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Efficient solution of three-body quantum collision problems: Application to the Temkin-Poet model

S. Jones and Andris T. Stelbovics
Centre for Atomic, Molecular and Surface Physics, School of Mathematical and Physical Sciences, Murdoch University,

Perth 6150, Australia
~Received 22 May 2002; published 23 September 2002!

We have developed avariable-spacingfinite-difference algorithm that rapidly propagates the general solu-
tion of Schrödinger’s equation to large distances~whereupon it can be matched to asymptotic solutions,
including the ionization channel, to extract the desired scattering quantities!. The present algorithm, when
compared to Poet’s correspondingfixed-spacingalgorithm@R. Poet, J. Phys. B13, 2995~1980!; S. Jones and
A. T. Stelbovics, Phys. Rev. Lett.84, 1878~2000!#, reduces storage by 98% and computation time by 99.98%.
The method is applied to the Temkin-Poet electron-hydrogen model collision problem. Complete results~elas-
tic, inelastic, and ionization! are obtained for low~17.6 eV!, intermediate~27.2, 40.8, and 54.4 eV!, and high
~150 eV! impact energies.

DOI: 10.1103/PhysRevA.66.032717 PACS number~s!: 34.80.Dp, 31.15.Fx, 34.10.1x, 34.80.Bm
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I. INTRODUCTION

In 1980, Poet@1# introduced a general method for solvin
the problem of electrons scattering from atoms or ions.
Poet’s method, Schro¨dinger’s equation, cast as a set
coupled two-dimensional partial-differential equations in t
radial variables of the two electrons, is integrated outw
from the atomic center~on a grid with fixed spacing!, yield-
ing general, propagating solutions that can be matche
asymptotic solutions to extract the scattering amplitudes
develop and test his ideas, Poet@1# considered 1s-2s excita-
tion for model electron-hydrogen collisions that neglect a
gular momentum@2,3# ~now known as the Temkin-Poe
model!.

In a recent paper@4#, we brought Poet’s method to com
pleteness for this model problem. Here we generalize Po
propagation algorithm@1,4# to variable step size, which
greatly increases the speed of the algorithm while sign
cantly reducing storage requirements.~Our numerical grid is
similar to the one used by Botero and Shertzer@5# in their
finite-element analysis of electron-hydrogen scattering.! Al-
though the propagation algorithm, which is independent
asymptotic boundary conditions, can be readily extende
the full electron-hydrogen problem, here we consider
Temkin-Poet model since benchmark calculations for t
model problem are needed over a wider range of ener
than presented in our previous paper@4#. Results are ob-
tained for low~17.6 eV!, intermediate~27.2, 40.8, and 54.4
eV!, and high~150 eV! impact energies. These are energ
where absolute measurements for electron-hydrogen ion
tion are available and/or strong theoretical interest exi
~We note that Wang and Callaway@6# extended Poet’s fixed
spacing algorithm to the full electron-hydrogen scatter
problem; even with this relatively slow fixed-spacing alg
rithm they were able to obtain very accurate results for
full problem for impact energies below the ionization thres
old.!

It is worthwhile here to point out the advantages of t
present method as compared to the basic finite-differe
method that is presented in most texts on numerical meth
The basic scheme uses a low-order formula, as oppose
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the Numerov formula, to discretize the differential equati
~Table I!. When applied in two directions to solve our two
dimensional partial-differential equations on a grid wi
fixed spacing, the Numerov scheme reduces storage by
and computation time by 99.9%@7#. In this paper we intro-
duce variable-spacingNumerov finite-difference propaga
tion. Using a variable step size in both directions furth
decreases storage by 98% and computation time by 99.9

II. THEORY

We start by writing the Schro¨dinger equation for the full
electron-hydrogen scattering problem~atomic units, with en-
ergies in rydbergs, are used in the remainder of this w
except where stated otherwise!,

S ¹x
21¹y

21
2

x
1

2

y
2

2

ux2yu
1EDC~x,y!50. ~1!

ExpandingC as a complete set of functions inx̂ and ŷ,

TABLE I. Three-point formulas for discretizing the ordinar
second-order differential equationf 9(x)1f(x)50, x>0, given
f (0)50, and using a step sizea. For Coulomb problems,f(0) is
indeterminate; therefore the usual Numerov formula cannot be u
for x5a. In this case, the Coulomb singularity should be exhibit
explicitly, f 9(x)12 f (x)/x1u(x)50, where u(x)5f(x)
22 f (x)/x is regular, and the usual Numerov formula (x.a) is
replaced by the modified one (x5a) obtained by constructing a
power series forf (x) near the origin@1#. ~Basic scheme shown fo
comparison only; it is not used in this work.!

Scheme Formula

Basic f (x2a)22 f (x)1 f (x1a)1a2f(x)50
Numerov (x.a) f (x2a)22 f (x)1 f (x1a)1a2@f(x2a)

110f(x)1f(x1a)#/1250
Numerov (x5a) (236154a216a2) f (a)1(1829a2a2) f (2a)

1a2@(1528a)u(a)1(1.52a)u(2a)#50
©2002 The American Physical Society17-1
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C~x,y!5
1

xy (
l

C l ~x,y!Yl ~ x̂,ŷ!, ~2!

Schrödinger’s equation~1! takes the form

S ]2

]x2
1

]2

]y2D C l ~x,y!1(
l 8

Tl l 8~x,y!C l 8~x,y!50,

~3!

whereT contains all the nonderivative terms and the ind
l 50,1,2, . . . denotes a set of quantum numbers; in parti
lar, l 50 corresponds to zero angular momentum for b
electrons.

Since C(x,y) must remain finite everywhere, bounda
conditions alongx50 andy50 can immediately be written
down for theC l ,

C l ~x, 0!5C l ~0,y!50. ~4!

The Pauli exclusion principle demands thatC also obey the
symmetry condition

C~y,x!5~21!SC~x,y!, ~5!

depending on whether the two electrons form a singlet~total
spin S50) or triplet (S51) spin state. Because the wav
function is symmetric or antisymmetric under electron e
change, we can solve Schro¨dinger’s equation~3! in just the
regionx>y; the symmetry condition~5! then plays the role
of a spin-dependent boundary condition alongx5y. Finally,
the asymptotic forms of theC l (x,y) for x>y are needed to
complete the specification of boundary conditions.

In the Temkin-Poet model, the infinite set of coupl
equations~3! is reduced to a single equation

S ]2

]x2
1

]2

]y2
1

2

x
1

2

y
2

2

max~x,y!
1ED C0~x,y!50, ~6!

by keeping only the first term in the expansion~2!. For this
model problem, the asymptotic boundary condition is ea
written down and is given in terms of unknownS-matrix
elements by

C0~x,y! ;
x→`

cem
~y!fkem

* ~x!2 (
n51

`

Senem
cen

~y!fken
~x!

2E
0

E

debSebem
ceb

~y!fkeb
~x!, ~7!

wherefk(x)5(1/Ak)exp(ikx) and thece are bound and con
tinuum states of the hydrogen atom with zero angular m
mentum,

ce~y!5Ne@ye2qy
1F1~121/q, 2; 2qy!#. ~8!

Here e52q2 is the energy of the electron and1F1 is the
confluent hypergeometric function. The factorNe normalizes
bound states to unity and continuum states to ad function in
energy,
03271
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Ne5H 2/n3, 21/n25e,0,

A2/~12e22p/k!, k25e>0.
~9!

Finally, for a given value ofe, the momentake in Eq. ~7! are
fixed by energy conservation according to

em1kem

2 5en1ken

2 5eb1keb

2 5E. ~10!

III. NUMERICAL METHOD

To convert the partial-differential equation~6! into differ-
ence equations, we impose a grid with variable spacing~Fig.
1! and approximate derivatives by finite differences. Thux
→xi ( i 50, 1, . . . ) andy→yj ( j 50, 1, . . . ), where x05y0
50. Since our grid lines are symmetric inx andy, we need
only discuss the properties of the grid in a single directio
say x. We define an initial step sizeh, and consider subse
quent doublings ofh. Numerous test calculations reveale
that~i! the first doubling should be at one atomic unit,~ii ! the
number of steps before each doubling should be the sa
and ~iii ! the optimal number of doublings is 3. Thus,

~step size!55
h, 0<x,1,

2h, 1<x,3,

4h, 3<x,7,

8h, 7<x,`.

~11!

Although the final step size is 8h, results obtained using thi
method were just as accurate as those using a grid of fi
spacingh—the three doublings did not introduce a detec
able error. Thus, in the limit of large propagation distance
the present algorithm is 4096 (84) times faster and use

FIG. 1. Schematic diagram of a relatively coarse grid cut off
10 a.u. in each direction. Here the initial step sizeh51/10 a.u. is
doubled, at intervals of 10 steps, three times in each direction.
two-electron problems, the computational effort can be reduced
applying a boundary condition imposed by symmetry along the
x5y ~shown! and solving the problem in the lower triangular r
gion x>y.
7-2
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TABLE II. The nonzero matrix elements ofA( i ), B( i ), andC( i ) at grid point (i , j ), j 52,3, . . . ,i , before
applying the boundary condition alongx5y. The local spacing in thex direction is a and that in they
direction is b. The nonderivative part of the Hamiltonian isTj

( i )52/min(xi , yj)1E. Matrix elements at a
junction ~a grid line i where the spacing doubles in thex direction! are obtained by replacingTj 8

( i 21) with
Tj 8

( i 22) . Matrix elements at ay junction ~a grid line j where the spacing doubles in they direction! are
obtained by replacingj 85 j 21 with j 85 j 22. To apply the boundary condition alongx5y, any matrix
element in this table corresponding to a grid point lying above the linex5y must be multiplied by (21)S and
added to the matrix element corresponding to the grid point obtained upon reflection of the out-of-b
point throughx5y. At a junction, an additional complication arises forj 5 i 22 and j 5 i 21 in that a point
lying above the linex5y reflects to a point on grid linei 21 ~recall that, at a junction, our formulas ca
involve only the equally spaced grid linesi 22, i, andi 11). In this case, Eq.~13! can be used to express th
wave function at this point as a linear combination of the wave function at all points on the junctioni and
Bj , j 8

( i ) →Bj , j 8
( i )

1(21)SAj ,i 21
( i ) Di 22,j 8

( i 21) ( j 851,2, . . . ,i ).

j 8 Aj , j 8
( i ) Bj , j 8

( i ) Cj , j 8
( i )

j 11
1

a2
1

1

b2
1

1
12

Tj 8
( i 21) 10

b2
2

2

a2
1

10
12

Tj 8
( i ) 1

a2
1

1

b2
1

1
12

Tj 8
( i 11)

j
10

a2
2

2

b2
1

10
12

Tj 8
( i 21) 220S 1

a2
1

1

b2D 1
100

12
Tj 8

( i )
10

a2
2

2

b2
1

10
12

Tj 8
( i 11)

j 21
1

a2
1

1

b2
1

1
12

Tj 8
( i 21) 10

b2
2

2

a2
1

10
12

Tj 8
( i ) 1

a2
1

1

b2
1

1
12

Tj 8
( i 11)
y

ul

n
r
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n

64 (82) times less storage to achieve the same accurac
Poet’s fixed-spacing algorithm@1,4#.

A. Difference equations

Applying the usual Numerov formula~Table I! to the
Schrödinger equation~6! in both thex andy directions, our
difference equations at grid linei take the form

A( i )"C( i 21)1B( i )"C( i )1C( i )"C( i 11)50. ~12!

Here we have collected the variousC j
( i ) , j 51, 2, . . . ,i ,

whereC j
( i )[C0(xi , yj ), into a vectorC( i ). At a junction~a

grid line i where the spacing doubles!, our difference equa-
tions still have the form~12!, except thatC( i 22) replaces
C( i 21). This is because our three-point formula~Table I! can
involve only equally spaced points if we are to retain the f
accuracy of the Numerov scheme. The matrix elements
A( i ), B( i ), and C( i ) for j .1 are given in Table II. Forj
51, but iÞ1, the potential becomes singular in they direc-
tion only, so we use the modified Numerov scheme~Table I!
03271
as

l
of

in they direction, followed by the usual Numerov formula i
the x direction to obtain the results in Table III. Finally, fo
i 5 j 51, the potential becomes singular in both directions,
we apply the modified Numerov scheme~Table I! in both the
x andy directions to obtain the matrix elements ofB(1) and
C(1) given in Table IV @because of the boundary conditio
alongx50, theA(1) term vanishes in Eq.~12!#.

B. Propagating the general solution

By applying symbolic boundary conditions atx5xi , we
can solve our equations in terms ofC( i ) for x,xi . In par-
ticular, we can write

C( i 21)5D( i 21)
•C( i ), ~13!

whereD( i 21) is a known~as yet unspecified! matrix. Now
using Eq.~13! in Eq. ~12!, we obtain

@B( i )1A( i )
•D( i 21)#•C( i )52C( i )

•C( i 11). ~14!
t

TABLE III. The nonzero matrix elements ofA( i ), B( i ), andC( i ) for j 51 (iÞ1) before applying the boundary condition alongx5y. The

local spacing in thex direction isa and that in they direction ish (t[h/a). Hereū j
( i )52/min(xi , yj)1E22/yj . At a junction, replaceū j 8

( i 21)

with ū j 8
( i 22) . For i 52, the grid point corresponding to the matrix elementA1,2

(2) lies above the linex5y. This point reflects to the poin
corresponding toB1,1

(2) . Thus,B1,1
(2)→B1,1

(2)1(21)SA1,2
(2) .

j 851 j 852

A1,j 8
( i )

236154h216h21(180296h)t21(1528h)h4ū1
( i 21) 1829h2h21(18212h)t21(1.52h)h4ū2

( i 21)

B1,j 8
( i )

23601540h2160h21(23601192h)t21(150280h)h4ū1
( i ) 180290h210h21(236124h)t21(15210h)h4ū2

( i )

C1,j 8
( i )

236154h216h21(180296h)t21(1528h)h4ū1
( i 11) 1829h2h21(18212h)t21(1.52h)h4ū2

( i 11)
7-3
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Comparing Eq.~14! with Eq. ~13!, we see that the nextD
matrix, D( i ), is given by

D( i )52@B( i )1A( i )
•D( i 21)#21

•C( i ). ~15!

Thus eachD( i ) is generated from the previous one. The fi
D matrix is given byD(1)52@B(1)#21

•C(1).
Equation~15! can also be used at a junction ifD( i 21) is

replaced withD( i 22)
•D( i 21) since, using Eq.~13!,

C( i 22)5D( i 22)
•C( i 21)5D( i 22)

•D( i 21)
•C( i ). ~16!

C. Matching to asymptotic solutions

Upon repeated application of Eq.~15!, we eventually
reach the asymptotic region. In the asymptotic region,
~7! applies and therefore

C( i ) ;
i→`

I ( i )2R( i )
•S. ~17!

Here the matrixI ( i )5R( i )* contains incident waves while
R( i ) contains reflected waves,

Rj ,n
( i ) 5H cen

~yj !fken
~xi !, n<Nd ,

E
0

E

debeb
pceb

~yj !fkeb
~xi !, n.Nd ,

~18!

wherep5n2Nd21. Note that the infinite summation ove
discrete channels is truncated to some finite integerNd and
the quadrature over the two-electron continuum is perform
prior to matching by first writing theSebem

as a power series

in eb ,

Sebem
' (

p50

Nc21

spmeb
p . ~19!

The matching procedure, insertion of Eq.~17! into both sides
of Eq. ~13! and solving forS, then determines the coeffi
cients spm , rather thanSebem

directly, which eliminates ill

conditioning@1#. In practice, thei 21 equations contained in

TABLE IV. The matrix elements ofB(1) and C(1) ~the casei
5 j 51) before applying the boundary condition alongx5y. The
local spacing in both directions ish. The grid point corresponding
to the matrix elementB1,2

(1) lies above the linex5y. This point
reflects to the point corresponding toC1,1

(1) . Thus, C1,1
(1)→C1,1

(1)

1(21)SB1,2
(1) .

B1,2
(1) 4(2162162h221h2124h3)12(45254h116h2)h2

3(E21/h)
B1,1

(1) 216(2702549h1336h2264h3)14(2252240h
164h2)h2(E22/h)

C1,2
(1) 4(54263h115h212h3)1(9212h14h2)h2(E21/h)

C1,1
(1) 4(2162162h221h2124h3)12(45254h116h2)h2

3(E21/h)
03271
t
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the matrix equation~13! far outnumber the (Nd1Nc) un-
known scattering coefficients. Following Poet@1#, we use all
of these equations and solve this overdetermined set forS by
minimizing the sum of the squares of the residuals@the dif-
ferences between the left- and right-hand sides of Eq.~13!
after matching#.

IV. RESULTS

Convergence is obtained when the numerical results
no longer sensitive to variations in~i! the initial step sizeh,
~ii ! the matching radiusxM , ~iii ! the number of expansion
functionsNc for the continuum,~iv! the number of discrete
channelsNd , and~v! the number of energy pointsNe in the
~Gauss-Legendre! quadrature~18! over the two-electron con

TABLE V. Singlet e21H(1s)→e21H(ns) cross sections
(pa0

2) for the Temkin-Poet model. Superscripts indicate powers
10.

Impact energy~eV!

n 17.6 27.2 40.8 54.4 150

1 2.24521 1.31321 8.64822 6.47222 2.01122

2 3.25522 1.68222 8.02223 4.60923 6.29024

3 7.91423 4.50023 2.12823 1.20123 1.54324

4 3.02223 1.83023 8.66524 4.86424 6.13525

5 1.46423 9.20524 4.36524 2.44624 3.05725

6 8.20024 5.27624 2.50524 1.40224 1.74425

TABLE VI. Singlet e21H(1s)→e21e21H1 SDCS
(pa0

2/Ry) for the Temkin-Poet model. Superscripts indicate pow
of 10.

Impact energy~eV!

eb /E 17.6 27.2 40.8 54.4 150

0.000 8.14222 5.57422 2.65622 1.48122 1.81923

0.025 7.94022 5.46022 2.56422 1.39922 1.41023

0.050 7.73522 5.34622 2.48022 1.32822 1.13823

0.075 7.52422 5.23122 2.40222 1.26422 9.48524

0.100 7.30822 5.11422 2.32922 1.20622 8.11124

0.125 7.08622 4.99522 2.25822 1.15422 7.07824

0.150 6.85822 4.87522 2.19122 1.10622 6.27824

0.175 6.62322 4.75222 2.12522 1.06222 5.64624

0.200 6.38122 4.62522 2.06222 1.02122 5.13624

0.225 6.13222 4.49522 1.99922 9.83223 4.71924

0.250 5.87422 4.36122 1.93822 9.47523 4.37524

0.275 5.60722 4.22322 1.87722 9.13723 4.08724

0.300 5.33222 4.08022 1.81722 8.81223 3.84324

0.325 5.04622 3.93022 1.75622 8.49923 3.63524

0.350 4.74822 3.77222 1.69322 8.19123 3.45524

0.375 4.43422 3.60222 1.62922 7.86623 3.29724

0.400 4.10322 3.42122 1.56222 7.57923 3.16024

0.425 3.75922 3.23122 1.49222 7.27023 3.04024

0.450 3.42622 3.04122 1.42022 6.96323 2.94024

0.475 3.16922 2.87822 1.35522 6.68023 2.86524

0.500 3.13222 2.79422 1.31122 6.47323 2.82224
7-4
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EFFICIENT SOLUTION OF THREE-BODY QUANTUM . . . PHYSICAL REVIEW A 66, 032717 ~2002!
tinuum ~by taking Ne5xM /a0, where a051 a.u., we ob-
tained four-figure accuracy—using ten times as many po
did not change our final results to four significant digi
therefore we consider this particular parameter no furthe!.

For impact energies of 54.4 eV or less, the error in
cross sections due to grid spacing alone is 0.1% or less
h51/20 a.u.~except for elastic scattering, which required
finer grid and therefore a separate calculation at each en
to obtain this same high precision!. To estimate our tota
uncertainty, we must also take into account the finite mat
ing radius and the finite number of states employed in
matching procedure. For discrete transitions, errors from l
of convergence inxM , Nc , and Nd are small relative to
0.1%. Thus, for discrete transitions, our total error is s
only 0.1%. Turning to ionization, the total error for the sing
differential cross section~SDCS! is also 0.1%, except foreb
nearE/2, where the SDCS is much more sensitive toxM and
Nc than the other observables. As a result, our uncertaint
1% in the SDCS foreb'E/2 (0.45<eb /E<0.55). ~For an
impact energy of 150 eV, we needed a smaller initial s
size,h51/40 a.u., to reduce the error to 0.1%; on the ot
hand, a considerably shorter matching radius could be us!

We have performed complete calculations for electro
colliding with hydrogen atoms in the Temkin-Poet model f
impact energies ranging from 17.6 to 150 eV. Our prec
impact energies are 17.6, 27.212, 40.817, 54.423, and 15
~our intermediate total energies are exactly 1, 2, and 3 R!.
Our results, accurate to 0.1%~1% for eb'E/2), are pre-
sented in Tables V–X, where superscripts indicate power
10. Comparative data for inelastic scattering cross sect
have been given by Callaway and Oza@8# and Bray and
Stelbovics@9#. Both these references included inelastic cro
sections only up to then53s level. Callaway and Oza re
ported limited results and only for singlet scattering. Br
and Stelbovics presented a compilation of convergent c

TABLE VII. Singlet e21H(1s)→e21e21H1 total ionization
cross sections (pa0

2) for the Temkin-Poet model. Superscripts ind
cate powers of 10.

Impact energy~eV!

17.6 27.2 40.8 54.4 150

8.41823 2.14022 1.94622 1.47222 2.92623

TABLE VIII. Triplet e21H(1s)→e21H(ns) cross sections
(pa0

2) for the Temkin-Poet model. Superscripts indicate powers
10.

Impact energy~eV!

n 17.6 27.2 40.8 54.4 150

1 2.11210 1.15910 6.31521 4.03921 8.12522

2 4.04623 5.76423 5.08523 4.03423 1.09123

3 3.41724 9.23324 9.88424 8.38424 2.47524

4 7.94125 3.07524 3.59224 3.13224 9.56725

5 2.94525 1.40424 1.71524 1.51724 4.70825

6 1.40825 7.62625 9.55525 8.51025 2.66625
03271
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coupling ~CCC! results over a wide range of energies b
differing slightly from the energies reported here. Compar
their data with our Tables V and VIII, their calculated cro
sections for 1s→1s, 2s are reliable to 2%. The 1s→3s
singlet cross section of Callaway and Oza is less accu
and at 3 Ry, for example, is in error by about 9% whereas
Bray and Stelbovics 1s→3s cross sections are correct t
within 3%. It should be emphasized that all the inelas
cross sections up to and includingn56 shown in Table V
and Table VIII are accurate to 0.1%.

Singlet and triplet SDCS’s are given in Tables VI and I
The 40.8 eV and 54.4 eV SDCS’s were previously repor
@4# and compared with the exterior complex scaling~ECS!
method@10# and the convergent close coupling calculation
Bray @11#. The ECS calculation is generally in good agre
ment with our method except at extreme asymmetric ene
sharing where the ECS SDCS overshoots by about 10–2
A new method of amplitude calculation in the ECS meth
appears to have corrected this discrepancy with our res
@12#. The singlet and triplet SDCS’s reveal interesting beh

f

TABLE IX. Triplet e21H(1s)→e21e21H1 SDCS
(pa0

2/Ry) for the Temkin-Poet model. Superscripts indicate pow
of 10.

Impact energy~eV!

eb /E 17.6 27.2 40.8 54.4 150

0.000 9.35824 7.09723 9.45523 8.57623 2.73723

0.025 8.10724 6.17323 8.06423 7.12123 1.84523

0.050 6.97524 5.33823 6.85323 5.90923 1.29023

0.075 5.95324 4.58423 5.79723 4.89423 9.29724

0.100 5.03524 3.90823 4.87723 4.04123 6.84724

0.125 4.21624 3.30323 4.07623 3.32323 5.11924

0.150 3.49124 2.76423 3.38023 2.71723 3.86424

0.175 2.85324 2.28723 2.77623 2.20523 2.93124

0.200 2.29724 1.86823 2.25523 1.77323 2.22624

0.225 1.81824 1.50223 1.80723 1.40923 1.68624

0.250 1.40924 1.18623 1.42423 1.10323 1.27024

0.275 1.06524 9.15824 1.10023 8.47324 9.46225

0.300 7.81925 6.88324 8.28624 6.36024 6.93525

0.325 5.53225 5.00024 6.04424 4.63124 4.96025

0.350 3.73825 3.47624 4.22824 3.23924 3.42225

0.375 2.37725 2.27924 2.79424 2.14324 2.24125

0.400 1.38725 1.37124 1.69824 1.30624 1.35925

0.425 7.03526 7.18925 9.03625 6.95525 7.30726

0.450 2.66726 2.88425 3.73325 2.86125 3.18526

0.475 3.93427 5.42626 7.87126 5.85026 8.60427

0.500 0.00010 0.00010 0.00010 0.00010 0.00010

TABLE X. Triplet e21H(1s)→e21e21H1 total ionization
cross sections (pa0

2) for the Temkin-Poet model. Superscripts ind
cate powers of 10.

Impact energy~eV!

17.6 27.2 40.8 54.4 150

3.66825 9.82624 2.47323 3.10323 2.01223
7-5
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ior as a function of energy which is better demonstrated
their plots in Figs. 2 and 3, respectively. The singlet SDCS
a function of energy changes its shape in a regular way as
energy increases. The 17.6 eV SDCS curve exhibits the l
est SDCS as a function of energy fraction and as we m
through to 150 eV the SDCS curves decrease monotonic
with energy. Subtle differences in shapes of the curves
energy fractions above'0.4 occur. For triplet scattering o
the other hand, the monotonicity with energy is absent. T
17.6 eV triplet SDCS is the smallest over the range of imp
energies considered and increases with energy as evide
by the 27.2 eV and 40.8 eV SDCS plots. By 54.4 eV t
SDCS is consistently smaller and the trend continues to
eV. From these results it is clear that the triplet ionizati
cross section is suppressed relative to the singlet ioniza
cross section at low energies. It is also apparent that there
still significant exchange effects at play at the highest ene
of 150 eV.

FIG. 2. Singlet SDCS (pa0
2/Ry) vs energy fractioneb /E for the

impact energies shown.
03271
y
s
he
g-
e

lly
r

e
ct
ced

0

n
re
y

V. SUMMARY

Benchmark calculations have been provided for
Temkin-Poet electron-hydrogen model collision proble
over a wide range of collision energies. By integrati
Schrödinger’s equation on a grid with variable spacing, w
increased the speed of Poet’s algorithm@1,4# by 3–4 orders
of magnitude, while reducing storage requirements by ne
two orders of magnitude. Now that we have optimized o
code for this simplified model we can proceed to inclu
angular momentum.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of t
Australian Research Council.

FIG. 3. Triplet SDCS (pa0
2/Ry) vs energy fractioneb /E for the

impact energies shown.
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