive inheritance without consanguinity. The homozygous hypothesis should always be 

evaluated as well as the compound heterozygous situation with one de novo mutation. The recently 

released TADA (Transmission And De novo Association test) model is a Bayesian model that 

combines data from de novo mutations, inherited variants and standing variants in the population. 

This approach revealed a significant power increase for gene discovery, as demonstrated through 

the studies of exome data of Autism Spectrum  Disorder (ASD) (He et al. 2013) and might be useful in 

other situations.  

Hypothesis 3:  involvement of a large rearrangement or Copy Number Variation (CNV). It is 

recognized that CNV are frequently involved in human genetic diseases with the archetype of 

Duchenne Muscular Dystrophy where they account for up to 60% of mutations (Bladen et al. 2015). 

These CNV might now be captured from WES data and various tools are available (Nam et al. 2016). 

It is therefore important to combine this information with SNV.  

Hypothesis 4: some variations could be missed by the WES technologies because they are localized 

outside captured regions (deep intronic, regulatory regions).  

Hypothesis 5: bioinformatics pipelines limitations. The alignment process could lead to wrong reads' 

mapping because of high homology between various genomic regions. This might end up with wrong 

variant calling resulting in false positives or false negatives. In addition, repeated sequences can not 

be aligned and prevent mutation identification as it is the case for trinucleotide repeats, which are 

responsible for many human diseases (Keogh and Chinnery 2013).   

 

 

4. Discussion  
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High throughput sequencing technologies that include Whole Exome Sequencing generate a high 

number of sequence variations in all individuals. Identifying disease-causing mutations among this 

large amount of data is a significant challenge. In this paper, we described the annotation and 

filtration steps that are mandatory to rapidly end up with a handful of disease-causing candidate 

mutations for further analysis. Even if the success rate is still limited, these technologies have a 

strong potential to diagnose most human monogenic diseases. To do so, it is first critical to 

understand the advantages as well as the limits of the annotation and filtration systems as incorrect 

or incomplete annotations can cause scientists both to overlook potentially disease-relevant DNA 

mutations as well as potentially dilute interesting mutations into a pool of false positives. 

Additionally, the filtration process requires experts in order to efficiently define hypothesis and 

successfully apply filtration tools. Finally, a close collaboration with clinicians is also a pre-requisite 

to avoid misclassification of patients that often prevent the disease-causing mutation discovery as 

experienced by many research teams. 

Despite the availability of many bioinformatics systems for annotation and filtration, there is no gold 

standard available to solve every situation. Some semi-automatic prioritization systems taking into 

account genotypes and phenotypes are now available and could be of interest for specific situations 

(Sifrim et al. 2013; Smedley et al. 2015; James et al. 2016). However, most users typically use a 

combination of annotation and filtration systems. This can be done manually through dedicated 

systems (Teer et al. 2012; Maranhao et al. 2014; Li et al. 2015; Akgün et al. 2016) or using 

frameworks such as the Galaxy (Goecks et al. 2010) and Yabi (Hunter et al. 2012). The latter is 

flexible enough to allow any combination of software tools and data into sophisticated analysis 

procedures. In addition, the generated workflows can be easily shared and adjusted. Despite these 

strong benefits, these systems require not only bioinformatics skills but also a full understanding of 

the parameters of each step to reach efficiency and are therefore not fully adopted.  
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With the future switch to whole genome sequencing, additional challenges will emerge such as the 

handling of very large datasets and the interpretation of new mutation types: i) deep intronic 

mutations; ii) regulatory region mutations; iii) mutations found in non-coding genes (lncRNA 

(Wapinski and Chang 2011), T-UCR, circular ncRNA, small nucleolar RNA and miRNA (Esteller 2011) 

and iv) mutations reported in extra-genic regions (Dickel et al. 2013). As reported by Berg et al., a 

significant obstacle to implementing WGS is the huge amount of information that will be generated 

even if they consider that only a small subset might be relevant for interpretation due to a lack of 

knowledge (Berg et al. 2011). Nevertheless, it is anticipated that with the global adoption of WGS, 

more data will be generated and will contribute to the development of new bioinformatics tools and 

systems to facilitate their interpretation. If people often consider sequencing costs as the major 

barrier for WGS adoption, it is important to not only consider these costs but also human resources 

required for data interpretation. In fact, human resource needs for full clinical interpretation of WGS 

data remain considerable as described by Dewey et al. who reported that approximately 100 

variants should be manually evaluated in each patient and that candidate disease causing mutation 

curation required at least one hour per variant (Dewey et al. 2014). 

It is reasonable to believe that during this WGS progressive adoption phase, most users will first 

benefit from better exonic regions coverage when compared to WES (Belkadi et al. 2015). In this 

situation they might directly benefit from all annotation and filtration systems developed for WES 

data analysis and described here before the availability of innovative annotation and filtration 

systems for non-coding mutations. 
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Legends: 

Figure 1: Distribution of rare diseases according to their estimated prevalence. Data were 

extracted from the rare disease epidemiological data from Orphadata 

(http://orphadata.org/data/xml/en_product2_prev.xml). 
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Figure 2: Venn diagram of pathogenicity predictions of 5,000 variants from Uniprot using CADD 

(Kircher et al. 2014), SIFT (Sim et al. 2012), Polyphen 2 (PPH2) (Adzhubei et al. 2010), Provean, 

Mutation Taster (MutTaster) (Schwarz et al. 2014) and UMD-Predictor (UMD-Pred) (Salgado et al. 

2016) pathogenicity prediction systems. 
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Figure 3: Filtration flowchart for a recessive disease from a trio (father, mother and affected 

daughter) (Kamphans et al. 2013). 1st step = mode of inheritance. Only genes with compound 

heterozygous mutations found in the daughter and transmitted by the two parents are selected; 2nd 

step = mutation localization. Only mutations present in the exons and intronic regions +/-8 

nucleotides from the exon are conserved; 3rd step = frequency. Mutations with a reported frequency 

in ESP, 1000 genomes or ExAC above 1% are removed; 4th = predictions. Only mutations predicted as 

pathogenic or probably pathogenic by UMD-Predictor and CADD are conserved; 5th = other 

evidences. Genes of interest are analyzed using data from OMIM to select genes with a compatible 

impact on phenotype. 
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Table 1: Non-exhaustive list of annotation systems for WES. VCF = Variant Call Format; TSV = Tab-

separated values. 

  
Annovar SNPeff 

Ensembl 

VEP 
SeattleSeq AnnTools Oncotator Vanno 

Variant 

Annotation 

Tools 

  Availability 
Command 

line 

Comma

nd line 

Command 

line 

Webservice 

Web 

web 
command 

line 

Comman

d line 

Web 

Web 
Command 

line 

  url 

http://anno

var.openbi

oinformati

cs.org/en/l

atest/ 

http://sn

peff.sou

rceforge

.net/ 

http://www.

ensembl.or

g/info/docs/

tools/vep/in

dex.html 

http://snp.g

s.washingto

n.edu/Seatt

leSeqAnnot

ation144/H

elpAbout.js

p 

http://annt

ools.sourc

eforge.net/ 

https://ww

w.broadin

stitute.org

/oncotator
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http://cgts.

cgu.edu.t

w/vanno/ 

http://variantt

ools.sourcef

orge.net/Ann

otation/Hom

ePage 
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SNP, 
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SNP, 
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V
ar

ia
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l Variant 

quality 
Yes Yes Yes  - Yes  - Yes  Yes 
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Variant 

localisation 
Yes Yes Yes Yes Yes Yes Yes Yes 

Gene/transcr

ipt 

annotation 

Yes Yes Yes Yes Yes Yes Yes Yes 

Genotype Yes Yes Yes Yes Yes  - Yes Yes 

Population 

frequency 
Yes  - Yes Yes Yes Yes Yes Yes 

Impact at the 

RNA level 
Yes Yes Yes  -  -  -  -  - 

Impact at the 

protein level 
Yes Yes Yes Yes Yes Yes Yes  Yes 

Conservatio

n 
Yes Yes Yes Yes  - Yes Yes Yes 

Reported 

impact 
 -  - Yes Yes  - Yes Yes Yes 

Predicted 

pathogenicit

y 

Yes Yes Yes Yes  - Yes Yes Yes 

G
en

e 
le

ve
l 

Gene 

ontology 
 -  -  -  -  - Yes Yes  - 

Pathways  -  -  - Yes  -  - Yes Yes 

Tissue 

expression 
 -  -  -  -  -  -  -  - 

 

Table 2: Non-exhaustive list of filtration systems for WES. VCF = Variant Call Format; TSV = Tab-

separated values; ped file = pedigree file format; * = select variants based on the mutation genotype 

only; ** = only use mutation frequency from the "Born in Bradford sequencing project". 
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