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Confidence Bounds of Petrophysical Predictions From
Conventional Neural Networks

Patrick M. Wong, Alexander G. Bruce, and Tamás (Tom) D. Gedeon

Abstract—Neural networks are powerful tools for solving the complex
regression problems which abound in geosciences. Estimation of prediction
confidence from neural networks is an important area. Many procedures
are available to date, but it is often tedious for practitioners to implement
such procedures without significant modification of the existing learning
algorithms. In many cases, the procedures are also computationally inten-
sive. This paper presents a practical solution using conventional backprop-
agation networks with simple data pre-processing and post-processing al-
gorithms. The methodology involves conversion of the target outputs into
linguistic variables (classes) prior to learning. When the classification net-
work converges, minimum and maximum predictions are derived from the
output activations using a simple averaging algorithm. Two examples from
petroleum reservoirs are used to demonstrate the proposed methodology.
The results show that the confidence bounds of the petrophysical predic-
tions are realistic in both cases. The proposed methodology is generally
useful, and can be implemented in simple spreadsheets without altering any
existing neural network code.

Index Terms—Confidence, fuzzy logic, neural networks, petroleum reser-
voirs, petrophysics.

I. INTRODUCTION

Petrophysical prediction problems are highly nonlinear. Recent use
of artificial neural networks has outperformed many conventional tech-
niques. Their abilities to learn, adapt and generalize from data offer a
number of advantages in many geoscience applications [1]. Many ad-
vanced models are now available for significant reduction of predic-
tion error and perform extremely well. One of the major challenges re-
maining in predictive model design is to generate accurate and precise
estimates when actual data are not available for performance compar-
ison. Therefore, reliable and realistic estimation of confidence bounds
(i.e., estimated range of predictions) for the neural network outputs is
an important research area.

A number of confidence estimation methods have been presented.
Generally speaking, we can divide the methods into three categories:

1) manipulation of training data [2], [3];
2) network ensembles [4], [5];
3) advanced learning algorithms [6]–[9].

Although many of the previous techniques provide good performance
on both synthetic and real data sets, it is often too tedious for practi-
tioners to implement the procedures in their normal working environ-
ment. In many cases, such techniques are computational intensive and
the adoption requires additional coding and/or significant modification
of the existing procedures.

This paper presents a practical procedure to estimate confidence
bounds from conventional backpropagation networks. The procedure
involves conversion of the target outputs into linguistic classes (natural
language labels) prior to learning. When the classification network
converges, minimum and maximum predictions are derived from the
output activations through a simple averaging algorithm. The data
pre-processing and post-processing procedure is general and can be
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Fig. 1. Example of fuzzy representation of data value.

implemented in simple spreadsheets without any additional program
code. Two examples from petroleum reservoirs are used to demon-
strate the proposed methodology. The first example is permeability
from well logs and the second one is porosity mapping from seismic
attributes.

II. M ETHODOLOGY

For simplicity’ sake, we will present the proposed methodology for
solving a multiple-inputs–single-output (MISO) regression problem.
The methodology involves three steps.

A. Data Preprocessing

The first step starts with conversion of the target outputs of the
training set inton linguistic variables (classes). This essentially trans-
forms the MISO regression problem into a multiple outputs (MIMO)
classification problem. The motivation of problem transformation
also has some practical advantages. Human experts tend to work
better in a classification environment and are able to reason well in
terms of classification accuracy rather than mean square error. This is
particularly true for geoscientists.

The target outputs can be divided into different classes according
to their magnitude. Linguistic classes, such as “low,” “medium,” and
“high” are popular. Each data value can be binned into the appropriate
classes based on some pre-set cut-offs. The cut-offs can be obtained
from histograms (percentiles or equal intervals) or the domain experts.

The linguistic classes can be “crisp” or “fuzzy.” The crisp, i.e.,
Boolean, logic concept allows each data value to belong to one and
only one class. Very often, the classification results are extremely
sensitive to the cut-off values. The fuzzy logic concept, however,
allows each data value to belong to more than one class with different
degrees of membership (ranging from zero to one). In fact, fuzzy logic
is a superset of the Boolean logic that has been extended to handle the
concept of “partial truth,” that is, truth values between “completely
true” and “completely false” [10], [11].

Fig. 1 shows a typical fuzzy representation of data. In this example,
the data valuey is transformed into three linguistic variables (“low,”
“medium,” “high”) with membership values(�l; �m; �h) using trian-
gular membership functions. Sincey is between “low” and “medium,”
the value belongs to both “low” and medium” with different degrees of
membership. Note that�h = 0 in this case. It is easy to see that fuzzy
classes become crisp when the membership values are only 0 or 1. For
example, (1,0,0) is only “low,” (0,1,0) is only “medium” and (0,0,1) is
only “high.” A fuzzy example is (0.2,0.8,0.0), which means the value
belongs to low with a membership 0.2, medium 0.8, and high 0.0 (e.g.,
point y in Fig. 1). This value is “mostly medium.”
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Fig. 2. Back-transformation of fuzzy membership values.

B. Learning From Data

Once the outputs of the training set are converted into linguistic
classes, the input–output data can be presented to the MIMO neural
networks for the optimization of connection weights (analogous to re-
gression coefficients). The most popular learning algorithm is known
as “backpropagation” [12], which is a type of gradient descent algo-
rithm for the minimization of a given error function. A typical error
functionE is defined as

E(w) =

K

k

n

i

[�ik � f(xk; w)]2 (1)

wherew is the weight vector,f(:) is the neural network estimator,x is
a multidimensional input vector withn outputs. Once the network has
converged for all theK data vectors (i.e., error is minimized), the least
squares estimate of the true weight vector is obtained and the network
can be used for prediction. The predicted outputs are

�̂�� = f(x; w): (2)

Further details of neural networks can be found in [13].

C. Confidence Bounds Estimation

After training, input data vectors with unknown outputs can be pre-
sented to the network for prediction. The multiple output activations,
�̂�� = (�̂1; . . . �̂n), are the fuzzy membership values for each input
vector. One way to quantify the confidence of the neural classifier is to
calculate the entropyE from the membership values

E = �

n

i

�̂i log �̂i: (3)

The above measure gives a value between 0 (very confident) and
Emax = logn (not confident). For a four-class problem, the max-
imum entropy is 0.602. Note that̂�i has to be normalized such that

n

i
�̂i = 1.

Entropy measures only the confidence of the classification task.
However, it is important to obtain the prediction of the original output
variabley and its confidence bounds. The major contribution of this
work is to introduce a back-transformation of the fuzzy membership
values into minimum and maximum (min–max) predictions of
variabley for each input vector.

Fig. 2 shows an example of the back-transformation process.
For each fuzzy set, themin–max predictions, (mini; maxi),
i = 1; . . . ; n, can be obtained from the corresponding triangular

Fig. 3. Well logs.

Fig. 4. Fuzzy transformation of the logarithm of permeability.

Fig. 5. Permeability prediction and confidence bounds for the 27 training
samples.

function. The final min–max predictions, (min; max), can be
weighted by the membership values

min =

n

i

�̂imini

n

i

�̂i

(4)



1442 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 6, JUNE 2002

Fig. 6. Permeability and confidence logs.

and

max =

n

i

�̂imaxi

n

i

�̂i

: (5)

Note that, for symmetrical purposes, the “dummy”minl and
maxh values are required at both edges. These dummy points have
no significant impact on the finalmin–max values because the
corresponding membership values would be small. The mid-point
between themin–max values can be taken as the final prediction,
ŷ = (min + max)=2. More vigorous defuzzification techniques can
also be used to obtain the final prediction.

From the diagram, it is clear that the confidence bounds would be
narrow if theE value were small. For example, if̂�l � 0, �̂m � 1,
�̂h � 0,E � 0 andmin � max � ŷ. This becomes a very confident
prediction. On the other hand, if̂�l = �̂m = �̂h = 1=3,E = Emax =

log 3 and the finalmin–max values become the simple averages of all
themin–max predictions.

The basic uncertainty model presented in this paper was originated
from the fuzzy membership functions derived by the geoscientist. Al-
though they may be too subjective, the uncertainty model is more ex-
plicit and hence easier to refute than the conventional way of using
implicit Gaussian-type model in the system.

It is important to note that this paper used both entropy and range
of predictions to quantify the confidence of the predictions using the
neural network output activations. They measure if the trained neural
network is confident in the predictions. Thus they in fact measure only

the relative (not absolute) confidence with respect to the quality and
quantity of the training patterns. We therefore should be aware of the
limitations and check if the results conform to the expert knowledge. If
the training set is representative, the confidence bounds become useful
for making practical decisions.

III. FIELD EXAMPLES

A. Permeability From Well Logs

The first case study used a data set from a well in an Indonesian reser-
voir [14]. The well contains 27 core permeability values from 4330
to 4370 feet. Four well logs are available: gamma ray (GR), density
(RHOB), neutron (NPHI), and deep resistivity (RT). Fig. 3 displays
the well logs. The objective of this case study is to develop a perme-
ability transform from the four well logs and to generate a continuous
permeability log for the well.

The target permeability (in logarithmic scale) was first transformed
into four linguistic variables: “L” (low), “M ” (medium), “H” (high)
and “V H” (very high). Three equal intervals were used to design the
cut-offs as shown in Fig. 4. The problem became a four-inputs–four-
outputs problem. We used a standard backpropagation neural network
with adaptive learning rate and momentum.

Since the data set was small, no blind testing was performed. We
used all the 27 data input vectors to train the network. Six hidden
neurons gave the smallest error on the training set. The results on the
training set are shown in Fig. 5. A simple analysis shows that 93% of
the (weighted) minimum predictions are lower than the actual values,
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Fig. 7. Scatter-plot of and values.

Fig. 8. Seismic attribute maps.

and 93% of the (weighted) maximum predictions are higher than the
actual values. Also, 85% of the actual values fall within the confidence
bounds. The mid-point of themin–max predictions were taken as the
final permeability (mean) predictions and theR-square was 0.93.

Fig. 6 shows the permeability log and the confidence bounds for
the whole well. The permeability log matched well with the extreme
values. Note that the permeability range (maximum minus minimum
predictions) log shows a direct relationship with the entropy(E) log
as expected. In fact,E is a useful extrapolation indicator. Fig. 7 shows
a scatter-plot ofE versus gamma ray(GR) for both the training set
and the whole well data set. The points below thex-axis show theGR
values of the training set. The plot shows that theE value becomes
large whenGR values of the well are beyond the range of the training
set.

B. Porosity Mapping From Seismic Attributes

The data used came from a real reservoir with 294 wells [15]. A
large-scale 2-D seismic survey was carried out and seismic velocity and
amplitude data were obtained on a 70� 70 grid system (Fig. 8). Av-
erage porosity was available at each well and the corresponding seismic
attributes were obtained. The objective of this case study is to develop
a porosity transform from the seismic attributes so that a 2-D porosity
map can be generated for the whole area. We use the spatial coordi-
nates (easting and northing) and the two seismic attributes as inputs
and the target output is porosity. As in the first study, we transformed
the porosity into the same four linguistic variables (Fig. 9).

Since the dataset is relatively large, we can improve the generaliza-
tion performance of the neural network using early-stopping [13]. The
294 training data vectors were randomly divided into three data sets:
200 for training, 50 for optimizing the network parameters (e.g., no.
of hidden neurons, stopping criteria) and 44 for blind testing. The op-

Fig. 9. Fuzzy transformation of porosity.

Fig. 10. Porosity prediction and confidence bounds for the 44 blind test
samples.

timum hidden size was 8. The results for the blind test samples are
shown in Fig. 10. A simple analysis shows that 95% of the (weighted)
minimum predictions are lower than the actual values, and 98% of
the (weighted) maximum predictions are higher than the actual values.
Also, 93% of the actual values fall within the confidence bounds. The
mid-point of themin–max predictions were taken as the final porosity
(mean) predictions and theR-square was 0.91. The results were ex-
tremely encouraging. Fig. 11 shows the predicted porosity and confi-
dence maps.

IV. CONCLUSIONS

This paper presents a simple technique to estimate confidence
bounds of predictions from conventional neural network regression
models. The proposed methodology involves pre-processing of the
target outputs by transforming the values into linguistic classes. A
conventional learning algorithm is used and the predicted outputs
are the membership function values. A simple post-processing of
the outputs back-transforms the values into the original variable and
the confidence bounds. From the two petroleum data sets (perme-
ability from well logs and porosity mapping from seismic attributes)
presented, the results show that the petrophysical predictions are
realistic. The proposed methodology is general and useful, and can
be implemented in simple spreadsheets without altering any existing
neural network code.

As the design of the fuzzy membership functions is subjective, dif-
ferent experts may prefer different membership functions. The mod-
eling of such vague decisions may provide further insights into the un-
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Fig. 11. Predicted porosity maps and confidence maps.

certainty of the petrophysical predictions. In the near future, we will
examine the potential use of “rough” neurons [16] for implementing a
range of membership values associated with a fuzzy segment such as
multiple uncertainty models can be implemented.
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