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Theoretical analysis of the spatio-temporal structure
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Abstract. Bone multicellular units (BMUs) maintain the viability of the skeletal tissue by
coordinating locally the sequence of bone resorption and bone formation performed by cells
of the osteoclastic and osteoblastic lineage. Understanding the emergence and the net bone
balance of such structured microsystems out of the complex network of biochemical interactions
between bone cells is fundamental for many bone-related diseases and the evaluation of fracture
risk. Based on current experimental knowledge, we propose a spatio-temporal continuum model
describing the interactions of osteoblastic and osteoclastic cells. We show that this model
admits travelling-wave-like solutions with well-confined cell profiles upon specifying external
conditions mimicking the environment encountered in cortical bone remodelling. The shapes of
the various cell concentration profiles within this travelling structure are intrinsically linked to
the parameters of the model such as differentiation, proliferation, and apoptosis rates of bone
cells. The internal structure of BMUs is reproduced, allowing for experimental calibration. The
spatial distribution of the key regulatory factors can also be exhibited, which in diseased states
could give hints as to the biochemical agent most accountable for the disorder.

1. Introduction
The physiological process by which our bones are continuously renewed throughout our lifetime
is commonly referred to as “bone remodelling” [1]. Old or damaged bone is removed by cells of
osteoclastic lineage and replaced with new material by osteoblastic cells. This turnover of the
skeletal tissue allows the repair of micro-cracks that accumulate as an effect of the repeated
mechanical loading experienced by the bone structure. Besides mechanical function, bone
remodelling is also crucial for calcium homeostasis by providing a quick release mechanism
of the large amount of calcium stored in the bone matrix.

As first realised by Frost, the bone remodelling process is known to singularise spatio-
temporally into “Bone Multicellular Units” (bmus):1 “quanta” of bone remodelling [2, 3, 4].
These entities, as revealed by histomorphometric sections, consist of teams of osteoclasts and
osteoblasts working their way through the bone together in a self-consistent manner. Osteoclasts
first resorb old bone upfront, opening a cutting cone in the bone matrix. This cavity is

1 Sometimes also referred to as “Basic Multicellular Units”, “Bone Metabolic Unit”, or “Bone Remodelling
Units”.
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Figure 1. Schematic figure of the internal organisation of a (cortical) bmu. Osteoclasts resorb
the bone matrix in the front while osteoblasts lay down osteoid (later to be mineralised) to refill
the cavity in the back. The central blood vessel provides supply of precursor cells, as well as
various nutrients.

subsequently closed in the back by osteoblasts laying down osteoid, later to be mineralised
into new bone (see Figure 1, [5, 6, 7] and Refs. therein). The existence of such an organised
microsystem is not entirely surprising biologically [4]. A tight localised coordination between
bone resorption and bone formation is indeed necessary for a viable skeletal tissue. The bone
structure and the specific shape of each bone need to be restituted within strict limits despite
repeated resorption and formation. Not only is the overall bone loss/gain balance important,
but also precisely the location of that resorption and reconstruction. Excess of resorption over
formation can result in global but also local loss of bone mass and architecture, leading to
fragility, vertebrae collapses and fractures, ultimately disabling the mobility of individuals having
bone-related disorders such as osteoporosis.

Remodelling can be viewed as the sequence of two distinct processes. A first process recruits
teams of bone-resorbing and bone-forming cells at specific sites of the bone in response to a
certain stimulus. This stimulus activates or reduces remodelling on a per site basis and influences
dramatically when and where a bmu is initiated. The second process is responsible for how the
bmu evolves in the bone matrix; how the bone remodelling cells organise themselves locally
into bmus and regulate the crucial local balance between bone resorption and bone formation.
This balance is coordinated by an intricate network of cell-cell interactions between variously-
differentiated osteoclasts and osteoblasts. Numerous key regulatory factors in this network have
been determined by Biologists in recent years and include systemic hormones, nerve signals,
vascular agents, growth factors, chemokines, etc. (See [8, 9, 10] and Refs. therein.) However, it
is not obvious how these interactions, usually thought of as occurring locally and simultaneously,
organise osteoclasts and osteoblasts in the form of bmus that present a clear spatial and temporal
separation of these cells’ activities. While the structure of bmus is well understood on the
descriptive level [5, 6, 7], how it is linked to these fundamental underlying mechanisms remains
to be elucidated. In this contribution, we extend a previously-developed mathematical model of
the bone remodelling biochemistry [10] to address these questions.

In recent years, several teams of researchers have elaborated mathematical and computational
models of bone remodelling. The majority of these models focus on temporal aspects on the
cellular level, i.e., monitoring the temporal evolution of bone cells over time, while implementing
a detailed biochemistry of interactions via rate equations [11, 9, 10]. Recently, Ryser et al have
supplemented the temporal model [11] with a spatial component, addressing the important

WCCM/APCOM 2010 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 10 (2010) 012132 doi:10.1088/1757-899X/10/1/012132

2



question of interaction of locally expressed rankl and soluble opg [12, 13]. However, the
organisation of the various cell distributions making the internal structure of a bmu is not
investigated in detail. Cellular automata models have also been proposed to model resorption
and formation on a per site basis [14], but key cellular biochemical processes relevant for a bmu’s
organisation are still missing in these models.

We present below a detailed spatio-temporal continuum model focusing on a single cortical
bmu, extended from the cell-population model proposed by Pivonka et al [10]. We fully take
into account osteoclastic and osteoblastic cells at various stages of differentiation along with
the most important regulatory factors currently known to be involved in their interactions,
such as Transforming Growth Factor β (tgf-β), Insuline-like Growth Factor (igf), Parathyroid
hormone (pth) and the Receptor Activator Nuclear Factor κβ axis consisting of the receptor
rank, the ligand rankl and the decoy ligand osteoprotegrin (opg).

2. Spatio-temporal model of cellular bone remodeling
In the confined biological environment of a bmu, the most important phenomena taking place
are those of biochemical reactions and directed or diffusive motion of the various cells and
regulatory factors. These phenomena are described in general by the mass continuity equations
of the involved biochemical species [15, 16]. Let A denote such a species: a cell type, or any of
the various regulatory agents (hormones, growth factors, paracrine factors, etc). Its associated
mass balance equation is written as

∂

∂t
nA(r, t) = −∇·JA(r, t) + σA(r, t). (1)

In this equation, nA(r, t) is the local concentration of A (number of entities A per unit volume)
at point r in space and at time t, σA(r, t) is a local source/sink term, and JA(r, t) is the flux
associated with the motion of As. Due to the several interactions occurring between the cells
and factors, the mass-balance equations (1) written for all As are highly coupled. Couplings
originating from the source/sink terms σA incorporate all the nonconservative mechanisms
regulated by the presence of other agents, such as cell proliferation, differentiation, apoptosis,
and factor binding/unbinding reactions. Couplings in the fluxes are differential in space and
account for conservative modifications of the local concentrations as due to mass transport, e.g.,
diffusion, chemotaxis, convection, etc.

We now specify the biochemical species and their couplings used in our model. After the
initial process of bmu initiation, the bmu reaches a quasi-steady stage where its composing
cells maintain a well-defined spatial structure travelling through the bone [5]. This stage is
characteristic of the bone-remodelling process: bone-resorbing and bone-forming cells work
in concert to turn over existing bone. Following the temporal model of bone remodelling
proposed by Pivonka et al [10], we consider three osteoblastic and two osteoclastic cell types.
“Uncommitted progenitor osteoblasts” (obus) denote a pool of mesenchymal stem cells that
are capable of committing to the osteoblastic lineage. Following such commitment, they
become “responding osteoblasts” or “preosteoblasts” (obps). These preosteoblasts may further
differentiate into “active osteoblasts” (obas) that are assumed to actively appose an osteoid
seam to the remodelling cavity. “Precursor osteoclasts” (ocps), on the other hand, derive from
hematopoietic progenitor cells and may differentiate into “active osteoclasts” (ocas) that are
capable of resorbing bone.

Regulatory actions on cellular differentiation from growth factors such as tgf-β/igf (released
from the dissolution of the bone matrix by ocas), the rank–rankl–opg signalling pathway, and
the parathyroid hormone (pth) are included, which effectively couples the system. A detailed
description of these biochemical couplings and how they are transcribed mathematically in terms
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of biochemical reaction rates can be found in [10] and will not be repeated here. The reaction
rates of [10] correspond here precisely to the source/sink terms σA(t) of (1).

The spatial organisation of the populations within the bmu highly depends on the fluxes JAs
in (1). Generically, the flux of ocas may be written Joca = noca voca , where voca is the speed
of oca cells with respect to the bone matrix. In the confined environment of an osteonal bmu,
cell diffusion is limited and we may simply assume that ocas travel at constant speed with a
magnitude of the order of 20–40µm/day, matching the average speed u of a typical cortical
bmu [6, 7]:

Joca ≈ noca u. (2)

Active osteoblast are believed to lay down osteoid in the back of the bmu mainly radially, from
the circumference of the cavity to the center. As this process occurs on much larger time scales
compared to resorption, obas remain essentially stationary with respect to the bone along the
bmu axis [17, 5, 6]. Disregarding cell diffusion again, and assuming that the preosteoblasts they
derive from are not significantly moving longitudinally either, we set

Joba ≈ Jobp ≈ 0. (3)

In the temporal model [10], obu and ocp precurseur cells were assumed to be provided in the
system in the form of a large reservoir pool. In fact, as all cells eventually differentiate further
or undergo apoptosis, a continual supply of these precursor cells needs to be provided to reach
a quasi-steady state. In cortical remodelling, this supply is maintained by the growth of an
internal blood vessel with the progression of the bmu. Similarly to [10], we assume here this
supply to replenish obu and ocp cells unlimitedly and fast enough in order that we can eliminate
their dynamical description from the equations: their inhomogeneous densities instantaneously
reach a stationary distribution loosely confined around the blood vessel extremity [5]. These
concentrations thereby become external functions in the system of equations (1). Given that
in the quasi-steady state, the vasculature progresses at the same rate u as the bmu front, we
specify these functions as

nP (r, t) = nst
P (r − ut), (4)

where nst
P (r) (P = obu,ocp) are the obu and ocp stationary concentration profiles around the

blood vessel extremity. Practically, nst
P will be taken as Gaussian distributions.

Fast-binding hypothesis. A considerable simplification of the system of differential equations
was obtained in [10] due to the separation of time scales between the fast reaction rates of
ligands binding to their receptors on cells, and the slow cell responses (such as proliferation,
differentiation and apoptosis). This allowed the rate equations corresponding to the various
regulatory factors F of the system (F = tgf-β/igf,rankl,opg, or pth)2 to be considered to
reach their steady state immediately: ∂

∂t
nF ≈ 0 ∀t. More precisely, this approximation holds

when all the reaction rates involving F are large compared to the differentiation/apoptosis rates
of cells. Let RF be the slowest reaction rate (e.g., in day−1) to be found in σF . The fast-binding
hypothesis states that R−1

F is much smaller than the characteristic time involved in a variation

of nF :
∣

∣R−1
F (∂tnF )/nF

∣

∣≪ 1. This effectively leads to

σF ≈ 0 (5)

2 As ocp cells are assumed to carry a fixed number of rank receptors, the rank concentration is directly
proportional to that of ocps, see Eq. (22).
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from Eq. (1) when there is no flux term, as was used in [10] to derive Eqs. (11), (24), (25), (30)
and (36). When a flux term is taken into account, the fast-binding hypothesis may still lead to
(5) provided that the additional variation of nF at r induced by spatial transport of F (such as
due to diffusion for instance) is again small compared to RF in the following sense:

R−1
F |∂tnF +∇ · JF | /nF ≪ 1. (6)

We assume that the ranges of binding rates and migration/diffusion parameters pertaining to
the regulatory factors F at stake in a bmu satisfy (6), and will thus use the simplified Eq. (5)
instead of (1) for them.

Cell profiles in the comoving frame. In a fixed location of the bone about to be tunnelled by
a travelling stationary bmu, one has a temporal picture in which several chronological phases
can be distinguished according to the presence of certain types of cells: the resorption phase,
the reversal phase, the formation phase and the mineralisation phase [5, 6, 7]. Accordingly, a
temporal snapshot (picture) taken of a section of that portion of the bone (as shown, e.g., in
histomorphometric sections) reveals these same stages as spatially distinct zones: a resorption
zone in the front of the unit, followed by a reversal, a formation, and a mineralisation zone
(see e.g. [5, Fig. 2]). The same spatial structuring would be revealed to an observer travelling
alongside the bmu in a co-moving frame. This entanglement of space and time is precisely the
mark of travelling “bone cell waves” propagating with steady concentration profiles.

To follow the population of the biochemical species A along a propagating bmu, we consider
a reference frame co-moving with the bmu at velocity u. We assume the origin of this frame to
coincide with the tip of the bmu’s front and the x-axis to be directed along u (see Figure 1).
Quantities observed in this new reference frame are denoted hereafter by the superscript “bmu”.
As u is assumed constant, they are obtained from the values observed in the bone frame by the
well-known Galilean transformation:

nbmu

A (r, t) = nA(r + ut, t), (7)

J
bmu

A (r, t) = JA(r + ut, t)− nA(r + ut, t)u, (8)

σbmu

A (r, t) = σA(r + ut, t). (9)

As can be checked by differentiating (7) with respect to t on either side, this transformation
leaves the form of the mass-balance equation (1) invariant: quantities superscripted with “bmu”
also satisfy Eq. (1) (principle of Galilean relativity) [16]. The main difference that the bmu

frame brings is an “apparent wind” flux term −nbmu

A u in J
bmu

A (8) originating in the relative
movement of that frame to bone and the velocity-addition law.

By definition, a quasi-steady state is reached by a travelling bmu if there is a time span during
which all local quantities such as cell concentrations, fluxes, etc. become essentially independent
of time in this co-moving frame. In other terms, nbmu

A (r, t) converges to a time-independent
profile nst

A(r) for times t such that tinitiation ≪ t ≪ ttermination:

nbmu

A (r, t) ∼ nst
A(r). (10)

Analogously, during the same window of time,

J
bmu

A (r, t) ∼ J
st
A(r), σbmu

A (r, t) ∼ σst
A(r). (11)

Taking the steady state limit (10)–(11) on the mass-balance equation in the co-moving frame,
one obtains an ordinary differential equation for the spatial concentration profile nst

A of the
species A within the bmu:

σst
A(r) = ∇·J st

A(r) = ∇·
[

JA(r + ut, t)− nst
A(r)u

]

, (12)
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where JA is the flux as seen in the bone frame and JA(r + ut, t) is independent of time in the
quasi-steady state. Note that by (8), the fast-binding hypothesis (6) leading to (5) holds in the
bmu frame as well provided u is not too large. For the regulatory factors F that satisfy this
condition, Eq. (12) thus reduces to

σst
F (r) = 0. (13)

The unknowns to solve for in the set of coupled equations (12)–(13) written for all cells and
factors are the steady-state density profiles nst

A(r) in the bmu frame. Back in the bone frame,
these densities take the form, by (7) and (10), of simple travelling waves whose undeforming
shapes are the profiles nst

A(r):

nA(r, t) ∼ nst
A(r − ut), tinitiation ≪ t ≪ ttermination. (14)

Note that although osteoblastic cells are assumed to stay stationary with respect to the bone
(see Eqs. (3)), wave-like solutions of their populations are still possible. The creation of
cells “upstream” and destruction of cells “downstream” can produce travelling waves in the
population distributions without stream on the cellular level. Having on the other hand
conserved cells (never destroyed nor newly generated) but travelling individually at a fixed
velocity starting from an initial distribution, the same travelling population distribution could
be obtained.3 However, we will see that in a system of interacting agents, these differences
occasion dramatic changes in the resulting spatial structure of the wave profiles.

Solving the differential equations (12) requires supplementing them with appropriate
boundary conditions. In the following, we write these equations explicitly for a one-dimensional
model. For that situation, the boundary conditions only need to be specified at one point along
the bmu and they will be considered along with the other parameters of the system.

One-dimensional model. As the spatial profiles in a bmu are more importantly structured along
the x-axis we neglect variability of the densities in transversal cross-sections: nst

A(r) ≈ nst
A(x).

For ease of notation, we will denote from now on stationary profiles in the bmu frame nst
A(x)

by A(x). Assuming that all regulatory molecules F = tgf-β, pth,opg and rankl concerned
in the model satisfy the fast binding hypothesis (13), Eqs. (11), (25), (30) and (36) from
[10] transfer in the bmu frame unchanged.4 They give the expressions of tgf-β, pth,opg and
rankl, respectively, in terms of the remaining dynamic variables of the system obp,oba and
oca. For these slower-responding cells, we use instead Eq. (12) with fluxes specified by (2)–(3)
and the same source/sink terms as found in the right hand side of Eqs. (4)–(6) of [10], leading
to

− v
∂

∂x
obp(x) = Dobuπ

act

(

tgf-β(x)

ktgf-βobu

)

obu(x)−Dobpπ
rep

(

tgf-β(x)

ktgf-βobp

)

obp(x), (15)

− v
∂

∂x
oba(x) = Dobpπ

rep

(

tgf-β(x)

ktgf-βobp

)

obp(x)−Aocaoba(x), (16)

Docpπ
act

(

rankl(x)

krankl
ocp

)

ocp(x)−Aocaπ
act

(

tgf-β(x)

ktgf-βoca

)

oca(x) = 0. (17)

In these equations, we have introduced the dimensionless universal activator and repressor “hill”
functions

πact(ξ) =
ξ

1 + ξ
, πrep(ξ) = 1− πact(ξ) =

1

1 + ξ
, (18)

3 A continuum spectrum of possibilities naturally exists between these two extreme situations.
4 As in [10], igf is assumed to act in pair with tgf-β.
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respectively. Leaving out all external dosing terms of [10], the above functions allow us to rewrite
the (unbound) ligand concentration profiles as5

tgf-β(x) =
αkres

D̃tgf-β

oca(x), (19)

rankl(x) =
βrankl

D̃rankl

πrep(krankl
opg

opg(x) + krankl
rank

rank(x))

× πact

(

D̃rankl

βrankl
Nrankl

obp
obp(x)π

act

(

pth(x)

kpth
ob,act

))

(20)

opg(x) = opgmax πact

(

βopg

oba
oba(x)

opgmaxD̃opg

πrep

(

pth(x)

kpth
ob,rep

))

. (21)

As the population of precursor osteclasts was assumed constant in [10], so was the concentration
of rank receptors. Here, ocps are distributed inhomogeneously in the system. We thus explicit
the dependence of rank upon ocp by setting

rank(x) = Nrank

ocp
ocp(x), (22)

where Nrank

ocp
= 105 is the number of rank receptor per ocp cell. The parathyroid hormone

pth is assumed to be provided homogeneously along the bmu at systemic levels: pth(x) ≡
βpth/D̃pth = 2.906. The precursor cell density profiles within the bmu, obu(x) and ocp(x), are
assumed to be gaussianly distributed around the blood vessel extremity (set 350 µm behind the
front of the bmu) with a standard deviation of the order of the reversal zone width (100 µm).

3. Results/discussion—density profiles within a bone multicellular unit
The resulting coupled system is expressed as the set of nonlinear differential equations specified
in (15)–(22). These equations are solved numerically with standard stiff integrators (e.g. as
provided by Octave, Matlab and/or Mathematica). In Figure 2, we show the various cell
profiles obtained by solving these equations numerically for a certain set of parameter values.
(The front of the bmu corresponds to the right of the figure, and its back to the left.) These
profiles exhibit some of the main features expected from a cortical bmu, as explained hereafter.

We obtain well-defined profiles confined over a spatial range reasonably corresponding to
that of a bmu (of the order of a few millimetres). These profiles define the shape of a multi-
cellular wave front propagating into the bone at a constant velocity (towards the right in
Figure 2), corresponding to a remodelling bmu. A clear spatial structure within this wave
front is seen. Preosteoblasts and active osteoblasts are distinctly shifted towards the back of
the bmu. Furthermore, the inversion of the relative number of obps vs obas at around −700µm
is clearly able to identify a “reversal zone” and a “formation zone” in the longitudinal axis of
the bmu. This inversion is due to a relative shift of the corresponding cell population profiles.
This shift can in fact be directly related to the parameters of the model and thus be used
for its experimental calibration. Furthermore, the decaying tails of the obps and obas can be
linked to the elimination rate of obas (either by apoptosis or further differentiation) and the
differentiation rate of obps into obas. The experimental observation of such cell profiles from
analyses of histological sections for exampe, could allow a direct determination of such cellular
properties. More details on how to relate the observed shapes of the profiles to the parameters
of the model from theoretical and numerical analyses will be developed in [18]. However, to

5 In accordance with the conclusions of [10], we assume here that opg is only produced by active osteoblasts and
that rankl is only expressed on precursor osteoblasts (corresponding to “Model Structure 2” of [10]).
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Figure 2. Density profiles of the bone cells in a cortical bmu obtained from the model. The
inversion of obp and oba populations at around −700µm clearly outlines a transition between
a reversal/resorption and a formation zones. A sketch (to scale) of a longitudinal section of
a typical bmu cavity (with resorption and reversal zone lengths taken as 300µm and 100µm
respectively) is aligned with the profile plots for convenience.

give an idea of the importance of the flux term contributions in the emergence of such spatial
structuring, Figure 3 depicts the cellular profiles obtained from a situation in which all cellular
fluxes are taken proportional to the average velocity of the bmu, as in (2). In that case, all the
cell populations fall within the same region around the precursor cell source.

The resorption cone of the bmu, on the other hand, is not represented very well by the current
settings of the model: in particular, there is no inversion of the populations of ocas over ocps in
the front of the bmu. In fact, in our model, ocas are produced from ocps around the middle of
the reversal zone (≈ −350µm) and have not been given mechanisms allowing them to distance
themselves from their progenitors (such as chemotactic signals towards the bone surface). It
is interesting to acknowledge that the bone remodelling biochemistry implicated in our model,
whilst sufficient to explain generic features of the bone-formation-related part of the bmu, is not
satisfactory in explaining the spatial structure of the cutting cone of the bmu, which hints at
missing biochemical signalling components.

4. Concluding Remarks
We have developed a continuum spatio-temporal mathematical model to study cell profiles
in a cortical bmu. This model is based on general mass-balance equations. Nonconservative
production or elimination of biochemical components in these equations are set in accordance
with the biochemistry currently believed to play the most important role in bone remodelling.

We have obtained solutions of our equations in the form of well-defined profiles confined in
a small region of space, and travelling at constant velocity in the bone. These profiles exhibit
a spatial structure along the longitudinal axis corresponding to the known organisation of bone
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Figure 3. Density profiles obtained when the fluxes are taken JA = nAu for all cells
A = obp,oba,oca. All other parameters are otherwise taken as in Figure (2). The typical
spatial organisation of the bone cells in a bmu is not reproduced in this case. These profiles are
in clear mismatch with the typical shape of the bmu cavity sketched below to scale.

cells in bmus. The specification of the cell fluxes, describing chemotaxis, migration, diffusion
etc., appears to be crucial in explaining the spatial structure of the bmus. In particular, our
theoretical results confirm that osteoblasts (obp, oba) do not move independently in the cavity,
but are rather quasi-stationary with respect to the bone.

The biochemical interactions considered between the various osteoclastic and osteoblastic
cells of our model therefore explain the possibility of the emergence and stability of organised,
spatially structured, groups of cells in the form of bmus. While the bone-formation zone of
the bmu is well described by the implemented biochemistry, some inconsistencies of the profile
shapes at the front of the bmu indicate that a mechanism is missing in the model; namely, one
that allows active osteoclasts to be moved to the front of their progenitor cells. This will be the
subject of future work.

Nevertheless, the model allows to address several interesting points: cellular elimination
rates and differentiation rates could be directly inferred from the shapes of the concentration
profiles [18]. This provides a convenient way of determining such temporal cell properties from
the observation of spatial profiles at a single moment in time (histological snapshot), allowing
convenient experimental calibration of the model. Furthermore, as the bone cells in a moving
bmu interact by means of several regulatory factors, the spatial distribution of these cells along
the bmu reflects that of the factors. A local concentration of these molecules could thus be
inferred from the easier observation of the spatial cellular profiles. For example, tgf-β and
(free, obp-bound) rankl turn out to be very localised in the reversal/resorption zone of a bmu

in our simulations. For rankl, this occurs in spite of a sparser obp population in these zones
and is explained by a corresponding depletion of opg, which is linked to active osteoblasts in our
model. The correspondences between cell and factor profiles will be examined further in [18].
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