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Abstract 

With increasing human pressures on wildlife comes a responsibility to monitor them 

effectively, particularly in an environment of declining research funds. Scarce funding 

resources compromise the level and efficacy of monitoring possible to detect trends in 

abundance, highlighting the priority for developing cost-effective programs. A systematic 

and rigorous sampling regime was developed to estimate abundance of a small, genetically 

isolated spinner dolphin (Stenella longirostris) population exposed to high levels of human 

activities. Five monitoring scenarios to detect trends in abundance were evaluated by 

varying sampling effort, precision, power and sampling interval. Scenario 1 consisted of 

monthly surveys, each of 12 days, used to obtain the initial two consecutive annual 

abundance estimates. Scenarios 2, 3 and 4 consisted of a reduced effort, while Scenario 5 

doubled the effort of Scenario 1. Scenarios with the greatest effort (1 and 5) produced the 

most precise abundance estimates (CV=0.09). Using a CV=0.09 and power of 80%, it would 

take nine years to detect a 5% annual change in abundance compared with 12 years at a 

power of 95%. Under this best-case monitoring scenario, if the trend was a decline, the 

population would have decreased by 37% and 46%, respectively, prior to detection of a 

significant decline. With the potential of a large decline in a small population prior to 

detection, the lower power level should be used to trigger a management intervention. The 

approach presented here is applicable across taxa for which individuals can be identified, 

including terrestrial and aquatic mammals, birds and reptiles.  
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1 Introduction  

With the ever-increasing human pressure on wildlife we have a responsibility to monitor and 

manage wildlife populations effectively (Geffroy et al. 2015; Tablado and Jenni 2015). 

Management decisions for the conservation of wildlife should be based on sound scientific 

investigations and rigorous monitoring regimes, particularly for those populations whose 

viability is threatened (Jaramillo-Legorreta et al. 2007; Turvey et al. 2007). These 

requirements, however, conflict with the perennial problem of scarce funding resources in 

conservation biology (Williams and Thomas 2009; Williams et al. 2011). The challenge that 

management agencies face is the effective allocation of scarce funding resources to 

conservation research and management, while still being able to fulfil their statutory 

obligations. Consequently, managers often cut the costs of research to estimate wildlife 

abundance (Williams and Thomas 2009; Williams et al. 2011). The trade-off for reduced 

funding for abundance estimation is a reduction in the precision of those estimates (Thomas 

et al. 2010), which  has important implications for the power of detecting trends in 

abundance. Power analysis determines the ability of a study to detect an effect of a given 

size with a degree of confidence, and should be an integral part of any study that is 

investigating the demographic parameters of wildlife populations.   Detecting changes in 

populations is critical for managing populations with low abundance. 

 

Taylor et al. (2007) reviewed decades of monitoring data for marine mammal stocks under 

United States (U.S.) jurisdiction, and found that agencies had almost no statistical power to 

detect even catastrophic declines in many stocks, especially oceanic dolphins. For example, a 

study of the Atlantic spotted dolphin (Stenella frontalis) in the Western North Atlantic had 

only 11% power to detect a 50% decline in 15 years (Taylor et al. 2007). In the waters of the 
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U.S., marine mammals are data-rich by global standards, as exemplified by the fact that 75% 

of the world's ocean has never been surveyed to estimate cetacean density (Kaschner et al. 

2012).  In the face of such uncertainty, two broad approaches have been suggested as 

precautionary ways to conserve marine mammal populations when statistical power is low 

or data are scarce.  One approach is to lower the burden of proof that a population is in 

decline before triggering a mitigation approach (e.g., Taylor et al. 2000).   The other is to set 

allowable harm limits on an annual basis, so that populations should never decline below 

some predefined threshold, as long as those annual limits are not exceeded (e.g., Wade 

1998).  Although these harm limits are usually thought of in terms of lethal removals from a 

population (e.g., through incidental catch in fisheries or ship strikes), decision rules could be 

articulated equally well in terms of the number of sub-lethal takes that policy-makers are 

willing to allow animals to withstand  (e.g., Higham et al. 2016). 

 

Notwithstanding the difficulty in detecting declines in long-lived, slowly-reproducing 

mammals, managers often require proof that a population falls within either the 

classification of “small population” or “declining population” (Caughley 1994) before they 

act. Population monitoring programs designed to detect change and determine 

management strategies that hinge on proof of declines to trigger management intervention 

require precise and unbiased estimates of population parameters (Taylor and Gerrodette 

1993; Taylor et al. 2007). To do this, these programs must be designed to satisfy the 

assumptions of the estimation methods to ensure that the estimates are unbiased and have 

sufficient sampling effort to produce precise abundance estimates (Wilson et al. 1999; 

Thompson et al. 2000). 
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The power to detect trends in abundance depends on the relationship between the rate of 

change in the abundance, the precision of the abundance estimate (e.g., the coefficient of 

variation) and the acceptable levels of making errors to detect change (Type I (α) and Type II 

(β) errors). Variations in these parameters can then determine the efficacy of proposed 

monitoring programs to detect trends in abundance and provide a scientific basis for the 

level of precaution required to address management issues.  

 

The U.S. National Oceanic and Atmospheric Administration (NOAA) has the mandate under 

the Marine Mammal Protection Act 1972 (MMPA) to protect all cetaceans, seals and sea 

lions in U.S. waters and the National Marine Fisheries Service (NMFS) and the U.S. Fish and 

Wildlife Service have the responsibility for assessing the stocks of cetaceans and pinnipeds. 

The frequency of stock assessments depends on the classification of the stock: strategic 

stocks require annual reviews, while non-strategic stocks require reviews every three years 

or when new information becomes available (Carretta et al. 2014). A strategic stock is 

defined under the MMPA as a marine mammal stock “… (A) for which the level of direct 

human-caused mortality exceeds the potential biological removal level; (B) which, based on 

the best available scientific information, is declining and is likely to be listed as a threatened 

species under the Endangered Species Act (ESA) within the foreseeable future; or (C) which is 

listed as threatened or endangered under the ESA, or is designated as depleted under the 

MMPA.” Currently, Hawaiian spinner dolphins (Stenella longirostris) are not listed as 

threatened, endangered or depleted. Furthermore, the levels of serious injury and mortality 

due to anthropogenic causes do not exceed the estimated Potential Biological Removal 

(PBR) level for the stock (Carretta et al. 2014). Therefore, they are classified as a non-

strategic stock (MMPA, 1972).  
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In Hawaii, spinner dolphins live in small (Tyne et al. 2014) , isolated stocks with restricted 

ranges (Andrews et al., 2010) and have evolved a specialised behavioural ecology (Norris and 

Dohl 1980). They forage cooperatively offshore at night, and return to sheltered bays to 

socialise and rest during the day (Norris and Dohl 1980; Norris et al. 1994; Benoit-Bird and 

Au 2009; Tyne et al. 2015) during which time the bays are also used extensively by people 

for tourism, recreational and subsistence purposes (Heenehan et al. 2015). Some of these 

activities, in particular nature-based tourism, engage in repeated, close-up encounters with 

dolphins on a daily basis (Heenehan et al. 2015). These close-up encounters may have 

negative consequences for spinner dolphins, which is a major concern for managing the 

population.  However, currently no data are available on  the trends in abundance for any 

spinner dolphin stock in the Hawaiian archipelago (Carretta et al. 2014), which hampers the 

evaluation of potential impacts on Hawaiian spinner dolphins.  

 

Here, data from a rigorous photo-identification study designed to estimate abundance were 

used to provide a second consecutive annual abundance estimate for the Hawaii Island 

spinner dolphin stock  (see Tyne et al. 2014 for the first estimate) and evaluate the power of 

different sampling strategies to detect change in abundance.  Five scenarios with different 

levels of sampling effort, based on the systematic approach employed in Tyne et al. (2014), 

were evaluated in terms of their  efficacy to detect trends in abundance by varying sampling 

effort, the rate of change in abundance, precision, power and the interval between annual 

abundance estimates. The results from this research provide management with guidelines 

for evaluating sampling programs of different intensity to detect a trend in abundance, and 

to guide where limited funding resources may be directed. This approach is applicable across 
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taxa for which individuals can be identified, including terrestrial and aquatic mammals (e.g., 

Pennycuick and Rudnai 1970; Parra et al. 2006), birds (Buckland et al. 2008; Williams and 

Thomson 2015) and reptiles (Sacchi et al. 2010). The results also provide fundamental 

information for the development of monitoring programs that evaluate the efficacy of 

management interventions (e.g., time-area closures) designed to reduce the number and 

intensity of human-wildlife interactions.  

 
2 Materials and methods 

2.1 Fieldwork 

Hawaii Island is the largest, youngest and most southerly of the main Hawaiian Islands. On 

the leeward (west) side of the island is the Kona Coast, where four important dolphin resting 

bays are located: Makako Bay, Kealakekua Bay, Honaunau Bay and Kauhako Bay (Figure 1); 

(Norris et al. 1994; Thorne et al. 2012; Tyne et al. 2014; Tyne et al. 2015).  

 
2.2 Sampling design 

Abundance estimated from data that have been collected opportunistically can increase the 

risk of introducing sampling bias into the data, leading to inaccurate and imprecise 

abundance estimates. To mitigate this risk from September 2010–August 2012, boat-based 

photographic-identification was carried out in four important resting bays (Tyne et al. 2015) 

of the Hawaii Island spinner dolphin stock using the systematic sampling design presented in 

Tyne et al. (2014). Each bay was sampled on the same dates each month, regardless of 

whether dolphins were present or absent, thus providing consistent and even effort 

throughout the study period and area.  This design, referred to as Scenario 1, consisted of 12 

consecutive sampling days each month for each of the two years. Three additional sampling 

regimes of reduced intensity (Scenarios 2, 3 and 4) were evaluated, using subsets of 

Scenario 1 data, and compared with the results from Scenario 1. Finally, a fifth sampling 
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regime of a two-fold increase in sampling intensity from Scenario 1, i.e., 24 consecutive 

sampling days each month, was also compared with the results from Scenario 1. Abundance 

and precision were estimated for each year. 

 

2.3 Sampling effort  

The sampling effort in each of the five scenarios was: 

 Scenario 1 – 12 sampling days per month across four bays, two days in Makako Bay, 

four days in Kealakekua Bay, two days in Honaunau Bay and four days in Kauhako Bay 

(Figure 1). 

 Scenario 2 – six sampling days per month, spread across the four bays, with the days 

chosen by randomly selecting half the number of days from each bay in Scenario 1. 

 Scenario 3 – six sampling days per month, across the two bays where dolphins were 

encountered most frequently (two days in Makako Bay and four days in Kealakekua 

Bay). 

 Scenario 4 – three sampling days per month, across two bays where dolphins were 

encountered most frequently, with the days chosen by randomly sampling half the 

number of days from each bay in Scenario 3 (one day in Makako Bay and two days in 

Kealakekua Bay). 

 Scenario 5 – 24 sampling days per month across four bays chosen by randomly 

selecting double the number of days from each bay in Scenario 1, four days in 

Makako Bay, eight days in Kealakekua Bay, four days in Honaunau Bay and eight days 

in Kauhako Bay. 
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2.4 Estimating costs 

The relative costs of the different sampling regimes were estimated by determining the 

number of hours required for field sampling and processing the images (including time to 

score photographs for quality, animal distinctiveness, and propose putative matches 

between photographic encounters) and multiplying this by an estimated labour costs of USD 

$10.  This cost was that of a technician/undergraduate student trained to complete the 

tasks.  In addition to labour costs, other costs are also associated with intensive boat-based 

photo-identification studies, e.g., access to research boat, boat fuel and maintenance, car 

fuel and maintenance, photo-identification equipment and computers. 

  

2.5 Capture-recapture analysis 

All photographs were graded according to photographic quality and distinctiveness to 

minimise the introduction of bias and to reduce misidentification (Urian et al. 2015). Only 

highly distinctive (D1) fins in photographs of excellent and good quality were included in the 

capture-recapture analyses (Gowans and Whitehead 2001; Urian et al. 2015). A capture was 

defined as a photograph of sufficient quality of an individual dolphin’s distinctly marked 

dorsal fin. Capture histories corresponded to whether or not an individual dolphin was 

“captured” or “recaptured” during a sampling occasion. This information was compiled for 

each individual (calves excluded) after a photo-grading process. See Tyne et al. (2014)  for 

more details of the photo-grading process.  

 

For both years, open and closed capture-recapture models in the program MARK (White and 

Burnham 1999) were applied to the photo-identification data to estimate stock size, 

variability and evaluate the goodness-of-fit of the models. See Tyne et al. (2014) for full 
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details on modelling approach. The POPAN approach is able to estimate probabilities of 

entry (immigration) and probabilities of exit (emigration and mortality), to and from the 

study area between sampling occasions (Schwartz and Arnason 1996). Under Scenario 2, 4 

and 5, capture histories of individual dolphins were created based on six and three and 24 

days respectively, subsampled 100 times from Scenario 1. Capture-recapture modelling was 

then applied to each of the 100 spinner dolphin capture histories for each Scenario. Annual 

abundance estimates and over-dispersion were each calculated from the mean of the 100 

abundance estimates and over-dispersion (ĉ=χ2/df) for each year. Standard errors (SE) were 

then calculated for each of the annual abundance estimates from the standard deviation of 

the empirical sampling distributions of the estimates. 

 

All capture-recapture models make the following assumptions (Williams et al. 2002): 1) 

marks are not lost during the study; 2) marks are correctly recognised on recapture; 3) 

individuals are instantly released after being marked; 4) intervals between sampling 

occasions are longer than the duration of a sample; 5) all individuals observed during a given 

sampling occasion have the same probability of surviving until the next one; 6) study area 

does not vary; and 7) homogeneity of capture probabilities, i.e. that all animals in a sampling 

occasion have equal probability of being captured. These assumptions are relaxed for certain 

models that allow heterogeneity in the capture probabilities. See Tyne et al. (2014) for more 

detail on the methods used to estimate abundance, mark rate and total stock size. To 

determine whether data were over-dispersed (when the variance is greater than the mean 

(Cox 1983)), the inflation factor (ĉ) was calculated for the abundance estimates (Anderson et 

al. 1994) and Quasi-likelihood adjustments were applied to take over-dispersion into 

account.  
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2.6 Detecting change in abundance 

Detecting significant change in abundance over time requires that the null hypothesis (H0) of 

no change in abundance is rejected. The probability of detecting a significant change in 

abundance when one doesn’t exist, i.e., the Type I error, is generally set at α = 0.05, which is 

policy in the United States (Taylor et al. 2007). However, even when H0 is not rejected, it is 

possible that the abundance has changed, i.e., a Type II error is present. Power analysis can 

be used to identify the ability of sampling regimes to adequately detect trends in abundance 

and to minimise the probability of Type II errors occurring (Gerrodette 1987). The ability of 

five scenarios to detect change in abundance was investigated using Gerrodette’s (1987) 

inequality model: 

  
 
Where r = the rate of population change, n = the number of estimates, CV = the coefficient 

of variation of the abundance estimate (a measure of precision), Zα = normal deviate 

corresponding to the probability of making a Type I error, Zβ= normal deviate corresponding to the 

probability of making a Type II error, α = the one-tailed probability of making a Type I error and 

β = the probability of making a Type II error. The probability of making a Type I error (α) was 

set at 0.05, and the r probability of making a Type II error (β) was set at 0.05 (i.e., power = 1 

– β = 0.95) and 0.20 (power = 0.80).  

 

The mean CVs obtained from the two annual abundance estimates from each sampling 

scenario were used to investigate the number of years required to detect varying rates of 

change (1 to 20%) in abundance at 80% and 95% power. A range of CVs (5% to 20%) were 

then used to determine the number of years required to detect 5% and 10% change in 

𝑟2𝑛3 ≥ 12𝐶𝑉2(𝑍𝛼/2 + 𝑍𝛽)
2
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abundance at 80% and 95% power. Finally, we examined the number of years it would take 

to detect a 5% change in abundance under the five scenarios. 

 

3 Results 

3.1 Effort and summary statistics 

A total of 276 days (> 2,350 h of on-water effort) of photo-identification was carried out in 

the four bays between September 2010 and August 2012. Approximately 4,000 h of effort 

was required to identify and grade the individual spinner dolphins from the more than 

200,000 images. More than 64,500 of these images were of sufficient quality to be added to 

a photo-identification catalogue in which 235 individuals were classified as highly distinctive 

individuals (D1). The identification of new individuals reached a plateau (90% of all 

individuals identified) before the end of the two-year study period (August 2012, on 

sampling day 276), with 211 dolphins (90%) identified after 114 sampling days (July 2011) 

and 223 (95%) after 187 sampling days (February 2012, Figure 2).  

 

3.2 Estimates of stock abundance 

The abundance estimates were higher in 2012 than 2011 for all five scenarios. Although the 

abundance estimates were more precise from Scenarios 1 and 5 (CV = 0.09), there was very 

little difference in precision between the three scenarios (Scenarios 2, 3 and 4, CV = 0.10, 

0.11 and 0.12 respectively). The goodness-of-fit measure (ĉ=χ2/df) suggested that the data 

were over-dispersed for eight of the ten estimates (Scenarios 1, 2, 4 and 5) (Table 1).  

 

3.3 Detecting change in abundance 

The number of abundance estimates required to detect a change in the dolphin stock 

decreased as the rate of change increased (Figure 3). For example, at a CV of 0.10 and a 5% 
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rate of change at 95% power, nine abundance estimates are needed to detect change, 

compared with five abundance estimates to detect a 10% change (Figure 3). Furthermore, as 

the precision decreased (i.e., CV increased), the time necessary to detect a change increased 

(Figure 4).  

 

The annual abundance estimates from the most intensive sampling Scenarios 1 and 5 were 

the most precise (CV = 0.09; Table 2). Under these scenarios, it would take seven annual 

abundance estimates over six years to detect a 5% annual change (decline/increase) with 

80% power. Under the same scenarios with 95% power, it would take eight annual 

abundance estimates over seven years to detect a 5 % change (Table 2). Under Scenario 4 

(three field-days, two bays) and at 80% power, it would take eight annual abundance 

estimates over seven years to detect a 5% change in abundance (Table 2). The annual labour 

cost of Scenario 4 at 80% power was 27% that of Scenario 1 (12 field-days, four bays) at 80% 

power (Table 2). As the time interval between abundance estimates increased from one to 

three years, the number of abundance estimates required to detect a change decreased, but 

the time taken to detect a change increased (Table 2). This is due to the increase in the 

effective percentage change in abundance per interval (Gerrodette 1987; Wilson et al. 

1999). To detect an annual 5% change at 80% and 95% power, it would take four and five 

abundance estimates (at three year intervals), over nine and 12 years, respectively. If the 

change was a continuous decline, the abundance would have declined by 37% and 46% by 

the time of detection, equivalent to a decline from 668 ± 62 SE (95% CI 556-801) to 433 and 

372. If the change in abundance was an increase, the abundance estimate would have 

increased by 55% (1,035) and 80% (1,202) at the time of detection. 
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4 Discussion 

This study aimed to provide a scientific basis for management agencies to develop 

monitoring programs that are effective in fulfilling their statutory obligations, while also 

providing information on where they might direct their scarce funding resources. To achieve 

this aim, we estimated the abundance of Hawaii Island spinner dolphins in consecutive 

years, modelled the ability of different sampling scenarios to detect change in abundance 

over time and estimated the relative costs of these scenarios. Two main findings emerged 

from this research. Firstly, the additional abundance estimates of the Hawaii Island spinner 

dolphin stock were virtually identical to those from the first year (Tyne et al. 2014), 

suggesting that the sampling design, developed to satisfy the assumptions of capture-

recapture models, is rigorous and that the estimates from the first year are reliable. 

Secondly, although there was little difference in the precision between sampling scenarios, 

sampling effort affected the ability of the sampling regime to detect a significant trend in 

abundance over time. However, a point is reached where an increase in effort does not 

improve the precision of the abundance estimates but that the costs of sampling continue to 

increase (e.g., results from Scenarios 1 vs 5). 

 

4.1 Estimates of abundance 

The systematic sampling approach developed in Tyne et al. (2014) was designed specifically 

to estimate the abundance of the Hawaii Island spinner dolphin stock using capture-

recapture models. Here, the data from this approach were used to evaluate the ability of five 

different sampling scenarios to detect a change in abundance over time. The two most 

intensive sampling scenarios, Scenarios 1 and 5 (Scenario 1 = 12 days each month in four 

bays; Scenario 5 = 24 days each month, randomly resampled from Scenario 1, across four 
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bays) produced the most precise annual abundance estimates. However, the standard errors 

of Scenarios 2 and 3 (half of the sampling effort in Scenario 1) were still similar to those of 

Scenario 1 and had only slightly higher coefficients of variation (10% and 11% cf 9%). This is 

partly a consequence of the relatively high recapture probabilities of Hawaiian spinner 

dolphins, even at the reduced sampling efforts of Scenarios 2 and 3. The annual abundance 

estimates in this study and in Tyne et al. (2014) are > 30% lower than the most recent 

previous estimate (Ostman-Lind et al. 2004). However, these comparisons should be made 

with caution, as previous research efforts were not designed specifically to estimate 

abundance (see also Tyne et al. 2014). Consequently, it is not possible to assess the current 

trend in population size of the Hawaiian spinner dolphins, except to acknowledge that the 

stock is smaller than previously thought (Norris et al. 1994; Ostman-Lind et al. 2004). 

 

4.2 Monitoring changes in dolphin abundance over time 

Caughley (1994), defines problems in conservation biology as falling into the “small” or 

“declining” population paradigm.  Here, and the results from  Tyne et al. (2014) clearly 

demonstrate that the Hawaii Island spinner dolphin stock is a “small” population. Through 

estimating the power of alternative sampling strategies, we provide the information needed 

to assess population decline with different degrees of certainty.  

 

With the increasing pressure on coastal dolphin populations the ability to confidently detect 

trends in abundance over time is critical when making conservation decisions (Taylor and 

Gerrodette 1993; Wilson et al. 1999; Thompson et al. 2000). Degrees of precision, power, 

sampling effort and interval between abundance estimates were varied to evaluate the 

ability of five sampling scenarios to detect significant change in abundance over time. As the 
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sampling effort increased, so did the precision of the abundance estimates, and thus 

changes in abundance could be detected earlier.  This research provides the basis for 

evaluating future trends in abundance as the current trend in population size is unknown, 

and highlights the need for future systematic research designed to estimate abundance. 

Clearly, the need for future estimates and evaluation of change in the Hawaii Island spinner 

dolphin population size is a priority for managers because of the small population size (Tyne 

et al. 2014), its genetic isolation (Andrews et al. 2010) and the use of the four bays 

important for resting spinner dolphins (Tyne et al. 2015), where the dolphins encounter 

significant numbers of human activities on a daily basis (Heenehan et al. 2015) .  

 

4.3 Applications for monitoring 

Hawaiian spinner dolphins are currently classed as a non-strategic stock under the MMPA 

and under the current legislation, their abundance should be assessed once every three 

years (Carretta et al. 2014). The NOAA are considering a management approach to reduce 

the number and intensity of human-dolphin interactions in preferred resting habitat of 

spinner dolphins, including the introduction of time-area closures of the four spinner 

dolphin resting bays from this study (NOAA 2005).  If time-area closures were introduced, a 

monitoring program to detect trends in dolphin abundance would help evaluate the 

effectiveness of this management strategy.  

 

If the rate of change in abundance is small, then the level of precision will have a large effect 

on the time needed to detect a change (Figure 3; see also Wilson et al. 1999; Thompson et 

al. 2000; Taylor et al. 2007). The sampling effort for one of the most precise sampling 

scenarios (1, CV = 9%) in this study required a significant investment of time and field 
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personnel and for the processing of the dolphin photo-identification images, and addition 

costs for equipment and logistic expenses, e.g. boats, cars, cameras and housing. The 

resources required for this research were only possible because of the presence of a 

dedicated PhD student, large numbers of volunteer research assistants and significant 

financial and logistical support through a NOAA grant. In general, the resources for 

population monitoring programs are chronically underfunded (Williams and Thomas 2009; 

Williams et al. 2011). Consequently, careful consideration on the distribution of funds for 

resourcing population assessments is required in developing the sampling designs and 

strategies for further estimates of the numbers in this spinner dolphin stock.  

 

Management agencies can evaluate different monitoring options by comparing the different 

scenarios investigated in this study, for example, an annual monitoring program 

implemented under Scenario 4 (three field-days per month across two bays) is estimated to 

require eight annual abundance estimates and take seven years to detect a significant 5% 

change in abundance at 80% power. This is a year longer than the estimated time to detect 

change using the annual monitoring program of Scenario 1 (12 field-days per month, across 

four bays) at 80% power, a much more intensive sampling regime. If the change was 

consistent decline in abundance, the spinner dolphin population would have reduced by 

26% to 494 dolphins under Scenario 1 and by 30% to 468 dolphins under Scenario 4, before 

a significant decline was detected. The annual cost of running a monitoring program 

implemented under Scenario 4, however, is only 27% of the cost of the monitoring program 

for Scenario 1. Furthermore, running an annual monitoring program implemented under 

Scenario 2 (six field-days per month, across four bays), at 80% power, is estimated to require 
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seven surveys per year and take six years to detect a significant 5% change in abundance, 

the same time required to detect a 5% change as Scenario 1 but at half the cost.  

 

Other considerations in the design of the program include the rate of change in abundance 

and the confidence of detecting significant change. By increasing power (confidence) to 

detect a change, both the number of annual abundance estimates and study duration 

required will increase (Gerrodette 1987; Taylor et al. 2007). The time taken to detect a 

decline is critical for small, genetically isolated stocks, such as those of the Hawaii Island 

spinner dolphins (Wilson et al. 1999; Thompson et al. 2000). A precipitous decline in 

abundance will have significant, negative biological consequences for this spinner dolphin 

stock. Consideration of these factors is a paramount concern, especially in determining the 

level of precaution required to address management issues. Our findings suggest that 

managers have an important decision to make: if current levels of monitoring are 

inadequate to detect precipitous declines in a timely manner, is it appropriate to increase 

monitoring efforts to improve statistical power or should a metric, other than population 

decline, be used to trigger management intervention? The measures of precision for our 

abundance estimates are enviably high (CVs of 9 to 11%) by the standards of even well-

monitored marine mammal stocks e.g., Cuvier’s beaked whale (Ziphius cavirostris) (CVs of 51 

to 55%)  (Moore and Barlow 2013), and managers in the region have other conservation 

issues competing for scarce funding for research and mitigation efforts (Forney et al. 2011). 

We see two, non-exclusive options for resolving the dilemma faced by managers:  managers 

could consider legal listing for spinner dolphins (i.e. classifying them as a strategic stock) 

when the certainty of a decline is above 80%, rather than the conventional 95%; and/or 

managers could act in a precautionary way and consider mitigation measures (e.g., time-
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area closures) to mitigate impacts in hopes that population declines are prevented 

altogether.  

 

Another consideration in developing monitoring strategies for different cetacean species is 

the proportion and distinctiveness of identifiable individuals in the population. For example, 

Hectors dolphins (Cephalorhyncus hectori) have a low proportion of subtly distinctive 

individuals, between 10%, (Gormley et al. 2005) and 35% (Bejder and Dawson 2001), 

whereas in general, bottlenose dolphins (Tursiops spp.) have a larger proportion of highly 

distinctive individuals of approximately e.g., 60%, (Wilson et al. 1999); 80%, (Nicholson et al. 

2012).  This spinner dolphin population had a relatively low proportion of distinctly marked 

individuals (35%) (Tyne et al. 2014). Clearly, the distinctiveness of individuals has 

implications for sampling precision and the ability of sampling programs to detect a change 

in abundance.    

 

These results provide a scientific basis for the level of precaution required to address 

management issues, while assisting in the effective allocation of limited funding resources to 

monitoring programs. The sampling design adopted by Tyne et al. (2014) and in the current 

study to estimate the abundance of Hawaii spinner dolphins, when used in combination 

with power analyses, can effectively determine when a trend in abundance will be detected 

and should be considered as an integral part of any population management strategy. Here, 

at the most intensive sampling scenarios we considered (Scenarios 1 and 5), with annual 

surveys and abundance estimates assessed every three years at 95% power, the population 

of spinner dolphins may have declined by 46% at the time a significant trend is detected. 

This rate of decline is approximately 50% over 15 years, a rate that has been defined as 
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“precipitous” (Taylor et al. 2007) and could lead to the stock being classed as ‘depleted’ 

under the MMPA (Taylor et al. 2007). This is a serious concern for a small and genetically 

isolated population, such as the one of Hawaii Island spinner dolphins. In order to be 

consistent with the legislation within the MMPA, it will be necessary to increase funding for 

monitoring or lower the burden of proof needed to trigger a change in classification from 

non-depleted to depleted status. 

 

We have shown little difference in the precision of abundance estimates between five 

sampling scenarios of varying intensity but major differences in costs of the scenarios, with 

the least intensive program costing about 30% of the scenario implemented by Tyne et al. 

(2014) and 15% of the most intensive regime (Scenario 5 - 24 field-days per month, across 

four bays). Management agencies can evaluate these different monitoring options while 

considering the allocation of their available funding resources.  

 

The objectives of population studies of other wildlife species with identifiable individuals 

may require that demographic parameters other than abundance are estimated. Although 

we have concentrated on the estimation of abundance and precision from different 

scenarios, survival and immigration/emigration have also been estimated using the data 

collected from this approach (Tyne et al. 2014). Delphinid sighting data have also been 

collected systematically along transects to estimate abundance and other demographic 

parameters, such as temporary immigration/emigration  (Smith et al. 2013; Brown et al. 

2016; Sprogis et al. 2016) using Pollock’s Robust Design (Pollock et al. 1990). The data from 

these studies could be used to estimate the power to detect change and evaluate alternative 

sampling strategies for monitoring in a similar manner to the current study by varying the 
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number of transect cycles.  Using line transect sampling to estimate the abundance of 

dolphins from a small boat, is not advisable however, as it can lead to biased estimates due 

to the movement response of the dolphins towards and away from the boat prior to 

detection (Turnock and Quinn 1991). The approach presented in the current study provides 

a model for developing sampling strategies to monitor other populations with identifiable 

individuals, including terrestrial and aquatic mammals (Pennycuick and Rudnai 1970; Wilson 

et al. 1999), birds (Buckland et al. 2008; Williams and Thomson 2015) and reptiles (Sacchi et 

al. 2010), whose abundance can be estimated through  capture-recapture analyses.  
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Tables 
 
Table 1 Abundance, over-dispersion and coefficient of variation calculated for the different 
sampling scenarios and capture-recapture models. Scenario 1 = 12 days of sampling covering 
four bays (two days in Makako Bay, four days in Kealakekua Bay, two days in Honaunau Bay 
and four days in Kauhako Bay), Scenario 2 = six days randomly subsampled from the 12 days 
covering four bays (one day in Makako Bay, two days in Kealakekua Bay, one day in 
Honaunau Bay and two days in Kauhako Bay),  Scenario 3 = six days covering two bays (two 
days in Makako Bay and four days in Kealakekua Bay), Scenario 4 = three days randomly 
subsampled from Scenario 3 covering two bays (one day in Makako Bay and two days in 
Kealakekua Bay) and Scenario 5 = 24 days randomly subsampled from the 12 days covering 
four bays (four days in Makako Bay, eight days in Kealakekua Bay, four days in Honaunau Bay 
and eight days in Kauhako Bay). SE = standard error, CI = 95% confidence interval, ĉ = over-
dispersion (values > 1.2 indicate Overdispersion).1estimates from Tyne et al. (2014) 

Scenario, effort Year 
Total abundance  
± 1 SE (95% CI) ĉ  CV 

1: 12 d, 4 bays 20111 631 ± 60 (524-761) 1.4 0.09 
2012 668 ± 62 (556-801) 1.5 0.09 

 
2: 6 d, 4 bays 
 

2011 552 ± 57 (448-680) 1.5 0.10 
2012 632 ± 62 (521-769) 1.7 0.10 

 
3: 6 d, 2 bays 2011 557 ± 56 (458-678)  1.1 0.11 

2012 659 ± 69 (545-796) 1.2 0.11 
     
4: 3 d, 2 bays 2011 542 ± 63 (436-674) 1.6 0.12 
 2012 652 ± 76 (525-827) 1.5 0.12 
     
5: 24 d, 4 bays 2011 617 ± 58 (514-741) 1.3 0.09 
 2012 665 ± 62 (554-798) 1.5 0.09 
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Table 2 Number of annual abundance estimates, effective percentage change, years to 
detection, total percentage change at detection, at varying degrees of precision, to detect an 
annual 5% change (decline/increase) in abundance between one, two and three year 
monitoring intervals and annual labour costs based on Scenario 1 = 12 days of sampling 
covering four bays (two days in Makako Bay, four days in Kealakekua Bay, two days in 
Honaunau Bay and four days in Kauhako Bay), Scenario 2 = six days randomly subsampled 
from the 12 days covering four bays (one day in Makako Bay, two days in Kealakekua Bay, 
one day in Honaunau Bay and two days in Kauhako Bay), Scenario 3 = six days covering two 
bays (two days in Makako Bay and four days in Kealakekua Bay),  Scenario 4 = three days 
covering two bays (one day in Makako Bay and two days in Kealakekua Bay) and Scenario 5 = 
24 days randomly repeated subsamples from the 12 days covering four bays (four days in 
Makako Bay, eight days in Kealakekua Bay, four days in Honaunau Bay and eight days in 
Kauhako Bay). Probability of a Type I Error (α = 0.05) and a Type II Error (1 – β = 0.95 and 1 – 
β = 0.80). CV = coefficient of variation. Annual labour costs = four people paid $US10/hr 
working nine hrs/day on the boat, and processing time based on 2000 hours/year from 
Scenario 1. 

Power 
 
 
 

CV 
 
 
 

Monitoring 
interval 
(years) 

(t) 

Annual 
abundance 
estimates 

(n) 

Effective % 
decline per 
interval t 
(0.95t – 1) 

Effective % 
increase per 

interval t 
(1.05t – 1) 

Years to 
detection 

(t(n-1)) 

Total % 
decline at 
detection 

(0.95t(n-1) – 1) 

Total % 
increase at 
detection 

(1.05t(n-1) – 1) 

Annual 
labour cost 

($US) 

Scenario 1        
0.80 0.09 1 7 -5.0 5.0 6 -26 34 50,240 
 0.09 2 5 -9.8 10.3 8 -34 48 41,600 
 0.09 3 4 -14.3 15.8 9 -37 55 37,280 
0.95 0.09 1 8 -5.0 5.0 7 -30 41 54,560 
 0.09 2 6 -9.8 10.3 10 -40 63 45,920 
 0.09 3 5 -14.3 15.8 12 -46 80 41,600 
Scenario 2        
0.80 0.10 1 7 -5.0 5.0 6 -26 34 25,120 
 0.10 2 5 -9.8 10.3 8 -34 48 20,800 
 0.10 3 4 -14.3 15.8 9 -37 55 18,640 
0.95 0.10 1 9 -5.0 5.0 8 -34 48 29,440 
 0.10 2 7 -9.8 10.3 12 -46 80 25,120 
 0.10 3 6 -14.3 15.8 15 -54 110 22,960 
Scenario 3        
0.80 0.11 1 8 -5.0 5.0 7 -30 41 27,280 
 0.11 2 6 -9.8 10.3 10 -40 63 22,960 
 0.11 3 5 -14.3 15.8 12 -46 80 20,800 
0.95 0.11 1 9 -5.0 5.0 8 -34 48 29,440 
 0.11 2 7 -9.8 10.3 12 -46 80 25,120 
 0.11 3 6 -14.3 15.8 15 -54 110 22,960 
Scenario 4        
0.80 0.12 1 8 -5.0 5.0 7 -30 41 13,640 
 0.12 2 6 -9.8 10.3 10 -40 63 11,480 
 0.12 3 5 -14.3 15.8 12 -46 80 10,400 
0.95 0.12 1 10 -5.0 5.0 9 -34 55 15,800 
 0.12 2 8 -9.8 10.3 14 -46 98 13,640 
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 0.12 3 7 -14.3 15.8 18 -54 141 12,560 
Scenario 5        
0.80 0.09 1 7 -5.0 5.0 6 -26 34 100,480 
 0.09 2 5 -9.8 10.3 8 -34 48 83,200 
 0.09 3 4 -14.3 15.8 9 -37 55 74,560 
0.95 0.09 1 8 -5.0 5.0 7 -30 41 109,120 
 0.09 2 6 -9.8 10.3 10 -40 63 91,840 
 0.09 3 5 -14.3 15.8 12 -46 80 83,200 
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Figures 
 

 
Figure 1 Map of the study area illustrating the four spinner dolphin resting bays, Makako 
Bay, Kealakekua Bay, Honaunau Bay and Kauhako Bay, along the Kona Coast of Hawaii Island.  
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Figure 2 Cumulative discovery curve of highly distinctive (D1) spinner dolphins during 276 
photographic identification sampling days from September 2010 to August 2012. Short, 
dashed, vertical lines indicate when 90% and 95% of the highly distinctive individuals had 
been identified. Long vertical dashed line indicates 12 months of sampling. 

 
Figure 3 Number of annual abundance estimates required to detect various rates of change 
in stock size at varying levels of precision (coefficient of variation, CV) from five sampling 
scenarios. Scenario 1 (S1) = 12 days of sampling covering four bays (two days in Makako Bay, 
four days in Kealakekua Bay, two days in Honaunau Bay and four days in Kauhako Bay), 
Scenario 2 (S2) = six days randomly subsampled from the 12 days covering four bays (one 
day in Makako Bay, two days in Kealakekua Bay, one day in Honaunau Bay and two days in 
Kauhako Bay), Scenario 3 (S3) = six days covering two bays (two days in Makako Bay and four 
days in Kealakekua Bay), Scenario 4 (S4) = three days covering two bays (one day in Makako 
Bay and two days in Kealakekua Bay) Scenario 5 (S5) = 24 days randomly subsampled from 
the 12 days covering four bays (four days in Makako Bay, eight days in Kealakekua Bay, four 
days in Honaunau Bay and eight days in Kauhako Bay). Type I error (α) probabilities were set 
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at 0.05 and Type II error (β) probabilities were set at power = 1 – β = 0.95 (dark lines) and 1 – 
β = 0.80 (grey lines). 
 

 
Figure 4 Predicted time it would take to detect an annual change of 5% and 10% with 
varying levels of precision (coefficient of variation, CV) using monitoring intervals of one year 
and three years. Type I error (α) probabilities were set at 0.05 and Type II error (β) 
probabilities were set at 0.20.  Power = 1 – β = 0.80 (grey) and power = 1 – β = 0.95 (dark). 
Vertical lines indicate CV range from the five sampling scenarios. 
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