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Abstract 

 

Between 1901 and 1931, there were at least six anecdotal records of disease outbreaks in 

mainland quokkas (Setonix brachyurus) that were associated with mass.  This time period 

pre-dates the arrival of the red fox (Vulpes vulpes).  Despite these outbreaks, little or no 

research has been carried out to establish health and disease baseline data of the 

fragmented and scattered, extant populations.  Epidemiological data was determined for a 

range of potential pathogens, and established physiological reference intervals of 

apparently healthy, wild quokkas on Rottnest Island and mainland locations.  There were 

significant differences between Rottnest Island and mainland quokkas.  Rottnest Island 

animals had haemograms with mark evidence of oxidative injury and bone marrow 

response consistent with a regenerative normocytic hypochromic anaemia.  Except 

alkaline phosphatase (ALP), all blood chemistry analytes where higher in mainland 

animals, with particular emphasis on creatine kinase (CK), alanine amino transferase 

(ALT), aspartate amino transferase (AST) and vitamin E.  Some other key findings include 

a widespread presence of a novel herpesvirus (MaHV-6), the recovery of Cryptococcus 

neoformans var. grubii from quokkas in highly altered ecosystems on Rottnest Island, and 

new Salmonella spp. serovars in Rottnest Island quokkas.  Atypical lymphocytes 

resembling those in proliferative disorders of the lymphoid and haematopoietic tissues in 

other species were observed in blood smears of animals on Rottnest Island but not on the 

mainland.  The presence of potentially-pathogenic organisms is likely to increase 

synergistic effects of ongoing and future threats (e.g. habitat clearing, climate change), and 

could increase quokka extinction risk.  Disease surveillance would make a valuable 

contribution to Recovery Plans for the quokka, enabling preparedness for a rapid 

response if clinical disease is to happen, and to manage populations in a more integrated 

way. 
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1. General Introduction 

 

 

According to the 2012 International Union for Conservation of Nature (IUCN) Annual 

Report, of the 63,837 species of vertebrates and plants that have been assessed, 19,817 

are threatened with extinction, of which 25% are mammals (IUCN 2015).  This report also 

indicates that over 500 species are considered possibly extinct or extinct in the wild and 

this number is likely an underestimate.  It has been estimated that between 1970 and 

2005, an overall decline of 30% in 1,698 vertebrate species occurred worldwide (Loh et al. 

2008).  In Australia, 29 species of mammals are now extinct.  This is more than any other 

continent (Ceballos & Ehrlich 2002 ; Johnson 2006 ; McKenzie et al. 2007 ; Woinarski, 

Burbidge, & Harrison 2014).  A further 57 species, which represents 18.3% of the total 

number of species in Australia are considered threatened (Woinarski, Burbidge, & 

Harrison 2014).  Of these, those with body mass ranging from 35 to 5,500 g (i.e. critical 

weight range, CWR), generally herbivorous and living in low rainfall regions, have been 

most vulnerable (Burbidge & McKenzie 1989 ; Johnson & Isaac 2009 ; Johnson, Burbidge, 

& McKenzie 1989 ; Short & Smith 1994).  The most common factors that are considered to 

contribute, either directly or indirectly, to loss of Australia mammal species include 

habitat modification, introduced species (competitors and predators), modification of fire 

regimes, climate change, over exploitation, inbreeding depression. Infectious diseases 

have also played a role in wildlife population reductions and extinctions; however, the role 

of diseases has generally been overlooked. 

 

 As early as the 1930’s, Aldo Leopold, a prominent figure in wildlife management in North 

America stated that “the role of disease in wildlife conservation has probably been 

radically underestimated” (cited by Spalding & Forrester 1993).  This view has persisted 

through the years.  For instance,  Daszak et al. (2000) in their retrospective study of 

vertebrate translocations, as part of wildlife management projects, determined that of 

more than 2,000 translocations carried out between 1973 and 1986 in Australia, Canada, 

New Zealand and the United States combined, more than 70% of those projects did not 

investigate the causes of mortality after translocation, including disease-related causes of 

mortality.  More recently,  Pedersen et al. (2007) used data from the 2006 IUCN Red List to 

determine that published studies on infectious agents in populations of wild mammals 

were available for only <40% of the world’s most threatened artiodactyls, primates and 

carnivores, while 25% of species that were threatened by infectious agents had little or no 
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published information regarding the presence of such infectious agents at a population 

level. 

 

Regrettably, there are a number of factors that have trivialised the importance of diseases 

in wildlife.  First, some of the available data implicating infectious diseases in population 

declines or extinctions are largely anecdotal.  Second, baseline data concerning infectious 

diseases in wildlife is scant.  Third, most of the non-anecdotal data correspond to studies 

that were carried out in response to a mortality event, in which case research is for the 

most part focused on identifying the organism and elucidating its mechanisms of disease, 

and perhaps its environmental associations, but too frequently there is no 

interdisciplinary work with the fields of science that look after wildlife population 

demographics (e.g. ecology).  Consequently, only rarely has the impact of mortality events 

on population status been explored.  Fourth, that a great deal of non-anecdotal data of 

infectious agents/diseases in wildlife comes from investigating diseases important to 

human health and domestic animals, thus leaving out their relevance and impact on the 

wildlife species that were studied in the first place.  Fifth, there is still research undertaken 

in wildlife, that although focused on infectious organisms, limited their results to the 

classification of the organism, with little or no consideration for the immediate or future 

impact on the health of the species in question (Austen et al. 2009 ; Bennett & Hobbs 

2011 ; Clark & Spencer 2007 ; Hart, Bradshaw, & Iveson 1985, 1986 ; Lozano et al. 2015 ; 

Mora et al. 2015 ; Paparini et al. 2011 ; Smith, Clark, et al. 2008).  And sixth, is the 

persistent view of many ecologists and wildlife biologists that do not recognise disease as 

a significant factor in wildlife management.  This posture has usually been defended by 

reasons such as the high cost of health studies, the inconvenience of the logistics needed to 

assess the health of the animals, a decrease in recapture rates due to the “invasive” 

procedures commonly carried out (e.g. venipuncture); and the arguments that animals 

with compromised fitness due to disease would eventually be removed by predators, and 

the absence of overt signs of disease is sufficient evidence supporting the absence of 

disease. 

 

Despite these hurdles, evidence suggests that infectious diseases do indeed play a 

significant role in the persistence of wildlife populations and can drive species to 

extinction (Aguirre & Tabor 2008 ; Daszak & Cunningham 1999 ; Hartigan et al. 2011 ; 

Leendertz et al. 2006 ; Pedersen et al. 2007 ; Schloegel et al. 2006).  Using data from the 

2006 IUCN Red List, Smith et al. (2006) determined that infectious diseases were within 

the top five processes contributing, or that have contributed, to global species extinction.  

Although these results indicated that the degree of contribution (direct or indirect) was 
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less than 4% of known species extinctions since 1500, and less than 8% of 2,852 critically 

endangered plants and animals, this work did show the first numerical evidence of the 

impact of disease at a global scale.  In support of the findings of Smith  (2006), the work on 

mammals by Pedersen et al. (2007) that also used data from the 2006 IUCN Red List, 

determined that of the reported infectious agents threatening wild mammals, viruses and 

bacteria were the most common, although other groups were also mentioned (e.g. 

protozoans and fungi), and that organisms transmitted by direct contact were more likely 

to be involved in extinction risk than those with other forms of transmission.  There are a 

number of cases in which infectious diseases have been implicated in population declines 

of mammals, birds and amphibians (Table 1-1)  For example, white-nose syndrome caused 

by Geomyces destructans, has been responsible for drastic declines in insectivorous bats in 

North America with an estimated 5.5 million deaths since 2007 (Lorch et al. 2013 ; 

Thogmartin et al. 2012), while chytridiomycosis caused by Batrachochytrium 

dendrobatidis and Batrachochytrium salamandrivorans, has been responsible for mass 

declines in frogs and salamanders (Martel et al. 2013 ; Phillott et al. 2013) with over 200 

species apparently being threatened worldwide (Skerratt et al. 2007). 
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Table 1-1 Cases in which infectious diseases have been implicated in population declines and species 
extinction. 
Animal species Location Disease identified Impact Reference 
European wild rabbit 
(Oryctolagus cuniculus) 

Spain Rabbit haemorrhagic 
disease virus 

~60% pop. 
decline 

(Moreno et al. 
2007) 

Gorilla (Gorilla gorilla) and 
Chimpanzee (Pan 
troglodytes) 

Gabon/Republic 
of Congo border 

Ebolavirus sp. 85% pop. 
decline 

(Leendertz et al. 
2006) 

Various avian species North America West Nile virus   50-100% pop. 
mortality 

(LaDeau, 
Kilpatrick, & 
Marra 2007) 

Wild common carp 
(Cyprinus sp.) 

Canada Koi herpesvirus > 25,000 
deaths 

(Garver et al. 
2010) 

Santa Catalina Island fox 
(Urocyon littoralis 
catalinae) 

North America Canine distemper virus ~85% pop. 
reduction 

(King, Duncan, 
& Garcelon 
2014 ; Timm et 
al. 2009) 

Insectivorous bats North America white-nose syndrome 
Geomyces destructans 

~5.5 million 
deaths 

(Lorch et al. 
2013 ; 
Thogmartin et 
al. 2012) 

frogs and salamanders Worldwide  chytridiomycosis 
caused by 
Batrachochytrium 
dendrobatidis and 
Batrachochytrium 
salamandrivorans 

over 200 
species 
threatened 

 (Skerratt et al. 
2007) 

Tasmanian devil 
(Sarcophilus harrisii) 

Australia Tasmanian devil facial-
tumour disease 

>90% pop. 
decline 

(McCallum 
2008 ; 
McCallum et al. 
2007) 

Christmas Island pipistrelle 
(Pipistrellus murrayi) 

Australia Trypanosoma lewisi Extinction (Woinarski, 
Burbidge, & 
Harrison 2014) 

Endemic Hawaiian 
honeycreepers 

Hawaii Avipox and Plasmodium 
spp. 

Extinction (Atkinson & 
LaPointe 2009) 

South Island saddlebacks 
(Philesturnus carunculatus 
carunculatus) 

New Zealand Avipox and Plasmodium 
spp. 

%60 decline (Alley et al. 
2010) 

 

 

Extinction has also been attributed to infectious diseases.  Some of the more significant 

cases include, the annihilation of the last free-ranging colony of the black-footed ferret 

(Mustela nigripes) in North America, due to Canine distemper virus infection (May 1986 ; 

Thorne & Williams 1988), and the disappearance of Partula turgida, a species of snail, as a 

result of a microsporidian parasite infection (Cunningham & Daszak 1998 ; Schloegel et al. 

2006).  Similarly, B. dendrobatidis has been suggested by different authors as the driving 

force of the greatest extinction wave in modern history due to an infectious disease, with a 

conservative number of over 100 different species of frogs possibly extinct worldwide 

(Kriger & Hero 2009 ; Skerratt et al. 2007 ; Vredenburg et al. 2010). 

 

Locally, Australian native fauna have also experienced the impact of infectious diseases.  

Perhaps the two most important cases are the confirmed disappearance of the Australian 

sharp-snouted day frog (Taudactylus acutirostris) due to infection with B. dendrobatidis 

(Schloegel et al. 2006), and the drastic population crash (>90%) of the Tasmanian devil 
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(Sarcophilus harrisii) due to Tasmanian devil facial-tumour disease (McCallum 2008 ; 

McCallum et al. 2007).  Some other Australian species extinctions and declines that were 

partly attributed to infectious diseases include the Tasmanian thylacine (Thylacinus 

cynocephalus) (possibly distemper and mange Guiler 1961 ; Paddle 2012), the Christmas 

Island rat (Rattus macleari) (Trypanosoma levisi infection Pickering & Norris 1996 ; Wyatt 

et al. 2008), and more recently, the brush tailed bettong (Bettongia penicillata) 

(Trypanosoma sp. Botero et al. 2013 ; Smith, Clark, et al. 2008).  In addition to these 

examples, there seems to be strong anecdotal evidence that disease has been involved in 

mammal declines and extinctions in Western Australia (WA) since as early as 1875 

(Abbott 2006).  

 

Although the impact of disease on an individual or on a population is easy to recognise 

when there is obvious disability (e.g. bleeding, fractures, tumours, circling), or when mass 

mortalities occurred, disease can also be present in the absence of clinical signs.  

Subclinical disease can reduce overall fitness and can cause injury to specific organ 

systems.  For instance, Cowpox virus infection in wood mice (Apodemus sylvaticus) and 

bank voles (Muodes glareolus), although asymptomatic, was responsible for reducing their 

reproductive output by at least 25% (Feore et al. 1997); while sage grouse (Centrocercus  

urophasianus) males infected with avian malaria (Plasmodium pediocetti) bred later in the 

season and copulated less frequently than uninfected males (Johnson & Boyce 1991).  

Similarly, studies have shown that the simple event of mounting an immune response to 

an antigen can be deleterious to the overall fitness of the animal or population.  For 

instance, Ilmonen et al. (2000) observed that female pied flycatchers (Ficedula hypoleuca) 

with an activated immune response after immunisation with non-pathogenic antigens, had 

lower reproductive output than females that were not immunised.  Supporting this, 

Hanssen et al. (2004) correlated a humoral immune response with compromised long-

term survival in common eiders (Somateria mollissima).   

 

There is evidence from indicating that stress plays a role in disease.  Stress is strongly 

linked to disease, and has been suggested as a factor that exerts great influence on various 

diseases in wildlife, including toxoplasmosis in marsupials (Thompson, Lymbery, & Smith 

2010), white nose syndrome in bats (Cryan et al. 2010), Chlamydia infection in koalas 

(Brearley et al. 2013), and chytridiomycosis in amphibians (Gabor, Fisher, & Bosch 2013).  

There is no universal definition of stress but in the context of animal health, it can be 

defined as the alteration of physiological homeostasis driven by a physiological, 

environmental or psychological stressor, or a combination of these (sensu lato Black 

1994), and can cause significant downregulation of the immune system (i.e. 
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immunosuppression) among other effects.  Immunosuppression might occur following 

long term exposure to endogenous glucocorticoids, which are released during periods of 

stress (Dhabhar & McEwen 1997 ; Padgett & Glaser 2003).  Levels of these glucocorticoids 

can increase significantly due to persistent and increased predator presence (Polednik et 

al. 2008), climate fluctuations (Shultz & Kitaysky 2008) and human disturbance (Schmidt 

et al. 2009).  Immunosuppression can be expressed as decreased leukocyte movement, 

decreased effector cell function, decreased cell-mediated immunity, and decreased 

humoral immunity.  This increases susceptibility to infectious diseases and proliferative 

disorders, exacerbates the effects of an infection, increases or activates shedding of 

pathogens, and can reactivate latent pathogens (Friedman & Lawrence 2002 ; Hofer & East 

2012).  It is possible that as threats increase in magnitude and occur more rapidly, chronic 

stress may develop in wild populations, and with it greater exposure to endogenous 

glucocorticoids, which may lead to greater risk of immunosuppressive states and disease. 

 

The possible outcomes or impacts in a mixed infection scenario are quite numerous and 

may include genetic, metabolic, behavioural and immunological impacts.  However, 

studies on concomitant infection in humans and mice, which for the most part have 

focused on the interactions of protozoans and helminths with other groups of organisms 

(e.g. virus and bacteria), indicate that the most common outcome in hosts with mixed 

infections, is that in which one agent causes downregulation of the immune system, while 

the other agent or agents take advantage of this resulting immunosuppression, proliferate 

and eventually cause disease (Cox 2001).  Some of the studied cases of this parasitic 

relation include concurrent infections with Epstein-Barr virus (Gammaherpesvirinae) and 

Plasmodium falciparum in humans.  In this situation, the T-cell response of the malaria-

infected host appears to lose control of the viral infection (Wedderburn et al. 1984).  A 

second example involves the lethal effect of normally non-lethal strains of P. chabaudi and 

P. yoelii in mice infected with Rotavirus C (colloquially known as Rowson-Parr virus) (Cox, 

Wedderburn, & Salaman 1974) but not in non-infected Rotavirus C mice.  In mice, 

suppression of Type 1 T helper cells (Th1) following infection with Fasciola hepatica 

reduced the protective response against Bordetella pertussis (Brady et al. 1999).  Similar 

outcomes where one infectious agent caused immunosuppression and in doing so 

favoured the proliferation of other agents, have been observed in wildlife.  For instance, 

the dramatic mortality of Serengeti lions (Panthera leo) between 1994 and 2001 in which 

Babesia sp. infections were believed to have been intensified by the immunosuppressive 

effects of Canine distemper virus (Munson et al. 2008).  A similar case is that of the South 

Island saddlebacks (Philesturnus carunculatus carunculatus) population in New Zealand, in 

which infection with Avipoxvirus is thought to have caused the right conditions 
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(immunosuppression) for Plasmodium elongatum (thought to be endemic in this species) 

to overrun the hosts immune response (Alley et al. 2010).  Together with other factors (e.g. 

reduce heterozygosity), this coinfection is believed to have contributed to a 60% decline in 

the saddlebacks populations.  According to Telfer et al. (2010), mixed infections appear to 

carry a more significant impact on infection risk in wildlife, than factors such as season 

and host age.  Despite the limited studies in wildlife, there appears to be strong evidence 

from other mammalian hosts that call for a more systematic approach to the study of the 

effect of multiple infections on the health of native wildlife. 

 

Disease has the potential to cause significant morbidity and mortality in wildlife, directly 

and/or indirectly, and could push species to significant population declines and even 

extinction.  Because of the risk of potentially catastrophic effects of disease on the 

conservation status of Australian native wildlife, greater attention to disease surveillance 

and health monitoring as well as increased knowledge on the microbiome of these species 

is required. 

 

In Australia, endangered species are commonly managed through execution of a Recovery 

Plan (RP), which represent a comprehensive review of the current conservation status and 

threats for a given species, highlighting gaps in knowledge that are relevant to the 

conservation of the species, and prioritising management options required to support the 

persistence of that given species.  In WA, these conservation initiatives fall under the 

jurisdiction of the Department of Parks and Wildlife (DPaW).   Twelve RPs for threatened 

native wildlife in WA (http://www.dpaw.wa.gov.au/platns-and-animals/threatened-

species-and-communities/197-approved-recovery-plans), that were approved between 

2003 and 2015, were reviewed (Table 1-2). 

 

http://www.dpaw.wa.gov.au/platns-and-animals/threatened-species-and-communities/197-approved-recovery-plans
http://www.dpaw.wa.gov.au/platns-and-animals/threatened-species-and-communities/197-approved-recovery-plans
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Table 1-2 Twelve approved Recovery Plans for 21 mammal species native to Western Australia.   

Species Binomial name 
Year 
Approved 

Disease a 
threat 
(priority) 

Surveillance/health 
monitoring as a 
conservation action Reference 

Golden bandicoot Isoodon auratus 2003 No No (Palmer, Taylor, & Burbidge 2003) 
Golden-backed tree-rat Mesembriomys macrurus 2003 No No (Palmer, Taylor, & Burbidge 2003) 
Greater bilby Macrotis lagotis 2006 No No (Pavey 2006) 
Northern quoll Dasyurus hallucatus 2010 Yes Yes (Hill & Ward 2010) 
Rufous hare-wallaby (central 
mainland species) 

Lagorchestes hirsutus 
spp. 

2012 Yes No 

(Jacqueline 2012) Rufous hare-wallaby (Bernier 
Island) 

Lagorchestes hirsutus 
bernier 

2012 Yes No 

Rufous hare-wallaby (Dorre 
Island) 

Lagorchestes hirsutus 
dorreae 

2012 Yes No 

Chuditch Dasyurus geoffroii 2012 No No (Department of Environment and 
Conservation 2012a) 

Black-footed rock wallaby Petrogale lateralis 2012 Yes Yes 

(Pearson 2013) 
Short-eared rock wallaby Petrogale brachyotis 2012 Yes Yes 
Monjon Petrogale burbidgei 2012 Yes Yes 
Nabarlek Petrogale corcinna 2012 Yes Yes 
Rothschild rock wallaby Petrogale rothschild 2012 Yes Yes 
Woylie Bettongia penicillata 

ogilbyi 
2012 Yes Yes (Yeatman & Groom 2012) 

Plains mouse Pseudomys australis 2012 No Yes (Moseby 2012) 
Western barred bandicoot Perameles bougainville 2012 Yes (High) Yes (Department of Environment and 

Conservation 2012b) Burrowing bettong Bettongia lesueur 2012 Yes (High) No 
Banded hare-wallaby Lagostrophus fasciatus 2012 Yes (High) No 

Quokka Setonix brachyurus 2013 Yes (Low) Yes (Department of Environment and 
Conservation 2013) 

Western ringtail possum Pseudocheirus 
occidentalis 

2014 Yes No (Department of Parks and Wildlife 
2014) 

Numbat Myrmecobius fasciatus 2015 Yes Yes (Department of Parks and Wildlife 
2015) 



 

9 
 

In four of the 12 RPs examined (golden bandicoot/golden-backed tree-rat, greater bilby, 

chuditch and plains mouse), disease was not mentioned as a possible threat.  

Consequently, neither disease surveillance nor health monitoring were considered as part 

of the actions necessary to support the persistence of the species (except for the plains 

mouse RP).  Of the remaining RPs that listed disease as a possible threat to the species, 

disease surveillance and/or health monitoring is recognised as important for six RPs 

involving 12 species (i.e. northern quoll, western barred bandicoot/burrowing 

bettong/banded hare-wallaby, numbat, rock wallabies, quokka, and woylie RPs), with 

three RPs giving disease surveillance and/or health monitoring a high priority, two 

considered these actions of medium priority, and one gave them a low priority. 

 

Disease surveillance and/or health monitoring actions have been considered more 

frequently in recent RPs (2010 onwards), however, specific recovery actions were not 

always listed to address this (e.g. rufous hare-wallabies, western ringtail possums, and 

banded hare-wallabies, Table 1-2).  Similarly, some RPs that listed introduction of disease 

into a population as an undesirable event, against which an emergency response should be 

planned, did not include disease surveillance and health monitoring (e.g. post-mortem 

examination) in the actions needed to design such a task.  In some other cases, it was 

believed that disease posed a threat only to island populations but not to mainland 

populations.  In addition, in all 12 RPs, whether disease is mentioned or not as an active or 

possible threat, or having played a direct or indirect role in the decline of the species, it 

appears that easy-to-observe events such as mortality and overt signs of disease (e.g. skin 

lesions, fractures, bleeding), are the defining factors by which disease is considered 

significant or not.  This approach to disease ignores subclinical disease, which generally 

presents in the absence of obvious signs of disease, and can put individuals and 

populations at a selective disadvantage by synergistically increasing vulnerability to other 

threatening factors.  Lastly, according to the RPs examined which covered 21 species, 

some disease and health baseline data appear to have been obtained for nine (43%) of 

these, either as part of the RPs actions or from other sources.  Of these nine, only three 

(14%) have comprehensive disease and health baseline data.  This means that 86% of 

species covered by these 12 RPs, do not have comprehensive health or disease baseline 

data available. 

 

Recognising the limitations and impacts associated with the lack or absence of disease and 

health baseline data in native Australian wildlife is critical.  Without doing this, the 

applicability of tools such as disease risk analyses would be compromised due to the 

absence of necessary information such as prevalence, incidence, and distribution of an 
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infectious agent.  This can only be obtained through disease surveillance.  Preparedness is 

also severely compromised and conservation actions would become reactionary in the 

event of an infectious disease outbreak.  This would then lead to a less efficient and 

effective response when such response is feasible, and would increase the risk of 

biodiversity loss, particularly if an outbreak scenario involves a highly pathogenic and 

infectious agent.  Uninterrupted disease surveillance and health monitoring are the only 

tools by which changes in prevalence, incidence, seasonality, geographical distribution 

and population distribution of a given infectious agent can be determined. 

 

Unfortunately, disease surveillance in wildlife is characterised by a series of limitations.  

For instance, monitoring the health and disease status of wild populations is intrinsically 

more difficult than in other groups (e.g. domestic and captive animals) because wild 

animals can move long distances (e.g. migratory birds), populations can extend over large 

areas that not too unfrequently, have difficult access or are inaccessible all together, and 

certain procedures and measurements may need the use of sophisticated equipment and 

protocols (i.e. general anaesthesia).  Furthermore, the availability of carcasses for post 

mortem examination is often hindered by factors such as, advance states of decomposition, 

scavenging, or simply not found.  Consequently, disease surveillance and health 

monitoring could present as very costly initiatives due to logistic requirements.   But, in 

addition to this, funding opportunities tend to prioritise research in other areas such as 

human health, climate change or livestock disease, over wildlife research (Vrbova et al. 

2010).  

 

Despite these inherent difficulties, it is now widely acknowledged that nations that carry 

out disease surveillance of their wildlife populations can expect to understand disease 

patterns, and therefore better protect not just their wildlife populations but human 

populations too.  In the absence of disease and health baseline data in free-ranging 

populations of native Australian fauna, conservation actions would have to rely on 

theoretical models, historical data and isolated studies on the species of interest.  This 

approach has severe limitations.  This is because historical data on the impact of infectious 

disease on wild populations is anecdotal for the most part and isolated studies generally 

operate around the classification of their findings, neglect sampling multiple populations, 

and ignore the potential effects of such findings on the health of the animals.  Similarly, 

theoretical models often come from species that are too taxonomically distant.  To predict 

and respond in a proactive manner to the effects of disease on the health of Australian 

native fauna, it is necessary to understand that there is a continuous feedback between 

disease and other factors (e.g. land clearing, urban development, climate fluctuations, 
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predators, mix infection), where one predisposes to the other.  Similarly, it is necessary to 

understand that the early identification of infectious agents facilitates appropriate 

conservation action, but it is only through ongoing disease surveillance and health 

monitoring that this can be achieved.   

 

The following project was carried out in response to the absence of disease and health 

baseline data in free-ranging quokka populations, and to proactively push for a 

preventative management approach to disease in this vulnerable species.  

 

1.1 The quokka (Setonix brachyurus) disease and health assessment project 

The research project that is the subject of this thesis was undertaken between 2009 and 

2013 and encompassed health and disease monitoring of free-ranging individuals from 

Rottnest Island, and from groups in three subpopulations on the southwest of mainland 

Western Australia: Northern Jarrah, Central Jarrah and Southern Forest.  The main goal 

was to determine the current relative health (define as the absence of obvious anatomical 

and organic dysfunctions) and disease status of the animals at the time of sampling, and 

retrospectively explore the possible associations/correlations through statistical analyses, 

between the presence of some selected infectious agents and physical examination 

observations, as well as haematology and blood chemistry changes, if present.  Due to the 

multifactorial nature of health and disease, this study included independent variables such 

as season and geographical location in the analyses.  Additionally, given the pathogenesis 

of the infectious organisms studied (Salmonella spp. Cryptococcus spp., and herpesvirus) in 

which immunosuppression of the host plays a significant role in the establishment of 

clinical disease, underlying immunosuppression was always considered by examining the 

potential relationships with prevalence of these organisms. 

 

Lastly, as part of the health assessment component, reference intervals for physiological 

parameters (haematology and blood chemistry) were constructed.  This then allows a 

more objective tool to assess the health of free-ranging quokkas across a range of 

environmental conditions.  Key objectives of this component included, to increase the 

number of potential covariates recorded, to increase statistical power for analyses by 

increased sample size, and to implement new and accepted statistical approaches, as 

determined by the International Federation of Clinical Chemistry and the Clinical and 

Laboratory Standards Institute (CLSI).  
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The findings of this research project aim at contributing to the knowledge of the 

microbiome of the quokka that could facilitate a quicker response in the event of an 

outbreak, and serve as baseline information to exercise defensive management against 

infectious agents and their potential impact on this threatened species, if clinical disease 

was to happen.  Similarly, this study intends to contribute to the veterinary management 

of the quokka, in both wild and captive conditions, and be instrumental in further research 

on the species. 

 

1.2 Aims of this research 

To study and determine the general health of quokkas on Rottnest Island and individuals 

from three subpopulations on the mainland using a variety of diagnostic methods: 

• General physical examination; 

• Haematology and blood chemistry through automated analysers, with further 

manual differential of white blood cells and assessment of erythrocyte 

morphologies; 

• Testing for Salmonella spp. through cultural methods on faecal samples and 

identification of isolates through serotyping using the White-Kaufmann-Le Minor 

scheme; 

• Testing for Cryptococcus spp. through cultural methods on nasal swabs, and 

identification of Cryptococcus spp.  isolates through Polymerase Chain Reaction 

(PCR) and sequencing;  

• Testing for exposure to Macropodid herpesvirus 1 (MaHV-1) and Macropodid 

herpesvirus 2 (MaHV-2) by virus neutralisation and testing for presence of 

herpesviruses through Polymerase Chain Reaction (PCR) on blood samples and 

identifying herpesviruses by sequencing and phylogenetic analysis; 

• Testing for intraerythrocytic parasites and trypanosomes by blood smear 

examination and PCR (followed by sequencing for identification); 

• Screening faecal samples for nematode eggs and protozoa using zinc-sulphate 

faecal flotation; and 

 

 

Seven key aims are addressed in the following chapters:  

i) To assemble the most complete compilation of the health and diseases knowledge of 

the quokka, and update such knowledge with new data (Chapter 2). 
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ii) To determine the presence or absence of Salmonella spp., serovar richness and 

prevalence, as well as the impact of Salmonella spp. infection on the animals through 

physical examination, haematology and blood chemistry parameters (Chapter 4); 

iii) To determine the presence or absence of Cryptococcus spp. in the nasal cavity of 

quokkas, the species present and their prevalence; as well as the impact of C. 

neoformans var. grubii infection on the animals through physical examination findings, 

haematology and blood chemistry parameters (Chapter 5); 

iv) To determine the presence or absence of herpesvirus Deoxyribonucleic Acid (DNA), 

identify any herpesvirus detected, establish their prevalence, and assess the impact of 

herpesvirus infection on the animals through physical examination, haematology and 

blood chemistry parameters (Chapter 6); 

v) To formulate haematology and blood chemistry reference intervals for apparently 

healthy animals, and determine the presence or absence of intraerythrocytic parasites 

and trypanosome DNA, identify the amplified DNA to genus and establish its 

prevalence, and the presence of microfilariae in peripheral blood (Chapter 7); 

vi) To determine vitamin E concentrations in plasma for wild quokkas, and compare these 

values with those of captive animals (Chapter 7); and 

vii) To formulate population health management procedures to facilitate on-going 

management of wild and captive populations (Chapter 8). 

 

1.3 Chapter organisation 

This thesis describes an investigation into the health and diseases of free-ranging quokkas 

from Rottnest Island and three subpopulations on the mainland.   

 

• Chapter 1 reviews the impact of disease in free-ranging wildlife populations, and 

the importance of disease surveillance and health monitoring as the only tools that 

allow conservation bodies and decision makers to adequately manage and respond 

to disease in wild populations.  This first chapter also contains the aims and 

chapter organisation to this thesis.   

 

• Chapter 2 was written in a manuscript format and introduces the study animal.  It 

covers multiple subjects ranging from behaviour to taxonomy as well as the most 

relevant aspects of its conservation status (e.g. distribution, threats, and captive 

populations).  This chapter contains a comprehensive compilation of disease 

processes and agents of disease detected in the quokka.  These data were compiled 
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from peer review literature and data available at conservation and wildlife 

veterinary databases. 

 

• Chapter 3 describes general materials and methods, including trapping protocols 

and locations, field protocols for anaesthesia, physical examination, sample 

collection and handling, and general protocols for laboratory procedures such as 

haematology, blood chemistry, and faecal flotations. 

 

The experimental chapters (Chapter 4 to 7) then follow.  These four chapters were written 

in the format of manuscripts for submission to scientific journals.  These chapters provide 

an introduction to the given organism, their significance in wildlife and the reasons why 

they were studied in the quokka.  For each chapter, this is then followed by a description 

of the study design and the materials and methods implemented.  Lastly, there is a results 

section for each chapter that is followed by a critical discussion of the findings pertaining 

to that given organism and a conclusive statement.  Additional data not included in these 

experimental chapters is described in full in the Appendices.  

 

• Chapter 4: Salmonella spp. was of interest to this project for three main reasons.  

First, the long-standing view that Salmonella infections in the Rottnest Island 

quokka were not associated with disease needed to be examined using thorough 

clinical methods.  Second, there has been a temporal gap of more than 20 years in 

the surveillance of this infectious agent on Rottnest Island.  This needed to be 

updated.  And third, that the prevalence of Salmonella on the mainland quokka 

needed to be re-examined and compared to historical data and against that of the 

Rottnest Island population.  This chapter investigates the prevalence and 

distribution of Salmonella spp., characterises the isolates recovered and assesses 

the implications of the infection on the health of quokkas. 

 

• Chapter 5:  Cryptococcus organisms, particularly C. neoformans var. grubii, C. 

neoformans var. neoformans, and C. gattii were examined in this project for two 

main reasons.  First, the absolute absence of data concerning these highly 

pathogenic yeasts in the quokka, organisms that are known to cause debilitating 

disease (sometimes fatal) in wildlife and humans, needed to be addressed.  Second, 

given that cryptococcal organisms and cryptococcosis, have been diagnosed with 

relative frequency in captive populations of Rottnest Island individuals, data to 

understand the possible relation between these yeasts and free-ranging quokkas is 

epidemiologically important.  This chapter investigates the prevalence and 
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distribution of Cryptococcus spp. and other yeasts, characterises the isolates 

recovered, and assesses the implications of the infection on the health of quokkas. 

 

• Chapter 6: Herpesviruses were of interest to this project for various reasons.  First, 

given the fatal case of a quokka that succumbed to MaHV-2 infection in a captive 

colony in the 1980s (Wilks, Kefford, & Callinan 1981), it was important to obtain 

evidence of previous exposure to MaHV-2 in free-ranging animals, and to 

investigate whether the quokka was the natural host or not.  Second, 

herpesviruses are known to persist in the host as a latent infection and cause 

clinical disease under stress (usually fatal disease in other species if shedding of 

the virus occurs) and so determining the presence or absence of a herpesvirus in 

the quokka was considered to be epidemiologically significant.  This chapter 

investigates the prevalence and distribution of herpesviruses in quokkas, 

characterises the detected herpesvirus, and assesses the implications of the 

infection on the health of quokkas. 

 

• Chapter 7: Although focused primarily on the establishment of haematology and 

blood chemistry reference intervals for Rottnest Island and mainland quokkas, and 

exploring the differences between these two in the context of disease, it also 

studied haemoparasites (e.g. Babesia sp., Theileria sp. and microfilariae), and 

vitamin E in plasma (of great interest to institutions with captive populations).  

This chapter reviews the importance of these ancillary tests in the assessment of 

health in wildlife, the need for reference intervals, and the dearth of data in the 

quokka.  Samples were collected and analysed so that reference intervals could be 

established.   

 

• Chapter 8 is a general discussion of chapters 4-7.  An attempt to analyse the 

cofounding effects of multiple infections on the haematology and blood chemistry 

of quokkas on Rottnest Island and the mainland is included.  Overall, this chapter 

attempts to place the findings of the experimental work in the context of health 

and management of the quokka. 
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2. Diseases and pathogens reported in the quokka, Setonix brachyurus 

(Quoy & Gaimard 1830) (Marsupialia: Macropodidae) with notes on 

its ecology, status and threats: a review 

 

STATEMENT OF AUTHOR CONTRIBUTION 

 

P. Martinez-Perez: designed the general scope and structure of the chapter, initiated the 

research, performed the collection and collation of the literature, and wrote the chapter.  

P.A. Fleming: provided editorial comments to versions of the chapter from draft to final 

version. 

T.H. Hyndman: provided editorial comments to versions of the chapter from draft to final 

version. 

 

2.1 Abstract 

Disease, as other ecological factors (e.g. fire regimes, climate, drought, predators) plays an 

important and dynamic role in the persistence of wildlife populations.  Previous studies 

have shown that disease can push species to drastic declines or even extinction (e.g. facial 

tumour disease in Tasmanian devils, white nose syndrome in bats, and chytridiomycosis 

in amphibians).  Although disease has not been linked to the current decline of the species, 

there are anecdotal records of numerous events of disease in the mainland quokka. 

Because of the risk of potential catastrophic effects of disease on the conservation status 

of the species, preventive management and mitigation actions of such impacts required 

not just active surveillance but a better understanding of infectious agents and disease 

processes in the species.  Disease and agents of disease have been reported in the quokka 

since as early as 1914, however, the information is too scattered to be useful, and there is 

no consensus on how much is known of the species.  This review offers a comprehensive 

description of diseases and agents of disease in the quokka since as early as 1914, 

attempts to correct misleading data, describes the species, updates some conservation 

status data, and proposes some possible avenues of research.   
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2.2 Introduction 

The quokka, Setonix brachyurus (Quoy & Gaimard 1830), has been the object of research 

on a variety of topics since the early 1900s with studies and reports concerning the health 

and diseases of this species dating back to at least 1914.  Microbiology and parasitology 

are the two most commonly described subjects but reports concerning nutrition and 

neoplastic disorders also exist.  Physiology and disease studies have involved both free-

ranging and captive individuals; for example, hormonal secretion, lactation, immunology 

and organ development have been investigated (Ashman, Holmes, & Keast 1977 ; Chauvet 

et al. 1983 ; Fleming, Harman, & Beazley 1996 ; Jordan & Morgan 1968 ; Makanya et al. 

2001).  Interestingly, the species has also played an important role as an animal model to 

study concepts in human psychology, such as detour behaviour and transverse patterning 

(Bonney & Wynne 2004 ; Wynne & Leguet 2004). 

 

Ecological studies have examined the distribution of the species and threatening processes, 

with particular emphasis on populations from Rottnest Island  and the northern jarrah 

forest (i.e. mainland) (Dunnet 1962, 1963 ; Hayward 2002 ; Hayward 2005, 2008 ; 

Hayward et al. 2004 ; Hayward et al. 2007 ; Hayward et al. 2003).  Some of the threats 

affecting the species include predation by feral animals, habitat destruction, and climate 

change (de Tores et al. 2007 ; Department of Environment and Conservation 2013).  

Although the Rottnest Island subpopulation appears reasonably stable, the species is 

under a continuing decline in extent of occurrence and area of occupancy (de Tores et al. 

2008 ; de Tores et al. 2007).  As a result, the quokka is listed as “fauna which is rare or 

likely to become extinct” under the Western Australian Wildlife Conservation Act 1950 

Section 14(2) (ba); and as “threatened fauna” subcategory “vulnerable” under the 

Commonwealth of Australia’s Environment Protection and Biodiversity Conservation Act 

1999.  Similarly, the species holds a conservation status classification of “vulnerable” 

according to the International Union for Conservation of Nature (IUCN) (de Tores et al. 

2008).   

 

Disease has not been linked to the ongoing decline of the quokka, however, there are 

anecdotal records suggesting that the species may have had several epidemics of disease 

since the 1900s, particularly mainland groups (Abbott 2008 ; Perry 1973 ; White 1952).  

Although reasonably stable, even the Rottnest Island subpopulation is at risk of stochastic 

events, such as fire which destroys habitat for these animals, such as has been witnessed 

in the past (Rippey & Hobbs 2003).  Likewise, an infectious disease outbreak could 

present a catastrophic event that could result in a severe crash of the population, or 
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possibly its extinction.  As an example in other species with island populations, the Devil 

Facial Tumour Disease (DFTD) represents a serious threat to the Tasmanian devil 

(Sarcophilus harrisii) (Hawkins et al. 2006 ; McAloose & Newton 2009 ; McCallum 2008).  

The species was abundant and spread throughout Tasmania before DFTD appeared in 

1996, with an estimated population size of ~150,000 individuals (Hawkins et al. 2006).  

Positive Tasmanian devil subpopulations have declined by up to 95% and data does not 

indicate a decrease in incidence, prevalence or declined of this disease (Philips & Driessen 

2008). 

 

Due to the variety of topics studied on the quokka, the volume of work performed thus far, 

the ex-situ programs that are currently being carried out at different institutions across 

Australia (see section 2.3.2), a new recently-approved recovery plan for the species 

(Department of Environment and Conservation 2013), and an action plan to conserve 

threatened Australian macropods (Roache 2011), it is now an opportune time to compile 

and review the conservation status of the quokka, together with the diseases and agents of 

disease that have been reported on the species.   

 

2.3 Description 

The species (Figure 2-1) was first described in 1658 by the Dutch explorer Samuel 

Volckersen after landing on Rottnest Island.  In 1696, Willem De Vlamingh described the 

species as ‘a kind of rat as big as a common cat’, and named Rottnest (or “rat’s nest”) 

Island after it (Croft 1991).  The quokka is a small, diprotodont 1 wallaby marsupial, with 

thick and coarse grey to brown fur.  It has a naked snout, short ears and a close-haired tail.  

Males weigh 2.7 – 4.2 kg, have an average head-body length of 487 mm (435 – 540 mm), 

and an average tail length of 289 mm (260-310 mm) and females weigh 2.5 – 3.5 kg, have 

a length ranging from 400 – 500 mm, and an average tail length of 265 mm (245 to 285 

mm) (Kitchener 1995).  The quokka can store fat in their tails as a mechanism to handle 

with seasonal food availability (Sinclair 1998).  The Noongar people of the south-west of 

Western Australia (WA) know the quokka by a variety of names including ‘kwoka’, ‘bangop’ 

(Abbott 2001), and ‘Ban-gup’, Bangeup’, and ‘Quak-a’ (Gould 1863 ; Shortridge 1909). 

 

Today, it is generally accepted that the quokka belongs to the family Macropodidae given 

its skull structure, dentition and tail.  However, the difference in chromosomes 

morphology and fundamental number (i.e. number of chromosome arms) when compared 

                                                             
1 from the Greek diprotos, meaning ‘two front’ and odontos meaning ‘teeth’ 
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to other members of the family Macropodidae (Sharman 1961), place this species outside 

the typical wallabies in its own genus: Setonix.  Nonetheless, the species has had an 

interesting history in terms of its taxonomic classification.  Lydekker (1894) placed the 

quokka in the genus Macropus together with the parma wallaby (Macropus parma), and 

the tammar wallaby (Macropus eugenii) among others.  This genus assignation was 

supported by Bensley (1903) on the basis of the terrestrial character of the foot and the 

loss of the canines, despite the strong resemblance of its pre-molars and molars with those 

of the genus Dorcopsis and tree kangaroos of the genus Dendrolagus.  Subsequent 

classification by Jones (1924) recognised the quokka as a brachydont section of the 

Macropodinae subfamily, given the shared characteristics in pre-molar and molar teeth 

with other members of this subfamily (e.g. Dorcopsis and Dendrolagus), but from which it 

differs by the absence of canines and having a short tail.  Further changes to its 

nomenclature were carried out by (Tate 1948 ; Throughton 1941).  After studying the 

karyotype of the quokka, Sharman (1954) proposed that the species was most probably 

related to the genus Thylogale, based on the similarity of its number of chromosomes with 

the number of chromosomes of the Tasmanian pademelon (Thylogale billardierii).  

However, later it was found that although the number of chromosomes was the same, 

their morphology was different and the female quokka had more chromosome arms than 

usual (between 36 and 40) (Sharman 1961).  In (1957), Ride presented a strong case that 

would assign the quokka to the group of rat-kangaroos, however, dental and cranial 

features made him conclude that the species should remain within the Macropodinae 

subfamily, although it was also recognised that more comparative studies were needed.  In 

any case, today’s literature does not clearly state when and who reinstated the genus 

Setonix.  Despite the general view that the quokka belongs to the Macropodidae family, 

there are still some modern documents assigning the species to the Potoroidae family e.g. 

The Action Plan for Threatened Australian Macropods 2011-2021 (Roache 2011).  

However, this is contrary with accepted taxonomy of these animals because the 

Potoroidae have well-developed upper canines that are not present in S. brachyurus 

(Hume et al. 1989 ; Seebeck & Rose 1989). 

 

Although there are a reasonable number of studies on the taxonomy of S. brachyurus, and 

that for the most part the general hypothesis is that the species belongs to the family 

Macropodidae, it is important to acknowledge that there is a lack of genetic resolution to 

the classification of S. brachyurus.  An example of how genetic studies supersede old 

classification techniques such as those on which the genus Setonix and the species 

brachyurus (for the most part morphometric measurements and phenotype differences) 

stand, is that of Pseudonovibos spiralis.  P. spiralis was identified as a new species of bovid 
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by Peter and Feiler (1994), on the basis of horns (i.e. phenotype and morphometric 

features) found in Cambodia.  For this reason, the “species” was quickly listed by the IUCN 

as endangered.  However, later molecular studies targeting the 12S rRNA gene, the 

mitochondrial cytochrome b gene, and the nuclear lactoferrin gene, determined that the 

horns were fake (i.e. manually modified), and belonged to other species (Brandt et al. 

2001).  Consequently, P. spiralis was removed from the IUCN and does not appear in the 

Catalogue of Life (http://www.catalogueoflife.org/). 

 

 

 
Figure 2-1 Female quokka (Setonix brachyurus) 

 

 Geographical range 

Based on published and unpublished accounts, de Tores et al. (2007) suggests that the 

quokka once occurred over a total area of ~44,300 km2, from Jurien Bay (~220 km north 

of Perth) to Albany and as far east as Hunter River, including offshore islands (e.g. 

Rottnest Island ~20 km west of Perth, and Bald Island, east of Albany which is ~400 km 

SE of Perth).  Shortridge (1909) indicated that the range of the species extended from 

Moore River (~100 km north of Perth) to east of Esperance (~720 km SE of Perth), 

including Twin Peak Island (off the coast ~80 km east of Esperance) and other small 

islands, but was mostly restricted to a habitat of coastal thickets and swamps.  The quokka 

has suffered a substantial range contraction subsequent to European settlement, such that 

http://www.catalogueoflife.org/
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by 1992, the total extent of occurrence is estimated as ~17,800 km2 (Department of 

Environment and Conservation 2013). 

 

It has been estimated that the Bald Island subpopulation separated from the mainland 

approximately 10,000 years before present (Storr 1965), while Rottnest Island separated 

approximately 7,000 years before present (Glenister, Hassell, & Kneebone 1959).  These 

populations have been relatively stable, which may reflect their safety from introduced 

predators.  On the mainland, today the species is characterised by subpopulations 2 that go 

as far north as Churchman Forest Block (~10 km SE of Perth), and southwards along the 

1,000 mm annual rainfall isohyet, including forested areas around the towns of Collie 

(~200 km south of Perth), Manjimup (~294 km south of Perth), Walpole (~411 km SSE of 

Perth) and around the city of Albany (~418 km SE of Perth).  The most eastern boundary 

of the distribution today is near Waychinicup National Park, approximately 62 km east of 

Albany (de Tores et al. 2007). 

 

 Populations and status 

Population estimates suggest that there are fewer than 18,000 animals across all 

subpopulations (Table 2-1), which are believed to be isolated.  However, considering the 

elusive nature of this marsupial on the mainland of WA, and that counting every single 

individual of S. brachyurus is not possible, these population estimates could be much less 

than what it is believed.  This would be particularly the case for S. brachyurus on the 

mainland.  

 
Table 2-1 Subpopulation estimates a for various locations where quokkas occur in Western Australia.  
Locations Number of animals 
Rottnest Island 4,000-8,000 a, 8,000-12,000 b 

Bald Island 500-2,000 a, 600-1,000 b 

Northern Jarrah forest 150 a,  <110 b 

Central Jarrah forest <100 b 

Southern forests 2,000-5,000 a,  >700 b 

Stirling Range >50 b 
South Coast 1,200-2,000 a,  >250 b 
a IUCN data (de Tores et al. 2008) 
b Quokka Recovery Plan data (Department of Environment and Conservation 2013) 
 

 

Hayward et al. (2003) determined that the age distribution of mainland quokka (northern 

jarrah forest subpopulation) were 50% adults, 25% juveniles and 25% pouch young.  A 

similar age distribution was reported by Dunnet (1963) for the Rottnest Island population.  

However, the age distribution of quokkas on the northern jarrah forests may have 

                                                             
2 a geographically or otherwise distinct group between which there is little demographic or genetic exchange (IUCN 2015). 
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changed since the last assessment was done in the early 2000s, as Dundas et al. 

(unpublished data) obtained a larger ratio of adult to immature animals (7.4:1) in 

comparison to Hayward et al. (2:1) (2003), while surveying the northern jarrah forest 

subpopulations.  The population composition of the southern populations is not known.  

Localised population collapse was suggested for the northern jarrah forest subpopulation 

(Hayward et al. 2003).  However, it is believed that numbers have been rising over time 

and today there seems to be a reasonable number of animals on the northern jarrah forest 

(S. Dundas, pers. comm. 2013).  The land usage in which these seven subpopulations are 

found includes state forests (northern jarrah forest, central jarrah forest and southern 

forest subpopulations), Class ‘A’ reserve (Rottnest Island subpopulation), nature reserves 

(south coast and Bald Island subpopulations), and national parks (Stirling Range) 

(Department of Environment and Conservation 2013).  In Australia, there are 

approximately 108 individuals of S. brachyurus in captivity, of which approximately 86 are 

part of collections in other states different than WA (Table 2-2). 
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Table 2-2 Number of individuals of S. brachyurus in captive collections in Australia and their responsible organisations.  WA= Western Australia, NSW=  
New South Wales, SA= South Australia, VIC= Victoria, NA= not available. 

Project Location Current no. of animals Females Males 
Unknown 
sex Notes 

  (Department of 
Environment 
2013b) 

This study     

Broome Wildlife Park WA 3 NA - - - no record of any project by 
that name a 

Caversham Wildlife Park WA 16 7 b 3 4 - all from Rottnest Island 
Cohunu Wildlife Park WA 4 None c - - - fate of the animals is 

unknown 
Peel Zoo (Mandurah) WA NA 2 b 2  - - 
Perth Zoo (Perth) WA 3 (mainland) 13 d 10 3 - all from Rottnest Island 
Quindalup Wildlife Park 
(Dunsborough, Western Australia) 

WA 3 None - - - closed down in mid 2012 e, 
fate of the animals is 
unknown 

University of Western Australia-
Animal Care Services at Shenton 
Park 

WA 24 (Rottnest 
Island) 

None - - - this facility has not held 
quokkas since August 2012 f 

Adelaide Zoo SA NA 18 b 13 5 - all from Rottnest Island 
Ballarat Wildlife Park VIC NA 15 b 9 4 2 all from Rottnest Island 
Gorge Wildlife Park SA NA 11 b 4 6 1 all from Rottnest Island 
Halls Gap Zoo VIC NA 3 b 2 1 - all from Rottnest Island 
Healesville Sanctuary VIC NA 1 b - 1 - all from Rottnest Island 
Melbourne Zoo VIC NA 14 b 8 5 1 all from Rottnest Island 
Taronga Western Plains Zoo NSW NA 5 b 3 1 1 all from Rottnest Island 
Taronga Zoo NSW NA 16 b 8 7 1 all from Rottnest Island 
WILD LIFE Sydney Zoo NSW NA 3 b - 3 - all from Rottnest Island 

a Source: Broome’s visitor centre indicated that there is no record of a wildlife park by that name, and further information was not available 
b Source: Zoo and Aquarium Association online census and plan, accessed 16th May, 2014 
c Source: electronic communication via the general ‘contact us’ e-mail at the Cohunu Wildlife Park website (21st May, 2014) 
d Source: Rebecca Vaughan pers. comm. 2014 (as of May 2014) 
e Source: Robert Harris pers. comm. 2014 
f Source: Simone Chapple pers. comm. 2014 
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According to Sinclair (1998), there are significant differences in the morphology of the 

different geographical populations of S. brachyurus.  Generally, animals on Rottnest Island 

have larger dimensions (i.e. pes and tail length, as well as tail width but not necessarily 

heavier) than those on the mainland and on Bald Island, with the latter being the smallest 

of all.  In 2001, the mitochondrial and allozyme analyses undertaken by Sinclair showed a 

genetically diverse mainland population whereas island populations had low levels of 

genetic variation.  Alacs et al. (2011) further confirmed this, reporting a high degree of 

genetic differentiation between the northern jarrah forest subpopulation and Rottnest 

Island  individuals.  Other comparisons between other geographical subpopulations have 

not been undertaken.  

 

 Reproduction 

Reproductive parameters have been studied the most on Rottnest Island animals in 

captive conditions, with little work done on Bald Island and mainland specimens.  The 

species is polyoestrous (Sharman 1955a) and all populations (Bald Island, Rottnest Island  

and mainland) have clearly defined breeding patterns.  Though the species is polyoestrous, 

free-ranging Rottnest Island females usually give birth once a year during January 

(southern hemisphere summer).  However, births have been documented to occasionally 

occur in August (during Winter) (Shield 1964).  According to Shield (1968), S. brachyurus 

on Bald Island also breed seasonally.  Breeding starts in February (Summer) and births 

happen in March or April (Autumn), and occasionally on November.  Around 18 months of 

age, a seasonal anoestrous of six months has been documented in captive female joeys that 

were originally from Rottnest Island.  This means females do not have their first joey until 

they have reached at least 24 months of age (Shield 1964).  Though not thoroughly studied, 

it is believed that Bald Island females do not have an anoestrous period (Shield 1968).  It 

has been demonstrated that captive conditions modify breeding patterns, with females 

from Rottnest Island losing their anoestrous period after two years in captivity, and after 

that, breed all year round (Sharman 1955a ; Shield 1964), and both mainland and Rottnest 

Island females may start breeding as early as eight or nine months of age (Shield 1968).  

On the mainland, it has been generally known that quokkas have no breeding season and 

births occur throughout the year (Hayward et al. 2003 ; Shield 1964).  However, a recent 

study by Dundas et al. (unpublished data) suggests that quokkas on the northern jarrah 

forest have started to breed seasonally, with the highest number of births occurring 

during March and April.  The authors indicate that this might be a nutritional driven 

adaptational change, possibly in response to the negative effects of climate change on the 

vegetation.  According to Sharman (1955a), the Rottnest Island female (in captivity) 
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reaches reproductive life around 18 months of age; whereas males reach sexual maturity 

around 389 days (Shield 1968).  Setonix brachyurus has a gestation length of about 25 to 

27 days (Sharman 1955b ; Shield 1968) with delayed blastocysts completing development 

in one to two days less than a full gestation (Shield 1968).  Shortly after birth (usually one 

day) the dam enters oestrus and ovulation occurs (Sharman 1955b).  If fertilisation 

happens post-partum, the resulting embryo remains unimplanted (diapause) while the 

pouch is occupied by a suckling pinky.  These blastocysts, suspended in development, can 

remain in this stage for up to five months (Sharman 1955b).  A typical pregnancy involves 

only one joey, however, pregnancies with two joeys have been documented for Rottnest 

Island animals (Hayward et al. 2003).  Joeys emerge from the pouch between 175 and 195 

days (Department of Environment and Conservation 2013) and weaning occurs four to six 

months later.  There are no studies on the reproductive behaviour of the species.  

 

 Life span 

So far the exact life span of the species has not been confirmed and the literature reports 

different numbers.  Crandall (1964) recorded that specimens lived for six to ten years in 

captivity.  Holsworth (1964) reports observing ten years later, a Rottnest Island male that 

was first tagged and released at the age of 270 days.  Weigl (2005) reports 13.8 years in 

captivity; while the longest life span today for S. brachyurus is reported by Fleming et al. 

(1996) and puts the oldest animals at 15 years old (in captivity).  

 

 Behaviour 

Natural behaviour of the quokka seems to be poorly documented, particularly for 

mainland animals, due to their relatively small size, nocturnal behaviour, and the thick 

understory they live in.  Available data refers principally to Rottnest Island animals or 

animals held in a captive environment. 

 

Setonix brachyurus is not a burrowing species and does not make nests; instead, it creates 

shelters and runways under bushes and scrub (Dunnet 1962).  Although a ground-

dwelling species, quokkas have been reported to climb onto bushes about ~1.5 m from the 

ground for feeding (Dunnet 1962).  The species is mainly nocturnal; however, individuals 

on Rottnest Island can be seen active during the day.  While feeding, animals are often 

solitary except for dams that have joeys at foot.  It has been suggested that captive 

individuals from Rottnest Island have a social structure characterised by a linear 

hierarchy and territoriality (Packer 1969). 
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 Diet 

The primarily herbivorous diet of the quokka varies with geographical location.  Storr 

(1964) reported that the diet on Rottnest Island varies according to the season and 

location, with succulent species (e.g. Carpobrotus aequilaterus or angular pigface) being 

the main component, and grasses and shrubs in a smaller proportion.  A seasonal 

(autumn) deficit in dietary nitrogen and water throughout the year on Rottnest Island was 

also determined.  Although not irrefutable, recent data from Poole et al. (2014), revealed a 

possible shift in the diet habits of the Rottnest Island quokka, in which Guichenotia 

ledifolia was the most abundant plant present in faecal samples, whereas Carpobrotus 

aequilaterus was found to be the primary food source in Storr (1964) studies.  In addition, 

animals on Rottnest Island have been seen supplementing their diet with fungi (Chapman 

1999) and snails (Erickson 1951).  On the mainland, Hayward (2005) concluded that 

northern jarrah forest animals prefer leaves and stems, with shrubs from the Thomasia 

genus being the most common component of the diet.  Other plants consumed at these 

mainland sites included Bossiaea aquifolium (water bush), and Mirbelia dilatata (holly-

leaved Mirbelia).  Data on the diet of the southern populations was not available at the 

time this was written.  

 

 Habitat 

In the northern-most forests of their natural range, the species prefers (but are not limited 

to) dense vegetation around swamps and watercourses, characterised by both the 

presence of the swamp peppermint (Taxandria linearifolia) and a mosaic structure of 

unburnt and burnt vegetation (de Tores et al. 2007).  Subpopulations in the southern 

forests inhabit a wider range of habitats such as dense streamside beds, Eucalyptus 

diversicolor (karri) regrowth, Eucalyptus jacksonii (red tingle) and Eucalyptus guilfoylei 

(yellow tingle) forests, as well as areas with Eucalyptus marginata (jarrah), Corymbia 

calophylla (marri) and spreading sword-sedge understory (de Tores et al. 2007 ; 

Department of Environment and Conservation 2013).  On Rottnest Island, habitat has 

drastically changed since European settlement.  Initially, the presence of native pines [e.g. 

Callitris preissii (Rottnest Island pine or cypress)], tea-trees [e.g. Melaleuca lanceolatta 

(Rottnest tea tree)], and Acacias spp. were abundant (Dunnet 1962 ; Stevenson 2011).  

Today, open areas in Rottnest Island are dominated by Acanthocarpus preissii (prickle lily) 

and Stipa variabilis (variable speargrass) (Dunnet 1962); urban areas of the island are 

characterised by exotic species (e.g. Eucalyptus platypus, and Araucaria heterophylla) that 

were established for aesthetic reasons (Stevenson 2011).  In comparison with the 
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mainland, Rottnest Island does not have streams of fresh water and water availability at 

lakes (not on the West End) is limited due to high salinity (Hodgkin 1959). 

 Threats and decline 

The quokka has suffered a marked range contraction since European settlement 

(Department of Environment and Conservation 2013).  A marked decline of the quokka 

was recorded during the 1930s (White 1952), with hunting playing an important role as 

the species was declared a pest in 1933 (Department of Environment and Conservation 

2013).  Threatening processes to the survivorship of S. brachyurus and patterns of decline 

have been reviewed by de Tores et al. (2007) and in 2013 by the Quokka Recovery Plan 

(Department of Environment and Conservation 2013).  The decline of Western Australia’s 

terrestrial mammalian fauna within the critical weight range (CWR; 35 g - 5.5 kg) was 

primarily attributed by Burbidge & McKenzie (1989) to environmental changes, including 

predation and competition by introduced eutherian animals such as the domestic cat (Felis 

silvestris catus), the dingo (Canis lupus dingo) and the European red fox (Vulpes vulpes), as 

well as altered fire regimes, reduction of vegetation cover, climatic changes and hunting.  

Some anecdotal reports suggest that disease may have also been involved in the decline of 

the quokka on WA (Abbott 2006, 2008).  However, a revision of the CWR by Johnson and 

Isaac (2009) concluded that terrestrial species in low rainfall areas are at a higher risk of 

extinction.  This may indicate that the quokka, that requires high rainfall conditions (in 

excess of 700 mm, de Tores et al. 2007), could have been affected to a much lesser extent 

than other terrestrial species in the CWR.  However, this high rainfall requirement may 

reflect their reliance on vegetation cover, which in turn will make the species highly 

susceptible to vegetation changes. 

 

Among the introduced predators, the European red fox is generally accepted as a 

significant predator of medium size terrestrial mammals (Burbidge & McKenzie 1989 ; 

Johnson, Burbidge, & McKenzie 1989 ; Risbey et al. 2000 ; Short & Smith 1994) and 

predation pressure by this species has been suggested to be the most important factor 

acting in the decline of the quokka in the 1930s (de Tores et al. 2007 ; Department of 

Environment and Conservation 2013 ; White 1952).  The quokka Recovery Plan 2013, 

indicates that fox control has been linked with an increase in trap success of S. brachyurus 

at Mount Manypeaks and that overall, there is a good amount of anecdotal evidence that 

points at an increase in abundance of S. brachyurus.  Quoting de Tores et al. (2007), ‘it 

seems very likely foxes were responsible for the initial decline of the quokka on the 

mainland and have contributed to its continued decline’.  Interactions with other species 

such as the feral cat, the dingo and the feral pig (Sus scrofa), may have played a role in the 
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decline, but to a much lesser extent.  Nonetheless, these other species are still considered a 

current threat (de Tores et al. 2007 ; Department of Environment and Conservation 2013).  

However, de Tores et al. (2007) believed that the use of runways and the thick vegetation 

of their habitat may have made S. brachyurus less vulnerable to predation.  Although this is 

not proven, other authors have suggested that particularly difficult habitats play a 

protective role for other prey species (Burbidge & McKenzie 1989 ; Kinnear, Onus, & 

Bromilow 1988).  Nonetheless, historical and current range contractions indicate not only 

that the European red fox was probably the most important factor, but also that there are 

other factors that have participated in the decline of the species (Department of 

Environment and Conservation 2013).  

 

Climatic changes alone are still not considered sufficient to be the sole reason responsible 

for the decline of S. brachyurus since the 1930s, however, changes in rainfall patterns and 

increase of global temperatures are still considered a threat to the survivorship of the 

species (Department of Environment and Conservation 2013 ; Shortridge 1909).  The risk 

of extinction and redistribution of fauna and flora in Australia and around the globe by 

changes in the Earth’s climate has been explored by various authors (Brereton, Bennett, & 

Mansergh 1995 ; Malcolm et al. 2006 ; Peterson et al. 2002 ; Thomas et al. 2004 ; Williams, 

Bolitho, & Fox 2003) and S. brachyurus has been included in these studies (Gibson et al. 

2010).  For instance, Gasner et al. (2010) found that nearly half of the bird species in 

montane rain forest habitats from Costa Rica, are expected to decline in the next century.  

Malcolm et al. (2006) identified the southwest of Australia as one of the seven especially 

vulnerable ‘biodiversity hotspots’ in a climate scenario containing double the 

concentration of CO2, with more than 2,000 plant species extinctions happening.  Thomas 

et al. (2004) projected a 15-37% systematic decline of the species by 2050 under a global 

temperature increase of 1.8-2.0 ˚C and a global CO2 concentration increase of 500-550 

p.p.m.v (parts per million by volume), coupled with habitat destruction.  According to 

Gibson et al. (2010), under the predicted increased aridity of south-western Australia as a 

result of a 4 ˚C increase in global temperature, S. brachyurus may lose all of its current 

distribution range by 2070.  According to the Scripps CO2 Monitoring Program (Scripps 

Institution of Oceanography, La Jolla, California), as of December 2013, the concentration 

of CO2 in Earth’s atmosphere was 396.73 p.p.m.  This was subsequently reviewed in June 

2015 and the atmospheric CO2 had increased to 403.70 p.p.m. (CO2Now 2013).  

 

Fire regimes post European settlement may have been implicated in the early decline of S. 

brachyurus (de Tores et al. 2007 ; Hayward 2002).  Before European settlement, 

Aboriginal people are thought to have used fire with low intensity and a given frequency 
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(i.e. 2 - 3 years for high rainfall areas, and 2 - 5 years for low rainfall areas) which is 

believed to have led to vegetation characterised by long unburnt areas and the presence of 

recently burnt areas (Burrows, Ward, & Robinson 1995).  More recently, Hayward (2002) 

concluded that this vegetation structure with a mosaic of unburnt (source of protection) 

and freshly burnt (source of food) areas was preferred habitat for S. brachyurus.  Today, 

the quokka Recovery Plan 2013 considers this vegetation structure as ‘critical habitat’ to 

the survival of the species.  In the southern forests, occupancy of S. brachyurus is best 

predicted by habitat patchiness, low density of woody debris and a complex vegetation 

structure of minimum three layers (Bain, Wayne, & Bencini 2015), with a varied fire-age 

mosaic structure (Bain et al. in prep. (a), in Department of Environment and Conservation 

2013).  However, fire regimes that changed after European settlement (de Tores et al. 

2007) may have exposed S. brachyurus to higher mortality rates due to higher predation 

pressure from the European red fox (Hayward et al. 2007).  Conversely, the quokka 

Recovery Plan 2013 indicates that there is not sufficient evidence to infer that lack of fire 

has a negative impact on the survivorship of wild populations of S. brachyurus.  However, 

not using fire can negatively impact quokka habitat by means of midstorey aging, collapse 

and accumulation of bio-fuel (Bain et al. in prep. (a), in Department of Environment and 

Conservation 2013).  A reduction of the interval between fires, increased fire intensity and 

faster fire spread has been predicted (Cary 2002 ; Williams, Karoly, & Tapper 2001).  

Modelling suggests that by 2070, southwest WA could potentially experience 80% more 

drought-months if current climate trends continue (Department of Environment 2013a).  

Coupled with increasing global temperatures, this increasing aridity could result in a 

longer bush fire season together with fires of greater scale that threatens S. brachyurus 

habitat and hence their survivorship.  

 

Most of the habitats used by S. brachyurus in the southwest of WA have been cleared, are 

now fragmented, and are easily invaded by feral species, primarily due to urban 

development.  About 75% of the wetlands (e.g. swamps) on the Swan Coastal Plain (that 

historically supported S. brachyurus) have been drained, filled or modified (Gole 2006).  

Harvesting of ground and surface water will increase with the increasing urbanisation of 

the Swan Coastal Plain, and areas that currently sustain S. brachyurus will probably reduce 

in size. 

 

Threatening processes on island subpopulations have a greater degree of impact on the 

survivorship of the species.  Oceanic islands are naturally restricted habitats, in the sense 

of species living in them are surrounded by inhabitable conditions, and this is particularly 

the case for ground dwelling species, such as S. brachyurus.  In theory, the isolated 
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populations of S. brachyurus on Rottnest Island and Bald Island, have a risk of extinction 

due to various factors, including: the inability to disperse and the impossibility of 

recolonisation (Diamond 1975), as well as loss of genetic variation by inbreeding 

depression (Caughley & Gunn 1996).  Avoiding island-scaled threatening changes in their 

environment by naturally dispersing to ‘safer’ areas is not possible, and there are no 

‘source’ populations that could naturally recolonise the island in the case of a serious 

demographic accident.  Additionally, the biogeography of these islands seems to lack 

features that could act as physical barriers either against environmental events (e.g. 

flooding, strong winds and fires) or infectious diseases (i.e. depending on the mechanism 

of transmission).  Consequently, in the context of infectious diseases, a small outbreak 

could potentially evolve into one of island scale magnitude.  The devil facial tumour 

disease that affects the Tasmanian Devil (Sarcophilus harrisii) may be an example of this.  

This infectious cancer that causes 100% mortality in infected animals, is transmitted from 

animal to animal by allografts (i.e. direct contact, particularly biting) (Pearse & Swift 

2006 ; Pye, Woods, & Kreiss 2015).  With an original estimated population of 150,000 

animals before the appearance of the disease (i.e. 1996), by 2008 the population had 

already declined to approximately 60%, and studies suggest that DFTD may be present 

throughout the entire range of the devil by 2018 (McCallum et al. 2007).  According to Pye 

et al. (2015), cases of DFTD have been recorded in more than 80% of the Tasmanian devil 

range.  This rate of transmission suggests that there is nothing in the biogeography of the 

Tasmanian devil range that creates a barrier against susceptible hosts getting in contact 

with infected hosts or vice versa.  Furthermore, the disease has been associated with a loss 

of major histocompatibility complex diversity in the species, possibly as a result of 

inbreeding depression (Siddle et al. 2007).  Similarly, poor genetic diversity has already 

been reported for the Rottnest Island quokka, with inbreeding depression being a possible 

cause (Alacs et al. 2011 ; Sinclair 2001). 

 

According to the study by Purvis et al. (2000), the most important predictors of extinction 

risk are small geographic range and island endemicity.  Likewise, oceanic islands have 

been recognised as biogeographical areas with a high latent extinction risk 3 based on the 

dominance of endemic species and the recognised role of small geographic range as a 

predictor of high extinction risk (Cardillo et al. 2006).  Without a doubt, Rottnest Island 

and Bald Island fulfil two of the characteristics required to be classified as having 

populations with a high extinction risk.  Additionally, Rottnest Island and Bald Island 

biogeography lacks features that could barrier against animal dispersion, therefore 

favouring animal to animal transmission of an infectious agent.  Strictly speaking, although 
                                                             
3 defined as the difference or discrepancy between a species’ current extinction risk and that predicted from models on the 
basis of biological traits (Cardillo et al. 2006). 
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being reported a stable subpopulation, quokkas on Rottnest Island – as  well as those on 

Bald Island – seem to be at a greater risk of extinction than those on the mainland. 

 

The role-played, if any, by diseases in the historical decline of S. brachyurus has been ruled 

out for the most part.  This may largely be because the majority (if not all) of records of 

disease in quokka since the 1920s are anecdotal accounts.  A drastic decline occurred in 

between 1938 and 1944, with factors such as habitat loss and predation considered to 

have had a role in the decline, however, could not explain a widespread and abrupt 

reduction in numbers (Perry 1973).  White (1952) states that bushmen considered that 

the decline of S. brachyurus in the 1930s was mainly the result of disease and that all other 

factors (e.g. habitat clearing, predation) were just supplementary to it.  However, Burbidge 

and McKenzie (1989) indicated that extinctions or permanent declines in Western 

Australian mammalian fauna could not be explained solely on the bases of disease.  

Johnson et al. (1989) reinforces this view by arguing that it is highly unlikely that a disease 

process will selectively target species within the CWR, but does not entirely rule out the 

possibility by stating “we consequently regard exotic disease as a potential but unlikely 

cause of decline and extinction in macropods”.  Nevertheless, the anecdotal data 

documenting mass death events in S. brachyurus during the same period is numerous.   

 

De Tores et al. (2007) retrieved state records of mass mortality in quokkas attributed to 

disease: three records from 1921 (near Manjimup ~300 S of Perth), and one record from 

1933 (near Yallingup ~250 km SW of Perth).  Similarly, Abbott (2006, 2008) presents a 

case that strongly suggests that disease played a significant role in the early decline of 

mammals on WA, particularly between 1880 and 1940.  In the case of S. brachyurus, the 

anecdotal data points at accounts of disease in 1905 with quokkas being affected by ‘some 

kind of fur disease that only about one out of six animals were fit to skin’.  Records from 

1901, 1920 and 1921 referred to animals being found dead in great numbers.  

Subsequently, anecdotal reports from 1931 (around Middlesex ~300 km south of Perth) 

describe ‘quokkas moving in circles until they died’.  Reports from the mid 1930s 

described animals considered to be sick, with ‘eyes puffed up and discharge from ears and 

noses’ (around Peerabeelup ~310 km south of Perth).  Lastly, between 1934 and 1936, 

records describe animals in which the skin was ‘easily pulled off and pus was present 

between the inner and outer layers of it, as well as in the nose’.   

 

Detailed medical descriptions of the clinical signs observed in quokkas between 1905 and 

1931 were not produced, thus it is difficult to exclude infectious disease as a potential 

aetiology responsible for the mortalities observed during this period.  Some of these 
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anecdotal descriptions seem to resemble clinical signs found in disease conditions known 

today.  For example, ‘circling’ (i.e. moving in circles), an unspecific clinical sign typically 

present when there has been damage of the central nervous system (CNS), particularly the 

forebrain and/or the vestibular system (Thomson, Hann, & Johnson 2012).  This damage is 

most commonly associated with direct insult to the CNS by infectious organisms (viral, 

bacterial, fungal, parasitic), space-occupying lesions (e.g. tumours and abscesses), 

toxicoses and trauma (although less common); as well as in animals with liver disease (e.g. 

hepatic encephalopathy) and other conditions (Metre & Mackay 2015 ; Nelson & Couto 

2009).  This clinical sign has been previously described in some native Australian 

marsupials such as the Gilbert’s potoroo (Potorous gilbertii) and the long-nose potoroo 

(Potorous tridactylus) with severe multifocal granulomatous meningoencephalomyelitis 

due to infection with Cryptococcus neoformans and Cryptococcus gattii (Vaughan et al. 

2007).  Similarly, it has been reported in the common brushtail possum (Trichosurus 

vulpecula) with encephalitis due to infection with Toxoplasma gondii (Ladds 2009).  

Likewise, circling is present in domestic mammals affected by a variety of infectious 

diseases (Table 2-3). 

 
Table 2-3 Some diseases in which circling has been documented in domestic mammal species. 
Species Disease Reference 
Cattle Listeriosis, Trypanosomiasis, Theileriosis (Metre & Mackay 2015) 
Dogs and 
Cats 

hepatic encephalopathy, neural larvae migrans and 
heartworm disease 

(Ware 2009 ; Watson & Bunch 2009) 

Horses Rabies, parasitic migration, viral encephalomyelitis 
and infection with Streptococcus equi subsp. equi 

(Metre & Mackay 2015)  
(Radostits et al. 2010 p. 771) 

Sheep Invasion of brain tissue by the intermediate stage of 
Taenia multiceps (i.e. Coenurus cerebralis) 

(Metre & Mackay 2015) 

General Space occupying masses (e.g. tumours, abscesses) (Metre & Mackay 2015) 
 

 

De Tores et al. (2007) reviewed various studies (Burbidge & McKenzie 1989 ; Dickman 

1992 ; Johnson, Burbidge, & McKenzie 1989), and concluded that data available does not 

suffice to conclude that disease was the only factor responsible for the historical decline of 

S. brachyurus.  Nonetheless, the authors advise against trivialising the possible effects that 

infectious disease may have had on natural populations.  Although inconclusive and 

speculative, it was certainly possible that disease was not the only factor responsible for 

the decline of S. brachyurus on the mainland, however, considering the resemblance of 

field observations to clinical signs found in known and already described disease 

processes, it seems reasonable to infer that quokkas on the mainland have indeed 

experienced infectious disease.  Furthermore, some of these field observations correspond 

to clinical findings that could easily have passed unnoticed if no proper surveillance was in 

place. 
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Although it is likely that multiple factors may have played a synergistic role in the decline 

of the quokka in the 1930s, reports indicating mass death events due to disease go back as 

far as 1901, well before the European red fox had penetrated the historical geographical 

distribution of the quokka (i.e. Geraldton in 1925) (King & Smith 1985).  It is not 

inconceivable to consider that the decline of the quokka on the mainland had already been 

in motion by the time the European red fox fully colonised most of the southwest of WA 

(King & Smith 1985).  It is not possible to study these mass mortalities in any detail but it 

should be assumed that whatever the cause was could occur again and similarly affect the 

current populations.  

 

 In this context, the current absence of health and disease surveillance in the quokka is a 

concern in the conservation strategy of this species.  Underestimating what infectious 

diseases can do, while stress builds up in local wildlife populations due to other pressures 

(e.g. climate change, clearing of natural habitat) could result in disease outbreaks that 

irrevocably effect extant populations.  In the case of S. brachyurus, health and disease 

surveillance has been overlooked entirely.  Although there is no information on diseases in 

free-ranging quokkas, there is still a considerable number of studies that have examined 

quokka diseases and agents of disease in captive animals.  A review of these studies 

follows.  

 

2.4  Diseases in S. brachyurus review 

Research indicates that disease has the potential to cause significant wildlife populations 

declines and even species extinction (Aguirre & Tabor 2008 ; Daszak & Cunningham 

1999 ; Pedersen et al. 2007).  Preventive management and mitigation of such impacts, is 

not just about active surveillance, but also about knowing the species being managed (ex-

situ and in-situ), knowledge that includes agents of disease and diseases that have been 

linked to the species.  Such data if available, would be easier to studied, managed and used, 

if instead of being scattered across decades of research, and across scientific journals of all 

sorts, is presented and collated in a concise and single document.  This is the case of the 

quokka, were diseases and agents of disease have been reported since as early as 1914, 

but the information is too scattered to clearly appreciate how much is known, and too 

scattered to be useful in any context.  

 

This section’s particular purpose then, is to provide a comprehensive collation of diseases 

and agents of disease that have been previously reported to occur in quokkas (with the 

exception of Salmonella spp.).  Consequently, this section does not contain information on 
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the main infectious agents studied in this project, that constituted chapters (i.e. Salmonella 

spp., Cryptococcus spp., and herpesvirus), nor on other findings such as microfilaria, 

Babesia sp., Theileria sp., trypanosomes, Eimeria sp., and nematodes which were used as 

supplementary data in other analyses; instead, a review of these infectious agents is 

provided in their corresponding chapters.  The data for the review that follows were 

obtained from either peer reviewed literature or third party databases that hold 

veterinary pathology records.  Although a great deal of effort was put into including as 

many reports as possible, there may still be diseases and agents of disease that have 

affected quokkas either in the wild, captivity or both that were not obtained, and thus are 

not mentioned here.  Despite this, the following information is perhaps the first and most 

complete review of diseases and agents of disease in the quokka.   

 

 Mycobacteriosis 

Mycobacterium is a genus in the family Mycobacteriaceae.  These organisms are aerobic, 

non-motile, non-spore forming acid-fast bacilli, and include opportunistic environmental 

saprophytes and obligate pathogens than can live for extended periods of time in the 

environment (Biet et al. 2005 ; Markey et al. 2013 pp. 161-176).  Environmental 

mycobacteria are found in water, soil and vegetation (Quinn et al. 2011 pp. 250-262).  

Historically, the nomenclature of mycobacteria was restricted to tuberculous (those in the 

Mycobacterium tuberculosis complex) or non-tuberculous (NTM, those of the 

Mycobacterium avium complex, and other environmental and non-obligate mycobacteria), 

according to Runyon’s grouping 4 (Markey et al. 2013 pp. 161-176; Rastogi, Legrand, & 

Sola 2001).  However, today Runyon’s classification and characterisation of mycobacteria 

is insufficient to specify the exact taxonomic status of newly-described species.  For this 

reason, new molecular techniques such as polymerase chain reaction-restriction fragment 

length polymorphism, DNA probing and whole genome sequencing are now being used 

(Choo et al. 2016 ; Garcia & Gola 2016 ; Quinn et al. 2016 pp. 54-57; Rastogi, Legrand, & 

Sola 2001) not just because they allow for the determination of species, but also 

subspecies and subtypes of mycobacteria.  

 

The route of transmission varies according to the species involved, however, recognised 

routes of transmission include: respiratory, oral and through skin lesions (Atkins & 

Gottlieb 2014 ; O'Reilly & Daborn 1995).  Although pathogenic mycobacteria show a 

considerable degree of host-specificity, other hosts can still be infected and developed 

disease (Olsen, Barletta, & Thoen 2010 ; Quinn et al. 2011 pp. 250-262).  Mycobacteria 
                                                             
4 Ernest Runyon (1959) grouped NTM in four groups (I, II, III and IV) according to their growth rate and colony morphology 
on culture media, and pigmentation either produced in the absence of light or after exposure to it.  
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have been typically associated with tuberculosis in a variety of hosts including humans, 

primates, dogs, cattle, psittacines, and sheep (Markey et al. 2013 pp. 161-176; Songer & 

Post 2005).  In wildlife, it has been associated with badgers, possums, wild felids, the red 

fox (Vulpes vulpes) and wild ungulates (Biet et al. 2005 ; Markey et al. 2013 pp. 161-176; 

Quinn et al. 2011).  Additionally, mycobacteria have been associated with leprosy in 

armadillos and chimpanzees (Donham & Leininger 1977 ; Leininger, Donham, & Rubino 

1978 ; Smith et al. 1983 ; Truman et al. 1986).   

 

In Australian marsupials, mycobacteriosis has been associated with different 

Mycobacterium species, including M. tuberculosis, M. bovis, M. paratuberculosis, M. ulcerans 

and others (Ladds 2009).   However, members of the M. avium complex appear to be the 

principal cause of mycobacterial disease in macropods (Vogelnest & Portas 2010).  The 

first known report of mycobacterial infection in a marsupial dates from 1895 and was 

recorded on a captive brushtail possum (Trichosurus vulpecula) in India (Moore 1903).  

The disease is considered to occur across Australia and most commonly affects captive 

populations (Vogelnest & Portas 2010), with only one known case in a free-ranging long-

footed potoroo (Potorous longipes) (Fowler & Mitchell 2002).  Multiple clinical 

presentations of infection with Mycobacterium spp. have been reported, including 

osteomyelitis (Mann, Montali, & Bush 1982), pulmonary mycobacteriosis (Michael & 

Sangster 2010), granulomatous myelitis and meningitis (Schoon et al. 1993), and 

cutaneous infection (McOrist et al. 1985).  Species reported to be affected by mycobacteria 

include those belonging to the Macropodidae [e.g. the tammar wallaby (Macropus eugenii), 

swamp wallaby (Wallabia bicolor), western grey kangaroo (Macropus fuliginosus), rufous 

hare-wallaby (Lagorchestes hirsutus) and the red kangaroo (Macropus rufus)],  Potoroidae 

[e.g. bettongs (Bettongia spp.) and the Gilbert’s potoroo (Potorous gilbertii)], 

Myrmecobiidae [e.g. the numbat (Myrmecobius spp.)] and, Peramelidae [e.g. the northern 

brown bandicoot (Isoodon macrourus)] families. It has also been reported in the koala 

(Phascolarctos cinereus) and the Tasmanian devil (Sarcophilus harrisii) (Ladds 2009).   

 

An interesting case is that of M. bovis infection in brushtail possums in New Zealand (NZ).  

Mycobacterium bovis occurs naturally in NZ and T. vulpecula (an introduced species) acts 

as a reservoir and vector of bovine tuberculosis to cattle (Buddle & Young 2000 ; Caley et 

al. 1999).  Generally, the infection curses with lesions in lymphnodes and lungs, but 

masses can develop in any visceral organs (Ladds 2009).  Infection studies in T. vulpecula, 

have shown that tuberculosis quickly becomes systemic and progresses into fatal disease 

(25-100 days post inoculation) (Jackson et al. 1995).  By contrast, infection with M. bovis 

has not been detected in Australian possums, and any granulomatous lesions in the 
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species are meant to be reported to Wildlife Health Australia 

(https://www.wildlifehealthaustralia.com.au/) (Johnson & Hemsley 2010 pp. 395-437).   

  

As a generalisation, metatherians (such as marsupials) are known to be more susceptible 

to mycobacterial infections than eutherian animals, primarily for their inability to mount a 

granulomatous response strong enough to control the proliferation of Mycobacterium spp., 

which according to Buddle and Young (2000), indicates a deficient interaction between 

lymphocytes and macrophages.  According to Ladds (2009), although the condition is 

normally chronic and clinical signs depend on the organs affected, mycobacteriosis in 

wildlife is typically progressive and is often fatal.  

   

In the quokka, the only known reported cases date from 1964 and 1982.  Kakulas (1964) 

describes two captive quokkas, a male from Bald Island and a female from Rottnest Island, 

which were part of a study on nutritional myopathy and were reported to have 

encapsulated masses.  In both cases, apparently healthy animals were found dead without 

apparent signs of disease.  At post-mortem, gross examination showed single encapsulated 

masses located within the superior mediastinum (Bald Island animal), and within the 

mesentery in close association with the stomach and the small intestine (Rottnest Island 

animal).  Histologically, both masses were characterised by a poorly vascularised fibrous 

wall, with an inner layer characterised by inflammatory tissue and mononuclear cell 

infiltrates, and a central zone of necrotic tissue.  In both masses, the stained (Ziehl-

Neelsen) necrotic tissue revealed acid-fast bacilli.  Microbiological studies were performed 

and organisms were considered to be NTM, however, assigning these organisms to one of 

the Runyon’s groups was not achieved and organisms were believed to be either group I, II 

or III.  Interestingly, Peet et al. (1982) reported almost 20 years later, a case of 

disseminated mycobacteriosis by M. intracellulare serotype 42 in a tammar wallaby, that 

was captive at the same facility as the animals reported by Kakulas in 1964.  This case 

followed that of a quokka that had previously been studied, in which mycobacteriosis was 

suspected.  Acid-fast stained bacilli were observed in histopathological lesions from a 

mediastinal lymph node.  The organisms were not fully identified due to the absence of 

fresh material for culturing. 

 

 Encephalomyocarditis virus 

Encephalomyocarditis virus (EMCV) is one of the two species in the Cardiovirus genus and 

belongs to the Picornaviridae.  Picornaviruses are single-stranded positive-sense 

Ribonucleic Acid (RNA) viruses with no envelope, of an approximate diameter of 30 nm 

https://www.wildlifehealthaustralia.com.au/
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(MacLachlan & Dubovi 2011 pp. 3-19).  Experimentally, transmission of EMCV can be 

demonstrated by any route of exposure: oral, aerosol, subcutaneous, intramuscular, 

intranasal, intratracheal, intracranial (Zimmerman 1994) and intravenous (Thompson, 

Bengis, & Brown 2001).  Viral transmission via wound contamination that was proposed 

as a possible route to humans, was later demonstrated to be an efficient route in swine 

(Zimmerman 1994).  The usual route of transmission is faecal-oral although it may also 

occur by aerosols and fomites (Quinn et al. 2011).  Though not contagious in rodents 

(Thompson, Bengis, & Brown 2001), contact transmission among caged animals has been 

reported and was attributed to fighting and cannibalism (Tesh & Wallace 1978).  In pigs, 

two mechanisms of natural transmission have been postulated: 1. after ingestion of 

contaminated faeces or the carcasses of infected rodents (Billinis 2009 ; Maurice et al. 

2005); or 2. horizontal or vertical transmission (Maurice et al. 2005). 

 

Encephalomyocarditis virus has been reported in both captive (Citino et al. 1988 ; Wells et 

al. 1989) and wild animal species (Amaddeo, Cardeti, & Autorino 1995 ; Gainer & Bigler 

1967 ; Grobler et al. 1995).  However, the virus is more prevalent in rodents, who present 

discrete infections (Thompson, Bengis, & Brown 2001).  Consequently, the virus is 

regarded as a rodent virus (MacLachlan & Dubovi 2011 p. 438; Maurice et al. 2005).  Some 

authors suggest that the high prevalence of EMCV in rodents is just an indicator of the 

circulation of the virus among animal species in a given environment (Tesh & Wallace 

1978 ; Zimmerman 1994).  Encephalomyocarditis virus may cause isolated and sporadic 

outbreaks of myocarditis and sudden death in a range of species, but particularly in wild 

animals in captivity (Thompson, Bengis, & Brown 2001).  Among domestic animals, pigs 

are considered to be the most susceptible species (Maurice et al. 2005) but other domestic 

species such as horses, cats, cattle and dogs are also susceptible (Thompson, Bengis, & 

Brown 2001 pp. 124-130).  This virus appears to be present worldwide (Grobler et al. 

1995).  This virus has also been isolated from humans; however, the disease is very 

infrequent (Oberste et al. 2009). 

 

Members in the family Picornaviridae can be highly pathogenic and infectious, and are 

responsible for a wide range of conditions, ranging from common cold-like clinical disease 

to life threatening encephalomyelitis and myocarditis (MacLachlan & Dubovi 2011 p. 425; 

Semler & Ertel 2010 p. 565).  Clinical disease expression is dependent on virulence of 

EMCV strains (i.e. lethal or non-lethal strains), as well as host susceptibility (Zimmerman 

1994).  Most EMCV-infected animals are presented with sudden death with no prior signs 

of illness (Reddacliff et al. 1997 ; Thompson, Bengis, & Brown 2001).  In less sudden cases, 

clinical signs are generally related to acute congestive heart failure, pulmonary congestion 
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and oedema, hydropericardium and ascites.  They include listlessness, moderate to severe 

dyspnoea, anorexia (Thompson, Bengis, & Brown 2001) and laboured respiration (Carocci 

& Bakkali-Kassimi 2012). 

 

In Australia, EMCV was isolated from an apparently healthy water-rat (Hydromys 

chrysogaster) in north Queensland (QLD) (Pope 1959) and came to be the first report of 

natural infection with a virus of the encephalomyocarditis group in Australia.  The virus 

has also been reported in pigs (Links et al. 1986 ; Seaman, Boulton, & Carrigan 1986), 

cattle (Diallo, Carter, & Storie 2013), humans (Kirkland et al. 1989), free-ranging common 

rats (Reddacliff et al. 1997), and a variety of exotic and native wildlife in captivity 

(Moloney 2001 ; Reddacliff et al. 1997).  Between 1987 and 1995, samples were collected 

from various animals at post-mortem at Taronga Zoo, including apparently healthy rats 

(Rattus rattus and R. norvegicus) and mice (Mus musculus) that were not part of the 

collection.  Encephalomyocarditis virus was isolated from two Goodfellow’s tree kangaroo 

(Dendrolagus goodfellowi) and one rat, as well as from other species exotic to Australia 

(Reddacliff et al. 1997).  The virus has also been isolated from three captive common 

wombats (Vombatus ursinus) that the died suddenly without any observable signs of 

illness (McLelland 2000 ; Moloney 2001).  The Australian Registry of Wildlife Health 

(ARWH) recorded two confirmed cases of EMCV in tammar wallabies (M. eugenii), and 

possible cases in a range of other marsupials including eastern (Macropus giganteus) and 

western grey kangaroos (Macropus fuliginosus) and ringtail (Pseudocheirus peregrinus) 

and brushtail possums (Trichosurus vulpecula).  As per the commonly reported profile of 

disease manifestation, the two tammar wallabies were apparently healthy and did not 

exhibit signs of disease. 

 

According to the literature, EMCV has only been diagnosed one time in S. brachyurus.  A 

retrospective study by McLelland (2000) investigated the presence of EMCV antigen in 

formalin-preserved tissue samples using an immunoperoxidase staining technique.  

Archived samples that were collected from captive individuals (various species) between 

1980 and 1998, from animals in which acute myocarditis was diagnosed, were retrieved 

from the Australian Registry of Wildlife Pathology at Taronga Zoo, NSW Australia.  The 

only animal that was found to be infected with the virus was from Perth Zoo and was one 

of a group of four quokkas, all individuals with a history of elevated creatine kinase and 

alanine aminotransferase.  In line with the most common clinical presentation of EMCV 

(Reddacliff et al. 1997 ; Thompson, Bengis, & Brown 2001), the animal died suddenly with 

no clinical signs of disease.  At post-mortem, pericardial fluid and a very pale myocardium 

were observed, as well as congestion in abdominal viscera, and lungs were oedematous.  
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Histopathology studies revealed extensive myocardial necrosis and degeneration, as well 

as extensive skeletal myopathy with degeneration of fibres and mineralisation.  Both the 

myocardium and skeletal tissues presented with a mononuclear inflammatory infiltrate. 

Positive intracellular immunoperoxidase staining was identified in myocardial cells. 

 

 Poxvirus 

The family Poxviridae has two subfamilies, however only the subfamily Chordopoxvirinae 

is of relevance to this review, as it comprises the poxviruses (PVs) of vertebrates 

(MacLachlan & Dubovi 2011 p. 152; Robinson & Kerr 2001).  These viruses are very 

resistant and can persist in the environment for years (Rheinbaben et al. 2007).  There are 

a number of unclassified PVs related to wildlife, with the significant one being the 

macropodid poxvirus (Robinson & Kerr 2001) that, like most PVs, resemble 

orthopoxviruses – being large from 200 to 400 nm in length, rectangular or brick-shaped 

and covered with irregular tubular elements (Ladds 2009 ; Robinson & Kerr 2001). (Ladds 

2009 ; Robinson & Kerr 2001).  There are many routes for poxviral transmission and they 

include respiratory (e.g. Variola virus), percutaneous inoculation from vectors (e.g. insects 

in the Myxoma virus), oral mucosa or skin penetration via abrasions (e.g. parapoxviruses) 

(MacLachlan & Dubovi 2011 ; Robinson & Kerr 2001).    

 

Poxviruses have a worldwide distribution, including Australia, and have a broad host 

range (Robinson & Kerr 2001).  Many PVs and their wildlife hosts appear well adapted to 

each other and they are often only detected when they spill-over from their natural hosts 

to susceptible definite hosts such as people, or in domestic animals were disease becomes 

apparent when animals are intensively managed (e.g. Parapoxvirus of red deer in New 

Zealand) (Robinson & Kerr 2001).  Other conditions where viruses may be picked up 

include wild animals in captivity (e.g. Parapoxvirus infection in captive seals in Germany) 

(Müller et al. 2003) or in laboratory colonies (e.g. yatapoxviruses in primates in USA) 

(Rheinbaben et al. 2007).  As a result of this, little is known about many PVs of wild 

animals under natural conditions, with many discoveries being incidental or opportunistic, 

or inferred from laboratory studies or field surveys.  Poxviruses display variation in 

pathogenicity in different hosts (as a result of differences in host immunity), as the same 

virus can cause a localised infection in one host, but lead to generalise disease in another.  

This is still poorly understood (McFadden 2005 ; Robinson & Kerr 2001) but a good 

example of this is the infection with Myxoma virus that results in a benign fibroma in the 

rabbit (Sylvilagus brasiliensis), but causes the lethal disease myxomatosis in the European 

rabbit (Oryctolagus cuniculus) (Kerr & Best 1998).  Zoonotic infections with most of these 
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viruses are occupational diseases occurring in veterinarians and animal handlers (e.g. 

Cowpox virus and Vaccinia virus), or from eating or handling wild animals (e.g. 

Monkeypox virus from eating squirrels and monkeys) (MacLachlan & Dubovi 2011 p. 157). 

 

In Australia, PVs have been mostly detected in macropods (Ladds 2009).  Generally, rates 

of infection appear to be low and the disease is relatively mild (Ladds 2009 ; Vogelnest & 

Portas 2010 p. 166).  On a whole, Australian PVs have not been properly characterised, 

apart from an Orthopoxvirus outbreak in the common ringtail possum (Pseudocheirus 

peregrinus) (Vogelnest, Stewart, & Sangster 2012).  And while there is almost a lack of 

information on species specificity or transmission, the virus is thought to occur wherever 

suitable hosts are present (Vogelnest & Portas 2010 p. 183).  It is generally believed that 

macropod PVs are species-specific, as observed in a captive colony of eastern grey 

kangaroos (Macropus fuliginosus) where only this species was infected and newly 

introduced eastern grey kangaroos developed the disease, but other species did not 

(Speare 1988b).  In Australia, there is no target surveillance or management program for 

PVs but cases of PVs in native wildlife are logged in the national database by the general 

wildlife health surveillance system.  Little is known about the PVs reported in the National 

Wildlife Health Surveillance Database, and it is likely that infection in native wildlife is 

more common than the reported figures.  

 

From the literature, Australian native mammal species reported with poxvirus (PV) 

infection include macropods such as the western grey kangaroo (Macropus fuliginosus), 

tammar wallaby (Macropus eugenii) and the quokka (Setonix brachyurus) (Arundel, 

Beveridge, & Presidente 1979 ; Bagnall & Wilson 1974 ; Ladds 2009 ; Ladds 2012 ; 

McKenzie, Fay, & Prior 1979 ; Papadimitriou & Ashman 1972 ; Reece & Hartley 1994 ; 

Rothwell et al. 1984).  Other marsupials include the common brushtail possum 

(Trichosurus vulpecula) (Samuel 1989), short-beaked echidna (Tachyglossus aculeatus) 

(Whittington 1993); with anecdotal reports in a Tasmanian pademelon (Thylogale 

billardierii) filed in the database of the electronic Wildlife Health Information System 

(eWHIS) .  Transmission of the virus in Australia is likely through arthropod vectors or 

direct transfer via close contact between individuals in a group (Vogelnest & Portas 2010).  

Generally, control of the disease in wild populations is difficult and one focus could be on 

reducing arthropod vectors (Bray 2011). 

 

In macropods, infections can occur in all ages, but usually in juvenile animals or subadults 

(Ladds 2009).  Clinical signs include skin lesions (solitary or multiple coalescing) that vary 

in size from a few millimetres up to 5 cm.  More commonly, these proliferations are 
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characterised by irregular-shaped wart-type masses with a hyperkeratotic surface and a 

central umbilicated crater that becomes more hairless and darker as the mass enlarges 

(Vogelnest & Portas 2010).  This epidermal thickening is due to acanthosis and 

hyperkeratosis.  With this form, lesions regress spontaneously over a few months with no 

associated pruritus (Vogelnest & Portas 2010).  Lesions may be secondarily infected by 

fungi and bacteria that lead to infiltration of leukocytes.  Another form includes firm 

umbilicated papules containing exudates of keratinised debris and purulent material 

(Reece & Hartley 1994 ; Speare 1988b).  Although most lesions have been described on 

the tails of different species, they can be found anywhere on the body (Vogelnest & Portas 

2010).  Apart from the skin lesions that are usually benign, infected macropods appear 

otherwise healthy (McKenzie, Fay, & Prior 1979).  Surgical excision may be necessary if 

lesions impede the animal’s health (e.g. near eyes or mouth) (Vogelnest & Portas 2010).  

Macropod marsupials with cutaneous lesions containing PVs have been recorded to occur 

in eastern and western Australia (Rothwell et al. 1984). 

 

Poxviral infection in the quokka was first reported by Papadimitriou and Ashman (1972).  

The population studied (i.e. Rottnest Island), presented animals with raised epidermal 

lesions associated with poxvirus; these lesions were either single or multiple and 

commonly found on the dorsal aspect of the tail, and varied in size from a few millimetres 

to 4-5 cm (Papadimitriou & Ashman 1972).  According to the authors, these lesions were 

quite prevalent.  Their histological studies showed that papilloma-like lesions in S. 

brachyurus were non-malignant and presented with hyperkeratosis and acanthosis, as 

well as vacuolated cells in the stratum granulosum containing eosinophilic cytoplasmic 

inclusions displacing their nucleus; inclusions that corresponded to viral particles 

resembling immature and mature PVs by electron microscopy (Papadimitriou & Ashman 

1972).  In 1983, Stanley and Mackenzie  were able to confirm that the electron microscopy 

observations of Papadimitriou and Ashman (1972) in fact corresponded to a PV.  

Furthermore, complement-fixation studies showed a mild cross-reaction between the PV 

present in skin lesions of quokkas, and Fowlpox virus (FWPV), which lead the authors to 

suggest that this virus (in quokkas) may be a member of the Avipoxvirus genus (Stanley & 

Mackenzie 1983).  However, this is very unlikely.  This cross-reactivity between FWPV and 

the PV detected in S. brachyurus may be the result of genetic similarities between avian 

PVs and mammalian PVs, but still sufficiently phylogenetically different to be different 

viruses.  An example of this, is the more than 49% homology between thymidine kinases 

amino acid sequences of FWPV and four mammalian PVs (Gibbs 1987).  Moreover, there is 

strong evidence supporting that members of the Avipoxvirus are host specific and only 

infect avian species (Gubser et al. 2004 ; Gyuranecz et al. 2013 ; Jarmin et al. 2006 ; 



 

42 
 

Skinner 2010).  Although there is limited data on the species specificity of PVs in 

Australian fauna, the observations of Speare (1988b) may suggest that this as yet 

uncharacterised PV may be specific to the quokka. 

 

In 2010, the report “Threatened fauna species management plans for ALCOA's bauxite 

mining operations in the Jarrah forest” (Stokes & Norman 2010), expressed concern of a 

possible cross infection of S. brachyurus with Canarypox virus that was used as a vector 

platform for an  equine influenza virus vaccine that was extensively used during the 

equine influenza virus outbreak in Australia during 2007.  This was subsequently included 

in recent publications dealing with the conservation status and management of the quokka 

(de Tores et al. 2007 ; Department of Environment and Conservation 2013).  However, 

there is no basis for this concern.  According to “Equine Influenza, The August 2007 

Outbreak in Australia”, a report of the Equine Influenza Inquiry launched by the Australian 

Federal Government (Callinan 2008), vaccination was only approved in nominated buffer 

zones across New South Wales (NSW), Victoria, and QLD not WA.  Furthermore, according 

to Cowled et al. (2009), the outbreak was effectively restricted to two eastern states QLD 

and NSW.  Additionally, Canarypox virus is a member of the genus Avipoxvirus, which 

infects only non-mammalian hosts (Bray 2011 p. 399; Moss 2001 ; Skinner 2010).  

Moreover, recombinants of Canarypox virus used in vaccines carrying antigens from 

mammalian pathogens, do not replicate in mammalian cells which precludes 

dissemination of the agent (Animal Health Australia 2011 ; Poulet et al. 2007). 

 

Even though reports of poxviral disease in Australian fauna are scarce in the literature, 

PVs are likely to be widespread in marsupials.  Based on the available information, PVs do 

not appear to pose a threat to free-ranging S. brachyurus on Rottnest Island, which also 

appears to be the case of cross-infection with the recombinant Canarypox virus vector 

previously mentioned.  On the mainland, extensive trapping on the northern and southern 

sub-populations appear to indicate that lesions resembling those described by 

Papadimitriou and Ashman  (1972) are not present (S. Dundas, pers. comm. 2013; K. Bain, 

pers. comm. 2013).  However, increasing global temperatures may potentially lead to 

increased vector activity and numbers.  In turn, this may result in a higher incidence and 

prevalence of poxviral infections. 
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 Arthropod-borne viruses 

2.4.4.1 Arboviruses 

Arboviruses (AVs) or arthropod-borne viruses refer to a group of viruses that are 

transmitted biologically between vertebrate hosts via haematophagous arthropod vectors, 

such as mosquitoes, ticks, midges and other biting flies (Hubálek, Rudolf, & Nowotny 

2014 ; Muller 1995 ; Russell & Dwyer 2000 ; Weaver & Reisen 2010).  Prior to 

transmission, AVs replicate in arthropod vectors and then transmit through the saliva of 

the vector upon biting a host species (Russell & Dwyer 2000 ; Weaver & Reisen 2010).  

The arboviral group is comprised of a wide range of RNA viruses: (Togaviridae: 

alphaviruses), (Flaviviridae: flaviviruses), (Bunyaviridae: bunyaviruses, nairoviruses, 

phleboviruses), (Reoviridae: orbiviruses), (Rhabdoviridae: vesiculoviruses) and 

(Orthomixoviridae: thogotoviruses), while African swine fever virus is the only DNA 

arbovirus (Weaver & Reisen 2010).  All AVs circulate among wildlife populations.  They 

cause disease in humans and domestic animals, which are usually dead-end or incidental 

hosts, after ‘spill over transmission’ from wild animal populations; as a result, they have 

increased in importance as both veterinary and human pathogens (Markey et al. 2013 ; 

Weaver & Reisen 2010).  

 

In Australia, AVs have been recorded to be widespread in both humans and animals 

(Coffey et al. 2014 ; Doherty 1972 ; Ladds 2009 ; Stanley & Mackenzie 1983).  Out of the 

more than 70 AVs reported in Australia, only a small number are pathogens of humans 

and even fewer are of major public or veterinary health concern (Aaskov & Doherty 1994 ; 

Mackenzie et al. 1998 ; Russell & Dwyer 2000 ; Stanley & Mackenzie 1983), however, their 

medical significance appears to be increasing (Coffey et al. 2014).  Significant examples 

include Ross River virus, Barmah Forest virus, Dengue virus, Murray Valley encephalitis virus, 

Japanese encephalitis virus and West Nile virus (Ladds 2009 ; Mackenzie et al. 1994 ; 

Russell & Dwyer 2000).  All these viruses are typically zoonotic and associated with rural 

areas, where seroprevalence is generally high (Russell & Dwyer 2000).  This section will 

only focus on Ross River (RRV), Barmah Forest (BFV) and Trubanaman (TRUV) viruses, as 

they were detected in WA in the quokka (Johansen et al. 2005 ; Lindsay 1995). 

 

Both RRV and BFV, members of the Togaviridae, are icosahedral, with a diameter of 65-70 

nm, and comprise an enveloped liner, single positive-sense RNA strand of 11-12 kb, as 

well as sub-genomic mRNA.  In contrast, TRUV is characterised by a single negative-sense 

RNA with three segments (Walter & Barr 2011).  While Ross River virus and BFV have 

relatively restricted geographic ranges, and are considered to be endemic to Australia 
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(Jacups, Whelan, & Currie 2008 ; Mackenzie et al. 2001), TRUV a member of the 

Bunyaviridae, has been isolated in Australia and Papua New Guinea (Plyusnin et al. 2012).  

Mosquitoes of the Aedes, Culex, and Anopheles genera are the most important vectors for 

these three viruses in WA (Jacups, Whelan, & Currie 2008 ; Stanley & Choo 1964).  In 

coastal regions, principal vector species of both RRV and BFV include Aedes vigilax and A. 

camptorhynchus, while in inland areas, Culex annulirostris is the major mosquito vector 

(Naish et al. 2006 ; Russell & Dwyer 2000).  Only one vector has been found to carry and 

transmit TRUV, Anopheles annulipes (Doherty 1972 ; Johansen et al. 2005).  Although other 

species may be involved in the amplification of RRV, BFV and TRUV (Johansen et al. 2005 ; 

Russell 2002), marsupials particularly kangaroos and wallabies, are believed to be the 

major vertebrate reservoir hosts for these three viruses (Carver et al. 2009 ; Jacups, 

Whelan, & Currie 2008 ; Jeffery et al. 2002 ; Johansen et al. 2005 ; Kay et al. 1986 ; 

Mackenzie et al. 1998).  

 

In the southwest of WA, RRV, BFV and TRUV viruses have often been isolated from 

mosquitoes as part of a monitoring program by the Arbovirus Surveillance and Research 

Laboratory, and the seroprevalence of the viruses has been recorded to be high in 

marsupials (Johansen et al. 2005 ; Lindsay 1995).  These three viruses were detected in S. 

brachyurus through neutralising antibody studies using sera (Johansen et al. 2005 ; 

Lindsay 1995).  A study by Lindsay (1995) recorded four quokkas having antibodies to 

RRV and suggested that the species is occasionally infected and bitten by mosquito vectors.  

While studying more than 3,000 sera collected from 20 animal species, Johansen et al. 

(2005) detected neutralising antibodies to BFV in quokkas with a prevalence of 3.2% 

(2/62) in the southwest region of WA.  This prevalence was the highest overall, followed 

by horses (1.2%) and humans (0.9%).  When examining the Peel and south coastal 

localities, where quokkas were sampled, the highest prevalence of neutralising antibodies 

to BFV was that of quokkas (11%, 2/19) followed by horses (1.4%) (Johansen et al. 2005).  

This made the authors suggest that quokkas may have been involved in viral transmission 

of BFV in the southwest of WA given that most human cases of disease caused by BFV 

infection between 1992 and 1994, occurred in these two areas.  The same study detected 

neutralising antibodies to TRUV in one quokka of 62 studied (prevalence 1.6%) (Johansen 

et al. 2005).  A study by Stanley (Stanley 1975) found that 65% of the 87 Rottnest Island 

quokka sera tested had antibodies to flaviviruses (a group that includes the Murray Valley 

and Japanese encephalitis viruses), however, the virus was not identified. 

 

With the exception of RRV experimental infections in brushtail possums (T. vulpecula) 

where infected animals exhibited non-specific signs of disease such as lethargy, 
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inappetence and unsteady gait, four days post infection (Boyd et al. 2001), little is known 

about the clinical signs of disease that RRV, BFV and TRUV could cause in native species in 

the wild, if any.  Though viraemia has been observed in many marsupials infected with 

AVs, no definite disease – overt illness or demonstrable lesions -  have been associated 

with the presence of RRV, BFV, and TRUV infections (Ladds 2012 ; Munday 1976). 

 

2.4.4.2 Reoviruses 

The family Reoviridae comprises 15 genera, of which only members of  Coltivirus, 

Orthoreovirus (ORV), Orbivirus (ORBV), Rotavirus (RTV), Seadornavirus, and Aquareovirus 

infect man and animals (MacLachlan & Dubovi 2011).  Though today, reoviruses (RVs) are 

responsible for disease in many species, the acronym ‘reo’ was originally derived from 

‘respiratory’; ‘enteric’; ‘orphan’ viruses.  The reason being that it was isolated from 

respiratory and enteric samples, but was not associated with clinical disease (i.e. orphan 

virus) (Kapikian & Shope 1996).  Members of Reoviridae, are ubiquitous, have a genome of 

segmented (9-12) linear double-stranded RNA (ds-RNA), are structurally icosahedral, 

have a double capsid that lacks an envelope, and are of approximately 60-85 nm in 

diameter (Coombs 2010 ; MacLachlan & Dubovi 2011).  Orthoreoviruses (ORVs) and 

rotaviruses are primarily transmitted via contact with contaminated faeces, either directly 

or indirectly (Kapikian & Shope 1996).  Rotaviruses cause significant gastroenteric disease 

in humans and intensively reared farm animals (Kapikian & Shope 1996 ; MacLachlan & 

Dubovi 2011), while ORVs are known to cause significant disease in squamates (Latney & 

Wellehan 2013).  Orbiviruses (ORBVs) are transmitted most commonly via arthropod 

vectors of the Culicoides genus, though ticks, black flies, sandflies and mosquitoes can also 

function as vectors for ORBVs (MacLachlan & Dubovi 2011).  These viruses cause a 

number of significant animal diseases including African horse sickness and Bluetongue 

disease in ruminants (Kapikian & Shope 1996 ; Markey et al. 2013).   

 

In marsupials, particularly macropods, three species of ORBVs have been linked with 

serious disease.  Viral chorioretinitis caused by Wallal and Warrego viruses both ORBVs, 

appeared in NSW between April and July 1994, and by April 1996 the disease had spread 

to WA affecting thousands of animals (Durham et al. 1996 ; Hooper et al. 1999 ; Reddacliff 

2012).  These RVs however, were detected by PCR in an archived sample from a blind 

kangaroo in 1975 (Vogelnest & Portas 2010).  Species most commonly affected included 

western and eastern grey kangaroos, euros and red kangaroos (Hooper et al. 1999), with 

the most common clinical sign being blindness accompanied by uveitis and occasional 

conjunctivitis (Reddacliff 2012 ; Vogelnest & Portas 2010).  It is believed that the eye 
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lesions resulting in loss of sight, are not directly inflicted by these viruses; instead, lesions 

are most likely immune mediated (Reddacliff 2012).  Eubenangee virus an ORBV, was 

isolated from tissue samples including cerebrospinal fluid and cerebral cortex of Tammar 

wallabies that died without obvious clinical signs of disease over a short period of time, 

often described as sudden, at various institutions holding animals in captivity in eastern 

Australia.  Due to the acute presentation of this condition, the disease was termed 

“Tammar sudden death syndrome” (Rose et al. 2000). 

 

Early reoviral studies in the 1960s in WA detected antibodies to Reovirus serotypes 1, 2 

and 3 in the sera of quokkas (Stanley & Leak 1963 ; Stanley et al. 1964).  Today, Reovirus 

serotypes 1, 2 and 3 are known as the Mammalian orthoreovirus species from the ORV 

genus of Reoviridae. 

 

Mammalian orthoreovirus (MORV) and its multiple serotypes, are ubiquitous and are 

known to infect both humans and animals and while infections occur frequently, these are 

generally not clinically significant (Clarke & Tyler 2010 ; Wellehan et al. 2009).  

Interestingly, rodents infected with MORV-3 develop disease with a clinical presentation 

similar to that in humans with extrahepatic biliary atresia, also accompanied by damage to 

the CNS (Clarke & Tyler 2010).  Although rare, there have also been isolated reports of 

meningitis, encephalitis, pneumonia and keratoconjunctivitis in humans attributed to 

infection with serotype 3 (Clarke & Tyler 2010).  However, MORV and its multiple 

serotypes has been detected in patients with conditions affecting almost all organ systems, 

and it has been recover in faeces, blood, urine, pharyngeal and nasal secretions, 

cerebrospinal fluid and organs (Kapikian & Shope 1996).  Overall, this ubiquity makes it 

more difficult to associate MORV infection with clinical disease syndromes, hence, the role 

of these viruses in disease remains unclear (Clarke & Tyler 2010 ; Kapikian & Shope 1996 ; 

Stanley et al. 1964).  Serologically identical strains to the human reovirus serotypes have 

been isolated from a wide variety of animals such as dogs, cats, rats, sheep, cattle, horses 

and swine (Kapikian & Shope 1996 ; Stanley & Mackenzie 1983). 

 

A study done by Stanley and Leak (1963) with 72 free-ranging S. brachyurus from Rottnest 

Island and the mainland of WA showed that MORV-seropositive individuals were more 

prevalent in areas where there is continuous contact with people, compared to areas with 

little human contact (Stanley & Leak 1963 ; Stanley & Mackenzie 1983).  The study aimed 

to determine seroprevalence of antibodies to MORV in some Australian mammals and 

whether humans constitute the main reservoir and animals that come into contact with 

humans or their immediate environment may become infected and develop antibodies.  
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Greater prevalences for all serotypes of MORV were obtained in quokkas captured in 

settled areas on Rottnest Island (MORV-1: 67%, 18/27; MORV-2: 89%, 24/27; MORV-3: 

93% 25/27) as well as on individuals translocated to the mainland (MORV-1: 70%, 7/10; 

MORV-2: 100%, 10/10; MORV-3: 100%, 10/10), compared to animals captured in areas 

with less human contact (MORV-1: 17%, 6/35; MORV-2: 34%, 12/35; MORV-3: 28% 

10/35).  Similarly, there was a greater prevalence of seropositive animals to all three 

MORV types in settled areas (67%, 18/27) on Rottnest Island than in areas with less 

human contact (11%, 4/35) (Stanley & Leak 1963).  Although no statistical analyses were 

carried out, the results suggested a positive correlation between human contact and a 

greater prevalence of MORV-seropositive animals (Stanley & Leak 1963).   

 

Experimental infection (various routes of infection) in captive and newly captured 

quokkas was carried out in an effort to establish an epizootic, however, this was 

unsuccessful, and no clinical signs of disease were observed (Potkay 1977 ; Stanley & Leak 

1963).  Only one death related to myocarditis was recorded and attributed to this 

experimental reoviral infection (Stanley & Leak 1963).  A later study by Stanley et al. 

(1964) found similar serologic evidence of reoviral exposure in quokkas on Bald Island, 

and in one case, MORV-3 itself was isolated from one of six faecal specimens obtained.  Of 

the 44 animals (sera) tested by haemagglutination inhibition (HI), three (7%) presented 

antibodies to one serotype of Mammalian orthoreovirus (serotype not specified), while 24 

(54.5%) showed positive HI to all three serotypes.  This widespread occurrence of viral 

antibodies to all three Mammalian orthoreovirus serotypes across ecologically different 

and geographically distant subpopulations such as Rottnest Island and Bald Island, may 

simply be a reflection of the lack of host specificity of this virus, therefore permitting 

continuous inter-species infections (Stanley et al. 1964), in addition to its capacity to 

survive in the environment at temperatures below 37˚C and its efficient transmissibility 

involving secretions, respiratory aerosols and the faecal-oral route (Clarke & Tyler 2010). 

 Protozoal diseases 

2.4.5.1 Toxoplasmosis 

Toxoplasmosis is a common zoonotic infection caused by the ubiquitous intracellular 

protozoan parasite Toxoplasma gondii in all warmed-blooded species, including 

macropods (Dubey & Odening 2001 ; Ladds 2009).  The life cycle of T. gondii comprises 

two phases, a sexual phase that takes place in the enteroepithelial cells of any member of 

the family Felidae (definite host), where ingestion of tissues containing any of the three 

infectious forms of T. gondii (i.e. tachyzoites, bradyzoites and sporozoites) (Dubey 2004), 

results in the production and faecal shedding of environmentally resistant oocysts 



 

48 
 

(Buxton & Maley 2013 ; Dubey 2004).  These oocysts will then sporulate in the 

environment and be ingested by susceptible animals (intermediate hosts), in which the 

asexual phase takes place.  Sporulated oocysts then release sporozoites that will colonize 

the intestinal epithelium transforming then into tachyzoites (rapidly multiplying).  This 

infectious form will then multiply asexually by endodyogeny within the cell, which will 

then rupture releasing organisms systemically while inducing a strong immune response 

(Dubey 2004 ; Dubey & Odening 2001).  In response to immunity, tachyzoites differentiate 

into bradyzoites that will trigger the formation of thick-walled tissue cysts (more in 

muscular and nervous tissues) which are resistant to the immune response, hence 

establishing a persistent infection (Dubey 2004 ; Dubey & Odening 2001 ; Khan, Dubey, et 

al. 2011).   

 

In marsupials, the prevalence of T. gondii displays interspecific variation (Canfield, Hartley, 

& Dubey 1990), and appears to be affected by a range of factors, including modes of 

feeding, climatic conditions, sex, living conditions (captive/free-ranging) and the presence 

of cats (Attwood, Woolley, & Rickard 1975 ; De Camps, Dubey, & Saville 2008 ; Dubey & 

Odening 2001 ; Eymann et al. 2006 ; Miller et al. 1992 ; Parameswaran et al. 2009 ; 

Vogelnest & Portas 2010).  Infection in macropods occurs via the oral route, either by 

consumption of food or water that was contaminated with T. gondii (Dubey & Odening 

2001 ; Portas 2010).  However, a recent study by Parameswaran et al (2009), obtained 

evidence indicating that vertical transmission of T. gondii from the dam to the pouch 

young can occur in Australian macropods that are chronically infected. 

 

Australian marsupials are particularly susceptible to T. gondii, where toxoplasmosis can 

be fatal and morbidity and mortality rates tend to be high, particularly in captive animals 

(Adkesson et al. 2007 ; Bermúdez et al. 2009 ; Canfield, Hartley, & Dubey 1990 ; Eymann et 

al. 2006 ; Johnson et al. 1989 ; Miller et al. 1992).  Among captive macropods, there 

appears to be a difference in susceptibility to the agent, with wallabies often dying of 

toxoplasmosis, while kangaroos appear to survive the infection (Dubey & Odening 2001), 

however, this has been suggested to be the reflection of a greater number of wallaby 

species in captive collections than kangaroos (Portas 2010).  Infection can manifest in a 

variety of ways including being unapparent or resulting in sudden death (Canfield, Hartley, 

& Dubey 1990).  Generally, individuals are more likely to succumb to disease or present 

with overt disease if they are immunosuppressed (e.g. nutritional or weather stressors), 

by causing latent infection to become clinically obvious and subsequently fatal (Canfield, 

Hartley, & Dubey 1990 ; Portas 2010 ; Vogelnest & Portas 2010).  Alternatively, death 

could be caused by exposure of previously naïve animals (e.g. through faecal 
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contamination of food) to the pathogen, in which rapidly multiplying tachyzoites 

overwhelm the immune response (Dubey & Odening 2001 ; Johnson et al. 1989 ; Vogelnest 

& Portas 2010).  In some cases, where clinical signs were present, gross findings at post-

mortem examination were minimal (Canfield, Hartley, & Dubey 1990 ; Dobos-Kovacs et al. 

1974 ; Ladds 2009).  Some of these clinical signs include enteric disease (e.g. weight loss, 

anorexia and diarrhoea), inappetence, lethargy, unnatural activity, listlessness, depression, 

respiratory distress (e.g. dyspnoea, pneumonia), neurological conditions (e.g. ataxia, 

dysphagia and incoordination) and eye pathologies (e.g. retinal damage, papilledema and 

cataracts) (Canfield, Hartley, & Dubey 1990 ; Dubey & Crutchley 2008 ; Ladds 2009 ; Miller 

et al. 1992 ; Patton et al. 1986 ; Portas 2010 ; Vogelnest & Portas 2010).  

 

Toxoplasmosis has also been associated with reproductive failure (e.g. abortion) 

(Radostits et al. 2010 p. 1518), but in macropods, Mayberry et al. (2014) suggested that T. 

gondii may not have any influence on the reproductive performance of female western 

grey kangaroos, based on the absence of statistical significance between the presence of 

antibodies against T. gondii and the absence of pouch young. 

 

Even though toxoplasmosis is treatable, a definite diagnosis is generally not made until 

post-mortem examination and histopathology studies are performed (Adkesson et al. 

2007 ; Dobos-Kovacs et al. 1974 ; Patton et al. 1986).  Current ante-mortem tests for the 

pathogen include serological tests [e.g. enzyme-linked immunosorbent assay (ELISA), 

direct agglutination test or DAT, and modified agglutination test or MAT], culture and 

bioassays, as well as histopathology (i.e. biopsy) (Hill et al. 2006 ; Parameswaran et al. 

2009 ; Vogelnest & Portas 2010).  Post-mortem lesions can include necrosis (e.g. ocular, 

hepatic, nervous or pulmonary), splenomegaly, lymphadenomegaly, pancreatic swelling, 

gastrointestinal reddening and ulceration, as well as pulmonary oedema, congestion and 

consolidation and myocardial haemorrhages (Canfield, Hartley, & Dubey 1990 ; Ladds 

2009 ; Reddacliff et al. 1993 ; Vogelnest & Portas 2010). 

 

The presence of T. gondii antibodies and free or encysted forms of the pathogen in tissues 

have been reported in a range of wild marsupials including macropods such as kangaroos, 

wallaroos and wallabies (Attwood, Woolley, & Rickard 1975 ; Bermúdez et al. 2009 ; De 

Camps, Dubey, & Saville 2008 ; Gibb et al. 1966 ; Johnson, Roberts, & Munday 1988 ; 

Johnson et al. 1989 ; Mayberry et al. 2014), bandicoots (Bettiol et al. 2000 ; Miller et al. 

2000 ; Obendorf & Munday 1990), dasyurids (Attwood, Woolley, & Rickard 1975), 

wombats (Hartley & English 2005) and possums (Eymann et al. 2006 ; Hartley 1993).  In 
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WA, T. gondii has been reported in the red kangaroo, the common wallaroo, western grey 

kangaroo (Mayberry et al. 2014 ; Pan et al. 2012), and the quokka (Gibb et al. 1966). 

 

The first cases of T. gondii infection in S. brachyurus, were documented by Gibb et al. 

(1966) while retrospectively studying biopsy samples collected from animals on Rottnest 

Island between 1961 and 1965 (Kakulas 1961 ; Kakulas 1963b ; Kakulas & Adams 1966).  

Evidence of infection with T. gondii (i.e. histopathology, and serology) was observed in 32 

of 150 animals studied between 1961 and 1965.  Presence of infection was evident in both 

skeletal and cardiac muscle tissue, the CNS and rarely the kidneys, and was not 

accompanied by overt signs of the disease (Gibb et al. 1966).  No gross findings were 

recorded in Rottnest Island quokkas affected by toxoplasmosis.  There was evidence to 

suggest a possible association between geographical site and T. gondii infection, as all 

positive results were obtained from animals sourced from settled areas on the island.  It is 

likely that infectious oocysts were present on the island given that the domestic cat (Felis 

catus), that was introduced to Rottnest Island by European settlers in the early 1800s 

(Government of Western Australia 2010), was only successfully eradicated from the island 

between 2001 and 2002 (Algar, Angus, & Onus 2011).   

 

2.4.5.2 Eimeria spp. 

Species belonging to the genus Eimeria (> 1,700 described) are a group of enteric 

coccidian parasites that have a wide range of vertebrate hosts (Bennett et al. 2006 ; Hill, 

Richter, & Power 2012 ; Yang et al. 2012).  Although exceptions occur (Barker, O'Callaghan, 

& Beveridge 1988b ; Heckscher et al. 1999), host specificity is a characteristic of these 

parasites, with a single Eimeria species usually infecting hosts within a single genus 

(Austen et al. 2014 ; Barker, O'Callaghan, & Beveridge 1988a, 1989 ; Hill, Richter, & Power 

2012 ; Yang et al. 2012).  These parasites have a resilient oocyst stage that allows them to 

persist in the environment and also makes faecal-oral transmission the most conducive 

route of transmission (Hill, Richter, & Power 2012).  Factors like environmental stresses, 

malnutrition, wet conditions and overcrowding have been related to outbreaks in captive 

and free-ranging populations (Vogelnest & Portas 2010).  Species identification has 

traditionally been via oocyst morphology, host specificity and pathology.  However, in 

recent years, molecular characterisation is becoming increasingly important as a tool for 

Eimeria species identification, as eimeriads can be polymorphic (Austen et al. 2014 ; Hill, 

Richter, & Power 2012 ; Yang et al. 2012).   
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Studies of Eimeria in wildlife are under-represented, perhaps due to a greater interest on 

helminths and arthropods (Duszynski & Upton 2001).  In Australian marsupials, 56 

species of Eimeria have been recorded, (Austen et al. 2014 ; Duszynski & Upton 2001 ; Hill, 

Richter, & Power 2012).  The genus appears to have a large geographical distribution, 

having been recorded across all Australian states, in both captive and free-ranging 

populations (Hill, Richter, & Power 2012 ; Ladds 2009 ; Vogelnest & Portas 2010 ; Yang et 

al. 2012). 

 

Eimeria has been recorded in kangaroos, wallabies, wallaroos, possums, wombats and 

bandicoots (Austen et al. 2014 ; Barker, O'Callaghan, & Beveridge 1988a, 1989 ; Bennett et 

al. 2006 ; Vogelnest & Portas 2010 ; Yang et al. 2012), as well as in rat-kangaroos, 

potoroos and bettongs (Barker, O'Callaghan, & Beveridge 1988a).  In WA, western barred 

bandicoots (Perameles bougainville) (Bennett et al. 2006) and the southern brown 

bandicoot (Isoodon obesulus) (Bennett & Hobbs 2011) have been found parasitised with 

Eimeria, as well as western grey and red kangaroos, common wallaroos (Macropus 

robustus)(Yang et al. 2012) and the quokka.  A study by Yang et al (2012) found an overall 

prevalence of Eimeria in macropods to be ~24%.  

 

The disease caused by Eimeria in all animals is referred to as coccidiosis, and is an 

important disease of macropods in captivity (Beveridge 1993 ; Vogelnest & Portas 2010), 

with young individuals and hand-reared pouch young believed to be particularly 

susceptible (Vogelnest & Portas 2010).  Simultaneous infection with several species of 

Eimeria occurs frequently (Barker, O'Callaghan, & Beveridge 1988a ; Speare 1988b), 

however, according to Speare (1988b) severe coccidiosis is not a concern in free-ranging 

populations and this position is supported by the Australian Wildlife Health Network  

(Australian Wildlife Health Network 2011) and Animal Health Australia.  When disease 

occurs, clinical signs of coccidiosis vary and include signs like abdominal discomfort, 

lethargy, inappetence, diarrhoea (often haemorrhagic), dehydration, oedema and bruxism 

(Vogelnest & Portas 2010), though animals can often be asymptomatic (Duszynski & 

Upton 2001 ; Vogelnest & Portas 2010).  While the enteritis produced in macropods may 

be mild and almost asymptomatic, disease can often lead to rapid death in young animals.  

Enteric coccidiosis caused by Eimeria species generally occurs in young or 

immunocompromised (e.g. stressed) individuals (Vogelnest & Portas 2010).  It manifests 

as chronic diarrhoea due to moderately high parasitic burdens (Bennett et al. 2006).  At 

post-mortem, pathologic lesions associated with coccidial infection usually involve the 

small intestine and include severe haemorrhagic enteritis with blood throughout the 

intestinal tract (Potkay 1977 ; Vogelnest & Portas 2010).  Other findings consist of 
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microscopic changes such as acute pseudomembranous inflammation or ulceration, 

necrosis, oedema, villous atrophy, epithelial cell loss and thickening of the submucosal 

layer (Ladds 2009 ; Vogelnest & Portas 2010).  A hepatic form of coccidiosis is also known 

to occur in certain species of wallabies and includes findings like granulomatous lesions, 

fibrosis and biliary duct hyperplasia (Ladds 2009 ; Vogelnest & Portas 2010).  Factors that 

play an important role in the epidemiology of this condition include age (Blyde 1994 ; 

Munday 1988 ; Speare 1988b), overcrowding (Barker, Harrigan, & Dempster 1972 ; 

Munday 1978), season (Spratt & Presidente 1978), and starvation (Barker, Harrigan, & 

Dempster 1972 ; Blyde 1999). 

 

In S. brachyurus, Eimeria spp. infection has been reported in a few occasions.  The work of 

Barker et al. (1988a) which constitutes the first record of Eimeria spp. infection in the 

quokka, reported three species, all morphologically characterised: Eimeria setonicis, E. 

volckertzooni and E. quokka.  Oocysts were found in faecal samples of 18 out of 19 Rottnest 

Island animals examined.  It was suggested that there was host specificity due to the 

relative homogeneity in the morphology among Eimeria species parasitising the animals 

(Barker, O'Callaghan, & Beveridge 1988a).  A later study by Austen et al. (2014) carried 

out the molecular characterisation of two of E. setonicis and E. quokka.  They examined 

sites on Rottnest Island, Bald Island as well as the mainland of WA (Two Peoples Bay: 35 

km east of Albany, ~440 km southeast of Perth).  Through, microscopy analysis, the 

overall prevalence of Eimeria infection in Rottnest Island animals was 45% (9/20), while a 

prevalence of 78.3% (18/23) was obtained through PCR.  The prevalence of infection in 

animals captured on the mainland was 62.5% (5/8) by microscopy and PCR methods.  

Oocysts from E. volckertzooni were not isolated in the study (Austen et al. 2014).  Overall, 

E. quokka appears to be the most prevalent species on Bald Island and the mainland 

(Austen et al. 2014), as well as Rottnest Island (Barker, O'Callaghan, & Beveridge 1988b).  

  

2.4.5.3 Trypanosomes 

Trypanosomes are extracellular, flagellated haemoprotozoal parasites that infect all 

vertebrate classes (Clark 2004 ; Thompson, Godfrey, & Thompson 2014) across a range of 

habitat types (Smith, Clark, et al. 2008).  They vary in pathogenicity and are transmitted by 

vectors such as haematophagous arthropods or leeches and cause disease in their hosts 

(Botero et al. 2013 ; Paparini et al. 2011).  The epidemiology of trypanosomiasis is 

influenced by the vector and host relationship.  Little is known about the life cycle, 

pathogenesis and prevalence of trypanosomes in Australia and its offshore islands (Austen 

et al. 2009 ; Bettiol et al. 1998 ; McInnes et al. 2009 ; Smith, Clark, et al. 2008); however 
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advances in molecular techniques have increased the detection rate of these parasites in 

the blood of native mammals (Austen et al. 2011 ; Paparini et al. 2011).  Potential vectors 

of Trypanosoma species in Australia may include kangaroo ticks, wombat flea and platypus 

ticks (Austen et al. 2011 ; McInnes et al. 2009).  Disease may occur particularly when the 

parasite encounters a naïve host, the presence of concomitant infections or the infected 

host is exposed to increased levels of stress and becomes immunocompromised (Averis et 

al. 2009 ; Botero et al. 2013).  

 

To date, six known Trypanosoma species and more than eight genotypes have been 

recorded in Australian mammals including marsupials such as bettongs (Botero et al. 

2013 ; Smith, Clark, et al. 2008), potoroos (Austen et al. 2009), bandicoots (Bettiol et al. 

1998), koalas (McInnes, Gillett, et al. 2011 ; McInnes et al. 2009 ; McInnes, Hanger, et al. 

2011), platypus (Mackerras 1959 ; Noyes et al. 1999), chuditch (Smith, Clark, et al. 2008), 

wombat (Noyes et al. 1999), flying foxes (Pteropus spp.) (Prociv 1987), kangaroos and 

wallabies (Austen et al. 2009 ; Hamilton et al. 2005 ; Noyes et al. 1999 ; Thompson, 

Godfrey, & Thompson 2014).  

 

Even though the presence of trypanosomes has not yet been proved to cause disease in 

free-ranging marsupials (Brock 1999 ; Ladds 2009), their pathogenic characteristics have 

been proposed to be the main force in the extinction (Breed 2007 ; Wyatt et al. 2008) and 

reduction (Botero et al. 2013) of some free-ranging Australian mammal species.  

Experimental infections in fact, though with exotic trypanosome species, have shown that 

possums infected with the highly pathogenic Trypanosoma cruzi, were affected by an acute 

trypanosomiasis with a mortality rate of ~60% (Bolliger & Macindoe 1950).  In 

macropods, infection with Trypanosoma evansi in agile wallabies and dusky pademelons 

(Thylogale brunii), resulted in 100% mortality, with obvious clinical signs of disease only 

appearing 24 h before death.  These signs included lethargy, tachypnoea, anorexia and 

ataxia (Reid et al. 2001).  Other signs of disease that have been reported include fever, 

fatigue, anaemia and death.  Histopathological findings include myocarditis, muscle 

(skeletal and heart) degeneration, tissue degeneration of the oesophagus and tongue, 

ulcerative gastritis and enteritis and mononuclear infiltration of the connective tissue in 

multiple organs (Botero et al. 2013 ; Reid et al. 2001). 

 

Trypanosomes are also known in S. brachyurus.  To our knowledge, the first record 

corresponds to the work of Clark and Spencer (2006) that observed trypanosomes in 

peripheral blood smears of five quokkas (out of five examined) that were trapped on 

mainland WA (near Albany).  This Trypanosoma was not identified, and was not present in 
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samples from animals (n= 7) trapped on Bald Island.  In 2009, Austen et al. (2009) while 

studying Gilbert’s potoroos and quokkas from the same region as that in Clark and 

Spencer (2006) detected the same Trypanosoma in both species, and was named T. 

copemani.  The study also established that mixed infections were possible in S. brachyurus, 

with the detection of T. copemani genotype A and genotype B (1/3) (Austen et al. 2009).  

In 2011, the tick Ixodes australiensis collected from the ears and tails of 15 Bald Island 

quokkas, was established to be a vector for T. copemani genotype A (Austen et al. 2011).  

At the same time, unpublished data suggested that infection with T. copemani was not 

present in quokkas on Rottnest Island, and that animals were not parasitised with ticks 

but only the biting louse (Heterodoxus quadriseriatus) (Austen et al. 2011).  The most 

recent record of Trypanosoma infection in the quokka is the study by Botero et al. (2013), 

where T. copemani (Clade A) was detected by PCR in one of three mainland animals 

(carcasses of unknown geographical origin). 

 

The recent association of trypanosomes with the woylie decline (Botero et al. 2013 ; 

Thompson, Godfrey, & Thompson 2014), has led many authors to agree that the impact of 

trypanosomal disease is especially important to rare and/or endangered marsupials of 

conservation importance and therefore prudent monitoring should be a priority (Austen 

et al. 2009 ; Averis et al. 2009 ; Bettiol et al. 1998 ; Botero et al. 2013 ; Smith, Clark, et al. 

2008 ; Thompson, Godfrey, & Thompson 2014).  We echo this view in the context of 

quokka conservation, not just for animals on the mainland and Bald Island where a Clade 

A trypanosome (T. copemani) has been detected, but also for Rottnest Island animals that 

currently present as an immunologically naïve population, and acute disease is likely to 

occurred. 

  

 Neoplasia 

Hubbard et al. (1983) recognised the relative lack of information of neoplasia in zoo 

animals and emphasised the importance to characterise neoplastic disease in wild animals 

in light of increasing threats to native species.  Tumours that are virally-linked, 

carcinogen-related or transmissible, impact protected and threatened species via direct or 

indirect effects on conservation outcomes such as reduction in population sizes or 

reproductive success (McAloose & Newton 2009).  Studies into comparative oncology 

would provide beneficial information that would help manage disease (Hubbard, Schmidt, 

& Fletcher 1983), since biopsy tissue samples can be collected from free-ranging species 

and stored for diagnosis.  Although most neoplasms are not infectious, a significant 

example of effects on a single species is the case of DFTD in the endangered Tasmanian 
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devil where the high incidence of a transmissible cancer threatens the species with 

extinction (McAloose & Newton 2009 ; McCallum 2008).  It is likely that studies and 

monitoring of neoplasia in wildlife will not only continue to contribute to better 

understandings of neoplastic biology but will better inform conservation of species. 

 

Even though neoplastic lesions have been reported in a range of native mammals in 

Australia, it is difficult to ascertain the prevalence and occurrence of these proliferative 

lesions considering that proliferative disease can advance quietly, many conditions have 

non-specific clinical signs, and that animals in the wild with proliferative disease are likely 

to have short survival rates (Ladds 2009).  Archival material from the ARWH has provided 

the most complete overview of the disease, although the data is marred by limited clinical 

histories.  A review by Ladds (2009) found that between 1974 and 2005, there were 

reports of 403 neoplasms diagnosed in 402 terrestrial mammals of which 43 cases were in 

macropods.  Out of the 402 cases, the majority were mesenchymal (189) and epithelial 

(177) neoplasms.  Of the 403 neoplasms diagnosed, a large proportion involved the skin 

and subcutis regions (132) and lymphoreticular organs (87).  

 

In macropods, reviews of archival material as well as of overseas zoo reports (e.g. 1977 ; 

2007) found that the majority of macropod neoplastic lesions were epithelial-based with 

the minority being mesenchymal.  Furthermore, most of the reports came from captive 

macropods, with neoplasia in free-ranging individuals being uncommon, apart from 

poxvirus-associated papillomas (Ladds 2009 ; Papadimitriou & Ashman 1972 ; Stanley & 

Mackenzie 1983).  Neoplasia has been reported in kangaroos, wallabies, wallaroos and 

also the quokka (Ladds 2009 ; Vogelnest & Portas 2010).   

 

There have been reports of neoplastic conditions in quokkas since the late 1960s.  These 

reports either appeared in publications concerning marsupial health or were part of the 

ARWH archived material, which for the most part, relates to captive animals, often with 

limited background information.  The first known report of a neoplastic condition in S. 

brachyurus, dates from 1969, when Appleby  mentioned a papilloma of epithelial origin in 

the tongue of a quokka.  Lipomatosis (liposarcoma), of mesenchymal origin (Weiss 1996), 

was first reported in a three year old female quokka at the University of Western 

Australia’s Zoology Department by Dickson and McNeice (1982).  Clinical signs of disease 

were observed two days prior to death and they included anorexia, loss of balance and 

coordination with swelling in all four limbs.  Post-mortem examination revealed a number 

of findings that included subcutaneous oedema of the limbs, as well as the abdominal wall 

with fluid also present in the abdominal cavity (Dickson & McNeice 1982).  Present in the 
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mesentery and peri-renal area, were lumps (length ≤8 cm, diameter ~4 cm) of creamy 

white material that were flat, smooth and avascular.  Histopathology studies identified the 

masses as fat, and also found necrosis of a number of whole liver lobules that was 

suggested to be associated with vascular occlusion.  A diagnosis of abdominal lipomatosis 

(i.e. liposarcoma) was made and there was no evidence of metastases in any organ 

(Dickson & McNeice 1982).  Two reports, one of a mammary gland adenocarcinoma  and 

another of an infiltrative pancreatic lipoma were described by Ladds (2009) and 

Vogelnest and Portas (2010) respectively, but there is no other information available 

concerning these cases.  A dermal lymphosarcoma has been previously reported in S. 

brachyurus (Canfield, 1990 in Vogelnest & Portas 2010), however, we believe this record 

is incorrect (in Vogelnest and Portas), as the only proliferative lesion in the quokka 

reported by Canfield et al. (1990a) in their review on spontaneous proliferations in 

Australian marsupials, corresponds to a papilloma of the tail attributed to a poxvirus, 

citing the work of Papadimitriou and Ashman (1972). 

  

Other reports of neoplasms in S. brachyurus are listed on the Online Registry of the ARWH 

(Table 2-4,- as of July 2015).  Metastasis was observed in only one case.  With the 

exception of the thyroid and biliary adenomas, all lesions were considered a primary 

diagnosis. 
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Table 2-4 Neoplastic-proliferative lesions reported in S. brachyurus as final primary or secondary diagnosis in 
the Online Registry of the ARWH.  

Type of lesion Year Sex Age Origin Clinical History 
Post-mortem and 
histopathology findings 

Infiltrative 
liposarcoma 

2000 male adult Rottnest I. Weight loss, lethargy, 
vomiting, irregular 
and hard masses in 
dorsal and ventral 
abdomen, only gas 
present in the GI tract 

Firm, irregular, white 
mass of ~3cm diameter 
replacing the pancreas, 
multifocal 
granulomatous 
pneumonia, focal 
thoracic abscess.  
Positive to C. gattii and 
Streptococcus viridans 
group 1 

Mammary 
adenocarcinoma 

2004 female adult Rottnest I. Weight loss Metastasis to 
mesentery, liver and 
inguinal lymphnodes, 
diffuse lung congestion, 
acute tubulitis and 
tubular cysts, and a 
cystic ovary 

Pericloacal 
carcinoma and 
Thyroid adenoma 

2006 female adult Rottnest I. Sudden cloacal 
prolapse that had 
ulcerated and 
involved the urethra, 
cataracts; there was a 
history of 
hepatopathy and 
myopathy 

Mineralisation and 
saponification of 
mesenteric fat deposits, 
cystic endometrial 
hyperplasia, 
membranous 
glomerulopathy and 
suppurative nephritis 

Biliary adenoma 2010 female adult Rottnest I. - Not a primary diagnosis 
Mammary 
adenocarcinoma 

2012 female adult Rottnest I. Anorexia, diarrhoea 
and lethargy, large 
firm mammary 
masses one on each 
side.  Lesions had 
spread to the 
abdomen three 
weeks later 

Necrosis of the adipose 
tissue, pulmonary 
oedema, multifocal 
lymphoid hyperplasia, 
multifocal membranous 
glomerulonephritis, as 
well as multifocal 
myocardial 
degeneration 

 

 

2.5 Conclusion 

 

Endemic to WA, the quokka is a resilient species that has persisted throughout millennia 

despite pressures such as hunting, predation, changes in fire regimes and at least five 

events of disease, once of which caused a drastic decline that might have began as early as 

1901.  Some populations on the mainland appear to be increasing, possibly in response to 

the mitigation of certain pressures (especially control of European red fox numbers) but 

the species is still considered by local and international conservation agencies, to be 

‘vulnerable’.   The species faces a drastic population fragmentation across the entire range, 

and in conjunction with a genetic bottleneck of the island subpopulations (of which 

Rottnest Island represents 40-50% of the estimated total numbers for the species), the 
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increasing pressures of climate (e.g. longer droughts), disease and the continuous 

expansion of human settlements and industry, mean the future of this species is uncertain. 

 

Like other ecological factors, it has been shown that disease plays an important and 

dynamic role in the persistence of wildlife populations and can push species to extinction.  

Because of the risk of potential catastrophic effects of disease on the conservation status 

of the quokka, proper long-term management of the species requires a holistic approach 

that recognises the role and risks of pathogens.  Consequently, better understandings of 

pathogens and parasites in S. brachyurus is critical.  In this sense, we believe this review, in 

conjunction with the following chapters, provide a comprehensive study of the diseases 

and pathogens in the quokka that can be integrated into current and future species-

survival plans. 
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3. General Methods 

 

STATEMENT OF AUTHOR CONTRIBUTION 

 

P. Martinez-Perez: designed the general scope and structure of the chapter, wrote the 

grant applications to obtain the operational funds necessary to carry out the project, 

purchased and obtained all necessary reagents and equipment, performed all field 

procedures [i.e. trapping on Rottnest Island, anaesthesia, physical examination, sample 

collection, sample processing (serum separation, blood smears), microchipping, ear 

tagging, ear notching], carried out blood smear assessment, and wrote the chapter.  

P.A. Fleming: assisted with the connections necessary to obtain animals on the mainland, 

advised, assisted and provided editorial comments to grant applications, and provided 

editorial comments to version of the chapter from draft to final version. 

S. Dundas and K. Bain: carried out trapping on the mainland. 

M. Bennet and C. Monaghan: overviewed all veterinary procedures (on paper), provided 

field assistance (two occasions), provided editorial comments to versions of grant 

applications, and provided editorial comments to versions of the chapter from draft to 

final version. 

T.H. Hyndman: provided editorial comments to versions of the chapter from draft to final 

version. 

Murdoch University Veterinary Hospital: carried out the haematology (except blood smear 

assessment) and blood chemistry for all blood samples used in the experimental chapters. 

 

3.1 Study period and study sites 

Free-ranging quokkas were trapped on Rottnest Island and the mainland during 2010 and 

2011 (Figure 3-1).  Some limitations when trapping on the mainland were present: (i) 

animal movement is much higher on the mainland as the animals have more land to roam, 

therefore population density is much less, which had a direct impact on trapping success 

when compared to Rottnest Island; and (ii) as this project did not performed its own 

trapping, the animals that could be included were determined by those projects capturing 

quokkas for other research purposes.  This resulted in a rather smaller than expected 
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sample size, and mostly adult males being sampled.  With few exceptions, animals were 

not recaptured.  Hence, animals were released immediately after being trapped once it 

was determined that they have already been captured and sampled. 

 

All medical procedures were carried out under Murdoch University Animal Ethics 

Committee permit No. W2309/10, and Department of Environment and Conservation 

(now known as the Department of Parks and Wildlife) Regulations 4 No. CE002891, and 

17 No. SF007550. 

 

 

 

 
Figure 3-1 Times of the year in which trapping of S. brachyurus was carried out on the mainland and on 
Rottnest Island 

 

 Rottnest Island 

Rottnest Island is located approximately 32 km west of Perth and 19 km west of 

Fremantle.  The island is 11 km long, 4.5 km at its widest point and has an area of 1,900 ha 

(Government of Western Australia 2010).  It has been estimated that Rottnest Island 

separated from the mainland by rising sea levels about 7,000 years ago (Glenister, Hassell, 

& Kneebone 1959) and is the largest Quaternary limestone island off the coast of Western 

Australia (WA) (Glenister, Hassell, & Kneebone 1959 ; Government of Western Australia 

2010).  Rottnest is different from the other more than 500 islands off the coast of WA, for 

two main reasons.  It is the only island with extensive areas of saline inland waters, and it 

is a Class A Reserve to be used for “Public Recreation” (Saunders & De Rebeira 2009).   

 

Rottnest Island has a temperate climate (Australian Bureau of Meteorology 2012).  The 

mean monthly temperatures range annually from 15.6 – 22.1°C.  Mean annual rainfall is 

583.6 mm.  The vegetation coverage of Rottnest Island has changed considerably in the 

past.  Native pines (e.g. Callitris preissii), and tea-trees (e.g. Melaleuca lanceolatta) were 
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abundant (Dunnet 1962 ; Stevenson 2011) before European settlement.  Today, exotic 

species like eucalypts (e.g. Eucalyptus platypus), are dominant in urban areas while open 

areas are characterised by variable speargrass (Stipa variabilis) and prickle lily 

(Acanthocarpus preissii).  Rottnest Island lacks natural streams of fresh water, and the only 

naturally occurring surface water is found in lakes and is highly saline. 

 

Animals were trapped on Rottnest Island (~32 km west of Perth) at six locations (i.e. 

Barkers Swamp, Kingston, Parker Point, Settlement, Serpentine and West End) (Figure 

3-2).  Exact geographical coordinates for each trapping site are given in Table 3-1. 

 

 

 
Figure 3-2 Map of Rottnest Island with the locations where S. brachyurus were trapped.  Map data ©2016 
Google, Data SIO, NOOA, U.S. Navy, NGA, GEBCO. 
 

 

 

 
Table 3-1 Location details of the multiple sites where S. brachyurus were captured on Rottnest Island 

Sites Latitude Longitude Environment class 
Serpentine 32° 0' 27.1362" S 115° 31' 21.234" E Less disturbed a 
Parker Point 32° 1' 21.2232" S 115° 31' 39.4998" E Less disturbed 
Barkers Swamp 32° 0' 5.6658" S 115° 30' 19.8072" E Less disturbed 
Kingston 32° 0' 16.0776" S 115° 33' 15.246" E Disturbed b 
West End 32° 1' 13.4754" S 115° 27' 29.3934" E Undisturbed c 
Settlement 31° 59' 47.238" S 115° 32' 23.8734" E Disturbed 
a defined as those that had less human presence, infrastructure was still present, but access to unconventional 
food sources was much lower  
b defined as those in which human interaction was relatively constant, infrastructure was more common, there 
was a high visitation flow, and alternative food was readily available to the quokkas from restaurants and 
visitors 
c characterised for practically not having any infrastructure, for having thicker vegetation cover making it very 
difficult to visitors to venture in, and sources of unconventional food were much lower or non-existent 
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 Mainland 

On the mainland, quokkas were trapped near Jarrahdale (~45 km south-east of Perth), 

Collie (~213 km south of Perth), and near Walpole (~411 km south south-east of Perth) 

(Figure 3-3).  Exact geographical coordinates for each trapping site are given in Table 3-2. 

 

 
Figure 3-3 (a) Close up map of the south-west of Western Australia with the mainland locations where S. 
brachyurus were trapped.  Rottnest Island, Perth, Walpole and Albany are provided in this map only as a point 
of reference. (b) Location of the southwest of Western Australia in Australia.  Map data ©2016 Google Landsat, 
Data SIO, NOOA, U.S. Navy, NGA, GEBCO. 

 

 

 
Table 3-2 Location details of the northern and southern sites where S. brachyurus were captured on the 
mainland of the south-west of Western Australia. 
Sub-populations General Sites Specific Sites Latitude Longitude 

Northern Jarrah 

Northern sites    

Jarrahdale 

Thirty One Mile 32° 15' 55.872" S 116° 10' 24.0234" E 
Mile 32° 13' 6.636" S 116° 8' 0.024" E 
Midgegoroo 32° 11' 2.04" S 116° 6' 27.468" E 
Rosella 32° 16' 5.628" S 116° 4' 42.708" E 
Balmoral 32° 20' 28.572" S 116° 4' 46.3434" E 
Chandler 32° 17' 49.7034" S 116° 7' 51.132" E 

Collie 
Hamilton 33° 15' 48.528" S 116° 2' 2.04" E 

Central Jarrah Victor 33° 16' 10.2" S 116° 0' 59.2554" E 
Gervasse 33° 21' 32.1114" S 115° 55' 14.6994" E 

Southern Forest 
Southern site    

Walpole Thompson Rd. 34° 39' 35.5998" S 116° 42' 14.7456" E 
Martin Rd. 34° 37' 34.863" S 116° 29' 57.8574" E 

 

 

a. b. 
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3.2 Trapping protocols 

Animal capture on Rottnest Island commenced one hour before sunset and extended into 

the night to minimise disturbance to and by the public.  Setonix brachyurus were captured 

either by trapping or hand capture.  For hand capture, animals were quietly approached 

and then captured by restraining the animal at its tail base (Vogelnest & Portas 2010).  No 

animals were ever chased and all animal handling was kept to a minimum.  Alternatively, 

six Thomas traps® (Sheffield Wire Products, Sheffield Rd Welshpool, Perth WA ) 

(Department of Environment and Conservation Standard Operating Procedure SOP 9.5 for 

the capture of small to medium sized macropods, Freegard & Richter 2009b) were 

deployed at each of two sites per night after sunset, with trap clearing and animal 

processing extending into the night.  Traps were located on the verge of the road for ease 

of access and to minimise disturbance to the vegetation and were baited with a small ball 

(i.e. 2 cm diameter) of freshly prepared ‘universal bait’ (peanut butter with plain oats).  

During summer, fresh water was also provided.  Traps were checked and cleared every 

hour at each site.  Upon capture, animals were individually transferred to a calico bag and 

transported within 5 – 12 min to an indoor processing station, for weather protection and 

sufficient lighting. 

 

Animals on the mainland were sourced from several concurrent projects that involved 

trapping S. brachyurus; consequently, trapping protocols varied somewhat between sites.  

Trapping was not carried out on days where the weather forecast predicted temperatures 

over 35˚C.  Traps were generally deployed along water systems and baited with apples 

and were cleared the following morning.  Animals were trapped at the northern sites with 

Sheffield traps (Sheffield Wire Products, Sheffield Rd Welshpool, Perth WA) (Department 

of Environment and Conservation Standard Operating Procedure SOP 9.2: Cage traps for 

live capture of terrestrial vertebrates, Freegard & Richter 2009a).  At the southern sites, 

animals were captured using Thomas traps.  For both northern and southern sites, traps 

were each covered with a hessian and a plastic bag in order to protect the animals from 

light/disturbance and the weather.  Upon capture, quokkas were individually transferred 

to a hessian bag and carried to the point of processing.  It is worth noting that prior to all 

procedures ran by this project (i.e. physical restraint, general anaesthesia, physical 

examination and biological sample collection), a series of biometrical measurements were 

carried out on all animals by crewmembers of the projects carrying out the trapping.  

Animals were weighed while in the bag with a digital fishing scale (± 0.5 g), upon which 

the weight of the bag was substracted.  
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Anaesthetic equipment, calico and hessian bags were disinfected with F10SCXD 

disinfectant (Health & Hygiene (Pty) Ltd. Sunninghill, South Africa) between field trips.  

Calico bags were additionally autoclaved at Murdoch University Veterinary Hospital.  

Restraining bags were never transferred between Rottnest Island and mainland sites.  

 

 

3.3 Anaesthesia, physical examination and general procedures 

Prior to sample collection, all animals were anaesthetised.  At the processing station, 

quokkas were physically restrained while in their bag for anaesthesia induction.  The nose 

of the animal was exposed from the bag and the animal was induced with 5% isoflurane 

I.S.O.® (Veterinary Companies of Australia, Kings Park, NSW) delivered in 100% medical 

oxygen via a Darvall® (Advanced Anaesthesia Specialists, Gladesville, NSW) facemask 

connected to a non-rebreathing Bains Circuit® (VetQuip, Castle Hill, NSW), with an oxygen 

flow rate of 2.5L/minute.  Anaesthesia was carried out using a Stinger® Streamline 

anaesthetic machine (Advance Anaesthesia Specialists, Gladesville, NSW).  Anaesthetic 

status was assessed through loss of general muscle tone, presence or absence of corneal 

reflex and withdrawal response measured via toe pinch (usually 2 – 3 min post induction) 

before the animal was removed from of the bag and laid in right lateral recumbency for 

physical examination.  Once anaesthesia was induced, the concentration and flow rate of 

isoflurane was reduced to 2-3% at 2L/min.  Respiratory rate and heart rate were 

monitored at least twice during the extent of the procedure, which commonly took 

between 8 –12 min.  Cloacal temperature was monitored and bubble wrap and towels 

were used to maintain cloacal temperature between 36.5 °C and 38.5 ˚C (Bartholomew 

1956). 

 

The physical exam was organised by anatomical regions, and findings were recorded in a 

clinical examination sheet designed by this project (Figure 3-4).  Physical examination was 

carried out starting with the tail and finishing with the head, initially in left lateral 

recumbency and subsequently in right lateral recumbency.  The severity and chronicity of 

any observed lesions was recorded.  Body condition was first assessed according to a 

subjective scale (Table 3-3) followed by hydration status (Table 3-4) and assessment of 

the colour and texture of mucous membranes (Table 3-5).  External parasites (i.e. ticks, 

lice and fleas) were counted, the anatomical area where they were spotted, and their 

developmental stage (i.e. larva, nymph or adult) was recorded.  The scoring schemes used 

in the physical examination of quokkas (i.e. Tables 3-3, 3-4 and 3-5) were designed by this 

project, and used general principles and techniques available in the wildlife and domestic 
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animals veterinary literature (Gamble 2004 ; Smith 2008 ; Vogelnest 2015).  Although the 

physical findings listed in Table 3-6 are results of this project, these are listed here as part 

of the methodology as their definitions were a priori. 

 

 
Figure 3-4 Clinical examination sheet used to record basic health data from S. brachyurus.  MM= mucous 
membranes, CRT= capillary refill time, LS= left hand side, RS= right hand side, Ph= photo, Cnt= count, Stg= 
stage of development, BAR= bright, alert, responsive; QAR= quiet, alert, responsive. 
 

 

 
Table 3-3 Semi quantitative body condition scores used in S. brachyurus, and the features observed on the 
animal that defined each of the scores. 

Body condition 
scores Description Features observed that defined each score 
0 Emaciation Scapular spine and dorsolateral and lateral processes of the 

first two coccygeal vertebrae are prominent.  There is an 
obvious concavity of skin and muscle around these vertebrae). 

1 Poor Scapular spine and dorsolateral and lateral processes of the 
first two coccygeal vertebrae are still palpable and visible. The 
concavity of skin and muscle around them is less. 

2 Optimal Scapular spine and dorsolateral and lateral processes of the 
first two coccygeal vertebrae are barely palpable.  Concave 
appearance of the skin and muscle around the bony 
prominence is not present. 

3 Overweight Scapular spine and dorsolateral and lateral processes of the 
first two coccygeal vertebrae are not palpable.  There is a slight 
convex appearance of the skin and muscle around the bony 
prominence. 

4 Obese Scapular spine and dorsolateral and lateral processes of the 
first two coccygeal vertebrae are not palpable.  Marked convex 
appearance of the skin and muscle around the bony 
prominence. 
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Table 3-4 Semi quantitative assessment of hydration status of S. brachyurus, and a description of how they 
were determined. 

Value 

Dehydration status 
(expressed as % of 
body weight) Description 

0 0-5% No detectable abnormalities, skin under neutral tension (e.g. the skin 
over the thorax) returns to normal position after tenting in <2 sec, 
CRT <2 sec, enophthalmos (sunken eyes) absent, mucous 
membranes pink and moist. 

1 5-8% 2-4 sec delay of the thoracic skin returning to normal position, 
increase in CRT to 2-3 sec, enophthalmos slightly present, mucous 
membranes slightly dry or tacky. 

2 8-10% 4-8 sec delay of thoracic skin returning to normal position, increase 
in CRT to 3-4 sec, enophthalmos more obvious, mucous membranes 
dry and slightly tacky.  

3 10-12% Greater than 8 sec delay of thoracic skin returning to normal 
position, CRT increased to beyond 4 sec, eyes very sunken, dry 
mucous membranes, animal is depressed, signs of shock may be 
present (e.g. rapid/weak pulse, cold extremities). 

 

 

 
Table 3-5 Mucous membrane appearance in S. brachyurus and the possible implications of each appearance. 

Mucous Membranes 
Appearance Possible Implications 

Pink/Pale pink Implies adequate perfusion and oxygenation of peripheral tissues. Some 
vasoconstriction due to low environmental temperature or stress 

Pale White Anaemia, poor perfusion, vasoconstriction (secondary to blood loss, shock, 
decreased peripheral blood flow) 

Blue Inadequate oxygenation (hypoxemia) 

Brick Red Increased perfusion, vasodilation (secondary to early shock, sepsis, fever, 
systemic inflammatory response syndrome) 

Yellow Bilirubin accumulation (liver or biliary disorder and/or haemolysis) 
Brown Methaemoglobinaemia (e.g. intravascular haemolysis) 
Petechial haemorrhage Coagulation disorder (platelet disorder, coagulation factor deficiencies) 
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Table 3-6 List of physical findings recorded in quokkas on Rottnest Island and the mainland of Western 
Australia, with their corresponding description. 
Physical findings Description 
Abnormal mentation A quokka that did not struggle at the moment in which was hand-

picked, that was obtunded, unresponsive to human handling, that did 
not struggle and appeared unresponsive during GA induction (e.g. dull, 
stuporous, comatose) 

Abnormal CRT That in which blood would return to the tissue in 2 or more seconds 
after putting pressure on the gums 

Erosion Single or multiple lesions on the skin in which part or all of the 
epidermis has been lost.  Depending on the severity it may be 
accompanied by bleeding of the outermost layer of the dermis 

Cloacal discharge Abnormal cloacal discharge was that of a colour typically associated 
with bleeding (red), infection (mucopurulent) 

Cloudy eye An eye with a diffuse or focalised opacity on the cornea that appears in 
the front of the eye as white or somewhat blue in colour  

Conjunctival hyperaemia The injection of the conjunctival vessels giving the conjunctiva a 
pink/red colour, with ocular discharge usually mucoid of 
mucopurulent, and epiphora (determined by the fur directly 
underneath the medial canthus being wet) 

Ear notches Single or multiple lesions in which the ear cartilage has lost entire 
sections of it, making it have an incomplete edge 

Flaky skin Single or multiple skin lesions in which ‘flakes’ represent desquamated 
layers of the stratum corneum 

Fractures Acute fractures were those in which displacement of bone fragments 
was present, while chronic fractures were those bone lesions 
characterised by the presence of a callus, a loss of external typical 
appearance, and the absence of obvious signs of inflammation 

Fur loss Single or multiple patches of exposed skin that have lost their 
corresponding covering fur 

Skin thickening Thickening and hardening of skin characterised by exaggeration of 
superficial skin markings.  Usually accompanied by hyperpigmentation 

Ulcers Single or multiple discontinuities of the epidermis with exposure of the 
dermis, characterised by the presence of a crater and some exudate 

Wheezes Respiratory ‘musical’ tones that occur during inspiration and 
expiration as a result of a decrease in the airway lumen 

Presence of external parasites External parasites where either present or absent, type, numbers and 
the anatomical region where found were recorded 

 

 

Since obtaining data from different animals at a single point in time was this entire project 

required, animal recapture was avoided.  For this, animals had to be identified.  

Identification of animals on the mainland was carried out by concurrent projects trapping 

quokkas.  On Rottnest Island, quokkas were microchipped and ear tagged.  Animals were 

microchipped with FDX B Transponders (AllFlex Australia PTY Ltd.  Capalaba, Queensland, 

Australia) that were read with the RS200 Series Compact Reader (AllFlex Australia PTY 

Ltd.  Capalaba, Queensland, Australia).  Microchips were implanted subcutaneously 

between the scapula in accordance with Department of Environment and Conservation 

Standard Operating Procedure 12.1. (Richter & Freegard 2009a) and veterinary guidelines 

established by the Australian Veterinary Association (Australian Veterinary Association 

2013) were followed.  Briefly, the skin between the scapulas was cleaned with a mixture of 

chlorhexidine and alcohol.  Subsequently, the microchip was implanted in a cranio-caudal 

orientation in to the subcutaneous space, and the point of entry was sutured with tissue 

adhesive (Vetbond™ 3M™, MN, USA).  Ear tagging was done in accordance to the 
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Department of Environment and Conservation standard operating procedure 12.3: Semi-

permanent marking of animals using ear tags (Richter & Freegard 2009b).  Figure 3-5 

shows the location of the ear tags in females and males.  Animals were tagged with Monel 

self-piercing ear tags size 3 (#1005-3) from the National Band & Tag Co. Newport, USA.  

Any bleeding that occurred was controlled by applying pressure on the area with an 

sterile gauze until clotting had occurred.  Similarly to microchipping, the area for the ear 

tag was cleaned with a mixture of chlorhexidine and alcohol. 

 

 
Figure 3-5 Position of the ear tags indicated by a white rectangle, in females (a) and males (b) S. brachyurus. 
 

 

Pouch taping was always performed on the adult females that had small joeys (i.e. hairless 

and/or lightly furred).  The procedure followed the guidelines established by the 

Department of Environment and Conservation in their Standard Operating Procedure 

14.1: Care of evicted pouch young (Freegard & Richter 2009c).  Briefly, the calico bag was 

initially checked for the presence of a furred joey that may have been ejected.  If present, 

this joey was taken out of the bag before initiating the anaesthetic induction of the adult 

female, and kept warm temporarily against an operator’s body.  Subsequently, having the 

female under anaesthesia, the pouch was inspected for the presence of a hairless infant.  If 

not present, the furred joey was delicately inserted into the pouch head first allowing him 

to crawl in by itself.  With the joey back into its pouch, the fur around (i.e. 4 cm) the pouch 

was clipped to ensure adequate adhesion of the tape (Fixomull® stretch, BSN Medical, 

Charlotte, USA).  Having both opposing edges of the pouch together, the tape was 

positioned longitudinally so there was no contact with any mucosal area of the pouch.  

With the joey in position and the pouch taped, the physical examination procedure 

resumed. 

 

a. b. 
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Upon completion of the physical examination and sample collection, the Isoflurane 

vaporiser was turned off, the animal was put once more into its own bag, the anaesthetic 

circuit was flushed to remove remaining anaesthetic gaseous agent without having the 

animal connected, and the quokka remained with pure (100%) oxygen at a flow rate of 

2L/min until withdrawal responses returned, and the swallowing reflex was present.  On 

Rottnest Island, animals were next to each other within their own bags to favour heat 

exchange and minimise loss of body temperature.  A repeated inspection of each animal 

during recovery was performed.  Heat packs (Livingston International Pty Ltd, New South 

Wales, Australia) were used on several occasions to help prevent a drop in core body 

temperature.  Once mentally alert and ambulatory (usually about 5 – 10 min following 

anaesthesia), animals were released back to their original trap site. 

 

3.4 Sample collection, handling and studies 

 Faeces 

Faecal samples for the isolation of Salmonella were obtained by rectal palpation using 

examination gloves.  Faecal pellets were used instead of rectal swabs as this type of 

sample produced better results when doing isolations from samples with a low number of 

Salmonella (Hart, Bradshaw, & Iveson 1985).  The external area around the cloaca was 

cleaned with a 1:1 mixture of chlorhexidine gluconate and 70% ethanol (care was taken to 

prevent the disinfectant from getting into contact with the faeces) and any dirt and faecal 

material was wiped off immediately before rectal palpation.  Some animals spontaneously 

defecated after rectal palpation, however, even though the pellet was not collected directly 

from the rectum, the sample was still considered viable.  In any case, the main condition 

any sample should meet to be considered valid was to not have come in contact with any 

other surface than the cloacal lining and an examination glove.  In no cases were faecal 

samples taken from cotton/hessian bags, or traps.  Samples were then placed into 5 mL 

polycarbonate yellow cap sterile tubes (SARSTEDT Aktiengeseilschaft & Co. Germany) and 

stored at 4˚C until processing.  Helminth and protozoan parasites were detected using the 

zinc sulphate flotation technique.  Briefly, the flotation solution was prepared by diluting 

330 g of zinc sulphate in 1 L of distilled water.  Faecal samples (~5 g) were mixed 

thoroughly with zinc sulphate solution in 10 mL polycarbonate yellow cap sterile tubes 

(SARSTEDT Aktiengeseilschaft & Co. Germany).  The tubes were filled with the flotation 

solution until this had created a convex appearance over the edge of the tube, then a glass 

coverslip was placed on top and the tubes were centrifuged at 2,500 g for 7 min.  Lastly, 

coverslips were removed from the 10 mL polycarbonate tubes and place on a microscope 
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slide to be then examined using an Olympus BX50F4 (Olympus Optical Co, Ltd. Japan) light 

microscope for oocysts and parasite eggs.  Oocysts and nematode eggs were counted in 50 

high power fields (hpf).  For oocyst sporulation, faecal samples were mixed thoroughly 

with 2% potassium dichromate (w/v) solution in a Petri dish that was left incubating at 

room temperature in the dark.  Aliquots of 20 µL were then collected every three days and 

placed on a slide with a coverslip and check for sporulation under light microscopy.  This 

volume was obtained by collecting smaller volumes from different areas of the Petri dish.  

If sporulation was observed, morphologies and dimensions were taken with ImageJ v. 

1.49d (Schneider, Rasband, & Eliceiri 2012) for further speciation. 

 

 Blood 

Blood samples were collected from the lateral left or right tail veins.  Skin was prepared by 

clipping the venipuncture site with WAHL® clippers (Wahl Clipper Corporation and Unity 

Agencies, Victoria, 3180, Australia), which was subsequently disinfected with a 50/50 

chlorhexidine gluconate and 70% ethanol solution.  Blood was obtained using Safety-Lok™ 

BD Vacutainer® 25G x ¾” and 23G x ¾” (Becton, Dickinson and Company, NJ, USA) with 

Slip Tip 3 mL syringes (Becton, Dickinson and Company, NJ, USA).  Blood for haematology 

analyses (~0.5 mL) was collected in 600 µL BD Microtainer® tubes with potassium (K2) 

ethylene diamine tetraacetic acid (EDTA) anticoagulant (Becton, Dickinson and Company, 

NJ, USA), while samples for blood chemistry (~1.0 mL) analyses were collected in 1.3 mL 

Micro Tubes with 35 I.U. of Lithium Heparin / 1 mL of blood (SARSTEDT, 

Aktiengesellschaft & Co. Nümbrecht, Germany).  These two blood samples were mixed 

gently upon collection and stored at 4 ˚C for further processing.  Blood for serology studies 

(~3 mL) was collected in 4 mL Serum BD Vacutainer® (Becton, Dickinson and Company, 

NJ, USA) and left standing to clot for 6h.  Tubes were then centrifuged and serum was 

carefully withdrawn without disruption of the clot layer.  Serum was then stored at -20 ˚C 

for further processing. 

 

Blood in EDTA and Lithium Heparin were processed within the first 60 h with the majority 

of the samples been processed by 48 h post collection.  EDTA and Lithium Heparin 

samples were sent to the Clinical Pathology service of the Murdoch University Veterinary 

Hospital.  A complete blood count was obtained with an ADVIA-120® automated 

haematology analyser (Bayer Diagnostics Division) and multi-species software using the 

default setting (canine), while an RX Daytona™ automatic biochemistry analyser (Randox 

Laboratories) was used for blood chemistry.  Table 3-7 shows the haematological and 

blood chemistry variables typically analysed.  



 

71 
 

 
Table 3-7 List of haematological and blood chemistry analytes measured on whole blood obtained from 
mainland and Rottnest Island S. brachyurus. 
Analyte Acronym 
Haematology 

White Blood Cell Count WBC 
Red Blood Cell Concentration RBC 
Haemoglobin Concentration HGB 
Packed Cell Volume PCV 
Mean Corpuscular Volume MCV 
Corpuscular Haemoglobin Concentration Mean CHCM 
Platelet Concentration PLT 
Neutrophils NEUT 
Lymphocytes LYMPH 
Monocytes MONO 
Eosinophils EOS 
Basophils BASO 

Blood Chemistry 
Alkaline Phosphatase ALP 
Alanine Aminotransferase ALT 
Aspartate Aminotransferase AST 
Creatine Kinase CK 
Gamma-glutamyl Transferase GGT 
Total Protein TP 
Albumin ALB 
Globulin GLOB 
Calcium CALC 
Phosphorus PHOSP 
Cholesterol CHOL 
Total Bilirubin BILT 
Glucose GLUC 
Creatinine CREAT 
Urea UREA 
Vitamin E Vit. E 

 

 

A blood smear was made using the spreader slide technique within a couple of hours after 

blood collection.  The smear was then stained with Hema-tek® Slide Stainer and Hema-

tek® Wright’s Giemsa Stain (Ames Company, Miles Laboratories).  Smears were then 

assessed using light microscopy to determine the differential leukocyte count (200 

leukocytes), polychromatophilic erythrocyte count (1,000 erythrocytes), and leukocyte 

and erythrocyte morphology.  Presence and numbers of microfilariae were obtained by 

examining the complete blood smear at x40 magnification but anatomical characteristics 

of microfilariae were recorded at x400 or x1000 magnification.  The presence of 

intraerythrocytic organisms was assessed by light microscopy, examining 100 fields 

within the monolayer and feathered regions of the blood smear combined, first at x400 

magnification, and subsequently at x1000 magnification and by nPCR (see Chapter 7, 

section 7.3.1.1.).  The ADVIA white blood cell count was corrected by subtracting the 

polychromatophilic erythrocytes count.  This value was then used in subsequent analyses.  

Serum samples of approximately 300 µL were shipped in dry ice to Professor Colin Wilks 

at Melbourne University, School of Veterinary Medicine for Macropodid herpesvirus Type 
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I and II serology, and approximately 100 µL to the Department of Primary Industries, 

Animal Health Laboratories in Tasmania, for Toxoplasma gondii IgG testing via the MAT.  

 

Overall, the range of organisms studied as well as the tests to which this study had access 

to, were limited primarily by costs. 
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4. Salmonella and the health of S. brachyurus from Rottnest Island and 

the mainland of south-west Western Australia 
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4.1 Abstract 

Salmonella are Gram-negative, motile and facultative anaerobe bacteria with a worldwide 

distribution that contaminates multiple substrates (vegetation, food, soil and water) and 

inhabits the gastrointestinal tract of birds, reptiles and mammals, including humans.  

Clinical disease in animals is usually triggered by stress and presents in various forms 

ranging from subclinical carriers to acute endotoxemia and sepsis.  Current data on the 

prevalence of Salmonella infection in Rottnest Island and mainland quokkas is out dated 

by approximately 30 years.  Additionally, previous studies of Salmonella in quokkas did 

not perform physical examinations or diagnostic tests in order to explore the potential 

clinicopathological implications of such infection.  We screened 92 quokkas (Setonix 

brachyurus) from Rottnest Island (n= 71) and populations on the mainland (n= 21) for 

Salmonella, and determined a prevalence of 47.9% (95% CI 36.5-59.4) and 4.8% (CI 0.8-

22.7), respectively.  A total of 16 serovars were identified in 37 isolates, of which five new 

serovars not previously described in the quokka, are reported.  Salmonella appeared to 

have a subtle effect on the haematology (HMT) and blood chemistry (BLC) of quokkas on 
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Rottnest Island, while no effect was observed on peripheral blood cell morphologies 

(PBCM).  Animals with circulating microfilariae were 3.88 (CI 1.31-11.50, p< 0.05) times 

more probable of being infected with Salmonella spp. 

 

4.2 Introduction 

Salmonella sp. are rod-shaped, Gram-negative, motile and facultative anaerobes classified 

in the family Enterobacteriaceae (Nataro et al. 2011).  These organisms have a worldwide 

distribution, contaminating vegetation, food, soil and water, and inhabit the 

gastrointestinal tract of birds, reptiles and mammals, including humans (Quinn et al. 

1994 ; Quinn et al. 2011) (Table 4-1).   

 
Table 4-1 Salmonella species, subspecies, serovars and their most common habitats (Brenner et al. 2000) 
Salmonella species, subspecies (group) Regular habitat 
S. enterica subsp. enterica Homoethermic animals 
S. enterica subsp. salamae (II) Ectothermic animals and the environment 
S. enterica subsp. arizonae (IIIa) Ectothermic animals and the environment 
S. enterica subsp. diarizonae (IIIb) Ectothermic animals and the environment 
S. enterica subsp. houtenae (IV) Ectothermic animals and the environment 
S. enterica subsp. indica (VI) Ectothermic animals and the environment 
Salmonella bongori (V) Ectothermic animals and the environment 
According to the White-Kauffmann-Le Minor scheme 
 

According to Quinn et al. (1994), Salmonella can survive for up to 9 months in the 

environment (e.g. soil, faecal material, food and water).  However, it is unclear whether 

Salmonella found in the environment represent free-living organisms or contaminants 

from animal faeces since Acanthamoeba (free-living amoebae) species seem to play an 

important role as reservoirs of Salmonella in the environment (Bleasdale et al. 2009 ; 

Hadas et al. 2004).  As of 2007, under the White-Kauffmann-Le Minor scheme (Grimont & 

Weill 2007), there were 2,579 serovars that belonged to two accepted species:  Salmonella 

enterica (2,557 serovars) and Salmonella bongori (22 serovars) (Table 4-2). Serovars 

within the Salmonella enterica subsp. enterica will be indicated as ‘S. enterica ser. [Serovar 

name]’, while serovars of other subspecies of Salmonella enterica, as well as serovars 

within the Salmonella bongori species are indicated by their group (II, IIIa, IIIb, IV, VI and 

V) and their antigenic formula (e.g. II 56:b:[1,5], IV 6,7:z36:-, V 48:z41:-), as recommended 

by the World Health Organisation (WHO) Collaborating Center for Reference and Research 

on Salmonella (Grimont & Weill 2007).  This taxonomy and the associated methods of 

reference are illustrated with a flow diagram (Figure 4-1). 
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Table 4-2 Number of serovars in each species and subspecies according to the White-Kauffmann-Le Minor 
scheme (Grimont & Weill 2007) 
Salmonella species, subspecies (group) No. of serovars 
Salmonella enterica 2,557 

S. enterica subsp. enterica 1,531 
S. enterica subsp. salamae (II) 505 
S. enterica subsp. arizonae (IIIa) 99 
S. enterica subsp. diarizonae (IIIb) 336 
S. enterica subsp. houtenae (IV) 73 
S. enterica subsp. indica (VI) 13 

Salmonella bongori (V) 22 
Total (genus Salmonella) 2,579 
 

 
 
Figure 4-1 Taxonomy and reference methods for Salmonella under the White-Kauffmann and Le Minor 
Scheme.  For serovars of S. bongori species, the symbol “V” is used to avoid confusion with serovar names of 
the S. enterica subsp. enterica group (Grimont & Weill 2007) 

 

The current knowledge of Salmonella and its multiple clinical presentations in mammalian 

veterinary medicine comes, for the most part, from the research that has been undertaken 

on cattle (Cummings et al. 2009 ; Mohler, Izzo, & House 2009 ; Nielsen 2013), pigs 

(Bergeron et al. 2009 ; Oliveira, Carvalho, & Garcia 2006 ; Watson et al. 2000), poultry 

(Chappell et al. 2009 ; Duffy, Dykes, & Fegan 2012), horses (Dallap Schaer et al. 2012 ; 

Hartnack, van Metre, & Morley 2012), dogs and cats (Bagcigil et al. 2007 ; Weese 2011), 

and mice (Tam et al. 2008).  Although conjunctival transmission in experimentally-

infected cats (Fox et al. 1984) and airborne transmission in pigs (Oliveira, Carvalho, & 

Garcia 2006) have also been documented, the main route of infection is by ingesting the 

organism (Quinn et al. 2011).   
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Clinical disease is commonly triggered by stressful events or conditions that could include 

sudden changes in diet, deprivation of feed, parturition, transportation, heat stress, and 

drought (Barrow 2012 ; Hirsh 2004 ; Quinn et al. 2011).  However, the severity of the 

disease is dependent on the combination of host factors (e.g. age, concurrent disease, 

immune status and the health of the normal flora of the gastrointestinal tract), and 

Salmonella factors (e.g. strain and infective dose) (Hirsh 2004 ; Radostits et al. 2010).  

Salmonellosis can vary from a subclinical carrier state to an acute endotoxemia and sepsis 

that is usually fatal (Barrow, Jones, & Thomson 2010 ; Quinn et al. 2011).  Clinical signs 

tend to be more severe in young animals than in adults due to an underdeveloped immune 

system, however, fulminant peracute salmonellosis can still occur in adult animals.  The 

enteric form, unless subclinical or latent, usually presents with fever, depression, and 

diarrhoea or dysentery, accompanied by dehydration (Hirsh 2004 ; Quinn et al. 2011 ; 

Radostits et al. 2010), together with changes in the haemogram [e.g. elevated packed cell 

volume (PCV) and either neutropenia or neutrophilia] (La Ragione et al. 2013) and blood 

chemistry (e.g. elevated urea nitrogen, and decrease of calcium and protein) (Santos et al. 

2002).  However, the disease can have other presentations, including abortion, meningitis, 

osteomyelitis and gangrene (Barrow, Jones, & Thomson 2010 ; Markey et al. 2013).  If 

endotoxemia is present (systemic form), clinical signs may include high fever, hyperaemic 

mucous membranes, severe depression, neutropaenia, and leukopaenia (characteristic in 

horses) (Mackay 2008 ; Radostits et al. 2010). 

 

Human salmonellosis has been linked in the past with wildlife and various pathways to 

infection have been studied, including direct contact, contamination of food by wildlife 

faeces, consumption of wildlife meat products and indirectly by contact with domestic 

species following interactions with wildlife species (Hilbert et al. 2012).  Outbreak reports 

of salmonellosis in humans by direct contact with wildlife are numerous and wild reptiles 

and birds are most commonly implicated (Hilbert et al. 2012).  According to the National 

Notifiable Diseases Surveillance System (NNDSS) of the Australian Government 

Department of Health and Ageing (Department of Health and Ageing. Australia 2013), a 

total of 18,447 cases of salmonellosis have been reported in Western Australia (WA) over 

the last 22 years (1991 to 2013), with 1,170 cases of human salmonellosis reported in 

2012.   However, these numbers are an under-representation because not every case 

would be reported or diagnosed.   

 

Even though the specific sources of contamination are not always identified, macropods 

and other marsupials may have been the source of infection in at least some of these 

instances.  An example of this is an outbreak of S. enterica ser. Paratyphi B, variant Java in 
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New South Wales, Australia, that was linked to the ingestion of sand that appeared to have 

been contaminated by long-nosed bandicoots (Perameles nasuta).  The study tested cloacal 

swabs and faecal samples from 261 local free-ranging animals of various species, including 

long-nosed bandicoots (Perameles nasuta), black ducks (Anas superciliosa), black rats 

(Rattus rattus), and brushtail possums (Trichosurus vulpecula) as well as a domestic dog 

(Canis familiaris).  Thirty-four isolates were recovered; the majority of these were 

obtained from the bandicoots, which at the time of sampling did not have any overt signs 

of disease (Staff et al. 2012).  Although this study does not provide irrefutable evidence 

that the long-nosed bandicoot was the source of the outbreak, it does highlight that 

marsupials should be considered as reservoirs, and therefore potential sources of 

infection to humans, warranting active surveillance.  

 

Salmonella was first identified in quokkas from Rottnest Island in 1972 (Yadav, Stanley, & 

Waring), although there was only a low prevalence recorded.  They examined the 

microbial flora of the gut of pouch-young (n= 40, 1-157days old) and pouches of adult 

females (n= 6, with and without pouch-young), held with ad libitum access to food and 

water.  S. enterica ser. Newport was isolated from a single 10 day-old pouch-young.  The 

health status of these animals was not assessed and the low prevalence of Salmonella 

should be interpreted cautiously due to the non-specific isolation techniques used, and the 

ad libitum access to food and water.  This is so, particularly because of later findings by 

Hart (1980) and Hart et al. (1985) showing that Salmonella appeared to not proliferate 

when quokkas were given adequate quality and quantity of food and water. 

 

The first case of human salmonellosis 5 linked to S. brachyurus in WA was recorded in 

1973, in a 14-month old child visiting Rottnest Island; this case was attributed to the 

consumption of faeces of animal origin and sparked greater interest in the incidence of 

Salmonella on the island (Iveson & Bradshaw 1973).  Iveson and Bradshaw (1973) tested 

(by enrichment and culture methods) rectal swabs and faecal pellets from S. brachyurus 

(n= 87 individuals) as well as cloacal samples from silver gulls (Larus novaehollandiae) 

(n= 83 individuals) from around the site where the child was seen handling faecal pellets 

as well as other parts of the island.  S. enterica ser. Javiana was isolated from the child, the 

rectal swabs of four S. brachyurus, but not the silver gulls.  Of the quokkas sampled, 71% 

(62/87) were positive to Salmonella spp., with 100 isolates (92 isolates of 17 serovars of S. 

enterica subsp. enterica and eight isolates of three serovars of S. enterica subsp. arizonae 6; 

Table 4-3).  Mixed infections were present in four faecal samples collected from the 
                                                             
5 defined as the disease that is associated with the abnormal proliferation and tissue invasion of Salmonella (Barrow, Jones, 
& Thomson 2010). 
6 at the time this work was published, the term “Arizona” referred to a unique genus of bacteria.  Since then, it has become 
accepted that Arizona is S. enterica subsp. arizonae (Brenner et al. 2000).   
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ground (random locations), but not in cloacal swabs.  With the use of enrichment and 

culture media specific for Salmonella, this study revealed high infection rates with 

multiple serovars of Salmonella in quokkas on Rottnest Island, and drew attention to the 

potential significance of the species as a natural carrier and source of Salmonella.   

 

Subsequently, a 10-year surveillance program was started.  This initiative revealed 

important information about the ecology of Salmonella on Rottnest Island (Hart, Bradshaw, 

& Iveson 1985, 1986 ; Hart, Iveson, & Bradshaw 1987 ; Iveson, Bradshaw, & Hart 2007 ; 

Iveson & Hart 1983).  Samples were collected from S. brachyurus, reptiles, birds, domestic 

animals (horses and donkeys) and water sources.  To date, a total of 55 7 different 

Salmonella serovars have been isolated from S. brachyurus (Table 4-3).  Iveson and Hart 

(1983), using enrichment and culturing methods, identified Salmonella in 1,551 out of 

4,038 S. brachyurus that were tested (i.e. 38% prevalence).  A total of 40 unique serovars 

were identified, of which the most prevalent serovars were S. enterica ser. Muenchen 

(recovered from 484 individuals; 33.6%) and S. enterica ser. Newington (recovered from 

291 individuals; 18.7%) (Table 4-3).  The prevalence of Salmonella was lower for birds 

(10/417; 2.4%), but higher for reptiles (50/76; 66%) and domestic animals (40/45; 88%) 

tested.  The serovars recovered from birds, reptiles and domestic animals were similar to 

those isolated from S. brachyurus, indicating that Salmonella is both abundant on Rottnest 

Island and widespread among different animal taxa and ecosystems.   

 

Hart (1980) determined that Salmonella infections in S. brachyurus had a seasonal 

variation, with low shedding rates (0-30%) in winter and high shedding rates (70-100%) 

during summer.  In contrast, infection rates in areas where quokkas had access to 

supplementary food sources (e.g. near towns) were maintained throughout the year at 0-

30%.  The author suggested that this seasonal variation in infection rate may be explained 

by the ‘urban’ S. brachyurus being able to avoid nutritional stress during the driest part of 

the year.  The results of a subsequent experiment (Hart, Bradshaw, & Iveson 1985) 

supported this suggestion.  Two groups of S. brachyurus (group sizes were not published) 

were kept in natural habitats on Rottnest Island for over a year.  One group (experimental) 

was supplemented with ad libitum food and water while the second (control) group was 

not and therefore was subject to the natural seasonal shortages.  The food-supplemented 

group had one third of the Salmonella proliferation compared with the control group.  

Proliferation of Salmonella increased almost immediately after food and water 

supplementation was stopped for the experimental group to become similar between the 

two groups by the third week after withdrawal of food and water.  The authors ascribe the 

                                                             
7 includes only serovars with an updated antigenic formulae, and serovars isolated and serotyped in this study 
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proliferation of Salmonella to an increase in gastric pH, which is thought to be due to a 

decrease in the production of short-chain fatty acids that occurs when the animal faces a 

reduction in food quality and availability.  It is not known how Salmonella proliferation 

and shedding is linked to gastric pH in S. brachyurus, but in ruminants (also foregut 

fermenters), a low pH in the rumen is unfavourable to Salmonella growth (Radostits et al. 

2010).  Faecal excretion in S. brachyurus was typically 105 CFU/g faeces during summer 

and never exceeded 106 CFU/g faeces (Hart, Bradshaw, & Iveson 1985).  For comparison, 

excretion rates of 105 CFU/g faeces are common in cattle with subclinical salmonellosis 

(Barrow, Jones, & Thomson 2010).  In production animals, stress factors (e.g. transition 

diets and heat stress) likely contribute to the proliferation of Salmonella in the 

gastrointestinal tract, and therefore the increase in faecal excretion rates.  Morphometric 

data for quokkas [i.e. Body Condition Index (BCI)] also showed a seasonal pattern 

coinciding with the proliferation of Salmonella, with a poor BCI in summer (high incidence 

of Salmonella) attributed to the progressive starvation, compared with winter (low 

incidence of Salmonella) (Hart, Bradshaw, & Iveson 1985).  However, no direct correlation 

between Salmonella proliferation and BCI was found, which may have been because 

Salmonella excretion rates increased before the BCI decreased.   

 

According to Hart (1980), on Rottnest Island, proliferation of Salmonella seemed to occur 

more rapidly in females than in males, however, most animals will ultimately get infected.  

Iveson et al. (2007) obtained similar results where females captured at a particular 

location on the island had a significantly higher infection rate than males.  However, at a 

greater scale, there was no significant difference between the proportion of infected 

females and males on Rottnest Island.  In contrast to these findings, it is believed that 

males are more susceptible than females to infectious diseases due to the 

immunomodulatory effects of sex-steroid hormones (Billingham 1986 ; Chrousos 2010 ; 

Zuk & McKean 1996).  For example, the study by Tomlinson et al. (2013) in badgers 

infected with M. bovis, determined that females were more resilient to active infection 

than males, therefore living longer after bacterial excretion was detected, while a shorter 

survival rate was observed in males.  This shorter survival rate of M. bovis-infected males 

was suggested to be associated with testosterone-related immunosuppression.  In mice 

infected with Giardia muris, Daniels and Belosevic (1994) found that females had a 

stronger IgG2b and IgG3 response than males, and stopped shedding cysts 20 days post 

infection, males on the contrary shed cysts for over 60 days.  However, susceptibility in 

females to infectious diseases can also increase under certain events such as during 

pregnancy and lactation.  For instance, Festa-Bianchet (1989) found that lactating big horn 

(Ovis canadiensis) ewes had greater faecal counts of lungworm larvae than non-lactating 
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females; additionally, females that had given birth by two years of age were more likely to 

die during an outbreak of pneumonia when compared to females that had not lambed by 

the same age.  Although testosterone is generally associated with decreased immunity and 

oestrogen with increased immunity, McClelland and Smith (2011) showed, that the effects 

of sex-steroids on the immune system are closely related to the type of organism involved.  

In the context of Salmonella, the severity of the infection is a multifactorial event and 

includes factors such as the immune status of the animal, the initial load of Salmonella, and 

the strain or strains involved (Quinn et al. 2011). 
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Table 4-3 Salmonella 1 serovars isolated from Setonix brachyurus from faecal pellets (F) (collected from the animal A, post-mortem PM, ground G, or undetermined U), Rectal swabs (R),  
Intestinal (I), and Undetermined (U) samples from Rottnest Island (RI), Bald Island (BI) or the mainland (ML).  

Serovar 
 

Yadav et al. 
(1972) 2 

Iveson and 
Bradshaw 
(1973) 

Hart et al. 
(1982) 

Iveson and 
Hart (1983) 

Hart et al. 
(1985) 

Hart et al. 
(1986) 

Iveson et 
al. (2007) 3 

Nomenclature        
Original paper White-Kauffmann-Le Minor  RI RI RI RI RI ML & BI RI 
S. adelaide S. enterica ser. Adelaide  R R FU  U G FPM  R 
S. alsterdorf or II alsterdorf 4 II 1,40:g:[m],[s],t:[1,5]   R FU  U   R 
 S. enterica ser. Alachua        
S. anatum S. enterica ser. Anatum  G  U   R 
S. bahrenfeld S. enterica ser. Bahrenfeld  R R FU U   R 
S. birkenhead S. enterica ser. Birkenhead       R 
S. bleadon II 17:g,t:[e,n,x,z15]   R FU U    
S. blukwa S. enterica ser. Blukwa   R FU U    
S. bootle S. enterica ser. Bootle  R  U   R 
S. bovis-morbificans S. enterica ser. Bovismorbificans   R FU U  R (BI) R 
 S. enterica ser. Bredeney        
S. bunnik II 43:z42:1,5,7   R FU U    
S. carnac S. enterica ser. Carnac          R G  (BI)   
S. charity S. enterica ser. Charity          R G  (BI)   
 S. enterica ser. Cerro        
S. chester S. enterica ser. Chester 

 
R G R FU U   R 

S. decatur S. enterica ser. Choleraesuis var. 
Decatur  

G R FU U   R 

S. derby S. enterica ser. Derby 
 

 R FU U    
S. fremantle II 42:g,t:- 

 
R  U    

S. give S. enterica ser. Give 
 

R R FU U    
S. havana S. enterica ser. Havana 

 
R G R FU     

S. infantis S. enterica ser. Infantis 
 

 R FU U   R 
S. javiana S. enterica ser. Javiana 

 
R G R FU U FPM  R 

S. merseyside II 16:g,t:[1,5] 
 

    G (BI)  
S. muenchen S. enterica ser. Muenchen 

 
R G R FU U R FPM  R 

S. newbrunswick S. enterica ser. Give var. 15+ 
 

R    G (ML)  
S. newington S. enterica ser. Newington 

 
R G R FU  R FPM  R 

S. newport S. enterica ser. Newport IPM  R FU U    
S. oranienburg S. enterica ser. Oranienburg 

 
R R FU U R  R 

S. orientalis S. enterica ser. Orientalis 
 

R R FU U FPM G (ML) R 
S. orion S. enterica ser. Orion 

 
R R FU U   R 
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Serovar 
 

Yadav et al. 
(1972) 2 

Iveson and 
Bradshaw 
(1973) 

Hart et al. 
(1982) 

Iveson and 
Hart (1983) 

Hart et al. 
(1985) 

Hart et al. 
(1986) 

Iveson et 
al. (2007)3 

Nomenclature        
Original paper White-Kauffmann-Le Minor RI RI RI RI RI ML & BI RI 
S. potsdam S. enterica ser. Potsdam   R FU U   R 
S. rottnest S. enterica ser. Rottnest   R FU U   R 
S. saint-paul or saintpaul S. enterica ser. Saintpaul   R FU U    
S. singapore S. enterica ser. Singapore   R FU U FPM   
S. typhimurium S. enterica ser. Typhimurium   R G R FU U R G(BI) R 
S. wandsbek or II wandsbek5 II 21:z10:z6   R R FU U R FPM   R 
S. waycross or IV waycross6 S. enterica ser. Waycross  R R FU U R FPM  R 
S. 6,8:-:- (O Group C2) -      R (BI)  
S. 48:d:- -   R FU U   R 
53:d:z42 II 53:d:z42       R 
Arizona spp.        U       

IIIb 25:l v:z53 -       R 
IIIb 50:K:z35 IIIb 50:K:z35 7       R 
IIIb 61:l v:z35 IIIb 61:l,v:z35       R 
IIIb 61:z52:z53 IIIb 61:z52:z53       R 
A. 9:26:21 IIIb 50:z52:z35 7    U    
A. 9:26:31 -    U    
A. 9:29:21 -    U    
A. 9a9b:26-21 IIIb 50:z52:z35 7   R FU     
A. 9a9b:26-31 IIIb 50:z52:z 8   R FU     
A. 9a9b:29-21 IIIb 50:K:z35 7   R FU     
A. 16:23:25 IIIb 38:lv:z53 9  R  U    
A. 16:26:25 IIIb 38:z52:z53 9    U    
A. 20:22-21 IIIb 35:(k):z35 9   R FU     
A. 20:29:21 -    U    
A. 20:29:25 IIIb 35:(k):z53:[z50] 10   R FU U    
A. 26:23:21 IIIb 61:l,v:z35 7  R R FU U    
A. 26:23:25 -  R      
A. 26:26-25 IIIb 61:z52:z53 9   R FU     
A. 28:32:28 IIIb 47:c:e,n,x,z15 8   R FU U    

1 Serovars previously classified as genus Arizona (A.) are included in this table because they have since been reclassified into the genus Salmonella 
2 Salmonella was isolated from a 10-day old pouch young at post-mortem 

3 In this study, samples were only collected from S. brachyurus that had been captured at sites considered to have high human-animal interaction rates i.e. settlements, camping areas etc, 
4 This serovar was referred to as S. alsterdorf in Iveson and Bradshaw (Iveson & Bradshaw 1973) and II alsterdorf in Iveson et al. (Iveson, Bradshaw, & Hart 2007) 
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5 This serovar was referred to as S. wandsbek in Iveson and Bradshaw (1973) and II Wandsbek in Iveson et al. (2007) 
6 This serovar was referred to as S. waycross in Iveson and Bradshaw (1973) and IV Waycross in Iveson et al. (2007) 
7 Current Salmonella antigenic formula was obtained from Hall and Rowe (1992) 
8 Patricia Fields, CDC Atlanta pers. comm. 2013 
9 Damien Bradford, PathWest, Perth pers. comm. 2013 
10 Current Salmonella antigenic formula was obtained from Weis et al. (1986) 
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In Australian macropods, salmonellosis typically presents as sepsis or gastroenteritis, and 

is most commonly noted in captive animals (Vogelnest & Portas 2010).  However, 

evidence suggests that macropods are asymptomatic carriers of Salmonella (Hart, 

Bradshaw, & Iveson 1985 ; Potter, Reid, & Fenwick 2011 ; Speare 1988a).  Speare (1988a) 

recovered Salmonella in faeces from 37/138 (26.8%) orphaned joeys of several species of 

the genus Macropus and Wallabia, where it was only sometimes associated with diarrhoea 

(faeces containing traces of blood).  This suggests that the remainder of joeys with no 

clinical signs were therefore asymptomatic carriers of Salmonella.  Salmonella has also 

been recovered from free-ranging macropods destined for the meat industry.  Potter et al. 

(2011) studied the prevalence of naturally acquired Salmonella in commercially harvested 

(for human consumption) wild-caught western grey kangaroos (Macropus fuliginosus).  

Salmonella (II 42:g,t and various serovars of S. enterica subsp. enterica: Muenchen, Kiambu, 

Rubislaw, Lindern, Champaing and Saintpaul) was cultured in 23/645 (3.6%) of animals.  

Shedding was significantly higher during April – June during which time, faecal samples 

were not properly formed, were green and contained large numbers of intestinal worms.  

However, there appeared to be little correlation between the presence of Salmonella and 

the colour and consistency of the stools.  Although the general health of these animals was 

difficult to assess (the kangaroos were shot and eviscerated in the field by professional 

hunters), it seems likely that at least some of these kangaroos may have been 

asymptomatically carrying Salmonella.   

 

With this evidence, it seems reasonable to infer that macropods could carry a variety of 

Salmonella spp. in their digestive tract, many of which are likely zoonotic pathogens, 

without obvious clinical signs of disease.  Iveson et al. (2007) suggested that quokkas are 

carriers of Salmonella since recaptured animals remained positive to the same serovar for 

up to nine months, while Hart et al. (1985) and Iveson et al. (1983) reported that “the vast 

majority of infections are believed to be non-disease state” even though no animal was 

physically examined.  However, the absence of external clinical signs of disease is 

insufficient evidence to support the absence of disease.  For this reason, we aimed to 

correlate Salmonella infection with the presence of disease in the Rottnest Island quokka.  

The presence of disease was investigated through, physical examination, HMT and BLC 

profiles.  We also included confounding factors such as the presence of concomitant 

infection with other organisms.  Additionally, we extended our study to mainland WA, by 

including animals from selected locations.  
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4.3 Materials and Methods 

Between September 2010 and December 2011, 153 quokkas were captured, of which 92 

were tested for Salmonella (71 on Rottnest Island and 21 on the mainland).  For trapping 

sites descriptions, general procedures and blood sampling techniques, refer to Chapter 3, 

section 3.3.  Animals were examined and tested for Salmonella in faecal samples by culture, 

and isolates were finally characterised by biochemical methods and serotyping. 

 

Faecal samples 8 for the isolation of Salmonella were obtained by rectal palpation using 

examination gloves.  The external area around the cloaca was cleaned with a 1:1 mixture 

of chlorhexidine gluconate and 70% ethanol before the procedure.  Some animals 

spontaneously defecated after rectal palpation, however, even though the pellet was not 

collected directly from the rectum, the sample was still included in this study.  In no cases 

were faecal samples taken from cotton/hessian bags, or traps.  Faecal samples were 

placed into 5 mL polycarbonate yellow cap sterile tubes (SARSTEDT Aktiengeseilschaft & 

Co. Germany) and stored at 4 ˚C until processing.  Nematode eggs and Eimeria sp. oocysts 

were screened by light microscopy (see Chapter 3, section 3.4.1).  

 

Blood samples from the lateral tail vein were collected into EDTA and lithium heparin 

blood collection tubes and sent to the Clinical Pathology service of the Murdoch University 

Veterinary Hospital for HMT and BLC analyses.  Differential counts were done manually on 

blood smears.  For specific details on methodologies, please see Chapter 3, section 3.4.2.  

Several parameters were recorded and used in this study: red blood cell concentration 

(RBC), haemoglobin concentration (HGB), packed cell volume (PCV), total white blood cell 

counts (corrected to exclude nucleated red blood cells) (WBC), the absolute 

concentrations for neutrophils (NEUT), eosinophils (EOS), basophils (BASO), lymphocytes 

(LYMPH) and monocytes (MONO), and the BLC analytes: alkaline phosphatase (ALP), 

alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK), 

total protein (PROT), albumin (ALB), calcium (CA), phosphorus (P), cholesterol (CHOL), 

total bilirubin (BILT), glucose (GLUC), creatinine (CREAT), urea (UREA), and vitamin E (Vit. 

E).  PBCM (red and white blood cells) were visually recorded from blood smears (e.g. 

keratocytes, schistocytes, reactive lymphocytes, and atypical neutrophils -including toxic 

changes-).  Microfilariae were screened for from blood smears, while Theileria sp. and 

Babesia sp. were screened for nPCR (see Chapter 7, section 7.3.1).  Macropod herpesvirus 

6 (MaHV-6) was screened for by nPCR (see Chapter 6, section 6.3.1), and Cryptococcus spp. 

                                                             
8 faecal pellets were used instead of rectal swabs as this type of sample produced better results when doing isolations from 
samples with a low number of Salmonella (Hart, Bradshaw, & Iveson 1985) 
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were screened by culture methods and isolates characterised by PCR (see Chapter 5, 

section 5.3.1). 

 

 Laboratory techniques for Salmonella 

4.3.1.1 Isolation 

In line with WHO recommendations, manipulation of samples and all diagnostic 

procedures were done in a class II laminar flow biosafety cabinet (LAF Technologies Pty 

Ltd., North Ringwood, Australia) (Chosewood & Wilson 2009).  Initial screening of faecal 

samples for the presence of Salmonella, was achieved using a direct method with pre-

enrichment by inoculating 0.5 g of faecal matter into buffered peptone water (PW) (pre-

enrichment) which were then incubated at 37 ˚C for 20 h.  Fresh Difco™ xylose lysine 

deoxycholate (XLD) agar plates (BD Diagnostics, Maryland, USA) were then lawn 

inoculated and incubated at 37 ˚C for at least 24 h.  Buffered peptone water was used to 

resuscitate Salmonella that had been damaged by conditions such as prolonged storage 

and freeze-thawing  (Davies 2013).  XLD is a selective and differential medium used in the 

isolation and differentiation of enteric pathogens from clinical specimens (Markey et al. 

2013 ; Nataro et al. 2011).  It contains xylose, which is fermented by practically all 

Enterobacteriaceae except Shigella species, as well as lysine that enables Salmonella to be 

differentiated from the non-pathogenic Enterobacteriaceae by slowing down the 

fermentation process of Salmonella on the xylose (Zimbro et al. 2009).  The agar also 

contains an indicator system allowing the visualisation of hydrogen sulphide (H2S) 

produced by the majority of Salmonella serovars, resulting in the formation of a black 

precipitate, and inhibits gram-positive organisms by the presence of sodium 

desoxycholate (Zimbro et al. 2009).   

 

An indirect method with delayed secondary enrichment (DSE) was used for the isolation 

and identification of the isolates, as well as for the subjective assessment of the bacterial 

load.  This was achieved by inoculating vials of Rappaport Vassiliadis (RV) enrichment 

broth (Oxoid LTD., Hampshire, England) with 10 µL of PW-faecal mixture (from the direct 

method) that were then incubated at 42± 1 ˚C for 48 h in a water bath.  Rappaport 

Vassiliadis contains malachite green and magnesium chloride that inhibits other 

organisms and is selective for Salmonella (Rappaport, Konforti, & Navon 1956 ; Vassiliadis 

et al. 1978 ; Zimbro et al. 2009).   Fresh XLD plates were then inoculated with 30 µL of the 

PW-RV enrichment broth suspension, streaked out for single colonies and incubated for 

18-24 h at 37 ˚C.  The use of a pre-enrichment step together with a selective enrichment 

broth for Salmonella has been recommended for the detection of the bacterium in 
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subclinical animals (Davies 2013).  Colonies with typical morphology appear mostly red 

(although pink is possible) with or without pale/dark black centres (Wallace, Jacobson, & 

Hammack 2009), although the majority of Salmonella serovars typically produced a black 

precipitate (Markey et al. 2013).  If typical colonies were not present, atypical Salmonella 

colonies (i.e. light yellow or yellow colonies with or without black centres) were then 

examined, if present (Wallace, Jacobson, & Hammack 2009).  To allow for the 

determination of multiple infection, multiple suspicious colonies were harvested and 

subcultured from each inoculated XLD plate.  Other morphological characteristics of 

Salmonella colonies (e.g. surface, structure, edge, light properties, and opacity) were 

considered but not as a definitive selection criterion.  Growth on XLD plates was scored as 

confluent (no separate colonies), heavy (>200 colonies), moderate (50-200 colonies), and 

light (<50 colonies or number of colonies).  Suspicious colonies were then subcultured 

onto Nutrient Agar (NA) plates and incubated for 24 h at 37 ˚C for further processing.  

Detailed protocols for the direct method with pre-enrichment, indirect method with DSE 

and the preparation of the XLD agar plates, are provided in Appendix 10.1.1. 

 

4.3.1.2 Preliminary identification and storage 

Suspicious colonies subcultured in NA were first confirmed as Gram negative bacilli by 

Gram’s staining.  These isolates were subsequently characterised by a set of biochemical 

tests [indole (I), methyl red (MR), Voges-Proskauer (VP), citrate (C), urea hydrolysis (U), 

lactose fermentation (L) and lysine decarboxylase (LD)] to allow discrimination between 

Salmonella and two other bacteria with similar morphology in XLD, Shigella sp. and 

Proteus sp.  Figure 4-2 illustrates the step by step protocol while Table 4-4 shows the 

different biochemical signatures between Salmonella sp., Shigella sp. and Proteus sp.  

Lastly, isolates were confirmed as Salmonella by an antiserum agglutination test using 

Antiserum Salmonella Omnivalent Omni-O (A-60) and Antiserum Salmonella Polyvalent 

OMG (both from Bio-Rad laboratories, Marnes-la-Coquette, France).  These two antisera 

were used to detect agglutination to the presence of somatic (O) antigen of groups O:2 to 

O:60, and groups O:60 to O:67, respectively.  Isolates were subsequently stored for further 

analysis in Protect® Bacterial Preservers (Technical Service Consultants Limited, 

Lancashire, United Kingdom) cryovials according to the manufacturer’s guidelines.  For 

specific details on these protocols, refer to Appendix 10.1.2. 
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Figure 4-2 Biochemical profiling tests used to do a preliminary identification of the suspicious Salmonella 
colonies. 

 

 
Table 4-4 Comparative biochemical profiling used to differentiate Salmonella, Proteus, and Shigella isolates. 
Adapted from Markey et al. (2013) 

Bacteria I MR VP C U L LD 
Salmonella - + - + - - + 
Proteus 
mirabilis 

- (+) - d + - - 

Proteus 
vulgaris 

+ + - (-) + - - 

Shigella sp. V + - - - - - 
Expected result 
for Salmonella 

Yellow Red Colourless/Yellow Blue Yellow Red/Pink Purple + turbid 

 + = 90-100% strains positive, (+) = 76-89% positive, d = 26-75% positive, (-) =11-25% positive, - = 0-10% 
positive, v =reaction varies between species 
 

4.3.1.3 Revival and serotyping 

Isolates frozen at -80 ˚C, were revived by incubation in nutrient broth (NB) at 37 ˚C for 24 

h (see Appendix 10.1.3 for details).  Upon confirmation of growth by turbidity in the 

medium, NA and XLD agar plates were inoculated and streaked out for single colonies, and 

incubated at 37 ˚C for 24 – 48 h.  For quality control purposes, morphology on XLD was 

cross matched with previous records, and a colony on NA plate was then subcultured onto 

an NA slant, and incubated at 37˚C for 18 – 24 h.  Isolates were then submitted to the 

national reference laboratory for Salmonella in Perth at PathWest, Sir Charles Gairdner 

Hospital, WA for serotyping by antisera slide agglutination (Kauffmann-White-LeMinor 

scheme) to detect O (somatic), H (flagellar) and K (capsular) antigens.  Two isolates were 

sent to the Australian Salmonella Reference Centre (Institute of Medical and Veterinary 

Science; IMVS Pathology) for further serotyping. 
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 Statistical analyses 

Haematology, BLC, and PBCM datasets for Rottnest Island animals that tested positive or 

negative to Salmonella, were analysed independently due to differences in sample sizes 

between these datasets (some individuals were tested for either haematology or blood 

chemistry, and not all individuals had a blood smear, which would mean their exclusion 

from analyses of the entire dataset due to missing data).  Season and sex were used as 

covariates in all three sets of analyses.  Mainland data was not included as only one animal 

tested positive to Salmonella, making the effective sample size difference between 

mainland and Rottnest Island too unbalanced.  Data were explored visually with non-

metric Multi-Dimensional Scaling (nMDS) and a Bray-Curtis similarity measure (Bray & 

Curtis 1957) using PAST v. 3.02 (Hammer, Harper, & Ryan 2001).  Haematology and blood 

chemistry response variables were fitted to an approximate normal distribution (BoxCox 

transformation; STATISTICA v. 9.1, StatSoft Inc.).  

 

Haematology and BLC dependant variables were range-standardised to a scale between 0 

and 1, while PBCM were not as it was a binary dataset.  For each nMDS plot, two-or-three-

dimensional analyses were selected according to the model that had the lowest stress 

statistic to determine adequacy of the fit.  To determine the similarity or dissimilarity of 

the HMT, BLC and PBCM datasets between the groups of interest (Salmonella-positive and 

Salmonella-negative), a pairwise similarity percentage (SIMPER, PAST v. 3.02) analysis 

(Clarke 1993), using Bray-Curtis similarity measure (Bray & Curtis 1957) was carried out.  

SIMPER results (i.e. percent of contribution of each variable to the similarity or 

dissimilarity) are accompanied by the arithmetic mean (x�) and standard deviation (SD) for 

each HMT and BLC variable, while odds ratio (OR) and 95% confidence intervals (CI) were 

calculated (Woolf 1955) for each PBCM observed in blood smears.  To determine the 

significance of any differences between dependant variable communities (HMT, BLC and 

PBCM) as a function of Salmonella, a two-way non-parametric permutational multivariate 

analysis of variance  (Two-way PERMANOVA, PAST v. 3.02) (Anderson 2001) with 9,999 

permutations was subsequently run.  This test provides a Pseudo-F statistic that is used to 

compare variability between groups from variability within groups, in which the larger the 

value of F, the more likely is that the null hypothesis of no variability between groups is 

false (Anderson 2001).  A p-value is then used to detect the significance of each factor in 

the design and the interaction between them.  The effect size (ES) dCohen’s was calculated for 

p= 0.05, or for values that were 0.01-0.02 points above the cut off (< 0.05), either by using 

the F-value given by PERMANOVA or the χ2 value given by Chi-square (Lipsey & Wilson 

2001 pp. 172-188).  Clinically, the magnitude of the ES was considered to be small if d≤ 0.2, 

moderate if  0.2> d <0.8 and large if d≥ 0.8 (Cohen 1988 pp. 531-537).  
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Seasonal differences in the prevalence of Salmonella infections on Rottnest Island were 

explored using  χ2 for Trend.  Associations between Salmonella and sex (across Rottnest 

Island) as well as associations between Salmonella and concomitant infection with Eimeria 

sp., macropod herpesvirus 6 (MaHV-6), Theileria sp., Babesia sp., Cryptococcus spp., 

microfilariae, trypanosomes and nematode eggs, were explored using χ2 with Yates’ 

correction.  Odd ratios and 95% CI were calculated using the Woolf’s method (1955).  

When a null value was present in a contingency table, 0.5 were added to each observed 

value in order to calculate OR and 95% CI (Altman 1999).  Additionally, ES (dCohen’s) was 

calculated when considered appropriate.  Using Fisher’s exact test (smaller sample sizes), 

we also looked at the individual relation between sex and Salmonella prevalence at each 

trapping location on Rottnest Island, and at the prevalence of Salmonella by the degree of 

disturbance of their trapping sites, classified as disturbed (constant human interaction, 

infrastructure is common, unconventional food sources available) and less disturbed (less 

human interaction, infrastructure still present but less, less or no access to unconventional 

food sources).  All other CI for estimates of proportions (i.e. prevalence), were calculated 

using the Wilson model for n≤ 40, and the Jeffreys model for n≥ 40 (Brown, Cai, & 

DasGupta 2001).  A T test with Welch’s correction was used to explore the differences in 

WBC between microfilariae-positive and -negative animals within the Salmonella sampled 

group, as well as between Salmonella-positive and Salmonella-negative individuals.  

Significance was set at p< 0.05 for all analyses, unless stated otherwise. 

 

4.4 Results 

 Microbiology notes 

The morphology of all Salmonella serovars isolated (at 37 ˚C and 24 h post incubation) in 

this study was considered to be typical for XLD agar: pink to red with black centres 

(Wallace, Jacobson, & Hammack 2009) (Figure 4-3).  Colonies were mostly circular, effuse, 

smooth and translucent.  They were Gram negative bacilli on Gram’s stain, and presented a 

typical biochemical profile for Salmonella (see Table 4-4).  All isolates exhibited positive 

agglutination (Figure 4-3) to antiserum Salmonella Omnivalent Omni-O (A-60) and no 

agglutination to antiserum Salmonella Polyvalent OMG, indicating isolates were not 

serovars of the somatic (O) antigen groups 61 to 67.  
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Figure 4-3 Growth on XLD agar plates and antiserum agglutination test. (a, b) suspicious Salmonella 
colonies on an XLD agar plate inoculated with a suspension of PW (pre-enrichment) and faeces.  Colonies 
are indicated by closed arrows. (c, d) suspicious Salmonella colonies on an XLD agar plate inoculated with 
a suspension of pre-enrichment and Rappaport Vassiliadis selective enrichment broth, and streaked out 
for single colonies.  Note colonies of other intestinal bacteria and the predominant and suspicious colonies 
with H2S precipitate. (e) negative agglutination test for Salmonella, (f) positive agglutination test for 
Salmonella with obvious clumps in the homogenate. 

 

 

Of the 35 animals that were positive to Salmonella (Rottnest Island= 34, mainland= 1), 

80% (28/35, 95% CI 64-90) had a confluent growth on XLD (RV selective enrichment 

inoculum) at 24 h post incubation, while there was a heavy growth of the isolates from the 

remaining seven animals (i.e. >200 colonies). 

 

 Distribution and prevalence of Salmonella serovars (Rottnest 

Island and mainland) 

 

Of the 21 individuals (18 male and 3 female) trapped from mainland sites that were tested 

for Salmonella, an adult male from Jarrahdale (prevalence 4.8%, CI 0.8-22.7) was positive 

to Salmonella (S. enterica subsp. diarizonae (IIIb) ser. 50:k:z35).  By contrast, of the 71 

a. b. 

c. d. 

S940421b
Typewritten Text
Removed due to copyright restrictions
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individuals on Rottnest Island tested (40 male and 31 female), 34 animals were positive to 

Salmonella (prevalence 47.9%, CI 36.5-59.4).  Of these 34 animals, 18 were males 

(prevalence n=40 =45%, CI 36.7-68.5) and 16 were females (prevalence n=31 =51%, CI 31.5-

63.3).  The probability (i.e. OR) of females to be positive to Salmonella was 1.30 (CI 0.51-

3.34) times higher than males.  However, this association was not significant (χ2 1, n=71= 

0.30, p= 0.581). 

 

There were no significant differences at in the prevalence of Salmonella by sex at each 

individual trapping location within Rottnest Island (Table 4-5), and no significant 

difference in the prevalence of Salmonella in quokkas by the degree of disturbance of their 

habitat (Fisher’s exact test p= 0.456).  By contrast, there was seasonal variation (χ2 1, n=71= 

7.65, p= 0.001) in the prevalence of Salmonella in Rottnest Island animals (Figure 4-4) 

with the highest prevalence of infection at the end of the dry summer season (March), 

while the lowest prevalence was at the end of the wet winter (September). 

 
Table 4-5 Two-tailed Fisher’s exact test results for sex and presence of Salmonella at individual locations 
where animals were trapped on Rottnest Island, CI= confidence interval. 

Trapping sites 
+ve ♂/n 
(prevalence) 95% CI 

+ve ♀/n 
(prevalence) 95% CI Fisher’s exact test 

Kingston 3/8 (37.5%) 13.7-69.4 3/4 (75%) 30.1-95.4 p= 0.626 
Parker Point 1/6 (16.6%) 3.0-56.4 3/5 (60%) 23.1-88.2 p= 0.569 
Serpentine 4/7 (57.1%) 25-84.2 4/5 (80%) 37.6-96.4 p= 0.999 
Barker Swamp 4/6 (66.6%) 30-90.3 3/5 (60%) 23.1-88.2 p= 0.999 
Settlement 3/7 (42.8%) 15.8-75 1/6 (16.6%) 3.0-56.4 p= 0.603 
West End 3/6 (50%) 18.8-81.2 2/6 (33.3%) 9.7-70 p= 0.999 

 

 

 

 
Figure 4-4 Monthly proportion of Salmonella spp. positive and negative animals on Rottnest Island 
between March and December of 2011.  N values represent the total number of animals sampled in each 
month. 
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A total of 16 serovars were identified in 37 isolations obtained from 35 animals (Rottnest 

Island and mainland combined).  Of these, 13 serovars (81.25%, CI 57-93.4) belonged to S. 

enterica subsp. enterica, one serovar (6.25%, CI 1.1-28) to S. enterica subsp. salamae (II), 

and two serovars (12.5%, CI 3.2-36) to S. enterica subsp. diarizonae (IIIb).  Of these three 

subspecies, only S. enterica subsp. diarizonae (IIIb) was isolated from the mainland 

(Figure 4-5).  Two serovars were recovered simultaneously from two animals from 

Rottnest Island: S. enterica ser. Adelaide and S. enterica ser. Cerro were recovered from a 

male captured at Parker Point, and S. enterica ser. Chester with S. enterica ser. Cerro from 

another male captured at Serpentine.  The highest prevalences of Salmonella in quokkas 

on Rottnest Island were found at Serpentine (prevalence n=12 =66.7%, CI 39.1-86.2) and 

Barker Swamp (prevalence n=11 =63.6%, CI 35.4-84.8), while the lowest prevalence was 

found at the Settlement (prevalence n=13 =30.8%, CI 12.7-57.6).  Of 36 isolations obtained 

on Rottnest Island, the three most frequent serovars were S. enterica ser. Adelaide (19.4%, 

CI 10-35), S. enterica ser. Muenchen (13.9%, CI 6.1-29), and S. enterica ser. Cerro (11.1%, 

CI 3.9-25).  A total of five new Salmonella serovars were isolated from quokkas across 

Rottnest Island and mainland samples (Table 4-6). 
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Figure 4-5 Animals tested positive and negative to three subspecies of Salmonella [enterica (serovar name), 
diarizonae (IIIb), and salamae (II)] on six sites at Rottnest Island and four sites on the mainland.  The total 
number of each serovar is indicated in parenthesis. 
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S. enterica IIIb 50:k:z35 (1)

S. enterica IIIb 35:k:z53 (1)

S. enterica II 21:z10:z6 (3)

S. enterica ser. Adelaide (7)

S. enterica ser. Alachua (1)

S. enterica ser. Bootle (1)

S. enterica ser. Bredeney (2)

S. enterica ser. Carnac (2)

S. enterica ser. Cerro (4)

S. enterica ser. Chester (3)

S. enterica ser. Choleraesuis var.
Decatur (1)
S. enterica ser. Infantis (2)

S. enterica ser. Muenchen (5)

S. enterica ser. Orion (2)

S. enterica ser. Rottnest (1)

S. enterica ser. Waycross (1)

Negative (57)

S. enterica IIIb 50:k:z35 (1) 

S. enterica IIIb 35:k:z35 (1) 

S. enterica II 21:z10:z6 (3) 

S. enterica ser. Adelaide (7) 
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S. enterica ser. Bredeney (2) 
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S. enterica ser. Cerro (4) 

S. enterica ser. Chester (3) 
S. enterica ser. Choleraesuis 
var. Decatur(1) 

S. enterica ser. Infantis (2) 

S. enterica ser. Muenchen (5) 

S. enterica ser. Orion (2) 

S. enterica ser. Rottnest (1) 

S. enterica ser. Waycross (1) 
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Table 4-6 Distribution and number of Salmonella isolations from quokkas on Rottnest Island (six sites) and 
the mainland (one site) between June 2010 and December 2011. 

Serovar isolated Ba
rk

er
 S

w
am

p 

Ki
ng

st
on

 

Pa
rk

er
 P

oi
nt

 

Se
rp

en
tin

e 

Se
ttl

em
en

t 

W
es

t E
nd

 

M
ai

nl
an

d 

Totals 
S. enterica subsp. enterica  

ser. Adelaide   2 3  2  7 
ser. Alachua †    1    1 
ser. Bootle      1  1 
ser. Bredeney † 1   1    2 
ser. Carnac     2   2 
ser. Cerro †  1 1 1 1   4 
ser. Chester 1  1 1    3 
ser. Choleraesuis var. 

Decatur    1    1 

ser. Infantis  1   1   2 
ser. Muenchen 1 2    2  5 
ser. Orion 1   1    2 
ser. Rottnest  1      1 
ser. Waycross 1       1 

S. enterica subsp. diarizonae  
(IIIb) ser. 35:k:z53 † 1       1 
(IIIb) ser. 50:k:z35 ‡       1 1 

S. enterica subsp. salamae  
(II) ser. 21:z10:z6 1 1 1     3 

Total no. of animals tested 11 12 11 12 13 12 21 92 
Animals positive 7 6 4 8 4 5 1 35 
No. of isolations 7 6 5 9 4 5 1 37 

† new Salmonella serovars isolated from S. brachyurus on Rottnest Island 
‡ new Salmonella serovar isolated from S. brachyurus on the mainland 
ser.= serovar 
var.= variety 
 

 

 

 Correlates of Salmonella with HMT, BLC and PBCM variables 

for Rottnest Island S. brachyurus 

Subtle differences in the HMT, BLC and PBCM datasets between Salmonella positive and 

negative animals were observed (SIMPER; Table 4-7a,b,c).  This was evident in the WBC 

(less LYMPH, EOS, NEUT; and higher MONO), erythrogram (lower RBC, HGB, and PCV), 

and blood chemistry (higher ALP, BILT, CREAT, and UREA, lower GLUC, PROT and ALB) 

profiles of Salmonella positive animals.  Though the differences in the HMT and BLC 

parameters between Salmonella-positive and Salmonella-negative animals were not 

significant (PERMANOVA: p≥ 0.05, Table 4-8a,b,c), the p values obtained were considered 

to be weak evidence of the absence of effect of Salmonella on these response variables. 
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Table 4-7 SIMPER analysis results indicating the contribution of specific variables to the observed differences 
in  HMT (a), BLC (b), and  PBCM (c) profiles of quokkas that were Salmonella-positive and Salmonella-negative 
on Rottnest Island.  HMT= haematology, BLC= blood chemistry, PBCM= peripheral blood cell morphology. 

  Taxon  Ct % Salmonella +ve Salmonella -ve 
    x�  SD  x�  SD  

a. HMT 
(31) † 
n +ve= 26 
n -ve= 31 

Lymphocytes (x10e9/L) 13.52 1.66 0.79 2.03 1.03 
 RBC (x10e12/L) 11.98 5.60 0.92 5.85 0.78 
 WBC (x10e9/L) 11.84 4.20 1.55 4.94 1.60 
 Monocytes (x10e9/L) 11.76 0.07 0.04 0.06 0.06 
 Basophils (x10e9/L) 11.72 0.02 0.02 0.02 0.02 
 Eosinophils (x10e9/L) 11.01 0.32 0.28 0.51 0.49 
 HGB (g/L) 9.978 105 16.4 108 12.3 
 Neutrophils (x10e9/L) 9.652 2.13 0.97 2.32 1.12 
 PCV (%) 8.544 32.7 4.43 33.5 4.79 
b. BLC 

(20.9) † 
n +ve= 30 
n -ve = 36 

Vit. E (mg/L) 9.55 6.89 1.74 6.44 1.63 
 CK (U/L) 9.12 861 768 949 1,035 
 PHOS (mmol/L) 8.83 1.01 0.34 1.2 0.46 
 ALP (U/L) 7.96 11,278 15,617 5,433 3,308 
 CHOL (mmol/L) 7.75 2.56 0.47 2.88 0.52 
 GLUC (mmol/L) 7.40 4.20 2.01 4.27 2.71 
 PROT (g/L) 7.14 60.2 3.67 60.8 5.59 
 BILT (µmol/L) 6.91 5.01 2.05 4.39 1.47 
 ALT (U/L) 6.87 222 76.7 222 62.4 
 CALC (mmol/L) 6.77 2.24 0.18 2.19 0.23 
 ALB (g/L) 6.49 36.1 1.44 36.3 1.97 
 AST (U/L) 5.36 54.1 23.6 45.7 17.6 
 CREAT (µmol/L) 5.12 74.1 17.9 69.4 15 
 UREA (mmol/L) 4.75 7.10 1.87 6.88 1.67 
    Salmonella 

+ve 
Salmonella 
-ve  

   Ct % 
Frequency 
(%) 

Frequency 
(%) OR ‡ (95% CI) 

c. PBCM 
(24.59) † 
+ve= 30 
-ve= 36 

Rouleaux formation 12.2 16 (53.3) 16 (44.4) 1.43 (0.54-3.78) 
 Acanthocytes 12.1 17 (56.7) 19 (52.8) 1.17 (0.44-3.10) 
 Heinz bodies 10.8 11 (36.7) 12 (33.3) 1.16 (0.42-3.20) 
 Schistocytes 8.57 8 (26.7) 8 (22.2) 1.27 (0.41-3.93) 
 Anisocytosis 8.18 26 (86.7) 27 (75) 2.17 (0.59-7.91) 
 Keratocytes 8.12 7 (23.3) 8 (22.2) 1.07 (0.34-3.38) 
 Flower Cells 8.01 4 (13.3) 10 (27.8) 0.40 (0.11-1.44) 
 Echinocytes 7.80 6 (20) 8 (22.2) 0.88 (0.27-2.88) 
 Poikilocytosis 6.61 25 (83.3) 31 (86.1) 0.81 (0.21-3.10) 
 Hypochromasia 5.18 27 (90) 31 (86.1) 1.45 (0.32-6.65) 
 nRBCs 4.84 27 (90) 32 (88.9) 1.13 (0.23-5.47) 
 Polychromasia 3.87 28 (93.3) 33 (91.7) 1.27 (0.20-8.17) 
 Howell-Jolly bodies 2.84 29 (96.7) 33 (91.7) 2.64 (0.26-26.7) 
 Reactive lymphocytes 0.90 30 (100) 35 (97.2) 2.58 (0.10-65.6) *  

Ct: Percent of contribution to difference 
† Overall average dissimilarity 
‡ Odds ratio for the presence of the taxon in Salmonella +ve individuals and 95% confidence intervals 
calculated using Woolf’s method (1955) 
* calculated by adding 0.5 to each observed value (Altman 1999) 
 

 

There was no particular clustering of the variables (HMT, BLC and PBCM) either across 

seasons (nMDS analyses: Figure 4-6a,c,e) or across sexes (Figure 4-6b,d,f).  Contrary, there 

was a consistent and significant effect (PERMANOVA: p< 0.01; Table 4-8) of season and 

sex on BLC profiles, whereas season was the only factor to have a significant effect (p< 

0.01) on PBCM of quokkas on Rottnest Island.  No clustering was evident in their 

respective nMDS plots (Figure 4-6c,d,e,f). 
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Table 4-8 Two-way PERMANOVA of  selected HMT variables (a) (corrected WBC, RBC, HGB, PCV, and absolute 
counts for leukocytes obtained with a manual differential on a blood smear), BLC analytes (b) (ALP, ALT, AST, 
CK, PROT, ALB, CALC, PHOSP, CHOL, BILT, GLUC, CREAT, UREA and Vitamin E), and PBCM (c), for S. brachyurus 
positive and negative to any Salmonella serovar,  with season and sex as independent factors.  Bray-Curtis 
similarity index, Permutations N= 9,999.  Only two independent factors could be tested simultaneously, and 
therefore the presence of Salmonella was tested first with season, and then secondly with sex of the animal.  
HMT= haematology, BLC=blood chemistry, PBCM= peripheral blood cell morphology. 

  Data Factor SS df MS F p 
a. 

Al
l S

al
m

on
el

la
 se

ro
va

rs
 

HMT 

Factor Salmonella 0.108 1 0.108 1.31 0.08 † 
 Factor Season 0.179 3 0.060 0.724 0.39 
 Interaction -1.24 3 -0.414 -5.03 0.82 
 Residual 4.03 49 0.082   
 Total 3.08 56    
 Factor Salmonella 0.108 1 0.108 1.90 0.07 † 
 Factor Sex 0.061 1 0.061 1.08 0.34 
 Interaction -0.111 1 -0.111 -1.95 0.45 
 Residual 3.02 53 0.057   
 Total 3.08 56    

b. 

BLC 

Factor Salmonella 0.039 1 0.039 1.46 0.05 ‡ 
 Factor Season 0.215 3 0.072 2.70 0.01 
 Interaction -0.320 3 -0.107 -4.02 0.25 
 Residual 1.54 58 0.027   
 Total 1.47 65    
 Factor Salmonella 0.039 1 0.039 1.69 0.07 ‡ 
 Factor Sex 0.063 1 0.063 2.75 0.01 
 Interaction -0.05 1 -0.05 -2.20 0.34 
 Residual 1.42 62 0.023   
 Total 1.47 65    

c. 

PBCM 

Factor Salmonella 0.046 1 0.046 0.898 0.36 
 Factor Season 0.409 3 0.136 2.678 0.01 
 Interaction -0.752 3 -0.251 -4.93 0.95 
 Residual 2.95 58 0.051   
 Total 2.65 65    
 Factor Salmonella 0.015 1 0.015 0.340 0.80 
 Factor Sex 0.089 1 0.089 1.98 0.09 
 Interaction -0.252 1 -0.252 -5.60 0.99 
 Residual 2.80 62 0.045   
 Total 2.65 65    

SS: sum of squares 
Df: degrees of freedom 
MS: mean sum of squares 
† Effect size for haematology dCohen’s= 0.34 (moderate) 
‡ Effect size for blood chemistry dCohen’s= 0.32 (moderate) 
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HMT                        By Season                                                            By Sex 

 
BLC 

 
PBCM 

 
 
Figure 4-6 Non-metric MDS plots with Bray-Curtis similarity measure, illustrating the structural 
dissimilarity of HMT (a, b: stress statistic= 0.158), BLC (c. stress statistic= 0.273; d. stress statistic= 
0.238), and PBCM communities (e, f: stress statistic= 0.245) in Salmonella-positive and Salmonella-
negative animals on Rottnest Island.  Covariates: season for left hand side plots, sex for right hand side 
plots.  Key legends should be read for the left hand and right hand panels separately.  Note that the 
distances along the axes are unit-less, therefore the positions of the points in the plots are relative 
distances from one another rather than absolute differences read in these units.  HMT= haematology, 
BLC=blood chemistry, PBCM= peripheral blood cell morphology. 

 

 

 

a. b. 

▲ all Salmonella serovars (+ve) ♂ 
△ all Salmonella serovars (-ve) ♂ 
■ all Salmonella serovars (+ve) ♀ 
□ all Salmonella serovars (-ve) ♀ 

 

▲ (+ve), △ (-ve) Autumn 
■ (+ve), □ (-ve) Winter 
● (+ve), ◯ (-ve) Spring 

◆ (+ve), ◇ (-ve) Summer 

c. d. 

e. f. 
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 Relation between Salmonella spp. and: (i) physical examination 

findings, (ii) other organisms 

There were no differences in the physical examination findings between animals positive 

or negative for Salmonella (Table 4-9).  There was a significant (p= 0.012) association 

between the presence of microfilariae in peripheral blood between Salmonella-positive 

and Salmonella-negative animals, with a greater proportion of microfilariae-positive 

animals in the Salmonella-positive group (Table 4-10).  Furthermore, the probability of 

microfilariae-positive animals to be positive to Salmonella was 3.88 (95%, CI 1.31-11.5) 

times higher than microfilariae-negative animals.  Within the Salmonella sampled group, 

microfilariae-positive animals had a significantly (x�= 3.901, var(X)= 1.46, n= 22) lower WBC 

than microfilariae-negative animals (x�= 4.651, var(X)= 3.28, n= 45); t(58.6)= 2; p= 0.044.  

Similarly, WBC was significantly lower in Salmonella-positive animals (x�= 3.925, var(X)= 

2.41, n= 31) than in Salmonella-negative animals (x�= 4.817, var(X)= 2.80, n= 36); t(64.6)= 2.3; 

p= 0.027.  There were no other significant associations between the presence of other 

organisms (i.e. MaHV-6, Cryptococcus spp., Theileria sp., Babesia sp., nematode eggs or 

Eimeria oocysts) with the presence of Salmonella spp. (Table 4-10). 

 
Table 4-9 Associations between physical examination findings and the presence of Salmonella in animals from 
Rottnest Island. OR= odds ratio, CI= confidence interval, CRT= capillary refill time, MM= mucous membranes, 
EP= external parasites. 

 Salmonella spp.   
Finding +ve (%) n=34 -ve (%) n=37 OR † (95% CI) χ² 1, n= 71 

Abnormal mentation a 1 (1.41) 0 (0) 3.36 (0.13-85.3) * = 1.10, p= 0.293 
Abnormal CRT b 4 (5.63) 2 (2.81) 2.33 (0.40-13.6) = 0.92, p= 0.335 
Abnormal MM c 10 (14.08) 10 (14.08) 1.13 (0.40-3.17) = 0.05, p= 0.823 
Cloudy eye 1 (1.41) 1 (1.41) 1.09 (0.07-18.1) = 0.43, p= 0.511 
Dehydration d 16 (22.53) 17 (23.94) 1.05 (0.41-2.66) = 0.01, p= 0.925 
Ear notches 5 (7.04) 10 (14.14) 0.47 (0.14-1.54) = 1.61, p= 0.203 
Flaky skin 1 (1.41) 0 (0) 3.36 (0.13-85.3) * = 0.01, p= 0.966 
Fur loss 11 (15.49) 6 (8.45) 2.47 (0.80-7.66) = 2.53, p= 0.111 
Presence of EP 9 (12.67) 5 (7.04) 2.30 (0.69-7.74) = 1.88, p= 0.170 
Skin erosions 2 (2.82) 1 (1.41) 2.25 (0.19-26.0) = 0.01, p= 0.940 
Wheezes 0 (0) 1 (1.41) 0.35 (0.01-8.95) * = 0.01, p= 0.966 

a Diminished response to external stimuli 
b Greater than two seconds 
c Pale and blue tinted mucous membranes  
d Skin tenting for longer than 2 seconds 
† Odds ratio for the presence of the taxon in Salmonella +ve individuals and 95% confidence intervals 
calculated using Woolf’s method (1955) 
* calculated by adding 0.5 to each observed value (Altman 1999) 
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Table 4-10 Results for associations of other infectious agents occurring concomitantly in animals from 
Rottnest Island tested for Salmonella.  OR= odds ratio, CI= confidence interval, MaHV-6= Macropodid 
herpesvirus 6. 

 Salmonella spp.   
Finding +ve/n (%) -ve/n (%) OR † (95% CI) Statistics 
Babesia sp. a 1/26 (3.84) 0/33 (-) 3.94 (0.15-100.8) * χ²1, n= 59 = 0.01, p= 0.904 
Cryptococcus spp. b 4/29 (13.8) 1/31 (3.22) 4.80 (0.5-45.7) χ²1, n= 60 = 1.03, p= 0.311 
Eimeria spp. c 24/32 (75) 26/31 (83.8) 0.58 (0.17-2.01) χ²1, n= 63 = 0.75, p= 0.384 
MaHV-6 a 3/26 (11.5) 2/33 (6.06) 2.02 (0.31-13.1) χ²1, n= 59 = 0.08, p= 0.780 
Microfilariae c 15/31 (48.3) 7/36 (19.4) 3.88 (1.31-11.5) χ²1, n= 67 = 6.33, p= 0.012 ‡ 
Nematode eggs c 29/32 (90.6) 27/31 (87.1) 1.43 (0.29-7.0) χ²1, n= 63 = 0.01, p= 0.964 
Theileria sp. a 5/26 (19.2) 5/33 (15.1) 1.33 (0.34-5.21) χ²1, n= 59 = 0.17, p= 0.678 

a Screened by PCR [MaHV-6: see Chapter 6, section 6.3.1; Piroplasms: Chapter 7, section 7.3.1.1] 
b Screened by culture methods, isolates characterised by PCR (see Chapter 5, section 5.3.1) 
c Screened by light microscopy [gastrointestinal parasites: see Chapter 3, section 3.4.1; microfilariae: see 
Chapter 7, section 7.3.1] 
† Odds ratio for the presence of the taxon in Salmonella +ve individuals and 95% confidence intervals 
calculated using Woolf’s method (1955) 
‡ Effect Size dCohen’s= 0.63 (moderate) 
* calculated by adding 0.5 to each observed value (Altman 1999) 
 
 
 

4.5 Discussion 

Free-ranging S. brachyurus from Rottnest Island and the mainland of WA were screened 

for Salmonella (faecal pellets collected by rectal palpation) by culture methods and 

isolates were identified to the serovar level by serotyping.  There was a subtle effect of 

Salmonella spp. on the HMT and BLC response variables of infected animals.  By contrast, 

there was no association between on-site physical examination findings and the presence 

of Salmonella spp.  Concomitant infection with microfilariae was associated with a greater 

probability (OR 3.88, CI 1.31-11.50; p= 0.012) of being infected with Salmonella,  

Salmonella infected animals that were also positive to microfilariae had lower WBC than 

Salmonella-positive animals that were negative to microfilariae (p= 0.042).  Sixteen 

serovars were recovered, of which the most prevalent ones were S. enterica ser. Adelaide 

and ser. Muenchen, followed by ser. Cerro.  Of all the serovars recovered, five were new 

unreported ones in the quokka.  Overall, there was a greater prevalence of Salmonella on 

Rottnest Island (prevalence n=71 =47.9%, CI 36.5-59.4) than on the mainland (prevalence 
n=21 =4.8%, CI 0.8-22.7), with the highest prevalence at Serpentine (66.7%, CI 39.1-86.2) 

and Barker Swamp (63.6%, CI 35.4-84.8) sites, while quokkas from the Settlement site had 

the lowest prevalence (30.8%, CI 12.7-57.6).  This prevalence was found to have a 

seasonal pattern, with the lowest and highest prevalences happening in winter and 

summer respectively. 

 

The combined prevalence of Salmonella obtained in this study for animals on the mainland 

(4.8%, 1/21), is considerably lower than that previously reported (63.6%) for animals at 
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Byford (~40 km South of Perth) and Holyoake (~100 km S.S.E. of Perth) (Hart 1980 ; Hart, 

Bradshaw, & Iveson 1986).  However, because of inconsistencies in the sampling 

techniques, any of the isolations obtained from mainland animals in these earlier studies 

cannot be linked back to the animals with acceptable certainty given the risk of cross-

contamination.  S. enterica ser. Orientalis and ser. Newbrunswick were isolated at Byford, 

however, faecal samples were collected from the ground (Hart 1980).  Two different 

serovars were isolated from animals at Holyoake, S. enterica ser. Muenchen from nine 

animals, and ser. Newington from eight animals, however, these results were not just 

obtained from rectal swabs but also faecal pellets collected from the floor of the traps.  

Additionally, animals were manipulated with equipment and holding bags that have been 

previously used on Rottnest Island (Hart 1980), where these two serovars appear to be 

among the most prevalent (Iveson & Hart 1983).  In consequence, these isolations cannot 

provide an indication of the presence of Salmonella in S. brachyurus.  Although cross-

contamination of mainland samples may have been possible in this study, we believe there 

was a lower risk of it considering that faecal pellets were collected directly from the 

animal by rectal palpation after having disinfected the pericloacal region.  Additionally, 

samples were considered not viable if they have been in contact with any other surfaces 

than those of the examination gloves and the cloacal lining.  Furthermore, all handling 

equipment (e.g. restraining bags) used on mainland animals was exclusive for mainland 

fieldwork, and all medical equipment (e.g. anaesthetic equipment) was chemically 

disinfected with F10SCXD (Health and Hygiene Pty. Ltd, Florida Hills, South Africa) 

between trapping sessions.   

 

The prevalence of Salmonella on the mainland (i.e. 4.5%) detected in this study, is within 

the prevalences reported by previous studies for Australian native wildlife.  For instance, 

Parsons et al (2010) obtained prevalences ranging from 2% (in macropods and other 

Dasyuromorphia and Diprotodontia species) to 9% in snakes and lizards, while Potter et 

al (2011) obtained a prevalence of 3.6% in western grey kangaroos.  Similarly, studies 

outside Australia have also determined similar low prevalences of Salmonella, ranging 

from 1% in white tailed deer (Odocoileus virginianus) (Renter et al. 2006) to 9.23% in the 

beech marten (Martes foina) (Nowakiewicz et al. 2016).  These results however, should be 

interpreted with caution.  Given that infected animals can intermittently shed Salmonella 

in their faeces (Sanchez et al. 2002 ; Spier et al. 1991), it is possible that negative mainland 

quokkas were in fact positive but not shedding Salmonella at the time of sampling, in 

which case prevalence would have been higher.  Similarly, mainland quokkas might have 

been sampled during the time of the year (i.e. Autumn and Spring) when Salmonella 

proliferation was not at its peak, hence obtaining a low prevalence.  Previous studies in 
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various species such as opossums (Kourany & Vasquez 1975 ; Ruiz-Piña et al. 2002) have 

observed a greater peak of Salmonella isolations during the dry season.  This coincides 

with our findings on Rottnest Island where there was a greater prevalence of Salmonella 

during summer (see Figure 4-4), which has also been previously shown by Iveson et al. 

(2007).  Lastly, S. brachyurus in the mainland is a very elusive animal and difficult to trap.  

Hence, given the small number of animals captured and processed, it is possible that 

positive animals may have not been included in the sample.  Nevertheless, our data still 

retains its reliability given that our results can be linked-back to the animals with a 

greater degree of certainty. 

 

The estimated prevalence of Salmonella on Rottnest Island obtained in this study differed 

from previous studies in that, it was lower than the first published prevalence back in 

1973 (71%, 62/87) (Iveson & Bradshaw 1973) but higher than subsequent studies: 38.4% 

(1,551/4,038) by Iveson and Hart (1983) 9 and 32% (197/621) by Iveson et al. (2007) 10.  

This difference may be explained by the type of samples that were used in each study, but 

also by the sample size.  Hart et al. (1985) determined that faecal pellets were more 

effective than rectal swabs when detecting Salmonella at low concentrations (below 103 of 

Salmonella per gram of faeces) in S. brachyurus 11.  Methodologies used for the highest 

prevalences reported (i.e. 47.9% and 71%) both had a sample size smaller than 100 

animals and used faecal pellets, with the latter also using rectal swabs in duplicate.  In 

contrast, lower prevalences (i.e. 38.4% and 32%) were obtained when animals were 

screened with rectal swabs only, and the sample size ranged from 621-4,038 animals.   It 

might be reasonable to infer then, that by screening for Salmonella on faecal pellets, faecal 

Salmonella loads that are usually not detected with rectal swabs would have been detected, 

hence a higher number of positive animals.  However, using faecal pellets only (collected 

by rectal palpation) may increase the likelihood of not screening possible positive animals 

if there was no rectal content.  Consequently, a higher prevalence and serovar richness 

could have been obtained on Rottnest Island in this study by using faecal pellets in 

combination with rectal swabs (when a faecal pellet could not be retrieved).   

 

In both cases (Rottnest Island and mainland), diagnostic methods with a greater 

sensitivity such as PCR may have been helpful in detecting low levels of Salmonella, and 

consequently detecting a greater prevalence.  However, there is no consensus in the 

literature as to whether molecular methods are more effective in detecting Salmonella 

than the current gold standard (culturing).  For instance, Eriksson and Aspan (2007) when 
                                                             
9 Data for this paper was collected over a period of 10 years, between 1972 and 1983  
10 Data for this paper was collected over the period of March 1984 and March 1985 
11 Above 103 Salmonella per gram of faeces the efficiency in obtaining Salmonella on culture media was similar for both type 
of samples (rectal swabs and faecal pellets) 
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screening for Salmonella in artificially contaminated faecal samples from cattle, pigs, and 

poultry, concluded that microbiological methods were more reliable and sensitive, and 

that PCR-based methods proved almost as sensitive and specific.  Myint et al. (2006) 

obtained the same Salmonella prevalence when testing both techniques on the same 

poultry meat samples.  Similarly, Wilkins et al. (2010) concluded that Real Time 

Polymerase Chain Reaction (RT-PCR) performed similarly to culture when screening for 

Salmonella in the faeces of grow–finish pigs.  By contrast, other authors indicate that PCR-

based methods are more sensitive and detect Salmonella more efficiently than culture 

techniques (Amavisit et al. 2001 ; Kumar, Surendran, & Thampuran 2008).  Though 

quicker results can be obtained through PCR-based methods (Eriksson & Aspan 2007 ; 

Khan et al. 2014 ; Myint et al. 2006) and in some cases with a greater degree of sensitivity, 

from an epidemiological stand point, PCR-methods have not and cannot reliably replace 

culture methods and serotyping (Davies 2013 ; Koyuncu, Andersson, & Haggblom 2010 ; 

Wattiau, Boland, & Bertrand 2011), given that less than 10% of today’s known serovars 

can be identified to the serovar level by PCR-methods.  Even if both methods are combined 

(cultural and molecular) matching a positive molecular result to a positive culture result 

and a given serovar presents as a difficult and inconvenient task.  Although we might have 

not detected high numbers of Salmonella we believe our data is epidemiologically valuable.  

Nevertheless, the estimated prevalence of Salmonella in our study may be an 

underestimation of the true prevalence of the bacteria on Rottnest Island and the 

mainland.  

 

A seasonal pattern of Salmonella infections on Rottnest Island was evident.  Similar 

observations have been previously documented in the Rottnest Island quokka (Iveson & 

Bradshaw 1973 ; Iveson, Bradshaw, & Hart 2007 ; Iveson & Hart 1983), in which more 

animals shedding Salmonella were detected during the dry season (see Figure 4-4).  

Increased Salmonella shedding by infected animals (Ruiz-Piña et al. 2002), as well as 

increased serovar diversity (Haley, Cole, & Lipp 2009) have been linked with the dry.   Our 

findings also indicate that the previously reported association between settled areas and a 

low prevalence of Salmonella in quokkas (Hart, Bradshaw, & Iveson 1985 ; Iveson, 

Bradshaw, & Hart 2007 ; Iveson & Hart 1983) may still persist.  We observed a lower 

prevalence of infection in heavily human-intervened sites (i.e. Settlement: 30.77%, n= 13), 

while a higher prevalence was observed in less human-intervened sites (i.e. Serpentine: 

66.66%, n= 12, Barker Swamp: 63.63%, n= 11).  These different rates of infection were 

attributed by the authors (Hart 1980 ; Hart, Bradshaw, & Iveson 1985) to the year-round 

supplementary feeding that animals on the Settlement were receiving, from having access 

to the rubbish disposal site and from visitors. 
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Previous studies have suggested female quokkas may be more susceptible to infection 

with Salmonella than males.  For instance, according to Hart (1980) “female animals are 

more rapidly affected than males”.  While Iveson et al. (2007) reported a significantly (p= 

0.037) higher prevalence (39.9%, 63/158) of Salmonella in females than in males (27.5%, 

36/131), captured at the lighthouse swamp (~1 km west of the nearest site sampled in 

this project: Barker Swamp), although this was not discussed.  In our study, although the 

probability of being positive to Salmonella was 1.30 times greater in females than in males, 

this difference was not significant (p= 0.581).  This suggests that the probability of 

Salmonella infection is similar for males and females.  However, this may be the result of a 

small sample size [for instance compared to that of Iveson et al. (2007)].  In this context, it 

is worth noting that the prevalence of Salmonella in quokkas on Rottnest Island peaks 

between November and March (based on our data), which happens to coincide with the 

female’s gestation, births and lactation events in S. brachyurus (Shield 1964).  Studies on 

mammals, including humans, have shown that females may be naturally more susceptible 

to disease due to the burden of the metabolic demands of pregnancy.  For instance, Pejcic-

Karapetrovic (2007), found abortion rates of ~100% and host fatality of >60% in strains 

of pregnant mice, that are normally resistant to S. enterica ser. Typhimurium, while 

increased faecal shedding of Salmonella has been observed in pregnant heifers, as a result 

of pregnancy-related immunosuppression (Anderson et al. 2001).  Although pregnancy-

associated immunosuppression has not been studied in macropods, it has been linked to 

an increase in host susceptibility to infectious diseases in other species, and may also be 

involved in the increased infection rate of the female S. brachyurus on Rottnest Island, as 

reported by Iveson et al (2007). 

 

Generally, animals in this study were apparently healthy, with no obvious signs of clinical 

salmonellosis, and the physical findings we observed had no association with the presence 

of Salmonella (see Table 4-9).  Similarly, Salmonella was found to have no effect on the 

HMT, BLC or PBCM of quokkas on Rottnest Island.  However, we advise caution when 

interpreting these results.  Considering that the p values we obtained for the HMT and BLC 

analyses were close (i.e. 0.07-0.08) or on the statistical cut-off (i.e. 0.05), these were 

considered as being insufficient evidence to conclude that Salmonella has no effect on the 

HMT and BLC parameters of Salmonella-infected quokkas.  It appears the study design was 

not able to separate asymptomatic carriers from animals with active disease, which may 

imply that subclinical carriage of Salmonella may be more common than active 

salmonellosis.  However, this may be attributable to a small sample size and not to the 

absence of disease.   However, close examination of the HMT and BLC data revealed 

different profiles between Salmonella-positive and -negative animals (see Table 4-7), with 
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lower RBC, PCV, HGB, WBC, LYMPH, NEUT, and EOS, and higher MONO in positive animals 

when compared to those that were negative.  Similarly, differences were present in their 

BLC, with positive animals having higher values for BILT, ALP, AST, CREAT and UREA, and 

lower values for GLUC, PROT, and ALB, than those of negative animals.  With the exception 

of PCV, RBC, and HGB that may be attributable to the seasonal anaemia experienced by 

quokkas on Rottnest Island (Barker et al. 1974 ; Shield 1971), and CALC concentrations in 

serum, the overall trend observed in all other parameters (i.e. HMT and BLC) between 

Salmonella-positive -negative quokkas resembles in great degree, the HMT and BLC of 

calves with clinical salmonellosis due to S. enterica ser. Typhimurium (Santos et al. 2002).  

 

Similarly, despite the absence of statistical analysis of the HMT, BLC, PBMC and physical 

examination data of the mainland cohort (given that only one animal was found positive), 

our field observations of the mainland quokka captured in the vicinity of Jarrahdale (~45 

km south-east of Perth), from which S. enterica subsp. diarizonae (IIIb) ser. 50:k:z35 was 

isolated, did not resemble any of the known forms of disease caused by Salmonella.  The 

negative results for S. enterica subsp. enterica serovars from mainland samples, could 

suggest that mainland animals may be immunologically naïve to serovars of the subsp. 

enterica, or alternatively, that mainland animals are able to mount a competent 

immunological response capable of controlling Salmonella proliferation.  However, the 

immunologically naïve scenario, may explain the mortalities Hart (1980) reported and 

attributed to Salmonella, with quokkas dying acutely sometime after being in contact with 

contaminated equipment that had previously being used on Rottnest Island.  This scenario 

may also support that serovars Muenchen and Newington recovered from quokkas on the 

mainland (Hart 1980), were in fact the result of cross contamination (Rottnest Island 

equipment) and not an indication of the presence of these serovars on the mainland.   

 

Concomitant infection with microfilariae was found to be positively associated with a 

greater probability of being Salmonella positive, with microfilaria-positive animals being 

3.88 times (95% CI 1.31-11.50) more likely to be infected with Salmonella than negative 

animals.  Although further studies would be necessary to understand the relation between 

microfilariae-Salmonella and the immune system of the Rottnest Island quokka, both 

organisms were associated (p= 0.044) with lower WBC in infected animals than in 

uninfected ones.  This suggests that there may be a synergistic interaction of these 

organisms on the immune system of the host.  However, it is generally accepted (with 

some exceptions) that in helminth-microparasite (e.g. bacteria) infections, helminths 

appear to impair the immune response of the host (Bordes & Morand 2011).  In vivo and 

in vitro studies, in humans for the most part, have shown that individuals with 



 

106 
 

microfilarial infection (or exposed to microfilarial lysate) experience reduced expression 

of toll-like receptor 4 (TLR4) mRNA, interleukin 12 (IL-12) and 8 (IL-8), as well as 

interferon gamma (IFN-γ), in conjunction with impairment of Myeloid differentiation 

primary response 88 (MyD88) signalling, (Semnani et al. 2006 ; Semnani et al. 2008), 

suppression of the proliferation of CD4+ T cells, and an increased expression of IL-10, a 

potent inhibitor of cellular response (Moore et al. 1993 ; O'Regan et al. 2014).  Interleukin 

10 has been linked to increased susceptibility in mice to infection with Salmonella (Su et al. 

2014).  Moreover, circulating microfilariae appear to have a suppressive effect on the 

production of B lymphocytes, particularly B-1 cells (Mishra et al. 2014), which has been 

correlated to increased mortality after infection with bacteria (e.g. S. enterica ser. 

Typhimurium and Streptococcus pneumoniae) (Briles et al. 1981 ; O'Brien et al. 1979) and 

viruses (e.g. influenza virus and vesicular stomatitis virus) (Baumgarth et al. 1999 ; 

Ochsenbein et al. 1999).  The significantly lower WBC in both, Salmonella-positive and 

microfilariae-positive animals when compared to their corresponding negative groups, 

may indicate that both organisms are related to some degree of immunosuppression of the 

host.  Consequently, it may be possible that quokkas on the island may not be able to 

mount an adequate immune response, to recognise, control and resolve the infection, 

which may explain the characteristic chronicity of Salmonella infections on Rottnest Island. 

 

From a conservation perspective, it is difficult to predict whether Salmonella infections 

could become a threatening process to the Rottnest Island quokka or not.  Nevertheless, 

the apparent association between microfilarial infection and low WBC we observed, 

suggests that quokkas on Rottnest Island may be in a state of impaired immune response.  

This, coupled with chronic exposure to stress through changes in their ecosystem (e.g. 

habitat clearing, increasing visitation) could gradually aggravate the state of 

immunosuppression.  This in turn, could make the Rottnest Island quokka more 

susceptible to other infectious organisms.  From a public health point of view, tracking the 

incidence, prevalence and abundance of S. enterica subsp. enterica serovars on Rottnest 

Island is recommended for adequate public health management. 
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5. Isolation of Cryptococcus neoformans var. grubii (serotype A) and C. 

magnus from the nasal lining of free-ranging quokkas on Rottnest 

Island 
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5.1 Abstract 

Cryptococcus species are environmental basidiomycetous yeasts, with a worldwide 

distribution and remarkable environmental adaptation.  Although many species do not 

cause disease, Cryptococcus. neoformans and Cryptococcus. gattii are the causative agents 

of cryptococcosis, a life-threatening infection and a significant public health problem 

worldwide.  Infection affects especially immunocompromised individuals, both animals 

and humans alike.  In wildlife, cryptococcosis appears to be more prevalent in captive 

populations.  Using cultural and molecular methods, we studied yeasts isolated from nasal 

swabs collected from 130 free-ranging quokkas (Setonix brachyurus) on Rottnest Island 

(Rottnest Island, n= 97) and the mainland (ML, n= 33) of Western Australia (WA).  

Cryptococcal isolates [C. neoformans var. grubii (serotype A), prevalence= 2.1% 95% CI 

0.4-6.4; C. magnus, prevalence=1.03%, CI 0.1-4.7; and four unspeciated Cryptococcus spp., 
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prevalence= 4.12%, CI 1.4-9.5] were recovered from the nasal lining of apparently healthy 

S. brachyurus on Rottnest Island, but not on the mainland.  Both C. neoformans var. grubii 

and C. magnus, were isolated from animals captured at human-populated areas on 

Rottnest Island.  There was no significant association of the presence of cryptococcal 

organisms in the nasal lining of S. brachyurus with variations in their haematology (HMT), 

blood chemistry (BLC) or peripheral blood cell morphologies (PBCM).  To the best of our 

knowledge, this is the first documented isolation of C. neoformans var. grubii (serotype A) 

and C. magnus in a free-ranging macropod in WA.  The recovery of C. neoformans var. 

grubii from quokkas suggests the presence of an environmental source on Rottnest Island, 

and constitutes an important finding for public health and management of wild and 

captive S. brachyurus  These findings suggest that S. brachyurus is an asymptomatic carrier 

of Cryptococcus spp. 

 

5.2 Introduction 

Cryptococcus species are environmental basidiomycetous yeasts, with a worldwide 

distribution and remarkable environmental adaptation, with some species surviving high 

salinity, extreme cold temperatures (e.g. Antarctica), extreme altitudes (e.g. Himalayas) 

(Casadevall & Perfect 1998) and thriving in rich ionising radiation environments 

(Dadachova et al. 2007).  Many cryptococcal species (e.g. C. albidus, C. laurentii, C. 

uniguttulatus, and C. magnus) are usually considered to be saprophytes that rarely cause 

disease.  Only a few species are known to cause disease; of which, the most important are 

Cryptococcus neoformans var. grubii, C. neoformans var. neoformans, and C. gattii 

(Casadevall & Perfect 1998 ; Fothergill 2007 ; Sorrell et al. 1996 ; Sykes & Malik 2012).   

 

Cryptococcus neoformans and C. gattii have different environmental niches, and the 

disease for which they are responsible (i.e. cryptococcosis), has different epidemiological 

characteristics.  Cryptococcus gattii is primarily associated with Eucalyptus spp. trees, 

usually causing infection in the immunocompetent host (Cafarchia 2012).  By contrast, C. 

neoformans var. neoformans (serotype D) and var. grubii (serotype A) are associated with 

disease in individuals with defective cell mediated defences (Del Poeta & Casadevall 2012 ; 

Mitchell & Perfect 1995) and are found worldwide in close relation with excreta of birds 

(Orders Psittaciformes, Passeriformes, Columbiformes and Falconiformes) (Cafarchia 

2012), although Columbiformes are the ones most commonly associated with C. 

neoformans (Sykes & Malik 2012).  Serotypes A and D have also been isolated from soil 

contaminated with bird excreta (Casadevall & Perfect 1998), and from material of a 

variety of plant species (Granados & Castañeda 2005 ; Nishikawa et al. 2003 ; Pfeiffer & 
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Ellis 1993).  C. neoformans var. grubii is commonly isolated from human clinical cases and 

a wide variety of environmental samples (Cogliati 2013 ; Li et al. 2012 ; Meyer et al. 2003 ; 

Nishikawa et al. 2003 ; Steenbergen & Casadevall 2000).  In Australia, var. grubii is the 

most common isolate from clinical samples of animals and humans, and is strongly 

associated with immunocompromised patients (Chen et al. 2000 ; Payne et al. 2005 ; Sykes 

& Malik 2012), but has also been observed in immunocompetent dogs and cats 

(Krockenberger et al. 2005).   

 

Significantly less prevalent, C. magnus has been isolated from plants and soil (Korhola et al. 

2014 ; Nagornaya et al. 2003 ; Sipiczki 2013), e.g. mangrove sediment GenBank Accession 

No. KJ706585), invertebrates (German cockroach Blatella germanica) (Zheltikova, 

Glushakova, & Alesho 2011), and apparently healthy domestic cats and wild birds (Table 

5-1 and references therein).  Although C. magnus is generally considered to be saprophytic 

fungus with little or no medical significance, it has also been recovered from children with 

leukaemia (Khan, Mokaddas, et al. 2011) and in recent decades has emerged (together 

with other species; e.g. C. uniguttulatus, C. laurentii, and C. albidus) as a cause of clinical 

disease in immunocompromised hosts (Danesi et al. 2014). 

 

Serological and culturing studies indicate that Cryptococcus can be carried 

asymptomatically (Connolly et al. 1999 ; Krockenberger et al. 2002 ; Malik et al. 1997); 

however, conditions that put pressure on the immune system (e.g. drought, availability of 

food, other infections) may increase the incidence of infection (Krockenberger et al. 2005).  

Cryptococcosis in wildlife is likely to be associated mainly with exposure to excessive 

numbers of basidiospores; although the mechanism of infection has not yet been 

established, direct inhalation of environmental basidiospores is the most likely infection 

route (Danesi et al. 2014 ; Sykes & Malik 2012).  These inhaled organisms can then 

become transient, or proceed to colonise tissues and form primary foci of infection in the 

nasal cavity, paranasal sinuses or lung parenchyma (Connolly et al. 1999 ; Sykes & Malik 

2012).  Once infection is established, it is believed the yeast spreads to other organs either 

through the cribriform plate or haematogenously via macrophages, with particular 

tropism for the central nervous system (Connolly et al. 1999 ; Sykes & Malik 2012).  

 

Although cryptococcosis can have a localised presentation, it is usually a systemic disease 

with important global medical significance that affects humans and a wide range of animal 

species (Del Poeta & Casadevall 2012 ; Sykes & Malik 2012), including reptiles, birds, 

eutherians, and marsupials (Table 5-1 and references therein); cases in poikilothermic 

species are very rare (Miller et al. 2004).  According to Park et al. (2009), in humans, C. 
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neoformans has been responsible for an estimated 1 million cases of cryptococcal 

meningitis per year, resulting in approximately 625,000 deaths.  In WA, C. gattii has been 

suggested to be the most common causative agent of cryptococcal disease in domestic 

animals (McGill et al. 2009), but in studies across the rest of Australia, C. neoformans 

(primarily var. grubii) appears to be more frequent in domestic animals (particularly cats 

and dogs) (Sykes & Malik 2012), while C. gattii is more prevalent in wildlife 

(Krockenberger et al. 2005).  Cryptococcosis due to C. magnus appears to be infrequent, 

and has only been associated with one confirmed case of multisystemic disease in a cat 

(Poth et al. 2010).  To the best of our knowledge there are no records indicating the 

detection of this yeast from wildlife. 

 

In wildlife, C. neoformans and C. gattii have mostly been reported in captive animals (Table 

5-1).  Of these reports, the majority of cryptococcal infections and isolations have been 

described in koalas (Phascolarctos cinereus) (Table 5-1 and references therein).  Both C. 

neoformans var. grubii and C. gattii have been isolated from the nasal mucosa of koalas, 

but only C. gattii has been recognised as a cause of clinical infection (Payne et al. 2005).  

Interestingly, cultural studies of nasal swabs from captive koalas at the Kanazawa 

Zoological Gardens, Japan, yielded a greater prevalence of C. neoformans than C. gattii 

(Kido et al. 2012). 
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Table 5-1 Summary of studies that have isolated Cryptococcus neoformans (var. grubii and var. neoformans) and C. gattii from wildlife species.  No cases of C. magnus as a primary agent of 
disease in Australian wildlife were found in the literature; (number of cases).  C= captive, FR= free-ranging. 
Wildlife host species C/FR Isolate  Observations Reference 
Brushtail possum (Trichosurus vulpecula),  C n.s. n.s. (Ladds 2009) 
Cheetah (Acinonyx jubatus) C n.s. pulmonary disease and 

meningoencephalomyelitis 
(Berry, Jardine, & Espie 
1997) 

Common wombat (Vombatus ursinus)  C n.s. n.s. (Ladds 2009) 
Gilbert’s potoroo (Potorous gilbertii) and long-nose potoroo (P. 
tridactylus) 

C n.s. cryptococcosis (Vaughan et al. 2007) 

Koala (Phascolarctos cinereus) C and FR C. neoformans and/or C. 
gattii a 

apparently healthy, cryptococcal 
meningoencephalitis, pneumonia, nasal 
and nasopharyngeal disease, 
lymphadenopathy 

(Connolly et al. 1999 ; 
Krockenberger, Canfield, 
& Malik 2002, 2003 ; 
Krockenberger et al. 
2005 ; Ladds 2009) 

C C. neoformans and C. gattii b n.s. (Kido et al. 2012) 
Parma wallaby (M. parma) C n.s. n.s. (Ladds 2009) 
primates, artiodactyls and pinnipeds C n.s. n.s. (Griner 1977) 
Quokka (Setonix brachyurus)  C c C. gattii (2), n.s. (3) granulomatous pneumonia, pulmonary 

bronchiolar cryptococcosis d 
Australian Registry of 
Wildlife Health (ARWH) 
database 1999-2014 

n.s. C. gattii n.s. (Krockenberger et al. 
2005) 

C n.s. n.s. (Vaughan et al. 2007) 
Tammar wallaby (Macropus eugenii) C n.s. n.s. (Ladds 2009) 
tree shrews (Tupaia tana, Tupaia minor) and elephant shrews 
(Macroscelides proboscides) 

C n.s. n.s. (Tell et al. 1997) 

Short-beaked echidna (Tachyglossus aculeatus) C n.s. n.s. (Ladds 2009) 
striped grass mouse (Lemniscomys barbarus) C n.s. pulmonary disease (Bauwens et al. 2004) 
Australian king-parrot (Alisterus scapulatus) C n.s. n.s. (Payne et al. 2005) 
Schmidt’s red-tailed guenon (Cercopithecus ascanius) C n.s. multifocal infection (Nevitt et al. 2013) 
Blackbuck (Antilope cervicapra), plains rat (Pseudomys australis), 
greater stick-nest rat (Leporillus conditor), eastern barred bandicoot 
(Perameles gunnii), spinifex hopping mouse (Notomys alexis), bilby 
(Macrotis lagotis), ringtail possum (Pseudocheirus peregrinus), and 
northern quoll (Dasyurus hallucatus) 

C C. neoformans (variety not 
reported), C. neoformans 
var. neoformans, C. gattii, 
Cryptococcus spp. 

various forms of cryptococcosis 
including, cerebellar, intestinal, 
meningoencephalitic, multisystemic, 
nasal, and pulmonary 

ARWH, database 1999-
2014 

Common pigeon (Columba livia) FR C. magnus apparently healthy (Danesi et al. 2014) 
Great cormorant (Phalacrocorax carbo) FR C. magnus apparently healthy (Danesi et al. 2014) 
Malleefowl (Leipoa ocellata) C C. neoformans systemic ARWH database 1999-

2014 
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Wildlife host species C/FR Isolate  Observations Reference 
Pesquet’s parrot (Psittrichas fulgidus) C n.s. osteomyelitis (Molter, Zuba, & 

Papendick 2014) 
a  greater prevalence/incidence of C. gattii, species also recognised as the only cause of clinical infection; b greater prevalence of C. neoformans than C. gattii; c five cases reported; d infection 
considered to be incidental - cryptococcosis considered secondary cause of disease; n.s.=  not specified.
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Of all five cases involving cryptococcosis in quokkas archived in the Australian Registry of 

Wildlife Health (ARWH) (Table 5-1), species status of the Cryptococcus detected was only 

achieved in only two cases (both C. gattii; no varietal ID).  The presence of cryptococcal 

organisms was considered to be incidental and cryptococcosis in captive quokkas was 

considered secondary to other causes of disease.  According to Vaughan et al. (2007), 

there appear to be cases of cryptococcosis (details not provided) in quokkas in the 

archives of the Department of Agriculture and Food of Western Australia-Animal Health 

Laboratory (DAFWA-AHL).  Retrieval of specific information on the cases reported by 

Vaughan et al. (2007) by this project was not possible, as it was indicated that there were 

no cases of cryptococcosis in quokkas in the archives of DAFWA-AHL (Dr Nicky Buller, 

Senior Microbiologist and Group Leader for Bacteriology and Mycobacteriology pers. 

comm. 2013). 

 

As part of a health and disease baseline assessment for free-ranging quokkas, we used 

cultural and molecular methods to study yeasts isolated from nasal swabs collected from 

n=130 free-ranging S. brachyurus on Rottnest Island and the mainland of WA.   

 

5.3 Materials and Methods 

Between September 2010 and December 2011, 153 quokkas were captured on Rottnest 

Island and on the mainland in southwest WA.  For trapping site descriptions, general 

procedures including physical examination, and peripheral blood collection techniques, 

refer to Chapter 3, section 3.3.  Thorough PEs were carried out on all animals.  Animals (n= 

130) were tested for Cryptococcus spp. (Rottnest Island= 97 and mainland= 33) by 

culturing methods.  Extracted DNA from isolated suspicious colonies was amplified by PCR 

and subsequently characterised by sequencing. 

 

Nasal swabs were collected in the field from each nostril of each animal by gently 

introducing a swab (Minitip Aluminum Wire Venturi Transystem®, Copan Italia S.p.A, 

Brescia, Italy) 1.5-2 cm into the nasal vestibule and rotating it at least 10 times against the 

nasal lining.  Extreme care was put on not touching the skin surrounding the nares upon 

insertion of the swab.  Any swab that contacted with any surface other than the nasal 

lining was discarded.  Duplicate swabs were collected from 45 of the 130 animals sampled.  

Swabs were then placed into Amie’s transport medium without charcoal and stored at 4 ˚C 

until processing.  A subset of swabs was stored at -20˚C for later processing if necessary.  
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Blood samples were collected to enable comparison of HMT and BLC profiles with the 

presence of Cryptococcus spp.  Blood from the lateral tail vein was collected into EDTA and 

lithium heparin, and then sent to the Clinical Pathology service of the Murdoch University 

Veterinary Hospital for HMT and BLC studies.  In-house differential counts were done 

manually on blood smears.  PBCM (red and white blood cells) were visually recorded from 

blood smears (e.g. keratocytes, schistocytes, reactive lymphocytes, and atypical 

neutrophils -including toxic changes-).  Microfilariae were screened for from blood smears, 

while Theileria sp. and Babesia sp. were screened for by nPCR (see Chapter 7, section 

7.3.1).  Macropod herpesvirus 6 (MaHV-6) was screened for by nPCR (see Chapter 6, 

section 6.3.1), and nematode eggs and Eimeria sp. oocysts were screened from faeces by 

light microscopy (see Chapter 3, section 3.4.1).  Lastly, Salmonella spp. were screened for 

by culture methods and identified by serotyping (see Chapter 4, section 4.2.1). 

 

A number of parameters were measured in this study: white blood cell counts (corrected 

to exclude nucleated red blood cells) (WBC), red blood cell concentration (RBC), 

haemoglobin concentration (HGB), packed cell volume (PCV), the absolute concentrations 

for neutrophils (NEUT), eosinophils (EOS), basophils (BASO), lymphocytes (LYMPH) and 

monocytes (MONO).  Blood chemistry analytes included: alkaline phosphatase (ALP), 

alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK), 

total protein (PROT), albumin (ALB), calcium (CA), phosphorus (P), cholesterol (CHOL), 

total bilirubin (BILT), glucose (GLUC), creatinine (CREAT), urea (UREA), and vitamin E (Vit. 

E).   

 

 Laboratory techniques for Cryptococcus spp. 

5.3.1.1 Isolation and storage 

Isolation and manipulation of fungal cultures and all related procedures were performed 

in a class II laminar flow biosafety cabinet (LAF Technologies Pty Ltd., North Ringwood, 

Australia).  Swabs were analysed for yeasts by various laboratories (Table 5-2). 

 
Table 5-2 Processing of nasal swabs (n= 130) collected from quokkas (Setonix brachyurus) from Rottnest 
Island (RI) and the mainland (ML) of southwest Western Australia for isolation and analysis of yeasts. 

Number of 
swabs Year Collection site Analysed 
8 2010 ML Clinical Pathology, Murdoch University Vet. Hospital 
15 2011 RI Mycology Department, PathWest, Perth 
12 2011 RI VetPath, Perth 
95 2011 ML and RI In-house 
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Isolation of C. neoformans var. grubii and C. magnus was achieved by inoculating a swab 

onto two plates of bird seed agar (BSA) (Faculty of Veterinary Science, The University of 

Sydney).  Bird seed agar is used as a medium that allows for the differentiation of C. 

neoformans (i.e. var. grubii and var. neoformans) and C. gattii colonies with brown colony 

effect (BCE), from colonies of non-neoformans non-gattii Cryptococcus, that do not produce 

BCE (Staib et al. 1987).  Bird seed agar contained penicillin (20 units mL -1) and gentamicin 

(80 mg mL -1) to suppress the growth of bacteria. 

 

All suspicious colonies in the first two BSA plates (i.e. BCE or yeast like growth) were sub-

cultured again on fresh BSA plates, which were then subcultured onto two Sabouraud 

dextrose agar (SDA) plates (Microbiology, School of Veterinary & Biomedical Sciences, 

Murdoch University).  One SDA plate was incubated at 37 ˚C in order to confirm growth at 

mammalian temperature, and the others at 28 ˚C.  Plates were checked daily for growth 

and contamination.  Preliminary confirmation of Cryptococcus spp. like-yeast organisms 

was done through a series of tests (i.e. Gram stain, India ink, Christensen’s Urea Agar 

[CUAT]) on colonies from SDA plates incubated at 28 ˚C, (see Appendix 10.2.1).  Colonies 

from SDA pure cultures were stored in Microbank™ System (PRO-LAB Diagnostics, 

Richmond Hill, Canada) cryovials according to the manufacturer’s guidelines (see 

Appendix 10.2.1).  Isolation and storage of other Cryptococcus spp. and other yeast isolates 

were identical. 

 

5.3.1.2 Revival and preliminary identification 

Initial identification of the isolated yeast-like organisms was achieved by biochemical 

means.  For this, isolates in Microbank™ cryovials were revived by subculturing on SDA 

and incubating at 28 ˚C for 3-5 days before growth started to appear.  Preliminary 

identification was carried out using the API® 20 C AUX identification system for yeast 

(bioMérieux SA, Marcy-I’Etoile, France).  Test strips were incubated at 28 ˚C and readings 

carried out at 48 h and 72 h: a positive reading was a cupule with greater turbidity than 

the control cupule.  Interpretation of the numerical profile obtained (according to the 

result of each cupule) was done using the apiweb™ identification software with database 

v.4.0.  For the details of yeast revival and preliminary identification protocols see 

Appendix 10.2.2. 
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5.3.1.3 DNA extraction and molecular identification 

We initially tested the performance of a modified protocol (see Appendix 10.2.3) of the 

PowerSoil™ DNA Isolation Kit (MO BIO Laboratories, Inc. Carlsbad, USA) against two 

known protocols (called control protocols) for yeast DNA extraction: DNAzol® Reagent 

(Invitrogen™, Carlsbad, USA) and the Gram-positive protocol of QIAamp® DNA Mini 

(QIAGEN®, Hilden, Germany), by extracting DNA from two fungal isolates using all three 

protocols.  Purity and quantity of the extracted DNA products from the three different kits 

used were compared using a NanoDrop™ 2000 spectrophotometer (Thermo Scientific™, 

Waltham, USA).  The ratio of absorbance at 260 nm and 280 nm (260/280) as well as the 

concentration of DNA/RNA recovered per µL were similar for all three.  Considering these 

results, DNA from all remaining isolates was extracted using the PowerSoil™ DNA isolation 

Kit from MO BIO Laboratories, Carlsbad, USA. 

 

All isolates were characterised by polymerase chain reaction (PCR) (targeting the Internal 

Transcribed Spacer (ITS) regions in the ribosomal Deoxyribonucleic Acid (rDNA) and 

sequencing (see Appendix 10.2.3).  The ITS region is widely accepted as the optimal target 

for identification of Cryptococcus spp., Candida spp., and Trichosporon spp. among other 

fungal organisms (Hsu et al. 2003 ; Petti 2007).  Polymerase chain reaction products were 

visualised in 2% agarose gels made of 0.5x TBE buffer, stained with 1x SYBR-Safe (Life 

Technologies, Carlsbad, USA) and ran at 90 V, 400 mAmp for 45 min.  DNA bands of the 

expected size were cut out using separate sterile scalpel blades and purified using the 

filter tip method (see Appendix 10.2.3).  Purified PCR products were then sequenced in 

both directions using forward and reverse primers.  Sequencing reactions were 

subsequently purified using the ethanol precipitation method (BigDye® Terminator v3.1 

Cycle Sequencing Kit, Applied Biosystems, Scoresby, Australia).  Final sequencing was 

carried out on an ABI 3790 96 capillary automatic sequencer (Applied Biosystems, 

Scoresby, Australia).  Sequences were analysed and cleaned using 4Peaks version 1.7.2 (A. 

Griekspoor and Tom Groothuis, at http://nucleobytes.com/4peaks/index.html).   

 

Molecular identification of isolates to the species level was achieved by comparing 

predicted nucleotide sequences with sequences available in GenBank 

(http://www.ncbi.nlm.nih.gov/) using BLASTN v.2.2.28+.  For isolates of C. neoformans 

(confirmed by biochemical and molecular testing), identification to the variety level was 

achieved by sequence analysis of the ITS region, an economic and highly reproducible 

accepted target for barcoding of fungi (Katsu et al. 2004 ; Meyer et al. 2011).  At least two 

sequences of each previously-identified major molecular types of the Cryptococcus 

neoformans complex (VNI, VNII, VNIIIA-serotype A allele of the AD hybrid, VNIV and 

http://nucleobytes.com/4peaks
http://www.ncbi.nlm.nih.gov/
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VNIIIB-serotype D allele of the AD hybrid) (Table 5-3) were downloaded from the DNA 

Data Bank of Japan [DDBJ] server (http://www.ddbj.nig.ac.jp/).  Query sequences were 

then aligned to the DDBJ sequences with MUSCLE (Edgar 2004) using MEGA5 v. 5.2.2 

(Tamura et al. 2011), and visually inspected to determine specific ITS signatures according 

to combinations of eight nucleotides at positions 10, 11, 15, 19 and 108 in the ITS1 region, 

position 221 in the 5.8S rDNA unit, and positions 298 and 346 in the ITS2 region (Katsu et 

al. 2004) (Table 5-3).  These ITS signatures have already been established to correlate to 

accepted molecular types obtained by use of other techniques such as random 

amplification of polymorphic DNA (RAPD) and PCR fingerprinting, among others (Meyer 

et al. 2011).  

 
Table 5-3 List of C. neoformans reference ITS nucleotide signatures 5’-3’ used in this study, with their 
corresponding serotype, PCR fingerprint type and ITS type. 
DDBJ accession 
number Origin Serotype 

PCR fingerprint 
type ITS type 

Nucleotide 
signature 5’-3’ 

AJ493550 Human, CSF, USA A VNI 1 ATACTAGC 
AJ493551 Human, CSF, Australia A VNI 1 ATACTAGC 
AJ493552 Human, CSF, Australia A VNII 1 ATACTAGC 
AJ493554 Wood, Zaire A VNII 1 ATACTAGC 
AJ493559 Human, CSF, USA D VNIV 2 ATATAGGC 
AJ493561 Human, blood, Australia D VNIV 2 ATATAGGC 
AJ493555 Human, Germany AD VNIII 2 ATATAGGC 
AJ493558 Human, CSF, Australia AD VNIII 2 ATATAGGC 
CSF= cerebrospinal fluid 

 

 Statistical analyses 

Haematology, BLC, and PBCM datasets for animals that tested positive or negative to 

Cryptococcus spp., were analysed independently due to differences in sample sizes 

between these datasets (some individuals were tested for either HMT or BLC, and not all 

individuals had a blood smear, which would mean their exclusion from analyses of the 

entire dataset due to missing data).  Sex was used as a covariate in all three analyses.  Data 

were explored visually with non-metric Multi-Dimensional Scaling (nMDS) and a Bray-

Curtis similarity measure (Bray & Curtis 1957) using PAST v. 3.02 (Hammer, Harper, & 

Ryan 2001).  Haematology and BLC response variables were fitted to an approximate 

normal distribution (BoxCox transformation; STATISTICA v. 9.1, StatSoft Inc.).  Due to 

insufficient observations as well as limitations of the multivariate analysis tests used, 

seasonal differences were explored using χ2 for Trend. 

 

Haematology and BLC dependant variables were range-standardised to a scale between 0 

and 1, while PBCM were not as it was a binary dataset.  For each nMDS plot, two-or-three-

dimensional analyses were selected according to the model that had the lowest stress 

statistic to determine adequacy of the fit.  To determine the similarity or dissimilarity of 

http://www.ddbj.nig.ac.jp/
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the HMT, BLC, and PBCM datasets between the groups of interest (Cryptococcus-positive 

and -negative) a pairwise Similarity Percentage (SIMPER, PAST v. 3.02) analysis (Clarke 

1993) using Bray-Curtis similarity measure (Bray & Curtis 1957) was carried out.  SIMPER 

results (i.e. percent of contribution of each variable to the similarity or dissimilarity) are 

accompanied by the arithmetic mean (x�) and standard deviation (SD) for each HMT and 

BLC variable, while odds ratio (OR) and 95% confidence intervals (CI) were calculated 

(Woolf 1955) for each PBCM observed in blood smears.  The significance of the observed 

differences in the HMT, BLC and PBCM profiles between Cryptococcus-positive and -

negative animals, was examined using a two-way non-parametric permutational 

multivariate analysis of variance (Two-way PERMANOVA, PAST v. 3.02) (Anderson 2001) 

with 9,999 permutations.  This test provides a Pseudo-F statistic that is used to compare 

variability between groups from variability within groups, in which the larger the value of 

F, the more likely is that the null hypothesis of no variability between groups is false 

(Anderson 2001).  A p-value is then use to detect the significance of each factor in the 

design and the interaction between them. 

 

Associations between Cryptococcus spp. with sex, physical examination findings and 

concomitant infection with Babesia sp., Eimeria sp., macropodid herpesvirus 6 (MaHV-6), 

microfilariae, nematode eggs, Theileria sp., and Salmonella spp., were explored using χ2 

test with Yates’ correction.  OR and 95% CI were calculated using the Woolf’s method 

(1955).  When a null value was present in a contingency table, 0.5 were added to each 

observed value in order to calculate OR and 95% CI (Altman 1999).  All other CI for 

estimates of proportions (i.e. prevalence), were calculated using the Wilson model for n≤ 

40, and the Jeffreys model for n≥ 40 (Brown, Cai, & DasGupta 2001).  Significance was set 

at p< 0.05 for all analyses, unless stated differently.   

 

For the presence or absence of potential plant and animal sources of C. neoformans var. 

grubii in the natural habitat of S. brachyurus, we used ‘FloraBase v. 2.8.17’, an online 

resource for Western Australian flora (http://florabase.dpaw.wa.gov.au/) (Western 

Australian Herbarium 1998), NatureMap v. 1.7.0.15 a mapping interface for Western 

Australia’s biodiversity, an initiative of the Department of Parks and Wildlife (DPaW) and 

the Western Australian Museum (http://naturemap.dpaw.wa.gov.au/) (Department of 

Parks and Wildlife (DPaW) 2007); the Atlas of Living Australia an initiative of the 

Australian Government (http://www.ala.org.au), and the Australian Plant Name Index 

(APNI), a tool of the Integrated Biodiversity Information System (IBIS), the online 

database of the Australian National Herbarium and the Australian National Botanic 

Gardens (http://www.anbg.gov.au/apni/index.html). 

http://florabase.dpaw.wa.gov.au/
http://naturemap.dpaw.wa.gov.au/
http://www.ala.org.au/
http://www.anbg.gov.au/apni/index.html


 

119 
 

5.4 Results 

 Phenotypic characteristics and molecular identification 

Molecular analyses (below) enabled retrospective identification of the colony properties 

of each Cryptococcus isolate: 

 

C. neoformans var. grubii (RIA0075 and RIA0082) isolates were identified as C. 

neoformans by the API system, with an identification score of 99.9% (API numerical 

profile 2557373).  On BSA at 28 ˚C, all isolates produced colonies with BCE (Figure 5-1a) 

that were mostly circular, smooth, somewhat effuse, opaque and mucoid.  Microscopically, 

yeast cells were generally budding, with circular appearance (Figure 5-1c).  Cells 

presented a mucopolysaccharide capsule under India ink (Figure 5-1d).  By API® 20 C 

AUX strip analysis, isolates assimilate glucose, calcium 2-keto-gluconate, D-xylose, 

adonitol, D-galactose, inositol, D-sorbitol, Methyl-α D-glucopyranoside, N-acetyl-

glucosamine, D-cellobiose, D-maltose, D-saccharose (sucrose), D-trehalose, D-melezitose 

and D-raffinose.  Isolates did not assimilate D-lactose, xylitol, L-arabinose and glycerol.   

 

C. magnus (isolate AS3413) isolates were assigned API numerical profile 2705373 for 

which there is no identification in the apiweb™ identification software (database v.4.0).  

On BSA, colonies did not grow at 37 ˚C; at 28 ˚C they were light white-coloured and smaller 

than those of C. neoformans var. grubii at the same inspection time.  Microscopically, yeast 

cells were generally budding, with ellipsoidal appearance (Figure 5-1f).  Cells presented a 

mucopolysaccharide capsule under India ink (Figure 5-1g).  Isolates were able to 

assimilate glucose, calcium 2-keto-gluconate, L-arabinose, D-xylose, inositol, Methyl-α D-

glucopyranoside, N-acetyl-glucosamine, D-cellobiose, D-maltose, D-saccharose (sucrose), 

D-trehalose, D-melezitose and D-raffinose.  Isolates did not assimilate glycerol, adonitol, 

xylitol, D-galactose, D-sorbitol, and D-lactose.   

 

On SDA at 37 ˚C colonies of C. neoformans var. grubii grew avidly (<24 h) while colonies of 

C. magnus did not grow.  At 28 ˚C colonies of both yeast were undistinguishable (Figure 

5-1b,e), being dome-shaped, cream-coloured, circular, opaque and mucoid but not 

presenting BCE.  Isolates of both C. neoformans var. grubii and C. magnus exhibited rapid 

hydrolysis of urea (<24 h) when inoculated on Christensen’s Urea Agar. 

 

Sequence analysis of the ITS regions for isolates previously identified (culture, 

biochemical and alignment with BLASTN) as members of the C. neoformans complex, 
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Figure 5-1 C. neoformans var. grubii: (a) BCE on BSA, (b) growth on SDA, (c) circular cells with budding on 
Gram stain, (d) spherical capsulated cells on India ink.  C. magnus: (e) growth on SDA, (f) ellipsoidal cells 
with budding on Gram stain, (g) ellipsoidal capsulated cells on India ink. 
 

indicated that isolates RIA0075 and RIA0082 both recovered from animals in the 

Settlement area, had identical ITS nucleotide signatures, with 5’-ATACTAGC-3’ nucleotide 

combination at positions 10, 11, 15, 19 and 108 in the ITS1 region, position 221 in the 5.8S 

rDNA gene, and positions 298 and 346 in the ITS2 region (Katsu et al. 2004) (Figure 5-2), 

identifying the isolates as ITS type 1 (Table 5-3) or C. neoformans var. grubii.  At the time 

of the analysis, isolate AS3413 was identified as C. magnus, according to BLASTN v.2.2.28+, 

with 99% identity with C. magnus Accession no. AB727344 (GenBank) (Figure 5-3).  

BLASTN v.2.2.28+ results for non-cryptococcal organisms recovered were Aureobasidium 

pullulans, Rhodosporidium kratochvilovae, Rhodotorula glutinis, and Rhodotorula 

mucilaginosa.

a. b. 

d. c. 

e. f. 

g. 



 

 

121   

 
Figure 5-2 Muscle alignment of the ITS (ITS1-5.8s rRNA-ITS2) sequences of the C. neoformans complex and the various molecular types (VNI, VNII, VNII and VNIV), used to determine the 
serotype A of the isolates recovered from S. brachyurus on Rottnest Island (quokka isolates-RIWA -for Rottnest Island Western Australia-).  Note the nucleotide 5’- ATACTAGC-3’ signature at 
positions 10, 11, 15, 19, 108, 221, 298 and 346, indicated by grey columns. 
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Figure 5-3 BLASTn v.2.2.28+ alignment of a 564 nucleotide segment (without primer sequences) of the ITS 
region (ITS1-5.8s rRNA-ITS2) of the fungal genome detected in S. brachyurus (= Query), aligned with the 
equivalent region of C. magnus (Accession no. AB727344 (= Sbjct) on GenBank. 

 

 Distribution and prevalence of all yeasts recovered from the 

nasal lining of S. brachyurus (Rottnest Island and mainland) 

Cryptococcus spp. was isolated from 7 of 97 Rottnest Island animals screened (49 females 

and 48 males) for an estimated prevalence of 7.2% (CI 3.3-13.6).  Unspeciated 

Cryptococcus spp. was recovered from four of these animals (Serpentine= 2, Barker 

Swamp= 2, 4.12%, CI 1.4-9.5), Cryptococcus magnus was recovered from an individual 

(1.03%, CI 0.1-4.7) captured at Kingston site, while Cryptococcus neoformans var. grubii, 

was recovered from two individuals (one male, one female) captured on the Settlement 

(2.1%, CI 0.4-6.4).  Figure 5-4 illustrates the geographical distribution of the cryptococcal 

isolates.  In total, 21 colonies of C. neoformans var. grubii were recovered from both 

animals (male= 7, female= 14).  Other yeast and yeast-like fungi isolated were: 

Rhodotorula glutinis (1/97, 1.03%, CI 0.2-5.6), Rhodotorula mucilaginosa (2/97, 2.1%, CI 

0.6-7.2), and Aureobasidium pullulans (5/97, 5.15%, CI 2.2-11) (Figure 5-5).   

 

Cryptococcus spp. was not recovered from any of the 33 mainland animals (4 female and 

29 male) that were screened (all subpopulations).  Other yeasts recovered from the nasal 

lining of mainland quokkas were: Rhodosporidium kratochvilovae (4/33, 12.12%, CI 4.8-

27), Rhodotorula mucilaginosa (2/33, 6.06%, CI 1.7-19.6), and Rhodotorula glutinis (2/33, 

6.06%, CI 1.7-19.6).   
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Figure 5-4 Geographic distribution of (a) major areas were animals were sampled (blue boxes= areas on 
the mainland sampled but were negative); numbers represent cities and towns: 1= Perth, 2= Bunbury, 3= 
Walpole, 4= Albany; and (b) spatial distribution of cryptococcal isolates recovered from quokkas on 
Rottnest Island (green box in figure a.), 5= Thompson’s Bay.  Each arrowhead represents a positive animal.  
Yellow arrowheads (Cryptococcus spp. left: Barker Swamp and right: Serpentine sites), green arrowheads 
(C. neoformans var. grubii - Settlement site), and red arrowhead (C. magnus - Kingston site).  Map data 
©2016 Google Landsat, Data SIO, NOOA, U.S. Navy, NGA, GEBCO. 
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Figure 5-5 Nasal swabs tested for Cryptococcus spp. and other yeast and yeast-like fungi from S. brachyurus 
on six sites on Rottnest Island and three sites on the mainland.  The number of isolations is given in 
parentheses. 
 

 

The probability (i.e. OR) of females to be positive to Cryptococcus spp. was 6.56 (CI 0.76-

56.7) times higher than males.  However, this association was not significant [females 

(6/49 = 12.2%), males (1/48 = 2.1%); χ²1= 2.38, p= 0.123].  Similarly, there was no 

significant difference in the prevalence of Cryptococcus spp. in quokkas on Rottnest Island 

by season (χ²1= 2.98, p= 0.08; Figure 5-6). 

 

 

 
 
Figure 5-6 Animals positive and negative to Cryptococcus spp. on Rottnest Island between March and 
December 2011. 
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 Correlates of Cryptococcus spp. with HMT, BLC and PBCM 

variables for Rottnest Island S. brachyurus 

 

Subtle differences in the HMT, BLC and PBCM datasets between Cryptococcus spp. positive 

and negative animals were present (SIMPER; Table 5-4a,b,c).  This was evident in the WBC 

(less NEUT, EOS, MONO and BASO, and higher LYMPH), erythrogram (lower RBC and PCV, 

and higher HGB), and BLC (lower PHOS, CK, UREA, and ALP; higher Vit. E, CHOL, BILT, and 

PROT) profiles of Cryptococcus spp. positive animals.  However, these differences were not 

significant (PERMANOVA: p< 0.05, Table 5-5a,b,c).  By contrast, there was a significant 

association between sex and differences in BLC profiles (PERMANOVA: p< 0.05; Table 

5-5b) of quokkas on Rottnest Island.  Both factors (i.e. Cryptococcus spp. and sex) 

appeared to have no significant interaction (PERMANOVA: p< 0.05; Table 5-5a,b,c). 
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Table 5-4 SIMPER analysis results indicating the contribution of specific variables to the observed differences 
in  HMT (a), BLC (b), and  PBCM (c) profiles of quokkas that were Cryptococcus spp.-positive and Cryptococcus 
spp.-negative on Rottnest Island.  HMT= haematology, BLC= blood chemistry, PBCM= peripheral blood cell 
morphology. 

  Taxon  Ct % 
Cryptococcus spp. 
+ve 

Cryptococcus spp.      
-ve 

    x�  SD  x�  SD  
a. HMT 

(23.5) † 
n +ve= 7 
n -ve= 75 

Lymphocytes (x10e9/L) 14.4 2.08 1.00 2.03 1.11 
Monocytes (x10e9/L) 13.1 0.05 0.03 0.07 0.06 
WBC (x10e9/L) 12.5 4.56 1.27 4.75 1.63 
Basophils (x10e9/L) 11.6 0.01 0.02 0.02 0.03 
RBC (x10e12/L) 11.2 5.81 0.50 5.87 0.93 
HGB (g/L) 10.4 110 8.87 109 15.4 
Eosinophils (x10e9/L) 9.58 0.32 0.18 0.38 0.31 
Neutrophils (x10e9/L) 8.89 2.11 0.39 2.25 1.00 
PCV (%) 8.28 33.3 2.69 33.6 4.48 

b. BLC (20.2) † 
n +ve= 7 
n -ve = 84 

Vit. E (mg/L) 10.8 7.59 1.69 6.31 1.72 
CHOL (mmol/L) 8.84 3 0.65 2.78 0.53 
PHOS (mmol/L) 8.13 1.1 0.50 1.22 0.47 
CK (U/L) 7.94 450 325 939 1,425 
UREA (mmol/L) 7.31 6.47 1.24 7.04 1.47 
BILT (µmol/L) 6.79 4.56 1.61 4.20 1.61 
ALP (U/L) 6.78 5,709 3,106 8,812 11,125 
GLUC (mmol/L) 6.77 4.84 1.40 4.11 2.31 
PROT (g/L) 6.72 61.7 2.57 60.4 4.76 
CALC (mmol/L) 6.71 2.19 0.17 2.20 0.20 
CREAT (µmol/L) 6.36 64.1 20.7 70.0 14.9 
ALT (U/L) 6.25 214 37.8 224 65.9 
ALB (g/L) 5.90 36.4 1.25 36.5 1.81 
AST (U/L) 4.73 44.3 13.1 49.5 32.0 

    Cryptococc
us spp. +ve 

Cryptococc
us spp. -ve  

   Ct % 
Frequency 
(%) 

Frequency 
(%) OR ‡ (95% CI)  

c. PBCM 
(28.4) † 
+ve= 7 
-ve= 83 

Rouleaux formation 12.0 4 (57) 35 (42) 1.83 (0.38-8.69) 
Acanthocytes 11.6 2 (29) 42 (51) 0.39 (0.07-2.13) 
Heinz bodies 11 1 (14) 39 (47) 0.19 (0.02-1.63) 
Poikilocytosis 10.6 4 (57) 75 (90) 0.14 (0.03-0.75) 
Echinocytes 9.30 2 (29) 20 (24) 1.26 (0.23-7.00) 
Hypochromasia 7.83 5 (71) 76 (92) 0.23 (0.04-1.41) 
Anisocytosis 7.56 6 (86) 65 (78) 1.66 (0.19-14.7) 
Flower Cells 6.95 1 (14) 19 (23) 0.56 (0.06-4.96) 
Keratocytes 6.50 1 (14) 17 (20) 0.65 (0.07-5.74) 
Schistocytes 5.88 1 (14) 14 (17) 1.37 (0.34-5.43) 
Howell-Jolly bodies 5.01 6 (86) 77 (93) 0.47 (0.05-4.54) 
nRBCs 2.78 7 (100) 74 (89.2) 1.91 (0.10-36.2) * 
Polychromasia 2.64 7 (100) 75 (90) 1.69 (0.09-32.3) * 
Reactive lymphocytes 0.40 7 (100) 82 (99) 0.27 (0.01-7.30) * 

Ct: Percent of contribution to difference 
† Overall average dissimilarity 
‡ Odds ratio for the presence of the taxon in Salmonella +ve individuals and 95% confidence intervals 
calculated using Woolf’s method (1955) 
* calculated by adding 0.5 to each observed value (Altman 1999) 
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Table 5-5 Two-way PERMANOVA of selected HMT variables (a) (corrected WBC, RBC, HGB, PCV, and absolute 
counts for leukocytes obtained with a manual differential on a blood smear), BLC analytes (b) (ALP, ALT, AST, 
CK, PROT, ALB, CALC, PHOSP, CHOL, BILT, GLUC, CREAT, UREA and Vitamin E), and PBCM (c) for Cryptococcus 
spp.-positive and Cryptococcus spp.-negative S. brachyurus on Rottnest Island, with sex as independent factor.  
Bray-Curtis similarity index, Permutation N= 9,999.  HMT= haematology, BLC=blood chemistry, PBCM= 
peripheral blood cell morphology. 

 Data Factor SS df MS F p 
a. HMT Cryptococcus spp. 0.014 1 0.014 0.179 0.897 
 Sex 0.027 1 0.027 0.342 0.704 
 Interaction -2.81 1 -2.81 -35.2 0.967 
 Residual 6.21 78 0.080   
 Total 3.45 81    

b. BLC Cryptococcus spp. 0.020 1 0.020 0.462 0.583 
 Sex 0.053 1 0.053 1.220 0.024 
 Interaction -1.71 1 -1.71 -39.4 0.955 
 Residual 3.77 87 0.043   
 Total 2.13 90    

c. PBCM Cryptococcus spp. 0.055 1 0.06 0.862 0.216 
 Sex 0.022 1 0.02 0.347 0.652 
 Interaction -2.37 1 -2.37 -37.1 0.312 
 Residual 5.50 86 0.06   
 Total 3.21 89       

SS: sum of squares 
df: degrees of freedom 
MS: mean sum of squares 
 

 

There was no particular clustering of the HMT, BLC and PBCM data either across 

Cryptococcus spp. status (i.e. -positive, -negative) or across sexes (nMDS analyses: Figure 

5-7a,b,c). 
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HMT                                                                                           BLC 

 
PBCM 

 
Figure 5-7 Non-metric MDS plots with Bray-Curtis similarity measure, illustrating the structural 
dissimilarity of HMT (a. stress statistic= 0.177), BLC (b. stress statistic= 0.271) and PBCM (c. stress statistic= 
0.28) communities in Cryptococcus spp.-positive and Cryptococcus spp.-negative S. brachyurus from Rottnest 
Island.  Key legend applies for all plots.  Note that the distances along the axes are unit-less, therefore the 
positions of the points in the plots are relative distances from one another rather than absolute differences 
read in these units.  HMT= haematology, BLC=blood chemistry, PBCM= peripheral blood cell morphology. 

 

 

 Relation between Cryptococcus spp. and: (i) physical 

examination findings, (ii) other organisms 

 

There were no differences in the physical examination findings between animals positive 

or negative for Cryptococcus spp. (Table 5-6).  Similarly, there were no significant 

associations between the presence of other concomitant organisms (i.e. MaHV-6, 

piroplasms, Salmonella, microfilariae, nematode eggs, and Eimeria spp. oocysts) with the 

presence of Cryptococcus spp. in the nasal lining of the quokkas on Rottnest Island (Table 

5-7). 

 

a. b. 

c. 

▲ Cryptococcus spp. (+ve) ♂ 
△ Cryptococcus spp. (-ve) ♂ 
■ Cryptococcus spp. (+ve) ♀ 
□  Cryptococcus spp. (-ve) ♀ 
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Table 5-6 Results for associations between physical examination findings and saprophyte fungi in animals 
from Rottnest Island and the mainland (combined sample).  OR= odds ratio, CI= confidence interval, CRT= 
capillary refill time, MM= mucous membranes, EP= external parasites. 

 Cryptococcus spp.   
Finding +ve (%) n= 7 -ve (%) n= 90 OR (95% CI) χ²1, n= 97 
Abnormal mentation a 1 (1.03) 8 (8.25) 1.71 (0.18-16) = 0.05, p= 0.838 
Abnormal CRT b 0 (0) 8 (8.89) 0.65 (0.03-12.3) * = 0.01, p= 0.912 
Abnormal MM c 1 (14.3) 27 (30) 0.39 (0.04-3.39) = 0.20, p= 0.652 
Cloudy eye 0 (0) 2 (2.22) 2.36 (0.10-53.8) * = 0.96, p= 0.326 
Dehydration d 2 (28.6) 46 (51.1) 0.38 (0.07-2.08) = 0.57, p= 0.449 
Ear notches 1 (14.3) 13 (14.4) 0.99 (0.11-8.88) = 0.29, p= 0.584 
Flaky skin 0 (0) 2 (2.22) 2.36 (0.10-53.8) * = 0.96, p= 0.326 
Fur loss 1 (14.3) 22 (24.4) 0.52 (0.06-4.52) = 0.02, p= 0.882 
Presence of EP 0 (0) 10 (11.1) 0.51 (0.03-9.61) * = 0.08, p= 0.774 
Skin erosions 0 (0) 2 (2.22) 2.36 (0.10-53.8) * = 0.96, p= 0.326 

a Diminished response to external stimuli 
b Greater than two seconds 
c Pale and blue tinted mucous membranes 
d Skin tenting for longer than 2 seconds 
e Ulcers found inside the pouch of females 
* calculated by adding 0.5 to each observed value (Altman 1999) 
 

 
Table 5-7 Results for associations of other infectious agents occurring concomitantly in animals from Rottnest 
Island tested for Cryptococcus spp.  OR= odds ratio, CI= confidence interval, MaHV-6= Macropodid herpesvirus 
6. 

 Cryptococcus spp.   
Finding  +ve/n (%) -ve/n (%) OR (95% CI) χ² 
Babesia sp. a 0/7  (0 ) 1/72 (1.39) 3.18 (0.12-85.1) * χ²1, n= 79 = 2.12, p= 0.145 
Eimeria spp. b 3/3 (100) 42/52 (80.8) 1.73 (0.08-36.1) * χ²1, n= 52 = 0.01, p= 0.944 
MaHV-6 a 0/7 (0) 6/72 (8.33) 0.68 (0.04-13.3) * χ²1, n= 79 = 0.01, p= 0.962 
Microfilariae b 3/7 (42.9) 28/85 (32.9) 1.53 (0.32-7.29) χ²1, n= 92 = 0.01, p= 0.906 
Nematode eggs b 3/3 (100) 46/51 (90.2) 0.83 (0.04-18.2) * χ²1, n= 54 = 0.21, p= 0.648 
Salmonella spp. c 1/3 (33.3) 25/56 (44.6) 0.62 (0.05-7.24) χ²1, n= 59 = 0.04, p= 0.831 
Theileria sp. a 2/7 (28.6) 16/72 (22.2) 1.40 (0.25-7.91) χ²1, n= 79 = 0.01, p= 0.928 

a Screened by PCR [MaHV-6: see Chapter 6, section 6.3.1; Piroplasms: Chapter 7, section 7.3.1.1] 
b Screened by light microscopy [gastrointestinal parasites: see Chapter 3, section 3.4.1; microfilariae: see 
Chapter 7, section 7.3.1] 
c Screened by culture methods, species and serovars determined by serotyping (see Chapter 4, section 4.2.1) 
* calculated by adding 0.5 to each observed value (Altman 1999)  
 

 

5.5 Discussion 

Cryptococcus neoformans var. grubii (serotype A) (prevalence= 2.1%, CI 0.4-6.4) and C. 

magnus (prevalence= 1.03%, CI 0.1-4.7), were recovered from nasal swabs (by 

microbiological methods) from free-ranging S. brachyurus from Rottnest Island and the 

southwest of WA.  This constitutes the first report of serotype A and C. magnus on Rottnest 

Island and probably within the offshore territory of WA.  Four more cryptococcal 

organisms (samples sent to a commercial laboratory) reported simply as ‘Cryptococcus 

spp. not neoformans not gattii’ were recovered but not characterised (4.12%).  The overall 

prevalence of cryptococcal organisms on Rottnest Island was 7.2% (7/97).  Even though 

the probability (i.e. OR) of infection with Cryptococcus spp. was 6.56 (CI 0.76-56.7) times 
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higher for females than males, this was not statistically significant (p= 0.123).  There was 

also no influence of season on the prevalence of cryptococcal organisms (p= 0.08) on 

Rottnest Island.  Cryptococcal organisms were not recovered from quokkas on the 

mainland.  Other fungal organisms recovered from quokkas on Rottnest Island and the 

mainland were Rhodotorula glutinis, R. mucilaginosa, Aureobasidium pullulans, and 

Rhodosporidium kratochvilovae spp.  Multivariate analyses showed that Cryptococcus spp. 

had no effect on the HMT, BLC or PBCM profiles of infected animals.  Similarly, there were 

no significant associations between physical examination findings and concomitant 

infections with the presence of Cryptococcus spp. 

 

Previous studies have indicated that in Australia, cryptococcal isolates recovered from 

populated urbanised areas are typically C. neoformans var. grubii (serotype A) were as the 

isolates recovered from rural areas are typically C. gattii (Chen et al. 2000 ; Lester et al. 

2004).  On the mainland, S. brachyurus is generally found in bushlands with practically no 

human development, whereas on Rottnest Island the species lives in contact with man.  

This contact occurs to various degrees; unsettled areas like Barker Swamp, West End and 

Serpentine where there is little to no contact, and the Settlement and Parker Point 

(urbanised areas), where there is close contact between S. brachyurus and people (refer to 

Chapter 3, section 3.1.1).  In this context, the isolation of C. neoformans var. grubii from 

animals on the Settlement and not from other trapping sites on Rottnest Island is not just 

in line with previous reported distributions of the organism (mainly at urbanised and 

populated areas), but these isolations are significant for public health reasons, including 

that Rottnest Island is a popular tourist attraction, with ~500,000 visitors a year (2014 

data), that C. neoformans var. grubii strains are generally more virulent than C. neoformans 

var. neoformans strains.  Furthermore, C. neoformans var. grubii is responsible for the 

majority of cryptococcal infections in immunocompromised humans and animals (Janbon 

et al. 2014 ; Nielsen et al. 2003 ; Steenbergen & Casadevall 2000 ; Sykes & Malik 2012). 

 

The overall prevalence of cryptococcal species on Rottnest Island (Cryptococcus spp., 

prevalence= 4.12%; C. neoformans var. grubii, prevalence= 2.1%; C. magnus, prevalence=  

1.03%), may be higher than recorded in this study, given that nasal swabbing and 

culturing has not been standardised in S. brachyurus, therefore it is possible that 

cryptococcal cells may have been missed during the procedure, and positive animals may 

have been recorded as false negatives.  Although C. neoformans var. grubii may have been 

recovered as a result of transient contamination, it is unlikely given that known 

environmental sources were not present at the moment of sampling, and all animals were 

sampled under the same conditions.  
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Cryptococcus neoformans (var. neoformans and var. grubii) has a world-wide distribution 

and an important reservoir of the organism is in bird excreta, particularly that of pigeons 

(Columba livia) (Casadevall & Perfect 1998 ; Li et al. 2012), however, studies suggest that 

other birds may also be natural reservoirs for C. neoformans var. grubii (Cafarchia 2012).  

An example of this, is how seabirds have been proposed as a source of cryptococcal 

infection in dolphins, with the transmission of the fungi occurring while both hosts fed on 

schools of fish (Gales, Wallace, & Dickson 1985 ; Migaki, Gunnels, & Casey 1978).  From a 

microbiological perspective, these organisms could grow on excreta of any avian species 

due to the high concentrations of creatinine that are present (Levitz 1991 ; Quinn et al. 

2011 ; Sperber 1960).  Although var. grubii has been recovered from a variety of hosts (see 

Table 5-1), they are generally not considered a source of it.  Additional environmental 

sources include tree debris of Eucalyptus camaldulensis (Nishikawa et al. 2003 ; Pfeiffer & 

Ellis 1993), domestic dust and decaying wood (Nishikawa et al. 2003). 

 

According to a study by Saunders and Rebeira (2009), 26 specimens of Columba livia (an 

introduced species to Australia) were recorded in two visits to Rottnest Island between 

1980 and 2007.  The birds were observed in woodland habitats and the Settlement.  Even 

though recent reports on the presence of C. livia on Rottnest Island were not obtained, 

according to the Rottnest Island Authority (Shane Kearney pers. comm. 2015), no actions 

have been taken to control C. livia numbers, and it is believed the species still present on 

the island.  In contrast, on the mainland, C. livia has been reported mainly around urban 

areas, away from the forest ecosystems used by S. brachyurus (Atlas of Living Australia 

2013 ; Department of Parks and Wildlife (DPaW) 2007).  Although further studies are 

required to conclusively determine that C. livia does not shares the same ecosystems as 

the mainland quokka, previous studies have shown that C. livia prefers urban 

environments and open agricultural areas (Birdlife Australia 2015).  The preference of C. 

livia for urban ecosystems may be a factor in the reduced or lack of exposure of the 

quokka to spores of desiccated cells of C. neoformans var. grubii and/or var. neoformans on 

the mainland, and may have contributed to the negative results in this study. 

 

By simple observation, quokkas in areas around Thompson’s Bay settlement (see Figure 

5-4) on Rottnest Island appear to be more likely to get exposed to C. neoformans var. grubii 

yeasts or spores by scavenging for food sources in areas contaminated with avian excreta 

from C. livia or other species, as well as debris from potential plant sources.  However, this 

could be a case of risk of exposure, and not a case of complete absence of avian reservoirs 

on the mainland sharing the same ecological niche with S. brachyurus.  Risk of exposure of 

S. brachyurus to bird droppings appears to be greater on the settlement areas of Rottnest 
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Island than on any other location of the natural range of the species, not just on the island 

but also on the mainland. 

  

Some plants and trees have been reported to be a niche for C. neoformans var. grubii: 

Cassia grandis, Eucalyptus camaldulensis, Ficus microcarpa, Myroxylon peruiferum, Senna 

multijuga, Syzygium jambolanum, and Theobroma cacao (Nishikawa et al. 2003), as well as 

Moquilea tomentosa (Granados & Castañeda 2005).  Of these, Ficus microcarpa and 

Eucalyptus camaldulensis are the only ones that have been recorded in WA (Atlas of Living 

Australia 2013 ; Western Australian Herbarium 1998).  E. camaldulensis is the only species 

that has been reported on the mainland with just a few observations within the natural 

range of S. brachyurus, whereas both F. microcarpa and E. camaldulensis, (considered 

introduced species), have been described as been concentrated in areas of Rottnest Island 

that have been urbanised (Rippey, Hislop, & Dodd 2003).  Even though sampling of 

environmental sources was not part of this study, there appears to be a potential 

association between the isolation of C. neoformans var. grubii from the nasal lining of S. 

brachyurus present in urbanised areas of Rottnest Island, and the possible higher 

incidence of C. livia, F. microcarpa and E. camaldulensis in these same areas of the island.  

 

The negative results for C. neoformans (both varieties) from nasal swabs of mainland 

animals may be explained by a number of factors, including: i) a small sample size (n= 33), 

ii) the limited number of sites where animals were trapped (n= 3), iii) the limited presence 

or absence of environmental sources of C. neoformans var. grubii (C. livia, E. camaldulensis 

and F. microcarpa) within the mainland range of the species, and iv) host immunity.  The 

first two factors may have also played a role in the negative results for C. gattii from 

mainland samples.  However, unlike C. neoformans var. grubii environmental sources that 

appear to be absent from the natural range of S. brachyurus on the mainland, Eucalyptus 

rudis a known environmental niche for C. gattii (Connolly et al. 1999 ; Pfeiffer & Ellis 

1997), has a widespread presence across the mainland range of the species (Atlas of 

Living Australia 2013 ; Department of Parks and Wildlife (DPaW) 2007 ; Western 

Australian Herbarium 1998).  C. gattii has been previously recovered from the wood, bark, 

leaves and flowers collected under the canopy of E. rudis (Connolly et al. 1999).  Although 

further studies are needed to corroborate the relation of E. rudis and C. gattii within the 

mainland range of S. brachyurus, the absence of C. gattii in mainland samples may reflect 

that: i) animals may not be in direct contact or may have limited exposure to wood, bark, 

leaves or flowers of E. rudis, and ii) that this may have to do with the thick understory and 

the use of runnel systems that quokkas use to move from one point to another.  These two 

factors may be serving as barriers that decrease animal exposure to the organisms. 
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Although clinical signs of cryptococcosis may vary depending on the organs affected, some 

of which are only assessable by diagnostic techniques not easily available in the field (e.g. 

ultrasound, X-ray imaging or even high definition imaging techniques such as computed 

axial tomography), animals in this study were considered to be apparently healthy at the 

time of sampling.  There were no typical signs of cryptococcosis by C. neoformans (e.g. 

neurological, granulomas in nasal cavity, peripheral lymphadenopathy, respiratory like 

sneezing or coughing, Vogelnest & Woods 2010), no association between physical 

examination findings and the presence of Cryptococcus spp., and no significant differences 

in the HMT and BLC between Cryptococcus spp.-positive and Cryptococcus spp.-negative 

animals.  This agrees with previous studies in marsupials (Connolly et al. 1999 ; 

Krockenberger et al. 2002), domestic animals (Malik et al. 1997), pigeons and cormorants 

(Danesi et al. 2014), that have shown that C. neoformans var. grubii could be carried 

asymptomatically.  However, it is worth noting, that the negative culture results, coupled 

with the absence of statistical effect of Cryptococcus spp. on blood parameters, and the 

absence of significant associations with physical examination findings, are not sufficient to 

differentiate between asymptomatic carriers and animals with early stages of 

cryptococcosis (e.g. early lesions on the mucosa of the cribriform plate).  The effect of sex 

on the BLC of Rottnest Island animals may be attributed to the interplay of multiple 

cofounding factors such as age, nutrition or genetic differences. 

 

Despite the absence of obvious clinical signs of disease at the time of sampling, and the 

absence of any significant differences between the HMT, BLC and PBCM of C. neoformans 

var. grubii positive and negative animals, we recommend these results be interpreted with 

caution.  Inhalation of aerosolised cryptococcal cells (i.e. yeast cells or basidiospores) 

desiccated by environmental exposure is believed to be the most likely route of infection 

(Sykes & Malik 2012).  C. neoformans var. grubii cells in turn, could progress into silent 

primary foci in the respiratory passages and organs (Merchant & Packer 1967 pp. 549-

566), that under the right conditions (e.g. stress-induced immunosuppression) can 

reactivate and become the source of systemic dissemination, that may involve the central 

nervous system, bone tissue, skin or other organs (Garcia-Hermoso, Janbon, & Dromer 

1999 ; Illnait-Zaragozi et al. 2011 ; Krockenberger et al. 2002).  The presence of C. 

neoformans var. grubii in the nasal cavity of quokkas on Rottnest Island, suggests that 

inhalation of aerosolised cryptococcal cells could follow, or has already occurred.  This is 

relevant for ex-situ and in-situ management programs of S. brachyurus.  To the best of our 

knowledge, captive populations of S. brachyurus throughout Australia are populated by 

specimens that were sourced from Rottnest Island.  Consequently, it is reasonable to 

considered that animals captured in urbanised areas of the island, may have arrived at 
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their captive collections carrying basidiospores or having developed silent cryptococcal 

lesions in their lungs, and are at greater risk of developing clinical disease.  Even though 

further studies would be necessary to determine whether C. neoformans var. grubii-

positive animals acquired the infection prior to their captivity, and whether reactivation of 

dormant cryptococcal lesions occurs in S. brachyurus, it is suggested that in addition to 

standard cryptococcal tests such as latex cryptococcal agglutination test (LCAT), advanced 

imaging techniques such as computed axial tomography or magnetic resonance imaging 

are considered to screen for pulmonary lesions consistent with cryptococcal pathology in 

new arrivals.  Alternatively, nasal endoscopy should be considered at minimum, to detect 

lesions in the cribriform plate consistent with cryptococcal pathology. 

 

Pertaining to the population on Rottnest Island (i.e. in-situ), even though S. brachyurus and 

C. neoformans var. grubii may have co-evolved in the same natural environment (a relation 

that commonly does not lead to disease), certain conditions such as exposure to large 

amounts of infective yeast cells, and a compromised immune system (e.g. stress-induced 

immunosuppression), could alter the balance host-parasite relation, which could then lead 

to cryptococcal disease.  Although there is insufficient evidence (e.g. from histological 

examination, high definition imaging techniques) to prove that silent pulmonary or upper 

respiratory cryptococcal foci are present in animals on Rottnest Island, we believe it is 

possible that such lesions are present in animals that have been in contact with C. 

neoformans var. grubii.  Consequently, animals with such lesions may be at a greater risk 

of disease, particularly in the presence of concomitant disease and chronic stress due to 

increasing environmental pressures such as climate change, habitat loss, and food and 

water shortage.  Even though C. neoformans var. grubii is not known to be transmitted 

from animal to animal (Cafarchia 2012 ; Vogelnest & Portas 2010 pp. 133-225), hence 

disease should be expected only in animals that have been exposed to the environmental 

source of C. neoformans var. grubii.  However, a study by (Krockenberger, Canfield, & 

Malik 2002) suggested that heavily colonised or infected koalas could contaminate 

previously cultured-negative vegetation.  Consequently, moving animals from Rottnest 

Island to the mainland, may represent a potential biological hazard to mainland 

individuals. 

 

Cryptococcosis is no longer considered an opportunistic infection in human health, and 

today, is one of the major diseases of medical importance in both immunocompetent and 

immunocompromised individuals, particularly children (da Costa et al. 2013 ; Del Poeta & 

Casadevall 2012), with an estimated 650,000 deaths annually (Pappas 2013).  Therefore, 

from a public health point of view, the isolation of C. neoformans var. grubii from S. 
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brachyurus on Rottnest Island requires further attention.  Two main aspects should be 

considered: i) the possible zoonotic transmission from S. brachyurus to humans, and ii) the 

risk of exposure of people to C. neoformans var. grubii environmental source (sources).  To 

our knowledge, the quokka has been associated with the spread of agents capable of 

disease, particularly Salmonella.  In 1973, a child was diagnosed with salmonellosis due to 

an infection with S. enterica ser. Javiana, that was acquired after the child handled faecal 

pellets on Rottnest Island (Iveson & Bradshaw 1973).  Pertaining C. neoformans, to the 

extent of our knowledge only pet birds have been implicated in cases of zoonotic 

transmission to humans (Lagrou et al. 2005 ; Nosanchuk et al. 2000).  However, studies in 

mice (immunosuppressed) inoculated orally with C. neoformans (variety not specified), 

detected intestinal shedding of viable yeast cells for up to 12 months (Green & Bulmer 

1979 ; Salkowski et al. 1987).  Although further studies would be necessary to establish 

whether faecal shedding of viable C. neoformans yeast cells by S. brachyurus is possible, 

ingestion of C. neoformans var. grubii by animals on Rottnest Island through direct contact 

with avian excreta or another environmental source (e.g. F. microcarpa and E. 

camaldulensis) while scavenging for food, is likely.  In the interest of public health and 

animal management, it is advisable to consider faecal shedding of C. neoformans var. grubii 

by S. brachyurus on Rottnest Island possible, until demonstrated otherwise. 

 

The presence of an environmental source (sources) on Rottnest Island, supported by the 

recovery of C. neoformans var. grubii from the nasal passages of S. brachyurus, represents a 

risk factor for cryptococcal disease in humans.  Consequently, the Rottnest Island 

Authority and institutions responsible for public health are advised to considered 

exposure to C. neoformans var. grubii as likely.  Further studies would be necessary, to 

conclusively determine what the environmental source (sources) for C. neoformans var. 

grubii on Rottnest Island is, and how humans interact with this source (sources).  This 

would allow to design and carry out strategies aimed to decrease the overall risk of 

cryptococcal disease in humans. 

 

The outbreak and emergence of C. gattii in Vancouver Island (Canada) that was detected in 

2002 (Hoang et al. 2004), is an example of pathogen adaptability to new environments 

and the importance of disease surveillance.  C. gattii was known to be associated with 

tropical and semi-tropical environments, however, the organism thrived in the temperate 

climate of VI (Kidd et al. 2004).  Although cases of cryptococcosis had been happening 

since 1997, cases were considered to be isolated, and no epidemiological studies were 

performed until disease incidence had reached levels higher than that recorded in 

Australia, were C. gattii is endemic (Kidd et al. 2004).   In these previous studies, attention 
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to other potentially susceptible hosts (e.g. wildlife) was not given.  It was Duncan et al. 

(2006) who isolated C. gattii from the nasal passages of eastern grey squirrels (Sciurus 

carolinensis) in Vancouver Island.  Whether C. neoformans var. grubii was introduced or is 

endemic to Rottnest Island, is difficult to determine as the agent has not been surveyed in 

the past.  However, testing potentially susceptible hosts other than humans (e.g. S. 

brachyurus), that may be constantly exposed to the environmental source (sources) of C. 

neoformans var. grubii, appears as a possible environmental indicator of human risk.   The 

recovery of live C. neoformans var. grubii from the nasal cavity of S. brachyurus on Rottnest 

Island, emphasises the importance and need of surveillance studies of wildlife health, 

highlights the potential role of S. brachyurus as a sentinel species, and is a voice of alert to 

public health agencies.  The impact of C. neoformans var. grubii on the quokka and other 

wildlife species on Rottnest Island remains largely unknown and warrants further 

investigation.  

 

Cryptococcus magnus, Rhodosporidium kratochvilovae, Rhodotorula mucilaginosa, 

Rhodotorula glutinis and Aureobasidium pullulans are considered to be ubiquitous with no 

specific ecological niches or natural hosts.  Although they have been previously associated 

with diseases in different animal species (Beemer, Schneerson-Porat, & Kuttin 1970 ; 

Kadota et al. 1995 ; Monga & Garg 1980 ; Poth et al. 2010 ; Wirth & Goldani 2012b) and in 

humans (Clark et al. 1995 ; de Oliveira et al. 2013 ; Huttova et al. 1998 ; Wirth & Goldani 

2012a), they are not typically considered to be highly pathogenic.  In humans, disease 

conditions are generally associated with environments in which patients are subject to 

invasive procedures (e.g. central catheterisation and surgery) that serve as an entry point 

for these ubiquitous yeast and as with cryptococcal infection, in immunosuppressed 

patients.  In animals, it appears that the nosocomial source of infection has not been 

reported for any of these yeast as yet, and even though these organisms have been 

recovered from animals with a variety of conditions, the prevalence and incidence of these 

seem to be very low.  For instance, there is only one case of cryptococcosis in cats due to C. 

magnus in the literature (Poth et al. 2010).  Considering the low incidence and prevalence 

of these yeast, as well as the mild presentation of the multiple clinical conditions (e.g. 

dermatitis, epididymitis) reported in the literature, it appears reasonable to consider 

these organisms as of little concern in the context of S. brachyurus conservation.  However, 

it is important to keep present that under immunosuppressive states, animal models of 

disease have shown that these yeast, that are not typically pathogenic, have the ability to 

cause multisystemic disease (Wirth & Goldani 2012b). 
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6. A novel gammaherpesvirus in free-ranging quokkas (Setonix 

brachyurus) on Rottnest Island and mainland Western Australia 
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6.1 Abstract 

In their natural hosts, herpesviruses may cause disease that is rarely fatal, but can pose a 

significant threat to other closely related host species.  To date, five herpesviruses have 

been reported in macropods.  In this study, we screened 142 free-ranging quokkas 

(Setonix brachyurus) from Rottnest Island and three sub-populations on the mainland 

(mainland) for herpesvirus infection by a pan-herpesviral nested polymerase chain 

reaction (nPCR) or by serological testing for neutralising antibodies to MaHV-1 and MaHV-

2.  We compared these data with haematology (HMT), blood chemistry (BLC), peripheral 

blood cell morphologies (PBCM), clinical status, and other concomitant infections.  

Neutralising antibodies to MaHV-1 or MaHV-2 were detected in one free-ranging 

individual from the mainland of Western Australia (WA) (prevalence= 0.7%, 95% CI 0.1-

3.2).  DNA of a novel gammaherpesvirus (designated MaHV-6) was detected by nPCR in 

the blood of 13 of 121 (prevalence=10.7%, CI 6.2-17.2) apparently healthy animals 

(combined sample Rottnest Island and mainland).  This novel macropodid herpesvirus is 

related to, but phylogenetically distinct from previously reported gammaherpesviruses in 

macropods.  There was no association between MaHV-6 infection and changes in HMT, 

BLC or PBCM, and there was no association between the presence of MaHV-6 infection and 
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physical examination findings for these animals.  There was significantly (p= 0.015) 

greater prevalence of MaHV-6 on the mainland (25%, n= 28, CI 12.7-43.4) compared to 

Rottnest Island (6.45%, n= 93, CI 2.7-12.8).  There was a significant association between 

the presence of Theileria sp. in peripheral blood (p=0.001) and the presence of MaHV-6, 

with MaHV-6 positive animals being 11 times more likely to be infected with Theileria sp. 

(OR= 11.0, CI 2.31-52.3).  This may suggest that quokkas may be more susceptible to 

infection with Theileria sp., if infected with MaHV-6. 

 

6.2 Introduction 

Members of the family Herpesviridae are enveloped, and have double-stranded 

deoxyribonucleic acid (DNA) genomes inside an icosadeltahedral capsid, with virions 

reaching almost 300 nm in diameter (Widén et al. 2012).  The family is subdivided into 

three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae  

(Davison et al. 2009).  Herpesviruses are of great significance in veterinary medicine; they 

are responsible for at least one major disease in each species of most domestic animals 

(MacLachlan & Dubovi 2011).  This significance also extends to captive and free-ranging 

wildlife (King 2001), where herpesviruses have been responsible for mortality in captive 

collections and mass mortalities in wild fish (Garver et al. 2010 ; Jones et al. 1997).    

 

In the natural host, herpesviruses may cause disease that is rarely fatal, and following 

recovery, animals usually establish lifelong infection characterised primarily by periods of 

latency in various tissues with intermittent recrudescence of infectious virus (Roizman & 

Pellet 2001).  Latency is often in nervous tissue, however, gammaherpesviruses in 

particular are lymphotropic in nature, establishing latency primarily in either B- or T- 

lymphocytes (Markey et al. 2013 pp. 559-573).  Periodic recrudescence with virus 

shedding is sometimes accompanied by clinical signs of disease.  By contrast, 

herpesviruses that are transmitted from their natural host to another host species 

(frequently a related species) often cause fatal disease (Roizman & Pellet 2001).  A classic 

example of this is wildebeest-associated malignant catarrhal fever, a disease caused by a 

gammaherpesvirus (Alcelaphine herpesvirus 1).  This virus is carried by wildebeest 

(Chonnochaetes taurinus and C. gnu) asymptomatically, but reliably causes fatal 

generalised disease in susceptible species such as cattle, bison and deer (Markey et al. 

2013).  A similar example is B-virus (Cercopithecine herpesvirus 1) of macaques (Macaca 

spp.) that usually results in fatal disease if transmitted to humans (Huff & Barry 2003).   

It is believed that every vertebrate species is host for at least one species of herpesvirus 

(MacLachlan & Dubovi 2011 ; Portas et al. 2014).  New members of each Herpesviridae 
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subfamily have been recently detected in a broad range of wildlife species, including 

vespertilionid bats (Miniopterus fuliginosus) (Watanabe et al. 2010), common loons (Gavia 

immer) (Quesada et al. 2011), fishers (Martes pennanti) (Gagnon et al. 2011), northern sea 

otters (Enhydra lutris kenyoni) (Tseng et al. 2012), bobcats (Lynx rufus) and pumas (Puma 

concolor) (Troyer et al. 2014), and belugas (Delphinapterus leucas) (Bellehumeur et al. 

2015), among others.  Furthermore, studies have also shown that several species of 

herpesviruses could be present concomitantly in the same animal, for instance: elephant 

endotheliotropic herpesvirus 1 and 5 in free-ranging Asian elephants (Elephas maximus) 

(Stanton et al. 2014) and phascolarctid herpesvirus 1 (PhaHV-1) and 2 (PhaHV-2) in free-

ranging koalas (Phascolarctos cinereus) from eastern Australia (Vaz et al. 2012).  However, 

of these recent discoveries, gammaherpesviruses appear to be the most frequent.  

 

Infections with herpesviruses have been reported in members of the family Macropodidae 

(kangaroos and wallabies).  Infection with Macropodid herpesvirus 1 (MaHV-1) an 

alphaherpesvirus was detected in captive parma wallabies (Macropus parma) (Acland 

1981 ; Finnie, Littlejohns, & Acland 1976) and was associated with respiratory signs, 

conjunctivitis, incoordination, pyrexia and ulcers in the cloacal and pericloacal regions 

(Acland 1981 ; Finnie, Littlejohns, & Acland 1976).  Infection with Macropodid herpesvirus 

2 (MaHV-2; also an alphaherpesvirus) was detected in captive Dorcopsis wallabies 

(Dorcopsis muelleri luctuosa) and in a male quokka (Setonix brachyurus) in a mixed-species 

enclosure at Melbourne Zoo (Callinan & Kefford 1981 ; Wilks, Kefford, & Callinan 1981).  

The isolates were initially identified as Dorcopsis wallaby herpesvirus and Quokka 

herpesvirus respectively; however, restriction endonucleases studies subsequently 

unified them into MaHV-2 (Johnson & Whalley 1987 ; Johnson et al. 1985).  Although 

infection in both species was somewhat similar, oral ulcers and persistent bilateral 

purulent conjunctival exudate were the main clinical signs in the infected male quokka 

that was found dead 24 h after oral and cloacal ulcers were observed (Callinan & Kefford 

1981 ; Wilks, Kefford, & Callinan 1981).   

 

Despite the presence of several other species at the time, fatal disease was only seen in S. 

brachyurus and D. m. luctuosa.  Consequently, it was suggested that the outbreak at 

Melbourne Zoo may have been a case of MaHV-2 transmitted from another macropod 

species, possibly the natural host (Wilks, Kefford, & Callinan 1981) to the two species of 

macropodids with which it would not normally have contact in the wild.  A serological 

survey was also performed at the time, with sera from nine macropod species held in 

captivity (except S. brachyurus).  Neutralising antibodies to MaHV-2 were present in 

44.7% of the animals tested (n= 47), similar to previously reported prevalences by 
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Webber and Whalley (1978) for MaHV-1 in free-ranging and captive marsupials (mostly 

macropods).  More recently, prevalence of neutralising antibodies to MaHV-1 and MaHV-2 

in captive and free-ranging animals from eastern Australia, was found to range from 0% 

(n= 8) in koalas (Phascolarctos cinereus), 66.7% (n= 15) in common wombats (Vombatus 

ursinus), to 92% (n= 25) in eastern grey kangaroos (Macropus giganteus) (Stalder 2013).  

Although antibodies to these two alphaherpesviruses appear to be quite prevalent in the 

Australian macropod populations, it is not known if cases of disease occur in wild 

populations and if so, what their clinical significances and natural hosts are.  This suggests, 

as some authors have proposed, that these viruses have coevolved with marsupial species 

and are endemic to free-ranging populations in Australia (Webber & Whalley 1978 ; Wilks, 

Kefford, & Callinan 1981). 

 

Macropodid herpesvirus 3 (MaHV-3; a gammaherpesvirus) was first detected in a captive 

collection of eastern grey kangaroos (Macropus giganteus) in the USA, and similar to 

MaHV-1 and MaHV-2, detection of the virus occurred in association with disease (although 

of less severity) and death of some animals.  MaHV-3 was then detected by nPCR in a sick 

free-ranging eastern grey kangaroo (Macropus giganteus) in Victoria, Australia (Wilcox et 

al. 2011).  The animal survived after treatment, however, although the presence of MaHV-

3 was temporally associated with disease (nasal and bilateral serous ocular discharges, 

pyrexia and respiratory disease), and that other animals in the mob where this animal was 

part of showed similar clinical signs as well as dead animals, the association could not be 

shown to be causal (Wilcox et al. 2011).   

 

In 2013, a third alphaherpesvirus was detected in a wild eastern grey kangaroo (M. 

giganteus) with clinical signs compatible with respiratory and neurologic disease (Vaz et 

al. 2013).  Although closely related to MaHV-1 (94.6% similarity according to glycoprotein 

B and glycoprotein G amino acid sequence identities) and MaHV-2 (82.7%), genome 

restriction endonuclease cleavage analysis and cell culture characteristics identified this 

virus as sufficiently distinct to warrant its classification as Macropodid herpesvirus 4 

(MaHV-4) (Vaz et al. 2013).  A subsequent study on the prevalence of herpesviruses in 

captive and free-ranging Australian marsupials has detected another novel 

gammaherpesvirus in free-ranging and apparently healthy swamp wallabies (Wallabia 

bicolor) (prevalence= 26.7%, n= 15) (Stalder et al. 2015) which has been named 

Macropodid herpesvirus 5 (MaHV-5), on the basis of genome sequencing.  Infections with 

herpesviruses that have not been characterised by molecular methods, have also been 

reported in the red kangaroo (M. rufus) (Britt Jr, Frost, & Cockrill 1994) and brush-tailed 

rock wallabies (Petrogale penicillata) (Canfield & Hartley 1992) among others.  
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In this study, we screened 142 free-ranging S. brachyurus from Rottnest Island and the 

mainland of WA for neutralising antibodies to MaHV-1 or MaHV-2.  We also carried out 

nPCR amplification for herpesviruses and report the detection of a novel 

gammaherpesvirus in 13 apparently healthy animals. 

 

6.3 Materials and Methods 

Between September 2010 and December 2011, 153 quokkas were captured on Rottnest 

Island and three sub-populations across southwest WA.  For trapping sites descriptions 

and locations, and general procedures, including biological sample collection, anaesthesia 

and physical examinations, refer to Chapter 3, section 3.3.  All data were recorded for each 

animal and entered into an electronic database (FileMaker© v12, 2013).  Blood samples 

(EDTA and lithium heparin) were collected from the lateral tail vein and stored at 4 ˚C for 

later processing.   

 

Of the 153 animals trapped, 142 were tested for neutralising antibodies to MaHV-1 and 

MaHV-2 by the School of Veterinary and Agricultural Sciences at The University of 

Melbourne.  Positive serological results prompted a molecular approach, and 121(n= 93 

from Rottnest Island and n= 28 from the mainland) of the 142, were then tested for 

herpesviruses using DNA from whole blood, at Murdoch University.  Virus neutralisation 

testing methods were followed (as per Vaz et al. 2013). 

 

Complete blood counts and BLC panels were performed at the Clinical Pathology service of 

the Murdoch University Veterinary Hospital.  The following HMT parameters were 

recorded: white blood cell counts (corrected to exclude nucleated red blood cells) (WBC), 

red blood cell concentration (RBC), haemoglobin concentration (HGB), packed cell volume 

(PCV), the absolute concentrations for neutrophils (NEUT), eosinophils (EOS), basophils 

(BASO), lymphocytes (LYMPH) and monocytes (MONO).  The following BLC analytes were 

tested: alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), creatine kinase (CK), total protein (PROT), albumin (ALB), 

calcium (CA), phosphorus (P), cholesterol (CHOL), total bilirubin (BILT), glucose (GLUC), 

creatinine (CREAT), urea (UREA), and vitamin E (Vit E).  Blood smears were assessed 

manually (see Chapter 3, section 3.4.2) to determine the differential leukocyte count (200 

leukocytes), polychromatophilic erythrocyte count (1,000 erythrocytes), and PBCM (e.g. 

reactive lymphocytes, atypical neutrophils, keratocytes, schistocytes).  Microfilariae were 

recorded from blood smears, while Theileria sp. and Babesia sp. were screened for nPCR 

(see Chapter 7, section 7.3.1).  Nematode eggs and Eimeria sp. oocysts were screened by 
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light microscopy (see Chapter 3, section 3.4.1).  Cryptococcus spp. were screened by 

culture methods and isolates characterised by PCR (see Chapter 5, section 5.3.1), while 

Salmonellae spp. were screened on stool samples by culture methods and identified by 

serotyping (see Chapter 4, section 4.2.1). 

 

 DNA extraction, amplification and sequencing 

DNA was extracted from blood samples using either the QIAamp® DNA Mini Kit 

(QIAGEN®, Hilden, Germany) or the ISOLATE II Blood DNA Kit (Bioline Reagents Ltd., 

London, United Kingdom) (see Appendix 10.3.1 for detailed description of the DNA 

extraction methods).  All DNA products were then tested by nPCR for the presence of 

herpesviruses (as per VanDevanter et al. 1996) (see Appendix 10.3.2 for detailed 

description of the nested PCR methods), targeting the DNA-dependant polymerase (DPOL) 

gene, a highly conserved region of the viral genome and is one of the more commonly 

sequenced herpesvirus genes; these features make the DPOL gene well suited to genetic 

comparisons of herpesvirus species (Pellet & Roizman 2007).  Reactions were then 

visualised in agarose gel.  Equine herpesvirus 1 (EHV-1) was used a positive control.  Bands 

of the expected size were cut out using sterile scalpel blades and DNA was purified from 

agarose using the filter tip method (see Appendix 10.3.2).  Purified nPCR products were 

then sequenced (see Appendix 10.3.2.1 for details) using the forward and reverse primers 

on an ABI 3790 96 capillary automatic sequencer (Applied Biosystems, Scoresby, 

Australia).  Primer sequences were removed and the remaining sequence information was 

analysed using 4Peaks version 1.7.2 (A. Griekspoor and Tom Groothuis, at 

http://nucleobytes.com/index.php). 

 

 Phylogenetic analysis 

Nucleotide sequences were translated, and open reading frames were found using ExPASy 

Bioinformatics Resource Portal (http://web.expasy.org/translate/).  The predicted amino 

acid sequence was compared with sequences in GenBank (http://www.ncbi.nlm.nih.gov/) 

using BLASTP v. 2.2.29+.  Predicted amino acid sequences were aligned with homologous 

sequences of herpesviral DNA-dependant-DNA polymerase obtained from 33 different 

host species, representing the three Herpesviridae subfamilies (Alpha-, Beta-, and 

Gammaherpesvirinae) .  Sequences were aligned using MUSCLE (Edgar 2004).  

Phylogenetic reconstruction of the aligned sequences was performed using MEGA5 v. 5.2.2 

(Tamura et al. 2011).  To identify the best amino acid substitution model, initial trees for 

the heuristic search were obtained by applying the Neighbour-Joining method to a matrix 

http://nucleobytes.com/index.php
http://web.expasy.org/translate/
http://www.ncbi.nlm.nih.gov/
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of pairwise distances estimated using a Jones-Taylor-Thorton model.  The evolutionary 

history was inferred using a maximum likelihood method, running a Le-Gascuel amino 

acid substitution model (Le & Gascuel 2008).  A discrete gamma distribution was used to 

model evolutionary rate differences among sites (5 categories; +G, parameter= 1.5314).  

The rate variation model allowed for some sites to be evolutionarily invariable (+1/; 

19.4% sites).  Lastly, an unrooted maximum likelihood tree was generated.  All positions 

with less than 95% site coverage were eliminated.  That is, fewer than 5% alignment gaps, 

missing data, and ambiguous bases were allowed at any position.  The strength of each 

tree branch was assessed using a bootstrapping analysis with 200 replications (Efron, 

Halloran, & Holmes 1996).   

 

 Statistical analyses 

Haematology, BLC, and PBCM datasets for animals that tested positive or negative by 

nPCR to MaHV-6, were explored visually with non-metric Multidimensional Scaling 

(nMDS) using a Bray-Curtis similarity measure (Bray & Curtis 1957) in PAST v. 3.02 

(Hammer, Harper, & Ryan 2001).  Analyses were performed on the three datasets 

separately due to differences in sample sizes between them (some individuals were tested 

for either HMT or BLC, which would mean their exclusion from analyses of the entire 

dataset due to missing data).  This analysis was carried out for Rottnest Island and 

mainland populations combined including MaHV-6 PCR-positive or MaHV-6 PCR-negative, 

site (Rottnest Island or mainland), and sex as independent factors.  Due to insufficient 

observations as well as limitations of the multivariate analysis test used, seasonal 

differences were explored using χ2 for Trend.   

 

Haematology and BLC dependant variables were range-standardised to a scale between 0 

and 1, while PBCM variables had a binary format.  For each nMDS plot, two-or-three-

dimensional analyses were selected according to the model that had the lowest stress 

statistic to determine adequacy of the fit.  To determine the similarity or dissimilarity of 

HMT, BLC and PBCM datasets between the groups of interest (MaHV-6 PCR-positive and 

MaHV-6 PCR negative), a pairwise similarity percentage (SIMPER, PAST v. 3.02) analysis 

(Clarke 1993) using the Bray-Curtis similarity measure (Bray & Curtis 1957) was carried 

out.  SIMPER results (i.e. percent of contribution of each variable to the similarity or 

dissimilarity) are accompanied by the arithmetic mean (x�) and standard deviation (SD) for 

each HMT and BLC variable, while odds ratio (OR) and 95% confidence intervals (CI) were 

calculated (Woolf 1955) for each PBCM observed in blood smears.  To test for statistical 

significance of these relationships, a two-way analysis of similarity (ANOSIM) (Clarke 
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1993) with 9,999 permutations for R statistics was run (PAST v. 3.02).  The R test statistic 

used by ANOSIM ranges from -1 to 1, with R < 0 indicating that the dissimilarity of the 

measured variables (HMT, BLC and PBCM) within groups is greater than between groups, 

and R > 0 indicates greater dissimilarity between groups than within groups.   

 

Chi-square with Yate’s correction was used to explored differences in MaHV-6 prevalence 

by sex, season and site (Rottnest Island or the mainland), as well as possible associations 

between physical examination findings and concomitant infections (i.e. Babesia sp., 

Eimeria sp., Salmonella spp., Theileria sp., Cryptococcus spp., microfilariae, trypanosomes 

and nematode eggs) with the presence of MaHV-6.  OR and 95% CI for these analyses were 

calculated using the Woolf’s method (1955).  For all OR and 95% CI calculations, 0.5 were 

added to each observed value when a null value was present in a contingency table 

(Altman 1999).  All other 95% CI for estimates of proportions (i.e. prevalence), were 

calculated using the Wilson model for n≤ 40, and the Jeffreys model for n≥ 40 (Brown, Cai, 

& DasGupta 2001).  Sex differences at individual locations on Rottnest Island were 

explored with Fisher’s exact test.  Significance was set at p< 0.05 for all statistical analyses. 

 

6.4 Results 

 Serology 

Evidence of antibodies against MaHV-1 (titre12 128) and MaHV-2 (titre 512) was observed 

in 1 of the 142 animals tested (prevalence= 0.7%, 95% CI 0.01-0.03).  This animal was a 

male quokka trapped on mainland WA (Armadale).  Some neutralisation of the cytopathic 

effect of MaHV-1 was observed in serum of six animals, while some neutralisation of 

MaHV-2 cytopathic effect was observed in serum of two more animals.  These results, 

however, were not considered conclusive. 

 

 Phylogenetic analysis 

Herpesviral DNA was detected by nPCR in peripheral blood of 13 of 121 (prevalence= 

10.7%, 95% CI 0.06-0.17) quokkas.  All shared an identical sequence of 55 predicted 

amino acids.  When compared to homologous sequences on GenBank 

(http://www.ncbi.nlm.nih.gov/), of the first 100 matches, 94 were from viruses in the 

Gammaherpesvirinae subfamily.  Of these 94 sequences, the highest score was for 

Macropodid herpesvirus 5 [MaHV-5 (Stalder et al. 2015), E-value= 3e-30, 76% amino acid 
                                                             
12 Reciprocal of highest dilution of antiserum neutralising 50% of 100 tissue culture infectious dose of virus calculated by 
the method of  Kärber (1931)  

http://www.ncbi.nlm.nih.gov/
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identity, (42/55)] and [MaHV-3, GenBank accession no. ABO61861.1, E-value= 2e-29, 73% 

amino acid identity, (40/55)].  This herpesvirus is herein referred to as MaHV-6 and 

alignment of all homologous sequences with MUSCLE alignment is shown in Figure 6-1.  A 

maximum likelihood tree using this alignment is shown in Figure 6-2.  The obtained 

predicted amino acid sequences were submitted to the DNA Data Bank of Japan under the 

accession numbers LC137002-14. 

 

 
Figure 6-1 MUSCLE alignment of homologous predicted partial herpesviral DNA-dependent DNA polymerase 
amino acid sequences.  Sequence for Macropodid herpesvirus 6 (MaHV6, novel sequence is in bold).  Greyed 
out boxes indicate amino acid substitutions when compared to MaHV5 and MaHV3.  Herpesviridae subfamilies 
are indicated to the right of the alignment: Gammaherpesvirinae (red vertical line), Betaherpesvirinae (blue 
vertical line) and Alphaherpesvirinae (purple vertical line).  Accession numbers for sequences obtained from 
GenBank are: Alcelaphine HV-1 (ALHV1, AAC58060.1), Ateline HV-2 (AtHV2, AAC55644.1), Babyrousa 
babyrussa rhadinovirus 1 (BbabRhV-1, AAO46907.2), Bovine HV-4 (BoHV4, AAK07928.1), Bat gammaHV 
(BatGHV1, ACY82599.1), Elephantid HV-5 (ElHV5, ABK41480.2), Equid HV-2 (EHV2, AAC55648.1), Hylobates 
leucogenys rhadinovirus 2 (HleuRhV2, AAS17748.1), Macropodid HV-3 (MaHV3, ABO61861.1), Mustelid HV-1 
(MusHV1, AAM62282.1), Procavid HV-1 (PrHV1, ABK41481.1), Rattus tiomanicus rhadinovirus 1 (RtioRHV1, 
ABN49963.1), Callitrichine HV-1 (CallitrichineHV1, AAC55645.1), Tapir HV (AAD30142.3), Trichechid HV-1 
(TrHV1, ABB54686.2), Blainville's beaked whale gammaherpesvirus (ZiphiidHV1, AAV68930.1), Macropodid 
HV-5 (MaHV5), Peramelid HV-1 (PeHV1), Aotine HV-1 (AoHV1, AAC55643.1), Cercopithecine HV-5 (CeHV5, 
AAC55647.1), Human HV-6 (HHV6, NP_042931.1), Murid HV-2 (MuHV2, AAW57296.1), Porcine 
cytomegalovirus (PCMV, AAF80111.1), Canine HV (CaHV, AAC55646), Chelonid HV-5 (ChHV5, AAL26782.1), 
Columbid HV-1 (CoHV1, ABP93391.1), FelineHV-1 (FeHV1, AAC55649.1), Gallid HV-2 (GaHV2, AAC55651.1), 
Macropodid HV-1 (MaHV1), Macropodid HV-2 (MaHV2), Saimiriine HV-1 (SaHV1, AAC55657.1), Suid HV-1 
(SuHV1, DAA02153.1), and Vombatid HV-3 (VoHV3).  Sequences for MaHV1 and MaHV2 were obtained from 
Wilcox et al. (2011).  Sequences for MaHV5, PeHV1, and VoHV3 were obtained from Stalder et al (2015). 
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Figure 6-2 Molecular phylogenetic analysis of MaHV-6. The tree (drawn to scale) with the highest log 
likelihood (-1762.8988) is shown.  The percentage of trees in which the associated taxa clustered together is 
shown above the branches, with branch lengths measured in the number of substitutions per site.  The 
analysis involved 34 amino acid sequences.  There were a total of 44 positions in the final dataset.  
Herpesviridae subfamilies are indicated to the right of the alignment: Gammaherpesvirinae (𝛾𝛾), 
Betaherpesvirinae (𝛽𝛽), and Alphaherpesvirinae (𝛼𝛼). 
 

 

 Prevalence and distribution of MaHV-6 on Rottnest Island and 

the mainland 

Thirteen of 121 S. brachyurus from Rottnest Island and mainland sites tested were positive 

for the presence of MaHV-6 DNA (prevalence= 10.7%, CI 6.2-17.2) (Figure 6-3).  There was 
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a significant difference (χ²1= 5.91, p= 0.015) in the prevalence of MaHV-6 in quokkas on 

Rottnest Island (6/93, 6.45%, CI 2.7-12.8) and that on the mainland (7/28, 25%; CI 12.7-

43.4), with mainland animals being 4.83 times more likely to be infected than Rottnest 

Island animals (95% CI 1.47-15.9).  MaHV-6 PCR-positive animals were found at all the 

three mainland sites, and at half of the Rottnest Island sites (Figure 6-3).  There were no 

seasonal differences in the prevalence of MaHV-6 (χ²1= 0.01, p= 0.945) (Figure 6-4). 

 

 
 
Figure 6-3 Geographic distribution and prevalence (pie charts) of MaHV-6 PCR-positive quokkas from 3 
trapping locations on mainland Western Australia (top) and six study sites on Rottnest Island (bottom).  Green 
box indicates the position of Rottnest Island in relation to Western Australia, and purple empty boxes indicate 
positive animals.  Map data ©2016 Google Landsat, Data SIO, NOOA, U.S. Navy, NGA, GEBCO.  
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Figure 6-4 Prevalence of MaHV-6 in S. brachyurus from Rottnest Island and mainland Western Australia by 
month of sample. 

 

 

There was no significant (χ²1= 2.36, p= 0.124) difference in the prevalence of MaHV-6 by 

sex [males 10/74 (13.5%, CI 7.2-0.22.6), females 3/47 (6.38%, CI 1.8-0.16.1)].  Similarly, 

there was no significant difference in the prevalence of MaHV-6 infection by sex at 

individual trapping locations on Rottnest Island and on the mainland, where there were 

sufficient numbers of animals to test this (Table 6-1). 

 
Table 6-1 Comparison between sex and the presence of MaHV-6 DNA in S. brachyurus trapped at individual 
locations on Rottnest Island and the mainland of Western Australia. 
Trapping sites +ve ♂/n (prevalence) +ve ♀/n (prevalence) χ²  
Rottnest Island    

Barker Swamp 1/7 (14.3%) 1/9 (11.1%) χ²1, n= 16 = 0.33, p=0.567 
Kingston 2/10 (20%) 1/7 (14.3%) χ²1, n= 17 = 0.12, p=0.732 
Parker Point 0/8 1/7 (14.3%) χ²1, n= 15 = 0.01, p=0.945 
Serpentine 0/10 0/8 - 
Settlement 0/9 0/7 - 
West End 0/6 0/5 - 

Mainland    
Jarrahdale 5/17 (29.4%) no females sampled  
Collie 1/3 (33.3%) 0/3 χ²1, n= 6 = 0.00, p=0.999 
Walpole 1/4 (25%) 0/1 χ²1, n= 5 = 0.70, p=0.402 
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 Correlates of MaHV-6 with HMT, BLC, and PBCM variables for 

Rottnest Island and mainland S. brachyurus 

Subtle differences in the HMT, BLC and PBCM datasets between MaHV-6 positive and 

negative animals were observed (SIMPER; Table 6-2).  Differences were evident in their 

white blood cell profile with positive animals having a higher count of NEUT, LYMPH, WBC, 

and greater serum concentrations of CK, AST and ALP, than animals that were negative to 

MaHV-6. 

 
Table 6-2 Results of SIMPER analyses indicating the contribution of specific variables to the observed 
differences in HMT (a), BLC (b), and PBCM (c) profiles between animals that were MaHV-6 PCR positive and 
MaHV-6 PCR-negative (Rottnest Island and mainland combined sample).  HMT= haematology, BLC= blood 
chemistry, PBCM= peripheral blood cell morphology. 

  Taxon Ct % MaHV-6 +ve MaHV-6   -ve  
    x�  SD x�  SD  
a. HMT  

(26.12) † 
n +ve= 11 
n -ve = 96 

Neutrophils (x10.e9/L) 13.3 3.09 1.70 2.28 1.10  
 Lymphocytes (x10.e9/L) 12.5 2.04 1.12 1.99 1.12  
 Monocytes (x10.e9/L) 11.8 0.06 0.05 0.08 0.07  
 RBC (x10.e12/L) 11.4 7.13 1.44 6.11 1.03  
 WBC (x10.e9/L) 11.0 5.65 1.46 4.70 1.53  
 Basophils (x10.e9/L) 10.4 0.01 0.01 0.02 0.03  
 PCV (%) 10.1 39.6 4.86 35 5.15  
 HGB (g/L) 9.9 129 22.4 112 18  
 Eosinophils (x10.e9/L) 9.6 0.45 0.60 0.32 0.32  

b. BLC 
(22.39) † 
n +ve= 11 
n -ve= 101 

CK (U/L) 10.2 6,636 8,758 2,030 3,547  
 AST (U/L) 9.72 300 522 70.1 67  
 Vit. E (mg/L) 8.41 7.20 2.33 7.01 2.49  
 BILT (µmol/L) 7.98 3.63 1.65 4.48 1.80  
 ALT (U/L) 7.91 34 255 260 113  
 PROT (g/L) 7.81 65 4.48 61.2 4.9  
 ALP (U/L) 7.71 9,242 15,048 7,476 9,224  
 PHOS (mmol/L) 7.14 1.47 0.69 1.31 0.56  
 UREA (mmol/L) 6.63 9.28 4.01 7.39 2.98  
 CALC (mmol/L) 6.60 2.37 0.24 2.25 0.23  
 CHOL (mmol/L) 6.26 2.72 00.48 2.84 0.58  
 GLUC (mmol/L) 5.74 4.29 1.41 4.39 2.3  
 ALB (g/L) 4.66 37.3 1.55 36.9 2.19  
 CREAT (µmol/L) 3.25 71.4 13.9 73.5 20.1  
         

    MaHV-6 +ve MaHV-6 -ve  

   Ct % 
Frequency 
(%) 

Frequency 
(%) OR ‡ (95% CI) 

c. PBCM 
(26.16) † 
+ve n= 12 
-ve n= 102 

Rouleaux formation 11.0 6 (50) 44 (43.1) 1.32 (0.40-4.37) 
 Acanthocytes 11.0 5 (41.7) 53 (52) 0.66 (0.20-2.22) 
 Heinz bodies 10.7 5 (41.7) 45 (44.1) 0.90 (0.27-3.04) 
 Hypochromasia 9.07 8 (66.7) 85 (83.3) 0.40 (0.11-1.48) 
 Schistocytes 6.63 2 (16.7) 23 (22.5) 0.69 (0.14-3.36) 
 Echinocytes 6.09 1 (8.3) 24 (23.5) 0.30 (0.04-2.41) 
 Flower cells 5.82 2 (16.7) 17 (16.7) 1 (0.2-4.98) 
 Keratocytes 5.27 2 (16.7) 14 (13.7) 1.26 (0.25-6.35) 
 Anisocytosis 5.24 12 (100) 79 (77.5) 7.39 (0.42-129) * 
 nRBCs 5.06 11 (91.7) 86 (84.3) 2.05 (0.25-16.9) 
 Poikilocytosis 4.92 11 (91.7) 86 (84.3) 2.05 (0.25-16.9) 
 Polychromasia 3.78 12 (100) 86 (84.3) 6.79 (0.39-119) * 
 Howell-Jolly bodies 3.54 11 (91.7) 94 (92.2) 0.94 (0.11-8.20) 
 Reactive lymphocytes 0.29 12 (100) 101 (99) 0.37 (0.01-9.57) * 

Ct: Percent of contribution to difference 
† Overall average dissimilarity 
‡ Odds Ratio for the presence of the taxon in MaHV-6 PCR positive individuals and 95% confidence intervals 
calculated using Woolf’s method (1955) 
* calculated by adding 0.5 to each observed value (Altman 1999) 



 

150 
 

However, these differences were not significant (ANOSIM: p>0.05;  Table 6-3), evident in 

the absence of particular spatial clustering of MaHV-6 positive and negative animals, 

either compared by sites (nMDS; Figure 6-5a,c,e) or by sexes (nMDS; Figure 6-5b,d,f).  

There were significant site effects for HMT and BLC (ANOSIM: p> 0.05; Table 6-3a,b), 

evident in the clustering of the data points in the 3D models (nMDS analyses: Figure 

6-5a,c).  By contrast, there was no effect of site on PBCM parameters (Table 6-3c).  There 

were no sex effects on HMT, BLC, or PBCM variables (Table 6-3a-c). 

 

 
Table 6-3 Two-way ANOSIM of selected (a) haematology variables (corrected WBC, RBC, HGB, PCV, and 
absolute counts for leukocytes obtained with a manual differential on a blood smear), (b) blood chemistry 
analytes (ALP, ALT, AST, CK, PROT, ALB, CALC, PHOSP, CHOL, BILT, GLUC, CREAT, UREA and Vitamin E), and 
(c) PBCM, for S. brachyurus (Rottnest Island and mainland combined sample) that were MaHV-6 PCR-positive 
and MaHV-6 PCR-negative, with site and sex as independent factors.  Bray-Curtis similarity index, Permutation 
N= 9,999.  Only two independent factors could be tested simultaneously, and therefore the presence of MaHV-
6 was tested first with site, and then secondly with sex.  HMT= haematology, BLC=blood chemistry, PBCM= 
peripheral blood cell morphology. 
 Variables Factors R p 
a. HMT MaHV-6 -0.036 0.650 
 Site 0.184 0.015 
 MaHV-6 -0.079 0.735 
 Sex -0.177 0.945 
b. BLC MaHV-6 -0.078 0.809 
 Site 0.602 0.001 
 MaHV-6 -0.081 0.771 
 Sex 0.031 0.375 
c. PBCM MaHV-6 -0.107 0.909 
 Site 0.076 0.112 
 MaHV-6 -0.152 0.915 
 Sex -0.216 0.992 
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HMT                       By site                                                                                          By sex 

 
BLC  

 
PBCM 

 
Figure 6-5 Non-metric MDS plots with Bray-Curtis similarity measure, illustrating the structural 
dissimilarity of HMT (a. stress statistic=0.215; b. stress statistic= 0.175), BLC (c. stress statistic= 0.280; d. 
stress statistic= 0.236), and PBCM (e, f. stress statistic= 0.28) communities between S. brachyurus [Rottnest 
Island (RI) and mainland (ML) combined sample] that were MaHV-6 PCR-positive (filled symbols) and 
MaHV-6 PCR-negative (open symbols).  Key legends should be read for the left hand and right hand panels 
separately.  Note that the distances along the axes are unit-less, therefore the positions of the points in the 
plots are relative distances from one another rather than absolute differences read in these units.  HMT= 
haematology, BLC=blood chemistry, PBCM= peripheral blood cell morphology. 

 

a. b. 
▲ MaHV-6 (+ve)  RI 
△ MaHV-6 (-ve) RI  
■  MaHV-6 (+ve) ML  
□  MaHV-6 (-ve) ML 

 

▲ MaHV-6 (+ve) ♂ 
△ MaHV-6 (-ve) ♂ 
■  MaHV-6 (+ve) ♀ 
□  MaHV-6 (-ve) ♀ 

 

c. d. 

e. f. 
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 Relation between MaHV-6 and: (i) physical examination 

findings, and (ii) other organisms 

Physical examination of all animals tested revealed no associations of clinical signs with 

the presence of MaHV-6 (Table 6-4).  By contrast, there was a significant association 

between the presence of MaHV-6 and the prevalence of Theileria sp. with MaHV-6.  This 

was not the case for co-infection with Salmonella spp., microfilariae, Eimeria spp., 

nematode eggs, Babesia sp., and trypanosomes (Table 6-5). 

 
Table 6-4 Associations between physical examination findings and MaHV-6 in animals on Rottnest Island and 
the mainland (combined sample).  OR= odds ratio, CI= confidence interval, MM= mucous membranes, EP= 
external parasites. 

 MaHV-6 +ve MaHV-6 -ve   
Finding n (%)(n= 13) n (%)(n= 108)  OR (95% CI) * χ²1, n= 121 
Abnormal MM a 1 (7.69) 23 (21.9) 0.31 (0.04-2.49) 0.63, p= 0.427 
Cloudy eye 0 (0) 2 (1.85) 1.58 (0.07-34.6) † 0.43, p= 0.512 
Dehydration b 5 (38.5) 39 (36.1) 1.11 (0.34-3.61) 0.02, p= 0.890 
Ear notches 4 (30.7) 17 (15.7) 2.36 (0.66-8.61) 0.93, p= 0.335 
Flaky skin 2 (15.3) 2 (1.85) 9.64 (1.23-75.3)  3.09, p= 0.079 
Fractures 1 (7.69) 2 (1.85) 4.42 (0.37-52.4) 0.11, p= 0.737 
Fur loss 5 (38.5) 27 (25) 1.88 (0.57-6.22) 0.50, p= 0.480 
Presence of EP 6 (46.1) 32 (29.6) 2.04 (0.63-6.53) 1.19, p= 0.276 
Skin erosions 4 (30.7) 13 (12) 3.25 (0.87-12.1) 2.00, p= 0.157 
Testicular hypoplasia c 0 (0) 2 (1.85) 1.58 (0.07-34.6) † 0.43, p= 0.512 
Ulcers d 1 (7.69) 0 (0) 26 (1.01-674.1) † 1.62, p= 0.203 
a Pale and blue tinted mucous membranes  
b Skin tenting for longer than 2 seconds 
c Decreased size of testes (bilateral or unilateral) 
d Ulcers found inside the pouch of females 
* Odds Ratio for the presence of the taxon in MaHV-6 PCR positive individuals and 95% confidence intervals 
calculated using Woolf’s method (1955)  
† calculated by adding 0.5 to each observed value (Altman 1999)  
  



 

153 
 

 
Table 6-5 Yates corrected chi-square results for associations between other infectious agents screened for in S. 
brachyurus (Rottnest Island and mainland combined sample) that were MaHV-6 PCR-positive and MaHV-6 
PCR-negative.  OR= odds ratio, CI= confidence interval. 
 MaHV-6   
Finding +ve/n (%) -ve/n (%) OR (95% CI) † χ² 
Babesia sp. a * 0/13 (0) 1/108 (0.93) 2.65 (0.10-68.4) ‡ χ²1, n= 121 = 1.62, p = 0.203 
Cryptococcus spp. b 0/8 (0) 5/96 (5.2) 0.98 (0.05-19.2) ‡ χ²1, n= 104 = 0.04, p = 0.842 
Eimeria spp. c 7/9 (77.7) 51/60 (85) 0.62 (0.11-3.46) χ²1, n= 69 = 0.00, p = 0.949 
Microfilariae c 3/13 (23.1) 33/105 (31.4) 0.65 (0.17-2.54) χ²1, n= 118 = 0.09, p = 0.766 
Nematode eggs c 8/11 (72.7) 55/59 (93.2) 0.19 (0.04-1.03) χ²1, n= 70 = 2.35, p = 0.125 
Salmonella spp. d ** 3/5 (60) 23/54 (42.6) 2.02 (0.31-13.1) χ²1, n= 59 = 0.08, p = 0.780 
Theileria sp. a 11/13 (84.6) 36/108 (33.3) 11.0 (2.31-52.3) χ²1, n= 121 = 10.8, p = 0.001 
Trypanosomes a *** 1/13 (7.7) 2/108 (1.85) 4.42 (0.37-52.4) χ²1, n= 121 = 0.113, p = 0.737 
a Screened by PCR (piroplasms and trypanosomes: Chapter 7, section 7.3.1.1] 
b Screened by culture methods, species and varieties determined by PCR (see Chapter 5, section 5.3.1) 
c  Screened by light microscopy [gastrointestinal parasites: see Chapter 3, section 3.4.1; microfilariae: see 
Chapter 7, section 7.3.1] 
d Screened by culture methods, species and serovars determined by serotyping (see Chapter 4, section 4.2.1) 
* positive animal from Rottnest Island cohort 
** Rottnest Island sample only 
*** all positive animals from mainland cohort 
† Odds Ratio for the presence of the taxon in MaHV-6 PCR positive individuals and 95% confidence intervals 
calculated using Woolf’s method (1955) 
‡ calculated by adding 0.5 to each observed value (Altman 1999) 
 

 

6.5 Discussion 

Free-ranging S. brachyurus were nPCR-positive for a novel gammaherpesvirus (proposed 

to be designated as MaHV-6) when tested by a pan-herpesviral nested PCR of peripheral 

blood.  The virus was present in 10.7% of 121 individuals sampled across both Rottnest 

Island and mainland WA populations, with a greater prevalence on the mainland (25%) 

compared to Rottnest Island (6.45%) (p= 0.011).  Even though the relative risk of infection 

was 3.72 times higher for males than females, this was not statistically significant (p= 

0.077).  There was also no influence of season on the prevalence of this virus.  Multivariate 

analyses showed that MaHV-6 had no effect on the HMT, BLC or PBCM, and there was no 

significant association between the presence of MaHV-6 and physical examination findings.  

There was a significant association between the presence of MaHV-6 and coinfection with 

Theileria sp. (p=0.001; detected in peripheral blood).  This may suggest that quokkas may 

be more susceptible to infection with Theileria sp., if infected with MaHV-6. 

 

The DPOL gene is a highly conserved region of the viral genome and is one of the more 

commonly sequenced herpesviral genes.  These features make the DPOL gene well suited 

to genetic comparisons of herpesvirus species (Pellet & Roizman 2007).  The predicted 

amino acid sequence obtained for MaHV-6, is consistent with this virus being a novel 

member of the Gammaherpesvirinae subfamily.  Our alignment highlights substantial 
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differences in the predicted amino acid sequence (when compared to the most 

homologous sequence) of a highly conserved region of the DPOL gene.  VanDevanter et al. 

(1996) observed only single nucleotide base variations in the DPOL gene between strains 

within a single virus species without repercussion in the amino acid sequence (i.e. 17 

strains of human herpesvirus 6, five strains of human herpesvirus 2, and five strains of 

human herpesvirus 7).  The gammaherpesvirus described in this paper shared a 76% 

identity in the amino acid sequence (42/55 amino acids) with the most homologous 

known macropodid herpesvirus, MaHV-5.  Pairwise identity was lower when aligned with 

other recently characterised marsupial gammaherpesviruses (i.e. 73% MaHV-3, 56% 

PhaHV-1, 52% PhaHV-2, 56% DaHV-1 and 47% PotHV-1).  Similar or higher percentages 

of sequence identity to the most homologous sequence have been obtained in other 

studies where the newly detected herpesvirus amino acid sequence has been proposed as 

new species.  For instance, Tortoise HV-2 (83% sequence identity with that of Tortoise 

HV-1) (Johnson et al. 2005), Mustelid herpesvirus 2 (91% sequence identity with that of 

Mustelid herpesvirus 1) (Tseng et al. 2012), Beluga whale herpesvirus (79.5% sequence 

identity with bovine alphaherpesvirus 5) (Bellehumeur et al. 2015), and Lynx rufus 

gammaherpesvirus 1 (79% sequence identity with that of Mustelid herpesvirus 1) (Troyer 

et al. 2014).  Following current conventions in herpesviral nomenclature, we have 

tentatively designated the unknown virus as Macropodid herpesvirus-6 (MaHV-6).  Our 

results place MaHV-6 within Gammaherpesvirinae; however, the distance and location of 

this virus in the dendrogram (Figure 6-2) should be seen as approximate, and more 

studies would be necessary to further characterise the relation between MaHV-6 and 

other gammaherpesviruses.   

 

Although a longer sequence would have provided more information for sequence 

alignment and consequently a greater resolution to our phylogenetic analyses (Flynn et al. 

2005), attempts to increase the length of the nPCR product obtained, and to amplify other 

viral genomic regions of MaHV-6 by designing new primers using reported sequences of 

macropodid herpesviruses, were unsuccessful (data not shown).  Despite the relatively 

short length of our amino acid sequence, we regard this number of substitutions to be 

consistent with the amount of variability in the nucleotide residues that would be 

attributable to a related, but genetically distinct, novel species of herpesvirus.  Although a 

false positive result (i.e. the detection of herpesviral DNA in peripheral blood when there 

is no herpesviral DNA) may be possible, it is highly unlikely.  The set of primers used in 

this study has been shown to not generate spurious PCR products even in the absence of 

appropriate template (VanDevanter et al. 1996).  Furthermore, there is no amplification of 

polymerase genes from other organisms DNA, but herpesvirus DNA only, given that the 
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coding region of the polymerase gene targeted by these primers is unique to herpesvirus 

species (VanDevanter et al. 1996).  Additionally, safety mechanisms were put in place to 

enhance the reliability of the results (i.e. positive control and negative controls). 

 

To our knowledge, MaHV-6 constitutes the third gammaherpesvirus detected in 

macropods, and the first identification of a member of Gammaherpesvirinae in animals 

across multiple subpopulations of free-ranging and apparently healthy macropods in WA.  

The animals examined in this study showed no obvious signs of clinical disease resembling 

herpesviral infection in macropods (e.g. cloacal and peri-cloacal ulcerations, pyrexia, 

pneumonia, conjunctivitis, rhinitis, tail twitching, and nasal and ocular discharges; Acland 

1981 ; Finnie, Littlejohns, & Acland 1976 ; Smith, Wellehan Jr, et al. 2008 ; Vaz et al. 2013 ; 

Wilcox et al. 2011 ; Wilks, Kefford, & Callinan 1981).  Of the previously reported 

macropodid herpesviruses, all except one (MaHV-5; Stalder et al. 2015) have been 

detected in diseased individuals; this makes our finding epidemiologically relevant.   

MaHV-1 and MaHV-2 (both alphaherpesviruses) have been linked to disease in captive 

macropods, MaHV-3 has been linked with disease in both captive and free-ranging eastern 

grey kangaroos, while MaHV-4, also in eastern grey kangaroos, has been linked to disease 

under free-ranging conditions (Table 6-6).   

 

A range of evidence strongly suggests that the quokka is the natural host for MaHV-6.  

Firstly, we found no association with MaHV-6 and obvious signs of disease typically 

associated with herpesviral infection, which may be typical for a herpesvirus with a long 

association with that host.  Secondly, identical herpesviral amino acid sequences were 

detected in free-ranging S. brachyurus from mainland Australia as well as Rottnest Island 

(which separated from the mainland approximately 7,000 years ago due to raising waters; 

Glenister, Hassell, & Kneebone 1959), suggesting that the virus was present in the 

population before the island population became isolated from the mainland population.  

Thirdly, members of Gammaherpesvirinae usually have a narrow host range (MacLachlan 

& Dubovi 2011) and are thought to have coevolved with their host species over millions of 

years (Davison 2002).  We therefore believe that the quokka is the natural host for MaHV-

6.  

 

Unlike members of Alphaherpesvirinae and Betaherpesvirinae subfamilies, 

gammaherpesviruses are particularly specific for either B- or T- lymphocytes (Markey et 

al. 2013 pp. 559-573) and have the tendency to avoid lytic replication and favour latent 

infections instead (Ackermann 2006).  As a result, the infection persists in the infected 

host with little or no virus replication and gene expression (Speck & Ganem 2010).  This 
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may have been the case in our study, where the animals we screened may have been 

infected with MaHV-6 but the little or no replication of the same may have compromised 

DNA recovery.  Furthermore, none of the animals in our sample had obvious clinical signs 

of disease compatible with any of the other known macropodid herpesviruses.  With the 

exception of detection of gammaherpesviruses in apparently healthy swamp wallabies 

(Wallabia bicolor) (Stalder 2013), and in apparently healthy eastern bettongs (Bettongia 

gaimardi) (Portas et al. 2014), all other studies of herpesviruses in marsupials have 

detected the viruses by PCR from diseased animals.  Furthermore, with the exception of 

the study by Smith et al. (2008; who also screened whole blood), previous studies have 

screened tissue samples (e.g. liver, lung, kidney and spleen), or swabs (e.g. conjunctiva, 

cloaca, prepuce and nasal lining) (e.g. Portas et al. 2014 ; Stalder 2013).  However, of 17 

animals found positive to MaHV-3 by nPCR (tissue swabs and biopsies), the virus was only 

detected in three animals when blood was screened (Smith, Wellehan Jr, et al. 2008).  

Therefore, MaHV-6 may be more prevalent than we recorded, which may be found by 

screening tissue, conjunctiva, and nasal lining samples (HVs are likely to be shed from this 

site during recrudescence; Hüssy et al. 2002), especially from diseased or dead animals.   

 

Generally, animals in this study were apparently healthy.  Although one female presented 

with ulcers in its pouch and another individual presented conjunctivitis, statistical 

analyses determined no association of these with the presence of MaHV-6.  Furthermore, 

we did not detect an effect of the presence of MaHV-6 on the HMT, BLC, or PBCM.  Our 

findings agree with previous studies in macropods (Stalder 2013), other marsupials 

(Portas et al. 2014), as well as with studies in other host species (Bicknese, Childress, & 

Wellehan Jr 2010 ; Mugisha et al. 2010 ; Stanton et al. 2014) showing that herpesviruses 

can be carried asymptomatically.  By contrast with the finding of MaHV-6 presence or not, 

site  had an evident effect on the HMT and BLC of Rottnest Island and mainland animals, 

which could be attributed to the interplay of multiple factors, including nutrition, social 

structure, age, behaviour, underlying disease and genetic differences.  
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Table 6-6 Summary of the Macropodid and other marsupial herpesviruses isolated to date.  Subf.= subfamily, 
NC= not characterised, DaHV= dasyurid herpesvirus, MaHV= macropodid herpesvirus,  PhaHV= phascolarctid 
herpesvirus, PotHV= potoroid herpesvirus, VoHV= vombatid herpesvirus.  Alphaherpesvirinae (𝛼𝛼), 
Betaherpesvirinae (𝛽𝛽), and Gammaherpesvirinae (𝛾𝛾). 
Herpesvirus Subf. Host species  Habitat Clinical signs Reference 
DaHV-1 𝛾𝛾 Yellow-footed 

antechinus 
(Antechinus 
flavipes) 
Agile antechinus 
(A. agilis) 

Free-ranging 
(South 
Australia) 

Weakness, poor body 
condition 

(Amery-Gale et al. 
2014) 

DaHV-2 𝛾𝛾 Tasmanian devil 
(Sarcophilus 
harrisii) 

Free-ranging Asymptomatic (Stalder et al. 
2015) 

MaHV-1 𝛼𝛼 Parma wallaby 
(Macropus parma)  

Captive  Respiratory signs, 
conjunctivitis, 
incoordination, 
pyrexia, as well as 
cloacal/pericloacal 
ulcers 

(Acland 1981 ; 
Finnie, Littlejohns, 
& Acland 1976 ; 
Johnson & 
Whalley 1990) 

MaHV-2 𝛼𝛼 Dorcopsis wallaby 
(Dorcopsis 
muelleri luctuosa) 
 
Quokka (Setonix 
brachyurus)  

Captive - mixed-
species 
enclosure 
(Melbourne 
Zoo) 

Oral ulcers, 
persistent bilateral 
purulent conjunctival 
exudate; quokka 
found dead 24 h after 
clinical signs noted 

(Callinan & 
Kefford 1981 ; 
Johnson & 
Whalley 1987 ; 
Johnson et al. 
1985 ; Wilks, 
Kefford, & Callinan 
1981) 

MaHV-3 𝛾𝛾 Eastern grey 
kangaroo (M. 
giganteus)  

Captive (Fort 
Wayne 
Children’s Zoo, 
USA) 

Ulcerative cloacitis, 
mild cloacal 
discharge, 
overgrooming, 
mammary masses; 
death  

(Smith, Wellehan 
Jr, et al. 2008) 

 Free-ranging 
(eastern 
Australia) 

Nasal and bilateral 
serous ocular 
discharges, pyrexia, 
respiratory disease; 
dead individuals in 
the mob 

(Wilcox et al. 
2011) 

MaHV-4 𝛼𝛼 Eastern grey 
kangaroo (M. 
giganteus)  

Free-ranging Respiratory, ocular 
and possibly nervous 
system disease  

(Vaz et al. 2013). 

MaHV-5 𝛾𝛾 Swamp wallaby 
(Wallabia bicolor) 

Free-ranging Asymptomatic (Stalder 2013) 

MaHV-6 𝛾𝛾 Quokka (S. 
brachyurus) 

Free-ranging Asymptomatic Present study 

PhaHV-1 
PhaHV-2 

𝛾𝛾 Koala 
(Phascolarctos 
cinereous) 

Free-ranging 
(eastern 
Australia) 

Weakness, 
conjunctivitis 

(Vaz et al. 2012 ; 
Vaz et al. 2011) 

PotHV-1 𝛾𝛾 Eastern bettong 
(Bettongia 
gaimardi) 

Free-ranging 
(Tasmania) 

Asymptomatic (Portas et al. 
2014) 

VoHV-1 
VoHV-2 

𝛾𝛾 Common wombat 
(Vombatus 
ursinus) 

Free-ranging Asymptomatic (Stalder et al. 
2015) 

NC  Red kangaroo (M. 
rufus) 

Captive (private 
animal dealer, 
USA) 

Progressive 1-wk 
illness with no 
specific signs of 
disease 

(Britt Jr, Frost, & 
Cockrill 1994) 

  Brush-tailed rock 
wallaby 
(Petrogale 
penicillata), 
Dusky pademelon 
(Thylogale brunii) 

Captive (wildlife 
reserves, zoos 
and wildlife 
carers) 

Herpesvirus infection 
was documented on 
histological sections 
of liver lesions held at 
the Australian 
Registry of Wildlife 
Health (ARWH) 

(Canfield & 
Hartley 1992) 
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Many herpesviruses are persistent life-long infections with limited but periodic virus 

replication (viraemia) (MacLachlan & Dubovi 2011) that leads to virus shedding and 

transmission.  Reactivation may occur (even in host-adapted herpesviruses) as a result of 

immunosuppression from concomitant disease or stress, leading either to shedding 

without signs of disease or to clinical disease in its natural host (Barrandeguy et al. 2008 ; 

Ledbetter et al. 2012 ; Rock et al. 1992 ; Roizman & Pellet 2001).  This reactivation was 

observed in apparently healthy M. giganteus (seropositive to MaHV-1) that resulted 

shedding an alphaherpesvirus similar to MaHV-1 and MaHV-2, after being treated with 

dexamethasone (a glucocorticoid capable of immunosuppression) (Guliani et al. 1999)..  

Increased endogenous glucocorticoids observed during stressful conditions, can similarly 

result in reactivation of herpesviral infections (Sykes 2014 ; Tanaka & Mannen 2003 ; 

Winkler et al. 2002).  Immunosuppression of MaHV-6 infected quokkas could occur under 

the pressure of external factors (e.g. temperature and nutritional challenge, habitat 

destruction, or predation threat), as well as internal factors (e.g. concomitant infection), 

which in turn could contribute to parasite-optimal conditions that may lead to shedding, 

disease and possibly fatal disease in S. brachyurus (Harvell et al. 2002 ; Pellet & Roizman 

2007).  It is not known what the association (p<0.05) between MaHV-6 with Theileria sp. 

signify for the quokka, thus further studies are necessary to determine the factors 

responsible for such, as well as the impacts of these co-infections on the health of quokkas.  

The absence of clinical signs in the animals tested therefore does not imply that animals 

would be free of herpesviral disease under all conditions. 

 

In common with other more completely studied herpesviruses, it is likely that MaHV-6 

may be a persistent life-long infection with limited but periodic virus replication 

(MacLachlan & Dubovi 2011).  If this is the case, this viral replication may lead to shedding 

and transmission.  In turn, S. brachyurus on the mainland and on Rottnest Island may 

consequently be a reservoir of MaHV-6 that could spill over to other species sharing their 

habitat; a situation that may carry potentially hazardous outcomes for both captive and 

free-ranging populations, considering that herpesviral infections are usually fatal for 

species different from the natural host.  

 

From a conservation perspective, fragmented quokka populations may be at greater risk 

of disease due to changing environmental conditions, which have been suggested to be 

linked to an increase in pathogen transmission, and a decrease in survival rates and host 

susceptibility (Gibson et al. 2010 ; Harvell et al. 2002 ; Pinto et al. 2008).  A better 

understanding of this virus in S. brachyurus could allow for a quicker response if clinical 

disease were to occur.  Our findings provide baseline data that can be used in ex-situ and 
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in-situ conservation programs of S. brachyurus, and contribute to the current knowledge of 

herpesviruses in Australian marsupials.  Future studies should aim to isolate in cell culture 

and further characterise this virus as well as establish the extent of distribution of MaHV-6 

in free-ranging S. brachyurus by including individuals from other sub-populations.  

Similarly, further work should also aim to investigate the presence of circulating 

neutralising antibodies to this gammaherpesvirus in free-ranging related species, and 

determine transmission, infectivity and overall clinical significance of this virus in the 

quokka. 
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7. Haematology and blood chemistry of free-ranging quokkas (Setonix 

brachyurus) from Rottnest Island and selected locations on the 

mainland of Western Australia 
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assessment) and blood chemistry measurements. 
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7.1 Abstract 

Blood was collected from 149 wild quokkas (S. brachyurus) from Rottnest Island and 

mainland   Western Australia (WA), between September 2010 and December 2011, to 

establish haematology (HMT) and blood chemistry (BLC) reference intervals, and test for 

piroplasms and trypanosomes by nPCR.  Differences between subpopulations, seasons and 

sexes were investigated.  Haematology, BLC and peripheral blood cell morphologies 

(PBCM) data, vary significantly between Rottnest Island and the mainland groups.  

Rottnest Island animals had lower red blood cell concentration, packed cell volume, and 

haemoglobin, along with marked evidence of oxidative injury and bone marrow response.  
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This was consistent with a regenerative normocytic hypochromic anaemia.  By contrast, 

except alkaline phosphatase, all blood chemistry analytes where higher in mainland 

animals, with particular emphasis on creatine kinase, alanine amino transferase, aspartate 

amino transferase and vitamin E.  Generally, HMT and BLC differences were attributed for 

the most part to the interplay of multiple factors (e.g. diet, habitat).  However, stress and 

capture myopathy in the mainland group may had played a role in the values obtained.  

Captive animals may be deficient in vitamin E given that their island conspecifics had 

plasma values significantly higher (between two to five times).  There was no significant 

difference in the prevalence of microfilariae of filarial nematodes in mainland and 

Rottnest Island groups.  Theileria sp. and Babesia sp. were detected by nested polymerase 

chain reaction (nPCR) in Rottnest Island animals, while Theileria sp. was the only 

piroplasm detected in the mainland group.  Atypical lymphocytes resembling those in 

proliferative disorders of the lymphoid and haematopoietic tissues in other species were 

observed in blood smears of Rottnest Island animals but not in mainland animals.  Our 

data provides the first BLC reference intervals for S. brachyurus, and constitutes the most 

comprehensive haematological analysis for the species.  More important, these baseline 

data represents a tool that would enable health and disease surveillance of free-ranging 

individuals, activities required for the persistence of the species.  

 

 

7.2 Introduction 

The quokka is a small, diprotodont wallaby marsupial endemic to WA (Kitchener 1995), 

and is the only member of the genus Setonix in the Macropodidae family (Sharman 1961).  

Population estimates suggest that there are fewer than 18,000 animals across all 

populations (see Chapter 2, section 2.3.2), however, the elusive nature of this marsupial 

on the mainland and the limitations of population census techniques reduce the accuracy 

of this figure.  The quokka is currently listed as “fauna which is rare or likely to become 

extinct” under the Western Australian Wildlife Conservation Act 1950 Section 14(2) (ba); 

and as “threatened fauna” subcategory “vulnerable” under the Commonwealth of 

Australia’s Environment Protection and Biodiversity Conservation Act 1999.  At an 

international level, S. brachyurus holds a conservation status classification of “vulnerable” 

according to the International Union for Conservation of Nature (IUCN) (de Tores et al. 

2008). 

 

Studying HMT and BLC parameters is important because they serve as an indicator 

assessment of an animal’s health.  These analytes may confirm presumptive diagnoses 
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based on physical examination observations, establish the extent of impact of a disease, or 

determine response to therapy; however, the usability of these test results can be 

jeopardised by the absence of baseline data against which the degree of change can be 

assessed.  According to Bennett et al. (2007), interpretation of haematological studies of 

western barred bandicoots (Perameles bougainville) with papillomatosis and 

carcinomatosis syndrome (as well as apparently healthy individuals) was hindered by the 

absence of reference intervals.  Furthermore, prompt and educated responses in the event 

of a disease outbreak will be facilitated by the existence of data on the HMT and BLC 

values of apparently healthy animals of a particular species.  Changes in haematology and 

blood chemistry responses can indicate underlying disease, stress, nutritional deficiencies 

and other conditions (Harvey 2012).  Accordingly, baseline haematology and blood 

chemistry reference intervals in conjunction with other tools could be an effective 

management tool in evaluating the health status of wild populations (McKenzie, Deane, & 

Burnett 2002).  However, reported reference intervals of HMT and BLC analytes are 

frequently obtained from small populations or populations in captivity (Rostal et al. 2012). 

 

Because of their vulnerability to a broad range of stressors (anthropogenic and natural), 

understanding the HMT and BLC responses of quokkas may aid in the management of free 

ranging individuals.  There have been only two studies of free-ranging quokka, and studies 

of Rottnest Island animals are generally for captive and semi-captive conditions and 

provide limited data (Table 7-1).  Of these previous studies, only three sources reported 

white blood cell data (i.e. white blood cell count, differential counts) (Hawkey 1975 ; 

Lewis, Phillips, & Hann 1968 ; Vogelnest & Portas 2010) and only one source reports 

biochemical data for S. brachyurus (Teare 2002).  In addition to the scarce data available 

for animals on the mainland of WA, small sample size has generally been a limiting factor 

(Table 7-1).  This issue is also present in the HMT and BLC data reported by the 

International Species Information System (ISIS), with sample sizes ranging between two 

and four animals per analyte (Teare 2002).  In this study, we examined the differences in 

the HMT and BLC profiles of more than 100 free-ranging S. brachyurus on Rottnest Island 

and on the mainland of WA (Jarrahdale, Collie and Walpole locations), and for the Rottnest 

Island subsample, we explored the possible influence of season and sex.  We also 

constructed reference intervals for selected HMT and BLC parameters in apparently 

healthy and free-ranging S. brachyurus on both locations (Rottnest Island and the 

mainland), using statistical methods in line with the C28-A3 guidelines of the International 

Federation of Clinical Chemistry (IFCC) and  Clinical and Laboratory Standards Institute 

(CLSI) (CLSI 2008). 
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Table 7-1 List of available data for haematology (H) and blood biochemistry (B) parameters for the quokka 
Setonix brachyurus. C= captive, FR= free-ranging. 
Animals sourced from Condition Sample size H B Reference  
Mainland 1 FR 5 yes no (Clark & Spencer 2006)  
Bald Island 2 FR 7 yes no (Clark & Spencer 2006) 
Rottnest Island unknown 10 yes no (Clark 2006) 
Rottnest Island FR 38 yes no (Shield 1971) 
Rottnest Island C 8-12 yes no (Barker 1961) 
Rottnest island C 11 yes yes † (Barker et al. 1974) 
Rottnest Island C 1 yes ‡  no (Lewis, Phillips, & Hann 

1968) 
Rottnest Island C 43 yes § no (Kaldor & Morgan 1986) 
Rottnest Island C 1 yes ‡ no (Hawkey 1975) 
Rottnest Island C 3 5-43 yes ‡ no (Vogelnest & Portas 2010) 
Rottnest Island C 2-4 yes ‡ yes (Teare 2002) 
1 Two locations on the mainland near Albany region: ~418 km SE of Perth  
2 Bald Island (east of Albany). 
3 Taronga Zoo, Sydney, Australia 
† Protein concentrations (total protein, albumin, beta globulin, gamma globulin, alpha globulins 1 and 2, 
plasma urea) 
‡ White blood cell count and differential counts only 
§ Haemoglobin only 
 

 

7.3 Materials and methods 

Between September 2010 and December 2011, 153 S. brachyurus were captured from 

different subpopulations stretching across the species’ current natural range (see Chapter 

2, section 2.3.1).  These sites included Rottnest Island and several locations on the 

mainland of WA (i.e. Jarrahdale, Collie and Walpole) (see Chapter 3, sections 3.1.1 and 

3.1.2).  Trapping methods differed between island and mainland sites with Thomas traps® 

(Sheffield Wire Products, WA Australia) used on Rottnest Island (hand capture was also 

used) and the mainland southern sites (i.e. Walpole), and Sheffield traps® (Sheffield Wire 

Products, Sheffield Rd Welshpool, WA Australia) used on the mainland northern sites (i.e. 

Jarrahdale and Collie).  On Rottnest Island, traps were deployed and cleared out every 

hour during the sampling session, which meant that animals spent no more than 1 hour in 

the trap before being removed.  On the mainland, traps were deployed and left open 

overnight, which meant that animals could have been in the trap for several hours before 

being processed.  Physical examination and sample collection were performed while 

under general anaesthesia (see Chapter 3, section 3.3).  Blood was successfully obtained 

from 149 individuals; reference intervals and multivariate analyses were calculated on 

different sample sizes due to unforseen issues with analyses (e.g. insufficient blood sample 

volume, haemolysis and blood smears not having adequate cell distribution and quality).  

Additionally, blood samples from eight captive adult and apparently healthy quokkas that 

for the most part were handled under similar protocols (i.e. trapping, anaesthesia), were 
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collected in winter by Perth Zoo personnel and kindly given to this project for vitamin 

(vit.) E analyses.  As of March 2015, the diet provided to quokkas at Perth Zoo, included 

macropod pellets (unknown concentration of vit. E), sprinkled with Value Plus Vitamin E 

Powder ® (Value Plus Animal Health Care Products Pty Ltd, NSW Australia) at a dose of 1 

g/animal/day (i.e. 52 mg of d-alpha tocopheryl acid succinate); quokka cubes (Specialty 

Feeds, WA Australia) containing 1,600 mg of alpha tocopherol acetate per 1 kg of product; 

Olsson's 007 Pressed Nutritional Mineral Block ® (Olsson’s, WA Australia) (vit. E 

concentration not available); browse species (e.g. Acacia, Brachychiton, and Ficus), and 

lucerne hay (also know known as Alfalfa). 

 

Blood samples for HMT and BLC (Rottnest Island, mainland WA, and Perth Zoo) were 

collected from the lateral left or right tail veins.  Skin was prepared by clipping the 

venipuncture site and disinfecting with a mixture of chlorhexidine gluconate and 70% 

ethanol solution at a 1:1 ratio.  Blood was obtained using Safety-Lok™ BD Vacutainer® 

with either a 25G x ¾” or 23G x ¾” needle with Slip Tip 3 mL syringes (Becton, Dickinson 

and Company, NJ, USA).  Blood for blood chemistry (~1000 µL) analyses were collected in 

1.3 mL Micro Tubes with 35 I.U. of lithium heparin (SARSTEDT, Aktiengesellschaft & Co. 

Nümbrecht, Germany), while samples for haematology analyses (~500 µL) were collected 

in 600 µL BD Microtainer® tubes with potassium (K2) ethylene diamine tetraacetic acid 

(EDTA) anticoagulant (Becton, Dickinson and Company, NJ, USA).  These two blood 

samples were mixed gently upon collection and stored at 4 ˚C for further processing.  

Peripheral blood smears were made using the spreader slide technique and air-dried for 

storage. 

  

 Haematology and Blood chemistry 

Blood in EDTA and Lithium Heparin vials was submitted to the Clinical Pathology service 

of the Murdoch University Veterinary Hospital within 96 h of collection or less, for a 

complete blood count and BLC analyses.  Except vitamin E, all BLC analytes were 

measured in an RX Daytona™ automatic biochemistry analyser (Randox Laboratories).  

Plasma samples were sent to the Animal Health Laboratories (AHL) at Department of 

Agriculture and Food of Western Australia (DAFWA) for vitamin E analyses using the 

method of McMurray and Blanchflower (1979).  The chromatographic separation was 

performed with an Agilent HPLC system (1100) on a Zorbax SB-C18 column (3 mm x 150 

mm, 3.5 µm) (Agilent Technologies) with a methanol mobile phase.  Alpha-tocopherol 

(vitamin E) was quantified using fluorescence detection (ex. 296 nm and em. 330 nm).  A 

complete blood count and some erythrocyte indices were obtained with an ADVIA-120® 
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automated haematology analyser (Bayer diagnostics division, Tarrytown, New York, USA) 

and multi-species software using the default setting (canine).  We report Corpuscular 

Haemoglobin Concentration Mean (CHCM) instead of Mean Corpuscular Haemoglobin 

Concentration (MCHC), given that the former is obtained through laser-detection 

technology that allows for direct determination of haemoglobin in each erythrocyte, 

therefore not being affected by blood abnormalities that could increase the 

spectrophotometric reading (e.g. lipaemia, haemolysis) (Thrall 2012a) which would be the 

case of MCHC (calculated). 

 

Considering that light scattering and impedance (i.e. volumetric sizing) standards do not 

exist for S. brachyurus, and that the algorithms of the ADVIA-120® cannot adjust to 

morphological variations of the cells of interest, differential leukocyte counts obtained 

through the ADVIA-120® automated haematology analyser were considered unreliable.  

Consequently, results obtained through the manual differential leukocyte count, a 

technique that has been used in recent studies as a reference standard (Briggs et al. 2009 ; 

Meintker et al. 2013 ; Welles, Hall, & Carpenter 2009), were used to construct reference 

intervals and in multivariate analyses.  The ADVIA-120® nucleated blood cell count was 

corrected by subtracting the polychromatophilic erythrocytes count.  This corrected white 

blood cell count was then used in subsequent analyses.  Variables measured and used in 

all analyses are presented in Table 7-2. 

 

Blood smears were stained with a Hema-tek® Slide Stainer using Hema-tek® Wright’s 

Giemsa stain (Ames Company, Miles Laboratories).  Smears were then assessed using light 

microscopy to determine the differential leukocyte count (200 leukocytes) and 

polychromatophilic erythrocyte count (1,000 erythrocytes) at x400 magnification.  The in-

house interpretation of neutrophils, eosinophils, basophils, lymphocytes and monocytes 

(Figure 7-1), was based on comparison with published information for these cell 

populations in S. brachyurus (Clark 2004).  Additionally, erythrocyte morphology was 

assessed, including poikilocytes (i.e. atypically shaped erythrocytes) such as echinocytes, 

keratocytes and spherocytes; structures inside the erythrocyte (e.g. Heinz bodies and 

Howell-Jolly bodies) and atypical erythrocyte arrangement (e.g. Rouleaux formation) 

(Figure 7-1).  Atypical leukocytes were also recorded (e.g. toxic changes in neutrophils: 

Döhle bodies), along with free-circulating parasitic organisms (i.e. microfilariae and 

trypanosomes).  Abnormal cell morphologies, such as Döhle bodies and Heinz bodies, 

were assessed during the 200 leukocyte differential count at x1000 magnification.  

Presence and numbers of microfilariae were obtained by examining the complete blood 

smear at x40 magnification but anatomical characteristics of microfilariae were recorded 
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at x400 or x1000 magnification.  The presence of intraerythrocytic organisms was 

assessed by examining 100 fields within the monolayer and feathered regions of the blood 

smear combined, first at x400 magnification, and subsequently at x1000 magnification.  

ImageJ v1.49t (Schneider, Rasband, & Eliceiri 2012) was used to make life measurements 

of microfilariae and piroplasms.  Prevalence of piroplasms and trypanosomes was finally 

determined by nPCR methods. 

 

  
Table 7-2 List of haematology and blood chemistry analytes measured on whole blood and plasma obtained 
from mainland and Rottnest Island S. brachyurus.  Vitamin E was also measured in nine captive S. brachyurus 
from Perth Zoo. 
Analyte Acronym Sample type 
Haematology 

White Blood Cell Count WBC 

W
ho

le
 b

lo
od

 in
 E

DT
A 

Red Blood Cell Concentration RBC 
Haemoglobin Concentration HGB 
Packed Cell Volume PCV 
Mean Corpuscular Volume MCV 
Corpuscular Haemoglobin Concentration Mean CHCM 
Red Cell Distribution Width RDW 
Platelet Concentration PLT 
Neutrophils NEUT 
Lymphocytes LYMPH 
Monocytes MONO 
Eosinophils EOS 
Basophils BASO 

Blood Chemistry 
Alkaline Phosphatase ALP 

W
ho

le
 b

lo
od

 in
 L

ith
iu

m
-H

ep
ar

in
 Alanine Aminotransferase ALT 

Aspartate Aminotransferase AST 
Creatine Kinase CK 
Gamma-glutamyl Transferase †  GGT 
Total Protein TP 
Albumin ALB 
Globulin GLOB 
Calcium CALC 
Phosphorus PHOSP 
Cholesterol CHOL 
Total Bilirubin BILT 
Glucose GLUC 
Creatinine CREAT 
Urea UREA 
Vitamin E Vit. E 

† included only for reference intervals due to sample size restrictions for multivariate analyses 
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Figure 7-1 Photomicrographs of reference leukocytes and red blood cells observed in blood smears of S. 
brachyurus on Rottnest Island and the mainland of Western Australia.  (a) neutrophil, key features: 
polylobated nucleus with 3-6 lobes, coarsely clumped chromatin, primary cytoplasmic granules -azurophilic-
; also present, atypical arrangement of erythrocytes: Rouleaux formation (arrowheads); (b) eosinophil, key 
features: polylobated nucleus with 2-3 lobes, coarsely clumped chromatin but less dense than neutrophils, 
prominent secondary eosinophilic cytoplasmic granules; (c) basophil, key features: intense secondary 
basophilic cytoplasmic granules; (d) lymphocytes, key features: darkly staining chromatin with no apparent 
nucleolus, cytoplasm presents as a “rim” and appears finely or coarsely granular, nuclear:cytoplasm (N:C) 
ratio smaller than that of other leukocytes; (e) monocyte, key features: indented to irregularly shaped 
nucleus, reticular chromatin, large amount of pale, grey to basophilic cytoplasm, often with vacuoles, overall 
size of the cell is greater than all other leukocytes; also present a keratocyte (i.e. poikilocyte; arrowhead) (f) 
erythrocytes with normal morphology (arrowheads); RBC inclusion (e.g. Heinz body -arrow-).  All 
photomicrographs: original magnification x1000-, staining Wright-Giemsa. 

 

 

 

 

b. 

c. 

a. 

d. 

e. f. 
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7.3.1.1 Molecular detection of piroplasms and 
trypanosomes 

Genomic DNA was extracted from 25 µL to 100 µL of whole blood in EDTA, using ISOLATE 

II Blood DNA Kit (Bioline Reagents Ltd., London, United Kingdom) according to the 

manufacturer’s instructions (see Appendix 10.4.1).  Extractions were also made from 

sterile molecular-grade water as a negative control.  A total of 121 animals were screened 

for piroplasms and trypanosomes (Rottnest Island= 93, mainland= 28).  Samples were 

screened for piroplasms, using a nPCR that amplifies a 850 bp fragment of the 18S 

ribosomal RNA gene (18S rDNA), as previously described (Jefferies, Ryan, & Irwin 2007) 

(see Appendix 10.4.2.1).  Similarly, trypanosomes were detected using a nested PCR 

method, with trypanosome-specific primers targeting a variable region (~1,500 bp) of the 

trypanosome 18S rDNA, as previously described (McInnes, Hanger, et al. 2011) (see 

Appendix 10.4.2.2).  Positive controls for piroplasm and trypanosome were kindly 

provided by Professor Una Ryan.  PCR products were visualised in 1% agarose gels made 

of 0.5x TBE buffer, stained with SYBR-Safe (Life Technologies, Carlsbad, USA) and ran at 

90 V, 400 mAmp for ~45 min.  Bands of the expected molecular weight were excised with 

sterile scalpel blades using a dark light trans-illuminator (Clare Chemical Research, USA).  

DNA within the excised bands was purified using the filter tip method and sequenced 

using forward and reverse primers (see Appendix 10.4.3).  All PCR and sequencing 

reactions were carried out in an Applied Biosystems (AB) GeneAmp 2720 Thermal Cycler.  

Sequencing reactions were subsequently purified using the ethanol precipitation method 

(BigDye® Terminator v3.1 Cycle Sequencing Kit, Applied Biosystems, Scoresby, Australia) 

(see Appendix 10.4.3), and final sequencing was carried out on an ABI 3790 96 capillary 

automatic sequencer (Applied Biosystems, Scoresby, Australia) at SABC, Murdoch 

University.  Primer sequences were removed and the remaining sequence information was 

analysed using 4Peaks version 1.7.2 (A. Griekspoor and Tom Groothuis, at 

http://nucleobytes.com/4peaks/. 

 

 Selection of reference individuals and samples 

Criteria for the inclusion of reference individuals was applied a posteriori and included: 

cloacal temperatures between 36.5 ˚C and 38.5 ˚C (Bartholomew 1956) taken immediately 

after anaesthesia induction, a dehydration status between 0-5% (see section 3.3), a body 

condition score between 1 and 3 (see section 3.3), mucous membrane appearance (pink or 

pale pink and moist), as well as the absence of other obvious signs of disease.  Sample 

quality was recorded at the time of collection and analysis, and samples were excluded if 

http://nucleobytes.com/4peaks/
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haemolysis and/or lipaemia were noted.  Platelet aggregates observed on blood smears 

were used to determine which ADVIA-120® platelet values were to be removed from the 

dataset.  

 

 Statistical analyses 

Haematology, BLC and PBCM (i.e. leukocyte and red blood cell) datasets, were explored 

visually with non-metric Multidimensional Scaling (nMDS) using a Bray-Curtis similarity 

measure (Bray & Curtis 1957) in PAST v. 3.02 (Hammer, Harper, & Ryan 2001).  Variables 

in the first two datasets were fitted to an approximate normal distribution by 

transforming the data using BoxCox transform (STATISTICA v. 9.1, StatSoft Inc.).  Analyses 

were performed on haematology and blood chemistry data sets separately due to 

differences in sample sizes between these datasets (some individuals were tested for 

either HMT or BLC, which would mean their exclusion from analyses of the entire dataset 

due to missing data).  Data of the HMT and BLC datasets were range-standardised to a 

scale between 0 and 1; by contrast, data of PBCM were not range standardised given that it 

had a binary format (presence and absence).  Two- or three-dimensional models were 

selected according to the model that had the lowest stress statistic.   

 

Multidimensional scaling offers a visual interface of the similarity or dissimilarity of 

samples in the groups of interest, but does not include a test for statistical significance.  

For this reason, a two-way Analysis of Similarity (Two-way ANOSIM) (Clarke 1993) with 

9,999 permutations for R statistics was run, to determine the significance of any 

differences detected in the HMT and BLC respond variables.  The greater the number of 

permutations the greater the precision of the p-value obtained (Manly 2007).  To establish 

the contribution of each dependant variable to the overall similarity or dissimilarity 

observed between groups, a pairwise similarity percentage (SIMPER) (Clarke 1993) 

analysis using the Bray-Curtis similarity measure (Bray & Curtis 1957) was carried out.  

SIMPER results (i.e. percent of contribution of each variable to the similarity or 

dissimilarity) are accompanied by the arithmetic mean (x�) and standard deviation (SD) for 

each HMT and BLC variable.  For each PBCM observed in blood smears, a 95% confidence 

interval (CI) was calculated using the Wilson model for n≤ 40, and the Jeffreys model for 

n≥ 40 (Brown, Cai, & DasGupta 2001).  A combined sample dataset (Rottnest Island and 

mainland), with sex and site as independent factors was carried out and then subsequent 

analyses were carried out for the Rottnest Island sample only, with season and sex as 

independent factors.  The mainland sample was not subject to independent statistical 

analysis as the model was too uneven across sexes, season, and sample size at each 
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trapping location.  Unless stated otherwise, PAST v. 3.02 statistical software package was 

used for all multivariate analyses, including multidimensional scaling modelling. 

Reference intervals for selected HMT and BLC analytes were explored and constructed 

using Reference Value Advisor v.2.1 (Geffre et al. 2011), a set of macroinstructions in 

Excel®.  This tool, has been successfully used in constructing HMT and BLC references 

intervals for other species (Bourges-Abella et al. 2011 ; Geffré et al. 2011), (Bryant et al. 

2012), and is accepted by the American Society for Veterinary Clinical Pathology as a tool 

that adheres to the most recent guidelines (C28-A3) (CLSI 2008) of the IFCC-CLSI.  

Although a test for normality (Anderson-Darling) was performed to all dependant analytes 

data, all datasets were transformed using the generalized Box-Cox transformation.  

Outliers and suspect data were detected with Dixon-Reed and Tukey’s tests.  The first 

detects a single outlier using the ratio of its distance to the closest value divided by the 

range of values (CLSI 2008).  The second uses the median and the 25% and 75% 

percentiles of the interquartile range (CLSI 2008); ‘suspect’ data were always left in, 

unless there was an obvious clinical reason against the inclusion (e.g. mucopurulent nasal 

discharge, opisthotonus, ataxia).   

 

As recommended by the revised CLSI guidelines, the non-parametric calculated reference 

interval is reported when the data of a sufficient sample size (i.e. ≥40, ideally ≥120) (CLSI 

2008) has a unimodal distribution (Geffre et al. 2011).  Confidence intervals for the non-

parametric calculated reference interval were computed using a bootstrap method (Geffre 

et al. 2011).  This approach was used to construct HMT and BLC reference intervals for the 

Rottnest Island subpopulation, as well as for females and males separately.  Reference 

intervals for the mainland dataset (n< 40), were those given by the robust method with 

Box-Cox transformed data when possible; otherwise reference intervals are given using 

the robust method with untransformed data.  In this case, confidence intervals were 

computed using a non-parametric bootstrap method (Geffre et al. 2011).  In all cases, the 

corresponding lower and upper limit of the reference interval as well as the 2.5, 5, 90, and 

97.5% confidence intervals are given where possible.  Similarly, standard descriptive 

statistics are presented and include sample size, arithmetic mean (x�), median, standard 

deviation (SD), minimum and maximum.  Whenever possible, these are given using the 

robust method of the untransformed data; otherwise the values provided are those of the 

standard method of the untransformed data.   

 

Manual differential leukocyte counts data were used when calculating the corresponding 

reference intervals.  To validate our choice, we calculated the correlation coefficients (r) 

using least squares linear regression analysis to compare the results of the ADVIA-120® 
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for NEUT, LYMPH, EOS, BASO and MONO, to those obtained through the manual 

differential count.  Correlation between the two measurements was considered excellent if 

r≥ 0.95, very good if r= 0.85–0.94, good if r= 0.75–0.84, fair if r= 0.65–0.74, and poor if r≤ 

0.64.  For the Rottnest Island sample, the reference interval for platelet concentration was 

constructed after removing samples that contained platelet clumps on the blood smear.  

Comparison of HMT and BLC values between mainland locations was not done as the 

model was too uneven.  An unpaired non-parametric Mann-Whitney U test (MWU) was 

used to explore significant differences between plasma concentrations of vitamin E from 

captive S. brachyurus (Perth Zoo) that were sourced from Rottnest Island, and plasma 

concentrations of vitamin E of free-ranging animals also from Rottnest Island.  The data 

used for this analysis were obtained from both populations during the same season (i.e. 

winter).  Separate MWU tests were used to determine significant differences in RBC 

between microfilariae-positive and microfilariae-negative animals on Rottnest Island and 

on the mainland, and significant differences in WBC and LYMPH between flower cell-

positive and flower cell-negative animals on Rottnest Island.  Chi-square analysis was used 

to determine variation in microfilariae and piroplasm prevalence across sites (Rottnest 

Island vs. mainland); as well as across sexes and seasons (only Rottnest Island).  For this 

last case, an equal proportion of samples was assumed (i.e. expected values calculated 

assuming an equal distribution across the number of seasons).  Chi-square was also used 

to determine significance in the variation of flower cells (only observed in Rottnest Island 

peripheral blood smears) across sex and seasons in the Rottnest Island sample.  Odds ratio 

(OR) and its corresponding 95% CI when presented, were calculated using Woolf’s 

method (1955).  All other 95% CI for estimates of proportions (i.e. prevalence), were 

calculated using the Wilson model for n≤ 40, and the Jeffreys model for n≥ 40 (Brown, Cai, 

& DasGupta 2001).  In all analyses, statistical significance was set to p< 0.05.   

 

7.4 Results 

There was a lack of agreement (r≤ 0.64) for EOS, BASO and MONO (Figure 7-2a-c) 

between the in house (200 cells) and the ADVIA-120® counts.  By contrast, there was 

obvious agreement (r= 0.85-0.94) between estimates for NEUT and LYMPH (Figure 7-2d-

e) of both the automated counter and the manual differential count.  The ADVIA® 120 

data included fewer EOS and more NEUT than the manual differential (Figure 7-2).  

Inspection of the manual differential data revealed that the ADVIA® 120 included EOS 

within the NEUT count.  Discrepancies with the ADVIA-120® data are therefore likely to 

reflect the use of the ‘multi-species’ software using the default setting (canine), which 

would reduce sensitivity to features that distinguish between these cell populations.  
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Figure 7-2 Correlation (r) of white blood cell classification by the ADVIA-120® with the 200-cell manual 
differential method.  Eosinophils (a. r= 0.41), Basophils (b. r= 0.153), Monocytes (c. r= 0.04), Neutrophils (d. r= 
0.90), and Lymphocytes (e. r= 0.93).  Distances along the axes are unit-less, therefore the positions of the 
points in the plots are relative distances from one another rather than absolute differences read in these units. 

 

 

 Correlates of HMT, BLC, and PBCM data, with site and sex for 

the combined data sample (Rottnest Island-mainland)  

 

There were significant difference in the HMT (ANOSIM, p= 0.003; Table 7-3a), BLC 

(ANOSIM, p= 0.001; Table 7-3b) and PBCM (ANOSIM, p= 0.001; Table 7-3c) data by site (i.e. 

Rottnest Island and mainland), with an evident clustering of both HMT and BLC datasets 

by site (Figure 7-3a-b).  By contrast, there were no differences in the HMT, BLC or PBCM 

data by sex (ANOSIM; Table 7-3a-c).  Clustering was not evident for the PBCM datasets 

(Figure 7-3c).   
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Differences between Rottnest Island and mainland animals were more evident (i.e. Ct% 

>10; in order of greatest effect to least effect) for RBC, LYMPH, and CK (SIMPER; Table 

7-4a-b), while differences in PBCM were more evident for Heinz bodies, acanthocytes, 

Rouleaux formation, and hypochromasia (SIMPER; Table 7-5).  However, generally 

mainland animals had a greater RBC, PCV, HGB, CHCM, as well as NEUT and BASO counts, 

than those on Rottnest Island, which had greater LYMPH, EOS and WBC, and also a greater 

MCV.  The BLC profiles of animals on the mainland and animals on Rottnest Island showed 

considerable differences.  Except ALP, all assessed analyte plasma concentrations were 

higher for mainland S. brachyurus compared to Rottnest Island animals.  The differences in 

CK, vitamin E, AST, ALT, and UREA in plasma are worth noting.  For instance, animals on 

the mainland had CK readings almost 10 times higher than those of animals on Rottnest 

Island.  There were also marked differences in polychromasia, anisocytosis, and 

poikilocytosis. 

 
Table 7-3 Two-way ANOSIM of selected HMT variables (a) (corrected WBC, RBC, HGB, PCV, and absolute 
counts for leukocytes obtained with a manual differential on a blood smear), BLC analytes (b) (ALP, ALT, AST, 
CK, PROT, ALB, GLOB, CALC, PHOSP, CHOL, BILT, GLUC, CREAT, UREA and Vitamin E), and PBCM (c) across site 
and sex, for S. brachyurus.  Bray-Curtis similarity index, Permutation N= 9,999.  HMT= haematology, 
BLC=blood chemistry, PBCM= peripheral blood cell morphology. 
 Variables Factor R p 
a. HMT Site 0.296 0.003 

Sex 0.045 0.267 
b. BLC Site 0.463 0.001 

Sex -0.052 0.681 
c. PBCM Site 0.434 0.001 
 Sex -0.043 0.522 
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Figure 7-3 Non-metric MDS plots with Bray-Curtis similarity measure, illustrating the structural dissimilarity 
in HMT (a. stress statistic= 0.278), BLC (b. stress statistic= 0.312), and PBCM (c. stress statistic= 0.321) 
between Rottnest Island (open symbols) and mainland (filled symbols) S. brachyurus by site.  Key legend 
applies for all plots.  Note that the distances along the axes are unit-less, therefore the positions of the points in 
the plots are relative distances from one another rather than absolute differences read in these units.  HMT= 
haematology, BLC=blood chemistry, PBCM= peripheral blood cell morphology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

▲ males  (mainland) 
△ males (Rottnest Island)  
■ females (mainland)  
□ females (Rottnest Island) 

a. b. 

c. 



 

175 
 

Table 7-4 SIMPER analysis indicating the contribution of specific variables to the observed site [Rottnest 
Island (RI) and mainland (ML)] differences in (a) HMT and (b) BLC profiles of S. brachyurus.  HMT= 
haematology, BLC= blood chemistry, Ct= Percent of contribution to difference. 

    RI ML 
  Taxon Ct % x� SD x� SD 

a. HMT 
(27.64) † 
RI n= 96 
ML n= 32 

RBC (x1012/L) 10.7 5.84 0.87 7.38 1.01 
 Lymphocytes (x109/L) 10.1 2.09 1.09 1.64 1.08 
 Eosinophils (x109/L) 9.86 0.40 0.365 0.14 0.214 
 Neutrophils (x109/L) 9.86 2.23 0.913 2.92 1.52 
 PCV (%) 9.61 33.4 4.46 40.9 4.08 
 Basophils (x109/L) 9.32 0.02 0.03 0.03 0.03 
 HGB (g/L) 9.06 108 15.3 134 15.5 
 Monocytes (x109/L) 8.79 0.08 0.08 0.08 0.07 
 WBC (x109/L) 8.24 4.82 1.58 4.78 1.40 
 MCV (fL) 7.43 61 3.65 59.8 3.27 
 CHCM (g/L) 7.01 307 15.5 326 27.2 

b. BLC 
(22.76) † 
RI n= 106 
ML n= 32 

CK (U/L) 11.2 942 1,331 7,665 6,799 
 ALT (U/L) 9.80 217 62.2 436 156 
 Vitamin E (mg/L) 9.10 6.53 1.80 9.93 2.73 
 ALP (U/L) 7.62 8,204 10,094 8,074 13,947 
 AST (U/L) 7.03 49.8 31.6 239 308 
 Phosphorus (mmol/L) 6.63 1.19 0.467 1.68 0.67 
 Protein (g/L) 6.62 60.4 4.62 63.9 4.35 
 Calcium (mmol/L) 6.35 2.20 0.201 2.47 0.141 
 Glucose (mmol/L) 6.07 4.15 2.21 5.46 2.33 
 Cholesterol (mmol/L) 6.00 2.80 0.539 2.99 0.65 
 Albumin (g/L) 5.76 36.3 1.91 38.9 2.19 
 Bilirubin (µmol/L) 5.26 4.29 1.65 5.32 2.75 
 Globulin (g/L) 5.04 24.1 3.75 24.9 3.56 
 Urea (mmol/L) 4.43 6.87 1.53 9.60 4.94 
 Creatinine (µmol/L) 3.16 70.9 16 83.3 23.7 

RBC= red blood cell concentration, HGB= haemoglobin, PCV= packed cell volume, CHCM= corpuscular 
haemoglobin concentration mean, MCV= mean corpuscular volume, WBC= white blood cell count, CK= creatine 
kinase, ALT= alanine aminotransferase, ALP= alkaline phosphatase, AST= aspartate aminotransferase, GGT= 
gamma-glutamyl transferase 
† Overall average dissimilarity. 
 

 

 
Table 7-5 SIMPER analyses indicating the contribution to the observed site [Rottnest Island (RI) and mainland 
(ML)] differences in specific PBCM in S. brachyurus.  Overall average dissimilarity= 29.01.  PBCM= peripheral 
blood cell morphology, Ct= percent of contribution to difference, CI= confidence interval. 
Taxon Ct % RI (n=107)  95% CI * ML (n= 34) 95% CI ** 
Heinz Bodies  11.4 75 (70.1%) 0.61-0.78 20 (59%) 0.42-0.74 
Acanthocytes 11 52 (49.0%) 0.39-0.58 19 (56%) 0.39-0.71 
Rouleaux Formation 10.9 46 (43%) 0.34-0.52 17 (50%) 0.34-0.66 
Hypochromasia  10.3 96 (90%) 0.83-0.94 19 (56%) 0.39-0.71 
nRBCs  8.04 97 (91%) 0.84-0.95 23 (68%) 0.51-0.81 
Anisocytosis  8.03 86 (80%) 0.72-0.87 25 (73.5%) 0.57-0.85 
Echinocytes  7.88 30 (28%) 0.20-0.37 7 (21%) 0.10-0.37 
Polychromasia 7.51 98 (92%) 0.85-0.96 24 (71%) 0.54-0.83 
Schistocytes  6.40 26 (24.3%) 0.17-0.33 4 (12%) 0.05-0.27 
Poikilocytosis 5.45 93 (87%) 0.80-0.92 29 (85%) 0.70-0.94 
Keratocytes 4.91 24 (22.4%) 0.15-031 1 (3%) 0.01-0.15 
Flower Cells 4.52 23 (21.5%) 0.14-0.30 0 (0%) 0.00-0.10 
Howell-Jolly Bodies 3.42 99 (92.5%) 0.86-0.96 31 (91%) 0.77-0.97 
Reactive Lymphocytes 0.29 106 (99.1%) 0.96-0.99 34 (100%) 0.89-1.00 
* calculated using Jeffreys model (Brown, Cai, & DasGupta 2001) 
** calculated using Wilson’s model (Brown, Cai, & DasGupta 2001) 
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 Correlates of HMT, BLC and PBCM data, with sex and season 

for Rottnest Island S. brachyurus 

There were significant differences in the HMT (ANOSIM, p= 0.001; Table 7-6a), BLC 

(ANOSIM, p= 0.001; Table 7-6b) and PBCM (ANOSIM, p= 0.001; Table 7-6c) data of 

Rottnest Island animals by season.  However, clustering was not that evident in the non-

parametric multidimensional scaling plot (Figure 7-4a-c).  By contrast, there were no 

differences in HMT, BLC and PBCM data by sexes (ANOSIM; Table 7-6a-c).  Seasonal 

differences in the HMT of Rottnest Island animals were more evident (i.e. Ct% >10; in 

order of greatest effect to least effect) for MONO, LYMPH, WBC, and MCV (SIMPER; Table 

7-7a); while seasonal differences in their BLC were more evident (i.e. Ct% >8; in order of 

greatest effect to least effect) for vitamin E, CK, PROT, and GLUC (SIMPER; Table 7-7b).  

With the exception of MONO, and some mild variations across HMT analytes (e.g. NEUT 

and BASO counts and RBC) there appeared to be a general decrease trend for all other 

variables that would start in spring and carry on until winter when values will start to rise 

(Figure 7-5).  Although slight variations were present in the BLC profiles of Rottnest Island 

animals, a general seasonal decreasing pattern that would start either in winter, spring or 

summer, was observed for all analytes measured (Figure 7-6).  Similarly, significant 

seasonal variations in the PBCM populations of Rottnest Island animals were observed 

(Table 7-6), with differences being more evident (i.e. Ct% >11) for Heinz bodies, 

acanthocytes and Rouleaux formation (Table 7-8).  Photomicrographs of some red blood 

cell morphologies are presented in (Figure 7-7).  

 

 
Table 7-6 Two-way ANOSIM of selected HMT variables (a) (corrected WBC, RBC, HGB, PCV, and absolute 
counts for leukocytes obtained with a manual differential on a blood smear), BLC analytes (b) (ALP, ALT, AST, 
CK, PROT, ALB, GLOB, CALC, PHOSP, CHOL, BILT, GLUC, CREAT, UREA and vitamin E), and PBCM (c) across 
season and sex, for S. brachyurus on Rottnest Island.  Bray-Curtis similarity index, Permutation N= 9,999.  
HMT= haematology, BLC=blood chemistry, PBCM= peripheral blood cell morphology. 
 Variables Factor R p 
a. HMT Season 0.183 0.001 
 Sex 0.039 0.084 
b. BLC Season 0.160 0.001 
 Sex 0.023 0.190 
c. PBCM Season 0.304 0.001 
 Sex 0.035 0.114 
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Figure 7-4 Non-metric MDS plots with Bray-Curtis similarity measure, illustrating the structural dissimilarity 
of HMT (a. stress statistic= 0.220), BLC (b. stress statistic= 0.262), and PBCM (c. stress statistic= 0.288) 
communities of animals on Rottnest Island between seasons (autumn: triangles, winter: squares, spring: 
circles, and summer: diamonds). Key legend applies to both plots.  Note that the distances along the axes are 
unit-less, therefore the positions of the points in the plots are relative distances from one another rather than 
absolute differences read in these units.  HMT= haematology, BLC=blood chemistry, PBCM= peripheral blood 
cell morphology. 
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Table 7-7 SIMPER analysis indicating the contribution of specific variables to the observed seasonal differences in (a) HMT and (b) BLC profiles of S. brachyurus on Rottnest Island (RI).  
HMT= haematology, BLC=blood chemistry, Ct: Percent of contribution to difference. 

    Autumn Winter Spring Summer 
  Taxon Ct % x� SD x� SD x� SD x� SD 

a. HMT 
(24.62) † 
RI n= 96 

Monocytes (x109/L) 11.6 0.112 0.112 0.091 0.064 0.068 0.068 0.052 0.045 
 Lymphocytes (x109/L) 11.5 2.032 0.840 1.56 0.750 2.38 1.29 2.24 1.16 
 WBC (x109/L) 10.9 4.55 1.25 4.052 1.201 5.53 1.75 4.88 1.62 
 MCV (fL) 10.9 57.6 2.59 65.2 2.96 60.4 2.59 60.9 2.56 
 Basophils (x109/L) 9.68 0.019 0.035 0.020 0.022 0.022 0.031 0.013 0.026 
 RBC (x1012/L) 8.84 5.58 0.61 5.71 0.97 5.75 0.74 6.21 0.98 
 Eosinophils (x109/L) 8.32 0.374 0.321 0.260 0.188 0.620 0.509 0.311 0.218 
 Neutrophils (x109/L) 8.14 2.019 0.530 2.113 0.606 2.44 1.16 2.27 1.036 
 PCV (%) 7.61 33 3.8 31 3.8 35 4.5 34 4.7 
 HGB (g/L) 6.60 104 15 103 17 107 12 116 15 
 CHCM (g/L) 5.84 323 22 294 6.8 306 11 306 5.9 

b. BLC 
(19.72) † 
RI n= 106 

Vitamin E (mg/L) 9.11 7.71 1.86 6.82 1.77 5.69 1.65 6 1.27 
 CK (U/L) 8.95 1,071 1,249 783 589 1,040 1,040 878 1,984 
 Protein (g/L) 8.22 58.6 4.15 58.5 3.59 62.2 5.25 61.9 4.15 
 Glucose (mmol/L) 8.14 4.23 1.79 2.95 2.03 4.34 1.96 4.95 2.57 
 Cholesterol (mmol/L) 7.78 2.7 0.6 3 0.5 2.9 0.5 2.7 0.5 
 Phosphorus (mmol/L) 7.43 1 0.4 1.2 0.4 1.5 0.5 1.2 0.5 
 Globulin (g/L) 7.12 23.3 2.98 22.5 3.14 25.6 4.35 24.9 3.71 
 ALT (U/L) 6.91 185 37 234 74.7 230 56.3 220 65.3 
 Calcium (mmol/L) 6.51 2.29 0.197 2.20 0.172 2.11 0.162 2.20 0.23 
 Bilirubin (µmol/L) 6.05 5.3 1.8 5 1.6 3.9 0.6 3.2 1.4 
 Albumin (g/L) 5.47 35.3 2.15 36 1.36 36.7 2.01 37 1.63 
 ALP (U/L) 5.41 7,582 11,043 4,622 2,361 9,390 10,168 10,787 12,492 
 AST (U/L) 4.92 57.3 30.7 55.6 48.3 43.3 15.7 43.9 22.9 
 Creatinine (µmol/L) 4.20 81 20 74 18 62 9.1 68 8.2 
 Urea (mmol/L) 3.78 6.47 1.88 7.01 1.53 7.10 1.54 6.90 1.16 

RBC= red blood cell concentration, HGB= haemoglobin, PCV= packed cell volume, CHCM= corpuscular haemoglobin concentration mean, MCV= mean corpuscular volume, WBC= white blood 
cell count, CK= creatine kinase, ALT= alanine aminotransferase, ALP= alkaline phosphatase, AST= aspartate aminotransferase, GGT= gamma-glutamyl transferase 
† Overall average dissimilarity. 
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Figure 7-5 Marked linear plots for WBC, neutrophils, eosinophils, basophils, lymphocytes, monocytes, RBC, 
HGB and PCV across seasons for S. brachyurus trapped on Rottnest Island between March and December 2011.  
Autumn n= 20, Winter n= 21, Spring n= 27, Summer n= 28. 
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Figure 7-6  Marked linear plots for vitamin E, calcium, phosphorus, creatinine, urea, glucose, bilirubin, 
cholesterol, protein, albumin, globulin, AST, ALT, ALP and CK across seasons for S. brachyurus trapped on 
Rottnest Island between March and December 2011.  Autumn n= 26, Winter n= 25, Spring n= 26, Summer n= 
29. 
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Table 7-8 SIMPER analyses indicating the contribution to the observed seasonal differences in specific PBCM in S. brachyurus on Rottnest Island.  Overall average dissimilarity= 25.5.  PBCM= 
peripheral blood cell morphology.  Ct= percent of contribution to difference, CI= confidence interval. 
Taxon Ct % Autumn 95% CI *   Winter 95% CI * Spring 95% CI * Summer 95% CI * 
Heinz Bodies 11.9 10 (36%) 21-54 17 (74%) 53-87 9 (33%) 19-52 22 (79%) 60-90 
Acanthocytes  11.9 11 (39%) 24-58 15 (65%) 45-81 8 (30%) 16-48 18 (64%) 46-79 
Rouleaux Formation 11.6 13 (46%) 29-64 15 (65%) 45-81 11 (41%) 24-59 7 (25%) 13-43 
Echinocytes 9.16 11 (39%) 24-58 5 (22%) 9.0-42 6 (22%) 11-41 8 (29%) 15-47 
Schistocytes 8.38 13 (46%) 29-64 3 (13%) 4.0-32 7 (26%) 13-45 3 (11%) 4.0-27 
Flower Cells 8.26 5 (18%) 8.0-36 9 (39%) 22-59 12 (44%) 28-63 2 (7.1%) 2.0-23 
Keratocytes 8.10 11 (39%) 24-58 9 (39%) 22-0.59 1 (3.7%) 1.0-18 3 (11%) 4.0-27 
Anisocytosis 7.88 24 (86%) 68-94 23 (100%) 86-100 19 (70%) 51-84 20 (71%) 53-84 
Poikilocytosis 5.77 26 (93%) 77-98 21 (91%) 73-98 19 (70%) 51-84 28 (100%) 88-100 
Hypochromasia 4.61 24 (86%) 68-94 22 (96%) 79-99 22 (81%) 63-92 28 (100%) 88-100 
nRBCs 4.43 28 (100%) 88-100 17 (74%) 53-87 24 (89%) 72-96 28 (100%) 88-100 
Polychromasia 4.11 26 (93%) 77-98 21 (91%) 73-98 27 (100%) 87-100 24 (86%) 68-94 
Howell-Jolly Bodies 3.37 27 (96%) 82-99 21 (91%) 73-98 25 (93%) 77-98 26 (93%) 77-98 
Reactive Lymphocytes 0.58 28 (100%) 88-100 23 (100%) 86-100 26 (96%) 82-99 28 (100%) 88-100 
* calculated using the Wilson model (Brown, Cai, & DasGupta 2001) 
autumn n= 28, winter n= 23, spring n= 27, summer n=  28 
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Figure 7-7 Some erythrocytic morphologies and intraerythrocytic inclusions found in peripheral blood 
smears of quokkas on Rottnest Island (also found in quokkas on mainland Western Australia). (a) echinocytes 
(arrow), two large cells present: neutrophil (left), eosinophil (right); (b) Heinz bodies (arrowheads), blister 
polychromatophilic cell (arrow), anisocytosis is also present in this plate; (c) Rouleaux formation 
(arrowheads), lymphocyte with a flower-like nucleus (large cell centre); (d) keratocyte (arrow), monocyte 
(centre) and polychromatophilic erythrocytes present; (e) Howell-Jolly body (arrow), leukocyte with 
fragmented nucleus (large cell centre).  All images -original magnification x1000-, staining Wright-Giemsa. 
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 Reference intervals for HMT and BLC analytes for S. brachyurus 

on Rottnest Island and on the mainland 

 

Given the significant effect of site (see Table 7-3a,b,c) on the HMT and BLC profiles of S. 

brachyurus, reference intervals were calculated for Rottnest Island (Table 7-9) and the 

mainland (Table 7-10) separately.  Although there was no significant effect of sex on the 

HMT and BLC parameters of animals on Rottnest Island (Table 7-6), HMT and BLC profiles 

of males and females were sufficiently different to warrant a separate set of reference 

intervals (see Appendix 10.4.4)
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Table 7-9 Haematology and blood chemistry reference intervals for anaesthetised free-ranging quokkas (S. brachyurus) sampled on Rottnest Island (RI) between March and December 2011.  
Negative values of confidence intervals were interpreted as zero.  

       Reference Intervals a Confidence Intervals b 
Parameter (unit) n  Mean c Median d SD d Minimum d Maximum d Lower limit Upper limit 2.5% 5% 90% 97.5% 
RBC (x1012/L) 113 5.83 5.81 0.86 4.14 8.51 4.26 7.69 4.14 4.56 7.46 8.51 
HGB (g/L) 113 108 108 15.1 53 149 79 141 53 87 131 149 
PCV (%) 101 33.6 34 4.5 20 47 23.1 43.9 20 27.1 40.9 47 
CHCM (g/L) 112 307 306 14.8 281 342 284 339 281 287 336 342 
MCV (fL) 113 61 60.5 3.71 52.7 71.2 53 70 52.7 55.4 67.1 71.2 
Platelet (x109/L)  40 501 493 110 322 813 322 810 322 336 703 813 
WBC (x109/L) 113 4.64 4.39 1.65 1.75 9.31 2.03 8.55 1.75 2.29 7.82 9.31 
Neutrophils (x109/L) 106 2.09 2 0.73 0.82 4.65 0.93 4.01 0.82 1.05 3.38 4.65 
Lymphocytes (x109/L) 108 1.99 1.76 1.09 0.59 5.36 0.62 5.12 0.59 0.67 4.16 5.36 
Monocytes (x109/L) 106 0.07 0.06 0.06 0.00 0.26 0.00 0.25 0.00 0.00 0.18 0.26 
Eosinophils (x109/L) 107 0.36 0.28 0.31 0.00 1.46 0.03 1.39 0.00 0.06 1.01 1.46 
Basophils (x109/L) 105 0.01 0.00 0.02 0.00 0.09 0.00 0.07 0.00 0.00 0.06 0.09 
CK (U/L) 108 754 433 700 138 3,240 153.7 3,045 138 182.8 2,251 3,240 
ALT (U/L) 110 215 201 55.3 132 437 147 384 132 152 324 437 
ALP (U/L) 103 5,757 5,620 3,064 1,387 17,880 1,517 13,272 1,387 1,792 10,208 17,880 
AST (U/L) 107 45.1 40 17.7 13 108 25 97.2 13 26 84 108 
GGT (U/L) 83 17.8 17 6.2 8 41 8.1 30 8 10 28.9 41 
Protein (g/L) 111 60.2 59.8 4.62 49.5 72.3 50.6 70.3 49.5 53.3 68.8 72.3 
Albumin (g/L) 111 36.2 36.3 1.92 30 41.1 31.9 39.8 30 32.8 39 41.1 
Globulin (g/L) 111 24 23.5 3.78 14.4 36 15.7 32.4 14.4 18.6 30.7 36 
Glucose (mmol/L) 111 4.15 3.70 2.18 0.6 12.5 0.68 9.94 0.60 1.06 7.94 12.5 
Cholesterol (mmol/L) 111 2.83 2.80 0.54 1.5 4 1.88 3.82 1.50 2.1 3.70 4 
Bilirubin (µmol/L) 110 4.28 4 1.72 1 9.4 1.82 9 1 2 7.79 9.4 
Urea (mmol/L) 110 6.90 6.73 1.47 4.2 12.3 4.28 10.4 4.20 4.76 9.38 12.3 
Creatinine (µmol/L) 110 71.3 68.7 15.6 41 112 47 110 41 49.6 104 112 
Phosphorus (mmol/L) 111 1.20 1.20 0.46 0.4 2.8 0.48 2.34 0.4 0.6 1.94 2.80 
Calcium (mmol/L) 111 2.19 2.18 0.19 1.63 2.69 1.8 2.64 1.63 1.91 2.51 2.69 
Vitamin E (mg/L) 108 6.55 6.04 1.81 3.84 10.9 4.03 10.5 3.84 4.18 9.71 10.9 
Erythrocyte variables obtained with ADVIA® 120.  WBC values are those after correction with nucleated red blood cells.  Polymorphonuclear cell values are those of the manual differential 
count.  RBC= red blood cell concentration, HGB= haemoglobin, PCV= packed cell volume, CHCM= corpuscular haemoglobin concentration mean, MCV= mean corpuscular volume, WBC= 
white blood cell count, CK= creatinine kinase, ALT= alanine aminotransferase, ALP= alkaline phosphatase, AST= aspartate aminotransferase, GGT= gamma-glutamyl transferase 
a reference intervals were computed using the non-parametric method (when n≥ 40). 
b confidence intervals were computed using a bootstrap method (when 20 <n< 120). 
c for the standard method of the untransformed data. 
d for the robust method of the untransformed data.
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Table 7-10 Haematology and blood chemistry reference intervals for anaesthetised free-ranging quokkas (S. brachyurus) sampled on the southwest of Western Australia (Jarrahdale, Collie 
and Walpole locations) between September 2010 and July 2011.  Negative values of confidence intervals were interpreted as zero. 
       Reference Intervals a b c Confidence Intervals d 
Parameter (unit) n  Mean e Median f SD f Minimum f Maximum f Lower limit Upper limit 2.5% 5% 90% 97.5% 
RBC (x1012/L) c 36 7.28 7.20 1.03 5.29 10.4 5.43 9.51 5.06 5.84 8.87 10.3 
HGB (g/L) a 36 132 130 15.6 106 175 98.9 162 91.8 106 153 172 
PCV (%) b 35 40.6 40 4.1 33 52 34 50.5 32.9 35.2 47.6 53.9 
CHCM (g/L) c 36 326 318 28 290 391 261 375 250 277 356 391 
MCV (fL) c 36 59.8 59.7 3.24 54 66.3 53.8 66.9 52.8 55.2 65.2 68.8 
Platelet (x109/L) † - - - - - - - - - - - - 
WBC (x109/L) c 36 4.79 4.64 1.43 2.45 7.8 2.43 8.16 2.12 2.85 7.20 9.16 
Neutrophils (x109/L) c 33 2.95 2.91 1.54 0.65 6.19 0.41 6.68 0.15 0.87 5.73 7.66 
Lymphocytes (x109/L) b 33 1.66 1.37 1.20 0.45 4.75 0.41 4.88 0.34 0.55 3.51 6.39 
Monocytes (x109/L) b 32 0.07 0.07 0.05 0.00 0.16 0.00  0.18 0.00 0.01 0.15 0.21 
Eosinophils (x109/L) b 32 0.11 0.08 0.11 0.00 0.37 0.00 0.38 0.00 0.00 0.28 0.50 
Basophils (x109/L) b 33 0.03 0.02 0.03 0.00 0.11 0.00 0.14 0.00 0.00 0.08 0.25 

CK (U/L) c 37 7,674 5,858 7,071 397 20,000 229 32,034 71,9  629 24,127 41,123 
ALT (U/L) c 34 413 405 107 181 692 218 654 183 263 580 733 
ALP (U/L) c 29 2,996 985 4,123 251 13,580 185 27,954 132 269 10,825 72,737 
AST (U/L) c 34 175 139 119 57 448 48,6 544 42,6 58,3 392 709 
GGT (U/L) b 24 19.9 16.1 10.6 8 44 6.7 48 5.8  8.5 36.6 60.1 
Protein (g/L) b 37 63.8 63.8 4.63 53.7 71.9 53.8 72.6 51.1 56.4 70.7 74.5 
Albumin (g/L) c 37 39.1 39 2.38 34.6 44.2 34.7 44.4 33.9 35.6 43 45.9 
Globulin (g/L) c 37 24.7 24.6 3.62 17.6 33.1 18.1 32.8 16.9 19.5 30.7 34.9 
Glucose (mmol/L) c 37 5.45 5.10 2.34 2 12.6 1.95 10.9 1.59 2.49 9.44 12.9 
Cholesterol (mmol/L) c 37 2.99 2.92 0.72 1.8 4.4 1.70 4.60 1.50 1.93 4.21  4.99 
Bilirubin (µmol/L) c 35 5.04 5.10 1.91 0.9 8 0.93 8.81  0.83 2.08 8.06  9.55 
Urea (mmol/L) c 36 9.16 8.39 3.90 3.8 20.2 3.78 19.2 3.20 4.51 15.8  22.8 
Creatinine (µmol/L) c 36 82.3 79.2 16.5 60 142 60.8 131 57.9 64.6 113 158 
Phosphorus (mmol/L) c 37 1.68 1.56 0.72 0.7 3.5 0.62 3.42 0.52 0.79 2.91 3.97 
Calcium (mmol/L) c 37 2.48 2.46 0.155 2.17 2.9 2.21 2.83 2.16 2.26 2.73 2.95 
Vitamin E (mg/L) c 32 9.92 9.77 2.85 5.65 15.1 5.23 16.5 4.67 6.01 14.6 18.3 
Erythrocyte variables obtained with ADVIA® 120.  WBC values obtained after correction with nucleated red blood cells.  Polymorphonuclear cell values obtained with manual differential 
count.  RBC= red blood cell concentration, HGB= haemoglobin, PCV= packed cell volume, CHCM= corpuscular haemoglobin concentration mean, MCV= mean corpuscular volume, WBC= 
white blood cell count, CK= creatine kinase, ALT= alanine aminotransferase, ALP= alkaline phosphatase, AST= aspartate aminotransferase, GGT= gamma-glutamyl transferase  
a RI computed using the robust method of the untransformed data, b RI computed using the standard method of the Box-Cox transformed data, c Reference intervals computed using the 
robust method of the Box-Cox transformed data,  d Confidence intervals were computed using a bootstrap method (when 20 <n< 120), e for the standard method of the untransformed data, f 
for the robust method of the untransformed data, † Insufficient sample size: 90% or more of blood smears were positive to platelet clumps.
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 Vitamin E (captive vs. free-ranging) 

A significant difference in plasma vitamin E between free-ranging S. brachyurus on 

Rottnest Island, and those in captivity at Perth Zoo (U(35)= 34.5, Z= 3.01, p= 0.01) was 

found.  Captive individuals had lower levels (Mdn= 4.15 mg/L) of circulating vitamin E 

than free-ranging animals (Mdn= 5.75 mg/L) (Figure 7-8). 

 

 
 
Figure 7-8 Box-plot of the mean concentration of vitamin E (mg/L) in plasma for S. brachyurus on Rottnest 
Island (free-ranging, n= 29) and S. brachyurus at Perth Zoo (captive, n= 8).  Vitamin E was measured during 
winter. 

 

 

 Haemoparasites 

The larvae of filarioid nematodes (microfilariae) were observed in both Rottnest Island 

and mainland quokkas.  Microfilariae observed in blood smears from animals on Rottnest 

Island had a body length ranging from 202-273 µm (Figure 7-9a), while microfilariae in 

blood smears from animals on the mainland had a body length range of 135-142 µm 

(Figure 7-9b).  All specimens, however, were anatomically similar, presenting a 

characteristic unsheathed, anucleated, long tapering tail, and four particularly obvious 

regions (under Wright-Giemsa staining): cephalic space, nerve ring, excretory vesicle and 

excretory cell, and anal vesicle (Figure 7-9), in agreement with microfilariae of the genus 

Breinlia.  Parasitic intraerythrocytic inclusions (i.e. piroplasms) were also observed in 

animals from both subpopulations.  Morphologically, we observed two types of piroplasms.  

The first type were ovoid (~1.7x0.9 µm or round (~1.7x1.7 µm, single, mostly located 

eccentrically within the cell, with obvious nuclear material and colourless cytoplasm, all 

enclosed by a thin membrane (Figure 7-9c,d).  The second type were mostly oval or 



 

187 
 

pyriform in shape, ~0.7x0.4 µm, single or multiple, with obvious nuclear material but no 

apparent cytoplasm or membrane, and located eccentrically as well as centrically in the 

erythrocyte (Figure 7-9c).  There were no piroplasmic inclusions observed in leukocytes.    

 

Forty three of 146 S. brachyurus from Rottnest Island and mainland sites combined, were 

positive by light microscopy for the presence of microfilariae (prevalence of 29.4%, 95% 

CI 22.5-37.2), while 43 of 121 animals were positive by nPCR for the presence of 

piroplasms (prevalence= 35.5%, CI 27.4-44.3).  There was no significant difference (χ²1= 

1.00, p= 0.317) in the prevalence of microfilariae between Rottnest Island (32.1%, 35/109, 

CI 23.9-41.2) and mainland animals (21.6%, 8/37, CI 11.3-37.2) (Figure 7-10a).  Similarly, 

site did not influence the probability of being positive to microfilariae (OR= 1.00, CI 0.19-

1.08). Theileria sp. and Babesia sp. were detected in Rottnest Island animals by nPCR, with 

prevalences of 19.4% (18/93, CI 12.3-28.3) and 1.1% (1/93, CI 0.1-4.9) respectively.  By 

contrast, only Theileria sp. was detected in mainland animals for a prevalence of 87.5% (CI 

68.5-94.3).  Overall, the prevalence of piroplasms was significantly (χ²1= 37.2, p= 0.001) 

higher in mainland animals (87.5%, 24/28) than in Rottnest Island animals (20.4%, 

19/93) (Figure 7-10a), with the first (i.e. mainland) having a greater probability of being 

infected with piroplasms (OR 23.4, 95% CI 7.24-75.5). There were no sex differences in 

the prevalence of microfilariae (χ²1= 2.26, p= 0.131) (Figure 7-10b) or piroplasms 

(Theileria sp.: χ²1= 0.09, p= 0.925, Babesia sp.: χ²1= 0.01, p= 0.939) in Rottnest Island 

animals (Figure 7-10b).  A significant difference (χ²3= 14.4, p= 0.002) in the prevalence of 

microfilariae across seasons was observed (Figure 7-10c), but not in the prevalence of 

Theileria sp. (χ²3= 0.46, p= 0.927) (Figure 7-10c).  There were insufficient number of 

observations for Babesia sp.  Significant differences in the PCV between microfilariae-

positive and microfilariae-negative animals for Rottnest Island (U(107)= 939, Z= 0.64, p= 

0.709) and mainland samples (U(33)= 83.5, Z= 0.346, p= 0.413), were not evident.  Similarly, 

there were no significant differences in the RBC between microfilariae-positive and 

microfilariae-negative animals for Rottnest Island (U(108)= 1197, Z= 0.72 p= 0.527) and 

mainland (U(35)= 101, Z= 0.423, p= 0.779) groups.  Both microfilariae and piroplasms were 

present in animals from all trapping locations on Rottnest Island as well as on the 

mainland (refer to Chapter 3, section 3.1).  Trypanosoma spp. were not detected by light 

microscopy but were detected by nPCR (3/28, prevalence 10.7%, CI 3.7-27) in mainland 

samples, while all animals on Rottnest Island were negative. 
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Figure 7-9 Photomicrographs of representative haemoparasites observed in peripheral blood smears of S. 
brachyurus on Rottnest Island and the mainland of Western Australia.  (a) microfilaroid in blood smears of 
Rottnest Island animals, and (b) microfilaroid in blood smears of mainland animals; both images: original 
magnification x400, note the unsheathed, anucleated, long tapering tail (arrowheads) and AV= anal vesicle 
region, CS= cephalic space, EV/EC= excretory vesicle and excretory cell region, NR= nerve ring region; (c) two 
types of piroplasmic inclusions in red blood cells (arrowheads and arrow) and (d) piroplasmic inclusions in 
red blood cells (arrowheads), note the presence of a macroplatelet in the centre, Rouleaux formation (arrows), 
both images: original magnification x1000.  All images stained with Wright-Giemsa. 
 

c. 

a. 

NR 

EV/E

AV 
CS 

b. 

NR 

EV/E

CS 

AV 

d. 



 

189 
 

 
 
Figure 7-10 Prevalence plots.  (a) prevalence of microfilariae and piroplasms by geographical location 
(Rottnest Island and mainland); (b) prevalence of microfilariae and piroplasms by sex (Rottnest Island 
sample); (c) seasonal distribution of animals positive and negative to microfilariae and Theileria sp. on 
Rottnest Island.  (*) indicates significance at p< 0.05. 
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 Atypical cells 

 

Leukocytes exhibiting polylobated nuclei with condensed and homogeneous chromatin, 

resembling the petals of a flower (referred to as flower cells) (Figure 7-11a,b,c), as well as 

leukocytes with polylobated nuclei but lobes arranged in no specific shape (Figure 7-11d) 

were observed in peripheral blood of Rottnest Island animals.  The prevalence of flower 

cells in Rottnest Island animals was estimated to be 21% (23/108, CI 14.4-29.7), with 1-6 

cells per 200 leukocytes, and no significant sex (χ²1= 0.02, p= 0.892) or season (χ²1= 0.86, 

p= 0.354) differences in their prevalence.  There were significant differences in the WBC 

between flower cell-positive (Mdn= 5.05 x 109/L) and flower cell-negative (Mdn= 4.27 x 

109/L) animals (U(108)= 668, Z= 0.49 p= 0.026), but not in the LYMPH count (U(108)= 806, Z= 

0.57 p= 0.201).  By contrast, neither flower cells nor Atly were observed in peripheral 

blood of mainland animals. 
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Figure 7-11 Microphotographs of atypical lymphocytes observed in peripheral blood smears of quokkas on 
Rottnest Island (a-d), of human patients with human T-cell lymphotrophic virus type 1 (HTLV-1) (e), and in 
mice infected with HTLV-1 (f).  Quokka: (a-c) atypical lymphocytes exhibiting a “flower” shape-like 
polylobated nucleus with condensed homogeneous chromatin resembling flower cells in patients positive to 
HTLV-1; (d) atypical lymphocyte exhibiting a polylobated nucleus resembling “prototype lymphocytes” in 
human patients positive to HTLV-1; plates a-d: original magnification x1000, stain: Wright-Giemsa.  Human: 
(e) pleomorphic “flower cells” (arrowheads) and “prototype cells” (arrow) observed in peripheral blood 
smears of a patient diagnosed with adult T-cell leukaemia [reproduced from Jain and Prabhash (2010)].  Mice: 
(f) pleomorphic “flower cells” (arrowheads) in peripheral blood of mice infected with HTLV-1 [reproduced 
from Tezuca et al. (2014)]. 
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7.5 Discussion 

 

Rottnest Island and mainland animals presented as significantly different subpopulations 

in their HMT and BLC.  The Rottnest Island cohort exhibited an anaemic profile that had a 

seasonal pattern, with erythrogram parameters drastically decreasing during summer and 

gradually increasing during winter, but remaining significantly lower than those of 

animals on the mainland.  This was also accompanied by PBCMs indicating a regenerative 

response from the bone marrow, and oxidative damage of erythrocytes.  Overall, the 

mainland cohort showed an erythrogram with higher values than those of the Rottnest 

Island cohort.  Though oxidative damage was also seen in erythrocytes of mainland 

animals, the prevalence of these abnormal cell morphologies was significantly lower than 

in the Rottnest Island group.  Microfilariae of the genus Breinlia sp. were observed in 

blood smears of both cohorts, however, the prevalence was significantly greater in the 

Rottnest Island group.  Both cohorts (Rottnest Island and mainland) were positive to 

piroplasms, however, Theileria sp. and Babesia sp. were detected in the Rottnest Island 

group where as Theileria sp. was the only one detected in the mainland group.  Atypical 

lymphocyte morphologies associated with proliferative disorders of the haematopoietic 

and lymphoid tissues in other species, were detected in Rottnest Island animals but not on 

animals from the mainland.  Mainland animals presented significantly greater plasma 

concentrations of CK, ALT, AST, ALP than their conspecifics on Rottnest Island.   Analysis 

of vitamin E in plasma revealed significantly greater concentrations in free-ranging 

individuals than those in captivity (Perth Zoo).  Overall, site and season had a significant 

input on the parameters measured, while sex had no influence. 

 

In our study, the HMT of S. brachyurus on Rottnest Island and on the mainland, was found 

to be significantly different.  This is in contrast with the findings of Clark and Spencer 

(2006), that found no significant difference in the HMT profiles of free-ranging S. 

brachyurus on Bald Island (east of Albany) and that of animals trapped at two unspecified 

locations in the Albany region (~418 km SE of Perth).  Although not irrefutable, the 

absence of significance in the study by Clark and Spencer (2006), even in the presence of 

similar handling protocols (i.e. Bald Island and Albany groups), may be the result of low 

precision and sensitivity of the model due to a small sample size (Bald Island, n= 7; and 

mainland, n= 5) (Wobeser 2007, p. 124).  Significant differences in HMT parameters 

between subpopulations of free-ranging Australian marsupials have been previously 

reported.  Examples of these include the study by Clarke et al. (2013) on western ringtail 

possums (Pseudocheirus occidentalis) at Busselton, Tuart Forest National Park and 
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Gelorup all approximately 200 km SW of Perth, WA; the study by Pacioni et al. (2013) on 

woylies (Bettongia penicillata ogilbyi) trapped at Perup and Kingston subpopulations just 

NE of the town of Manjimup (~307 km south of Perth), as well as studies on euros (M. 

robustus) (King & Bradshaw 2010) and separate populations of captive parma wallabies 

(M. parma) in Australia (Clark et al. 2003).  

 

The means for RBC, PCV, CHCM, HGB, WBC, NEUT and BASO counts, as well as all plasma 

chemistry analytes except GLOB, were consistently higher in mainland animals than on 

Rottnest Island.  By contrast, Rottnest Island animals had higher LYMPH and EOS counts, 

and a greater MCV and GLOB in plasma as well.  Differences between the HMT and BLC 

profiles of Rottnest Island and mainland animals could be attributed to the interplay of 

multiple factors such as site, climate, nutrition, social structure, age, underlying disease 

(e.g. inflammation, neoplasia), or the presence and absence of predators as it has been 

suggested for other species (Bennett et al. 2007 ; Clark 2004 ; Clark et al. 2003 ; Clarke et 

al. 2013 ; King & Bradshaw 2010 ; McKenzie, Deane, & Burnett 2002 ; Pacioni et al. 2013 ; 

Robert & Schwanz 2013).  Alternatively, this difference may have also been influenced by 

stress due to the use of slightly different protocols in each subpopulation: Rottnest Island 

(all procedures under anaesthesia), mainland (anaesthetised after prolonged in-trap times 

and physical restraint for semi-invasive procedures such as ear tagging).  Mainland 

animals were sourced from an ongoing population study and consequently it was not 

possible to standardise the capture methods between the two populations.   

 

Higher HMT and BLC measures have been previously reported in animals where 

procedures were carried out under physical restraint only, including macropods (Barnes, 

Goldizen, & Coleman 2008 ; Crooks et al. 2003 ; Vogelnest & Portas 2010).  In the absence 

of obvious signs of disease, alterations in HMT and BLC data may be attributed to the 

effects of greater levels of catecholamines (adrenaline and noradrenaline) and 

endogenous glucocorticoids (e.g. cortisol) that resulted from prolonged stress and 

physical restraint (Harvey 2012).  However, it is also possible that the effect of the 

adrenal-mediated response may have been reversed when the quokkas were eventually 

anaesthetised (Vogelnest & Portas 2010).  Consequently, the alteration in their 

erythrograms, leukograms and BLC may have been reversed, either partially or completely.  

Nevertheless, given the absence of data to compare the degree of the adrenomedullary (e.g. 

adrenaline or noradrenaline) and adrenocortical responses (e.g. cortisol) between 

Rottnest Island and mainland animals, it is unclear whether or not these endocrine factors 

influenced the results.  Despite this, erythrograms and leukograms of animals on Rottnest 

Island and the mainland, as well as most of the BLC analytes, fell within the typically 
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reported values for other apparently healthy macropod species (Vogelnest & Portas 2010), 

including S. brachyurus (Clark 2004).  However, all of the HMT parameters for both 

Rottnest Island and mainland animals were consistently lower than that of apparently 

healthy captive quokkas at Taronga Zoo (Vogelnest & Portas 2010).   

 

Free-ranging S. brachyurus on Rottnest Island were found to have a seasonal erythrogram 

and erythrocyte morphologies indicative of anaemia.  Seasonality was observed in RBC, 

PCV, HGB and MCV values.  These values were found to decrease drastically during 

summer and gradually increase during winter on Rottnest Island.  With the exception of 

MCV, all erythrogram parameters were significantly lower than those of the mainland 

group.  This is in agreement with previous studies that determined a seasonal anaemia in 

the Rottnest Island quokka (Barker et al. 1974 ; Shield 1971), condition that was 

attributed primarily to nutritional factors such as low dietary protein.  Anaemia has been 

documented in macropods under nutritional deficiencies (Barker et al. 1974), nematode 

infestation (Arundel, Barker, & Beveridge 1977) and unknown causes (Billiards, King, & 

Agar 1999).  It is also in agreement with previous studies that have reported significant 

differences in the erythrocytic parameters between island macropods and their mainland 

conspecifics.  For example, King and Bradshaw (2010) determined significant differences 

in RBC, PCV, HGB, MCV, and MCHC (CHCM in this study) values between island and 

mainland euros (Macropus robustus spp.), with island animals having lower values.  They 

considered this profile as been characteristic of a normocytic hypochromic anaemia.  In 

this study, similar MCV values between Rottnest Island (61 fL) and mainland (59.8 fL) 

subpopulations suggest a normocytic anaemia, while a lower CHCM suggests that this 

anaemia is also hypochromic.  The higher prevalence of hypochromic and 

polychromatophilic erythrocytes, coupled with the higher proportion of nRBCs (per 1,000 

erythrocytes) in peripheral blood smears of the Rottnest Island group compared to the 

mainland (SIMPER; Table 7-5), further supported this, and is consistent with a 

regenerative profile.  

 

The higher prevalence (SIMPER; Table 7-5) and degree of severity of erythrocyte 

morphologies indicative of oxidative damage (i.e. Heinz bodies and keratocytes: Figure 

7-7b,d,) in the Rottnest Island cohort than in the mainland cohort, coincided with the 

lowest erythrogram parameters of the first (HGB, PCV and RBC: Figure 7-5; Heinz bodies: 

Table 7-8), indicating a possible contribution of these oxidative processes to the overall 

anaemic state.  According to Thrall (2012c), Heinz bodies (oxidised or denaturised HGB) 

may contribute to anaemic conditions by making the erythrocyte more susceptible to 

extravascular and intravascular haemolysis.  The reason for the presence of Heinz bodies 
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in the quokka is unknown.  However, the lower concentration of vitamin E (antioxidant) in 

plasma in the Rottnest Island group compared to the mainland group could in part explain 

the oxidative injury to HGB.  Additionally, consumption of plants from the Brassica genus, 

family Brassicaceae, as well as other plants (e.g. garlic, onion: Amaryllidaceae; red maple: 

Sapindaceae) have been known to be responsible for oxidative injury to the erythrocyte 

(Thrall 2012c).  Interestingly, members of all these three families of vascular plants 

appeared to be present on Rottnest Island or have been present at some point in time 

(Rippey, Hislop, & Dodd 2003), yet, according to a recent study on the diet components of 

quokkas on the island by Poole et al. (2014), plants belonging to these three families 

(Amaryllidaceae, Brassicaceae, Sapindaceae) were not found in faecal pellets of quokkas in 

Rottnest Island between April and May of 2011.  Whether quokkas on the island consume 

these plants during other times of the year, is unknown.   

 

Infection in S. brachyurus with microfilariae was first observed by Plimmer (1914) in a 

captive individual at the London Zoo.  The infection was then reported in animals from 

Rottnest Island (Wahid 1962 ; Yen 1983), and according to Wahid (1962), the species 

involved was Breinlia macropi.  The infection was considered to be hyperendemic, closed 

(involving only one microfilariae species) and with a prevalence between 33-61% (Yen 

1983).  Our results are in agreement with this, as the morphology of all microfilariae 

observed in blood smears was consistent with that of Breinlia sp. given the obvious 

absence of a sheath, and a long taping, anucleated tail (Clark 2004).  However, adults were 

not available to establish the final identity of this microfilaria in the current study.  

Microfilariae has been considered to be a contributing factor in anaemic processes due to 

intravascular haemolysis as a result of destructive motility13 (Ishihara et al. 1981 ; 

Kitagawa, Sasaki, & Ishihara 1989 ; Nielsen et al. 2006 ; Ziegler, Käufer-Weiss, & Zahner 

1991), and erythrocytes with an already compromised membrane architecture due to 

oxidative damage (like those in the quokka), may be more susceptible to lysis.  However, 

we did not observe significant differences in the PCV or RBC of microfilariae-positive and 

microfilariae-negative animals, in both Rottnest Island and mainland groups (see section 

7.4.2).  It is interesting to note though, that the highest seasonal prevalences (autumn: 

51.7%, winter: 45.8%) of microfilariae, matched the lowest average RBC, PCV and HGB 

values.  In light of the similarity of leukocyte parameters of microfilariae-positive and 

microfilariae-negative animals, that leukogram measures in both groups were below the 

values reported for morbid quokkas with haematological signs of an inflammatory 

reaction (Clark 2006), coupled with the absence of left shift or associated morphologies 

(e.g. Döhle bodies, foamy cytoplasm) in blood smears, an inflammatory response to the 

                                                             
13 refers to the mechanical intravascular lyses of erythrocytes due to the movement of microfilariae   
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presence of microfilariae may have not been present at the time of the study.  The clinical 

significance of microfilariae may be difficult to establish as both groups (positive and 

negative by light microscopy) had similar counts of WBC and EOS.  In contrast, 

microfilaraemia was considered to be mild on the mainland group as 75% (6/8, 95% CI 

41-93) of positive animals presented the lowest degree of microfilaraemia (i.e. 1-5 

microfilariae per low power field), and there were no differences in RBC, PCV, HGB, WBC 

and EOS counts, between positive and negative animals either. 

 

As mentioned, erythrogram parameters in the mainland group were significantly higher 

(except MCV) than those of their conspecifics on Rottnest Island.  Erythrocytosis as 

evidenced by an increased RBC and PCV in the mainland group may have occurred and 

should be considered when looking at its HMT profile.  Although we can not entirely rule 

out an absolute erythrocytosis either primary or secondary, it is unlikely considering that 

animals from both subpopulations (i.e. Rottnest Island and mainland) did not present with 

obvious signs of inadequate tissue oxygenation or severe cardiopulmonary disease, and 

overall were apparently healthy.  Conversely, a transient relative erythrocytosis due to 

redistribution of red blood cells secondary to splenic contraction is more likely, 

considering that there were no obvious signs of dehydration or fluid shifts (e.g. 

hyperthermia) at the time of physical examination.  Splenic contraction secondary to 

stress and pain in small animals has been shown to cause a 30%-60% increase in PCV 

(Harvey 2012 ; Thrall 2012b).  In this study, the PCV of the mainland cohort was 22.5% 

greater than in the Rottnest Island cohort.  Although splenic contraction may in fact have 

occurred in both groups (Rottnest Island and mainland), mainland animals may have been 

under greater stress due to longer in-trap times and physical restrain than animals on 

Rottnest Island, by the time they were anaesthetised (Barnes, Goldizen, & Coleman 2008 ; 

Harvey 2012), thus having a greater degree of stress-mediated alterations in their 

complete blood count. 

 

In macropods, NEUT have been reported to be the most abundant leukocyte (Vogelnest & 

Portas 2010), followed by LYMPH and EOS (Clark 2004), and previous research on S. 

brachyurus in the wild and in captivity also confirm this leukocyte hierarchy (Clark 2006 ; 

Clark & Spencer 2006).  Our results for both Rottnest Island and mainland cohorts are also 

in agreement with the findings of Clark (2006) and Clark and Spencer (2006).  However, in 

our study mainland animals had significantly lower LYMPH and EOS counts as well as 

higher NEUT counts than Rottnest Island animals.  Naturally occurring differences in 

leukocyte populations have been previously reported in native Australian marsupials 

(western ringtail possum (P. occidentalis) Clarke et al. 2013 ; e.g. tammar wallaby (M. 
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eugenii) McKenzie, Deane, & Burnett 2002 ; woylie Pacioni et al. 2013), and attributed to 

factors such as age, climate, nutrition and underlying disease.  However, our results are in 

contrast to the observed differences recorded by Clark and Spencer (2006) in the NEUT, 

LYMPH and EOS counts between free-ranging quokkas on Bald Island and free-ranging 

quokkas on the mainland (i.e. near Albany), in which these three parameters were lower 

in the mainland cohort.  These differences may be explained either by a small sample size 

in the study by Clark and Spencer (2006), or by differences in animal handling protocols, 

as animals from island and mainland groups in the study of Clark and Spencer (2006) 

were handled identically, where as in our study, mainland animals might have been 

affected by stress to a greater degree (longer in-trap times and physical restraint prior to 

anaesthesia) than animals on Rottnest Island.  A stress leukogram in macropods like in 

other mammals (Cattet et al. 2003 ; Harvey 2012 ; Superina & Mera y Sierra 2008 ; Weber 

et al. 2002 ; Weiser 2012), is characterised primarily by a high count of NEUT and low 

counts of LYMPH  and EOS (Clark 2006 ; Vogelnest & Portas 2010); with high MONO 

counts also reported in the red kangaroo (M. rufus) (Clark 2006).  With the exception of 

MONO, the data obtained for the mainland group (i.e. LYMPH, NEUT and EOS counts) 

seems to be in agreement with previously described stress leukogram profiles.  Chronic 

stress which has not been thoroughly studied in animals, let alone in macropods, has also 

been associated in humans with leukograms exhibiting neutrophilia, leukopenia and 

eosinopenia (McKinnon et al. 1989), and would rise the question as to whether this stress 

leukogram in the mainland quokka is a reflection of environmentally related stress, and 

not exclusively related to trapping and handling.  Alternatively, the higher EOS counts 

observed in the Rottnest Island cohort may reflect a greater exposure to gastrointestinal 

parasites, while the higher LYMPH counts could potentially be related to a greater degree 

of antigenic stimulation.   

 

Comparing the reference intervals calculated in this study (see section 7.4.3) for the 

leukogram component of the Rottnest Island cohort, against the same parameters 

available in the literature for animals in captivity (Hawkey 1975 ; Lewis, Phillips, & Hann 

1968 ; Vogelnest & Portas 2010), generally captive quokkas appeared to have higher 

means for all parameters (i.e. WBC and differential counts).  For instance, WBC and NEUT 

were two times higher than in our data, with WBC values falling outside our reference 

intervals (leukocytosis); averages for LYMPH were 3-6 times higher than in our data, and 

either fall in the upper range or outside of our reference intervals (lymphocytosis).  

Smaller differences were observed for EOS and MONO.  Given that leukocytes are 

generally affected by multiple factors (Clark 2004), and that lymphocytosis is known to be 

a feature in many different conditions involving viral, bacterial, parasitic, neoplastic (e.g. 
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leukaemia), and hormonal conditions (e.g. hypoadrenocorticism), as well as stress, it is 

unclear as how these differences came to be so marked, and further research would be 

necessary to determine their cause. 

 

Flower cells (see section 7.4.3, and Figure 7-11a,b,c,d) were observed in peripheral blood 

of Rottnest Island animals.  Although surface markers and special stains would have 

facilitated the differentiation of these cells from other haematopoietic lineages (Harvey 

2012), these resources were not available to this project.  Nonetheless, these cells were 

thought to be of the lymphocyte lineage, due to the appearance of a granular cytoplasm, 

coarsely clumped chromatin, and their smaller N:C ratio, when compared to MONO, NEUT 

and EOS (the nucleus is not always easily visible in basophils).  Though flower cells 

appeared to share some features of typical LYMPH14 in S. brachyurus, as described by 

Clark (2004), their nuclear architecture, appearance of cytoplasm, relatively greater N:C 

ratio, and overall size were different, which was also the case when comparing flower cells 

and Atly to previously described reactive LYMPH15 in S. brachyurus and other macropods 

(Clark 2004).  To the best of our knowledge, these cells have not been reported before in S. 

brachyurus, or any other macropod species.  In summary, flower cells in blood smears of 

Rottnest Island animals, were typically bigger than LYMPH, as big or bigger than other 

leukocytes such as NEUT or BASO, but not bigger than MONO.  They had a polylobated 

nucleus with defined shapes (i.e. flower-like nucleus), a fine and weak granular basophilic 

cytoplasm, and a higher N:C ratio than LYMPH but smaller than other cells (i.e. MONO, 

NEUT and EOS).  Flower cells and Atly were not considered to exhibit features of 

programmed cell death (Harvey 2012), as shrinkage (apoptosis) of the cell and 

fragmentation of the nucleus (karyorrhexis) were not evident.  

 

It could be argued that flower cells and Atly in blood smears of quokkas are normal 

LYMPH morphologies representing different degrees of immunostimulation, and that 

these cells were misidentified in the Rottnest Island group, accidentally missed while 

assessing blood smears of mainland animals, or simply not capture due to a smaller 

sample size (mainland).  However, it seems unlikely considering that blood smears from 

Rottnest Island and mainland cohorts were evaluated in duplicate and by the same 

operator, leukocyte differentials were done using 200 cells, blood smears were examined 

in their entirety, and their morphology does not match that of normal leukocytes in S. 

brachyurus (Clark 2004).  Alternatively, the nuclear morphology and overall appearance of 

flower cells and Atly in S. brachyurus may correspond to LYMPH that have lost nuclear 

                                                             
14 Lymphocytes are small with a round to ovoid nucleus that occasionally present an indentation or are deeply cleaved, their 
chromatin appears coarsely clumped and have a small rim of basophilic cytoplasm (Clark 2004) 
15 Intense basophilic cytoplasm, indented or deeply cleaved nucleus and a small N:C ratio (Clark 2004) 
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integrity due to a neoplastic alteration.  Pleomorphic lymphocytes with a nucleus that 

varies in shape from a single indentation to a complex convoluted appearance are often 

observed in lymphoproliferative disorders in other species (Harvey 2012).  Flower cells 

were present in 23 of 108 Rottnest Island animals, ranging from 1-6 cells per 200 

leukocytes.  Interestingly, WBC counts were significantly (p= 0.026) higher in flower cell-

positive animals than in those that were negative.  However, whether these high counts 

were attributable to the presence of flower cells and Atly only, remains unknown.   

 

Proliferative disorders of hematopoietic nature have been reported in the whiptail 

wallaby (Macropus parryi), agile wallaby (Macropus agilis), common wombat (Vombatus 

ursinus), sugar glider (Petaurus breviceps) (Canfield, Hartley, & Reddacliff 1990a), 

northern quoll (Dasyurus hallucatus), fat-tailed antechinus (Pseudoanlechinus 

macdonellensis) (Canfield, Hartley, & Reddacliff 1990b), Antechinus sp. (Attwood & 

Woolley 1973), as well as in pademelons (Thylogale spp.) and the Tasmanian bettong 

(Bettongia gaimardi) (Vogelnest & Portas 2010), however, leukocyte morphology has not 

been reliably and comprehensively recorded.  Atypical lymphocytes have been described 

in peripheral blood of koalas infected with Koala retrovirus (KoRV) an endogenous type C 

gammaretrovirus (Connolly et al. 1998 ; Spencer & Canfield 1996), with nuclear shapes 

described as indented or folded, convoluted or lobulated (Tarlinton et al. 2005), but the 

nuclear architecture differs greatly from that of flower cells in peripheral blood of quokkas 

on Rottnest Island.  However, LYMPH with similar atypical morphology (see Figure 7-11e), 

have been observed in peripheral blood of asymptomatic human carriers of human T-cell 

leukaemia virus type 1 (HTLV-1, a deltaretrovirus) (de Oliveira et al. 2010).  To our 

knowledge, these cells have not been reported in healthy HTLV-1 uninfected individuals 

or in individuals with other clinical conditions different to HTLV-1 infection (Shimoyama 

et al. 1983).  The unique nuclear morphology of flower cells in humans is believed to be 

the result of microtubule rearrangement of the cytoskeleton as a consequence of 

alteration in the phosphatidyl-inositol 3-kinase (PI3-kinase) cascade (Fukuda et al. 2005). , 

flower cells have been observed in 7% of HTLV-1 carriers (Sacher et al. 1999), and in more 

than 50% of patients with adult T-cell leukaemia/lymphoma (ATL) (Fukuda et al. 2005).  

Some authors consider that the presence of these cells (i.e. flower cells and Atly) in 

asymptomatic carriers of HTLV-1 is a risk factor for developing ATL (Tachibana et al. 

1992 ; Yamaguchi et al. 1988), while others believe these cells represent a preleukaemic 

event (Shimoyama 1991).  More recently, flower cells and prototype cells (i.e. Atly)  (see 

Figure 7-11f) have been recorded in mice five months after being infected with sublethally 

irradiated HTLV-1 producing cells (Tezuka et al. 2014). 
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To rule out the presence of a deltaretrovirus in animals with flower cells in peripheral 

blood, blood samples were screened for the presence of retroviral DNA using three 

different approaches, a pan-retroviral primer method targeting the polymerase gene 

(Donehower et al. 1990), and two pan-deltaretroviral specific primer sets targeting highly 

conserved regions of the deltaretroviral genome (Burmeister et al. 2007 ; Burmeister, 

Schwartz, & Thiel 2001).  Unfortunately, conclusive results were not obtained.  The 

unknown nature and significance of flower cells in peripheral blood of quokkas on 

Rottnest Island, warrants further investigation, especially when cells with similar 

morphology have been associated with HTLV-1 infection in humans.  Additional tests such 

as immunophenotyping and bone marrow examination in addition to molecular screening 

of retroviruses should be considered, ideally in a capture-recapture study framework in 

order to observe the progression of these cells across time. 

 

Plasma chemistry analytes in S. brachyurus were generally similar to previously reported 

data for other free-ranging macropods (Barnes, Goldizen, & Coleman 2008 ; McKenzie, 

Deane, & Burnett 2002 ; Stirrat 2003), as well as in captivity (Vogelnest & Portas 2010).  

However, in comparison with the only plasma chemistry data available for S. brachyurus 

today (Teare 2002) which originates from captive individuals, our data varied 

considerably, with both subpopulations (Rottnest Island and mainland) presenting higher 

values for ALP, ALT, AST, CK, BILT, PROT, UREA, and GLOB, some times by two-fold or 

more; and lower values (though not as different), for GLUC, CALC, ALB and CHOL.  In 

contrast, CREAT and PHOSP were lower in Rottnest Island animals and higher in mainland 

animals, than the reported values in captivity.  Differences in plasma chemistry profiles 

between free-ranging and captive subpopulations are not uncommon, as this has been 

previously reported in other marsupials species, for instance in the western ringtail 

possum (Pseudocheirus occidentalis) (Clarke et al. 2013), the Gilbert’s potoroo (Vaughan et 

al. 2009), and the western barred bandicoot (Perameles bougainville) (Bennett et al. 2008).  

Generally, these studies attributed these differences to nutritional factors, as well as stress 

particularly in relation to CK and AST.  In our case, we also consider that environmental 

factors such as the absence of seasonal effect in captive groups, as well as nutritional 

differences, may account for most of the differences (including vit. E) between free-

ranging quokkas (this study) and that of captive animals (i.e. ISIS), with stress playing a 

secondary role (e.g. familiarity with handling).  However, any direct comparison between 

these datasets should be done cautiously considering the small sample size (i.e. 2-4 

animals) used in the ISIS data.   
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A comparison between Rottnest Island and mainland data, revealed significant differences 

in their blood chemistry profiles, with CK, ALT, ALP, AST and vit. E representing the 

greatest percentage of contribution to that difference.  Although higher levels of the 

aminotransferases, AST and ALT, in conjunction with higher levels of ALP and GGT may 

indicate hepatic injury and insufficiency (Tennant & Center 2008), this may not be the 

case considering that other laboratory findings (e.g. low GLUC, high BILT, increased WBC) 

and clinical signs (e.g. ascites, icterus), that are frequently (but not always) found 

concomitantly in this condition, were not present in the mainland sample.  Rather, higher 

levels of AST and CK may have originated from muscle as it has been proposed previously, 

particularly associated with prolonged in-trap times as well as extended and stressful 

physical restraint (Clarke et al. 2013 ; Vaughan et al. 2009).  Although ALT has its highest 

activity in liver, high levels of this transaminase in plasma can also be associated with 

muscle injury (Tennant & Center 2008).  The exceedingly high levels of ALP in S. 

brachyurus from Rottnest Island (see Table 7-9), were not just higher than any other 

available data for macropods (Barnes, Goldizen, & Coleman 2008 ; McKenzie, Deane, & 

Burnett 2002 ; Vogelnest & Portas 2010), but were at least 75% above the highest value 

reported in macropods (Swamp wallaby x�=3,306, SD±1,071) and were at least doubled 

when compared to mainland animals.  ALP is an enzyme with nonspecific activity, with 

tissue isoenzymes known to be present in liver, bone, kidney, intestine and placenta, 

however, in domestic animals it is believed that plasma ALP originates primarily from 

liver and bone (Allison 2012 ; Tennant & Center 2008).  Its increased activity is 

particularly associated with liver damage due to cholestasis (impaired bile flow) and 

increased osteoblastic activity particularly in young animals.  Cholestasis in Rottnest 

Island animals is unlikely, considering there was no remarkable increase in GGT which 

was found to be within the range reported for other apparently healthy macropod species 

(i.e. M. giganteus, M. fuliginosus) (Vogelnest & Portas 2010).  Furthermore, common signs 

of hepatic hyperbilirubinemia (e.g. icterus) which usually accompany cholestasis, were not 

present.  Some studies in other marsupial species have found higher levels of ALP in young 

individuals compared to adults (Barnes, Goldizen, & Coleman 2008 ; McKenzie, Deane, & 

Burnett 2002 ; Vaughan et al. 2009) which were attributed to increased osteoblastic 

activity.  This may not be the case in this study, given that most of the Rottnest Island 

animals were considered to be adults.  ALP in plasma can also increase due to the activity 

of the corticosteroid isoform (CALP) in response to persistent levels of endogenous 

corticosteroids during chronic stress (Allison 2012).  However, this isoform has only been 

detected in dogs (Celia Schultz pers. comm. 2015).  These high levels of ALP in plasma are 

well known for quokkas in captivity (Tim Portas pers. comm. 2013), and it appears to be 

the same in free-ranging individuals.  Although CALP has not been studied in macropods, 
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chronic stress appears as a possible pathway for these high levels, otherwise this could 

simply be part of S. brachyurus normal physiology.  To answer this question, tissue enzyme 

studies of all major organs, as well as skeletal muscle and intestine, of apparently healthy 

quokkas would be necessary. 

 

Despite considerable research on muscle dystrophy of nutritional origin in S. brachyurus 

(Kakulas 1961 ; Kakulas 1963a, 1963b ; Kakulas 1983 ; Kakulas & Adams 1966) showing 

that the condition was not only triggered by vit. E (alpha-tocopherol) deficiency (Kakulas 

1961) but also by small enclosures (Kakulas 1963a), and that clinical signs of muscle 

dystrophy such as weight loss, progressive wasting of hindlimb muscles and paralysis 

were also successfully reversed with the supplementation of vit. E at a dose of 200-600 mg 

daily (Kakulas 1963b ; Kakulas 1983), it is surprising that reference levels for vit. E in 

plasma of S. brachyurus were never determined.  The only available data today, are that of 

Vogelnest and Portas (2010),  where apparently healthy S. brachyurus (n= 5) at Taronga 

Zoo had vit. E levels in plasma ranging from 2.9-3.2 mg/L, while at the Melbourne Zoo (n= 

4) levels were slightly lower ranging from 2.0-2.6 mg/L.  We determined higher levels of 

vit. E in mainland animals (x�= 9.92 mg/L SD± 2.85, Reference Interval 5.23-16.5 mg/L) 

than in RI animals (x�= 6.65 mg/L SD± 1.81, Reference Interval 4.03-10.5 mg/L).  This 

difference could be explained by better diets (greater content of vit. E) on the mainland 

than on Rottnest Island.  In fact, although not drastic, lower values of vit. E in plasma were 

observed on Rottnest Island during the dry months of the year, time in which diets not just 

decreased in amount but in quality.  The values given by Vogelnest and Portas (2010) for 

captive individuals, are below our findings for apparently healthy free-ranging animals, 

which makes us believe that captive animals are not receiving the necessary 

supplementation of vit. E, and may be at risk of oxidative degradation of membrane 

phospholipids, as well as disruption of other critical cellular processes including 

transduction pathways such as the phosphatidylinositol 3-kinase responsible for cell 

growth and proliferation (Rucker, Morris, & Fascetti 2008), which in turn is involved in 

proliferative disorders (Fukuda et al. 2005).  According to the concentrations of vit. E in 

plasma that we obtained for free-ranging animals on Rottnest Island, we believe it is 

advisable to supplement vit. E so as to reach plasma concentrations within 5.23 mg/L and 

16.5 mg/L. 

  

To our knowledge, this study provides the first and most comprehensive haematology and 

blood chemistry reference intervals for free-ranging quokkas in WA.  Our data have shown 

that there are significant differences between the haematology and blood chemistry 

profiles of the subpopulations studied (Rottnest Island and selected locations on the 
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mainland: Jarrahdale, Collie and Walpole), and highlights the importance of establishing 

reference intervals not just for the species as a whole but for individual subpopulations, 

given the uniqueness of their environmental, parasitic and nutritional conditions among 

others.  We believe that a comparative case between our data and that of ISIS (Teare 

2002) would not be informative because ISIS data is limited by sample size (2-4 animals) 

and the absence of other relevant information (e.g. nutrition, environmental conditions).  

We therefore advise against updating ISIS with our data, but instead suggest updating ISIS 

database by increasing the sample size.  Considering that our data reflects free-ranging 

conditions, and these conditions are for the most part not present in captive populations, 

we also advice against using our data to manage S. brachyurus in captivity.  We believe that 

the presence of LYMPH with similar nuclear architecture and overall appearance (i.e. 

flower cells and Atly) in other species with deltaretroviral infection, presents as 

imperative, the need to carry out further studies to establish the meaning and significance 

of flower cells and Atly in peripheral blood of members of the biggest extant 

subpopulation of S. brachyurus.  We believe our work can facilitate the management of S. 

brachyurus in the wild by providing baseline data that can be used to monitor the health 

status of these subpopulations.  This is especially important as these animals live in a 

rapidly changing environment (e.g. climate change, infectious diseases, reduction of 

habitat).  We echo the other voices advocating that disease and health surveillance should 

be ongoing efforts in native species management plans.  This would allow for the 

development of contingency plans that would assist relevant management bodies to 

respond rapidly to new disease events. 
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8. General Discussion and Synthesis 

8.1 Introduction 

The quokka, Setonix brachyurus (Quoy and Gaimard 1830) (Marsupialia: Macropodidae), is 

a small wallaby, and the only member of the genus Setonix (Hume et al. 1989).  It is 

endemic to the mainland  of south-west WA and two offshore islands: Rottnest Island  and 

Bald Island (de Tores et al. 2007), and is an icon to the Western Australian (WA) culture.  

However, the species has suffered a marked contraction in its geographical range since 

European settlement (Department of Environment and Conservation 2013), with a drastic 

decline observed in the 1930s (Department of Environment and Conservation 2013 ; 

White 1952), for which the red fox (Vulpes vulpes) is believed to be the most important 

factor (de Tores et al. 2007).  Today, the species persists in heavily fragmented 

subpopulations and faces threats such as predation (de Tores et al. 2007), habitat clearing 

(Gole 2006), climate change (Gibson et al. 2010), and a possible continuing decline in area 

of occupancy and extent of occurrence.  Consequently, the species is considered as 

threatened fauna, at a local, national and international level (de Tores et al. 2008 ; de 

Tores et al. 2007).  The species has been extensively studied, and there is a reasonable 

amount known about its ecology (Blumstein, Daniel, & McLean 2001 ; Dunnet 1962, 1963 ; 

Hayward 2002 ; Hayward 2005 ; Hayward et al. 2003 ; Niven 1970 ; Poole et al. 2014 ; 

Shield 1958 ; White 1952), biology (Sadleir 1959 ; Sinclair 1998), nutrition (Hayward 

2005 ; Poole et al. 2014), physiology (Bartholomew 1956 ; Fleming, Harman, & Beazley 

1996 ; Makanya, Haenni, & Burri 2003 ; Makanya et al. 2001 ; Makanya et al. 2007), and 

behaviour (Bonney & Wynne 2004 ; Wynne & Leguet 2004).  However, the study of its 

health (free-ranging) and agents of disease is limited. 

 

Although research on the diseases of the quokka has been largely ignored, there are 

anecdotal records indicating that at least six disease outbreaks were associated with mass 

mortality of individuals.  These were recorded between 1901 and 1931, a time period that 

pre-dates the arrival of the red fox in WA.  Unfortunately, these disease outbreaks were 

not investigated.  There is mounting evidence from the last three decades that indicates 

that disease can have devastating impacts on wildlife populations (Botero et al. 2013 ; 

Cohn 2008 ; Daszak & Cunningham 1999 ; Daszak, Cunningham, & Hyatt 2000 ; Gog, 

Woodroffe, & Swinton 2002 ; Hawkins et al. 2006 ; Heard et al. 2013 ; Hess 1994 ; Jones et 

al. 1997 ; Leendertz et al. 2006 ; McCallum & Dobson 1995 ; Pedersen et al. 2007 ; 
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Schloegel et al. 2006 ; Scott 1988 ; Smith, Sax, & Lafferty 2006 ; Vaughan 2008 ; Woolford 

et al. 2009 ; Wyatt et al. 2008), however, little is known of the diseases and agents of 

disease that occur in free-ranging quokka, and only a limited number of studies have been 

carried out (Austen et al. 2014 ; Austen et al. 2009 ; Austen et al. 2011 ; Clark 2006 ; Clark 

& Spencer 2006 ; Clark & Spencer 2007 ; Dickson & McNeice 1982 ; Johansen et al. 2005 ; 

Wilks, Kefford, & Callinan 1981 ; Yen 1983); with the majority of these being focused on 

the ecology of Salmonella spp. infections on Rottnest Island (Hart 1980 ; Hart, Bradshaw, & 

Iveson 1985, 1986 ; Hart, Iveson, & Bradshaw 1987 ; Hart et al. 1982 ; Iveson 1977 ; 

Iveson & Bradshaw 1973 ; Iveson, Bradshaw, & Hart 2007 ; Iveson & Hart 1983).  These 

studies had little or no comparison of different subpopulations, used small sample sizes, 

mostly studied animals in captivity, and had little or no assessment of the possible 

associations between the presence of an infectious agent and the health of the animal.   

 

In response to the dearth of knowledge in quokka health, this thesis not only provides the 

most comprehensive review of diseases and infectious agents reported in the species since 

the early 1900s, but explores the presence of selected infectious agents in multiple 

subpopulations, and the possible associations between these agents and the health status 

of the animals at the time of sampling.  Similarly, this thesis provides epidemiologically 

significant data, such as the prevalence and characterisation of the infectious agents 

detected.  Finally, this thesis provides the most complete set of physiologic reference 

intervals for haematology and blood chemistry parameters in apparently healthy S. 

brachyurus.  The results of this research are significant in the areas of conservation 

medicine, wildlife management, and public health. 

 

8.2 Thesis summary 

An extensive literature review on the current conservation status of the quokka, its known 

disease conditions and the detected infectious agents, was carried out by accessing and 

collating information from local, national and international government and non-

government databases.  Captive population numbers and their location were updated with 

data from the Zoo and Aquarium Association for Australasia, as well as through direct 

contact with local projects indicated by the Western Australian Department of Parks and 

Wildlife as having animals in captivity at the time of the study.  The disease section is 

accompanied by general concepts of the infectious organisms involved such as taxonomy, 

transmission and pathogenesis, as well as a thorough description of the reported quokka 

clinical cases, when available.  These data were further enriched with information from 

the Australian Registry of Wildlife Health pathology database, which contains clinical 
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cases reported by Australian institutions with ex-situ conservation programs; cases that 

usually do not reach mainstream science publications. 

 

The experimental aspect of this thesis focused on obtaining valuable epidemiological data 

(e.g. presence/absence, prevalence, distribution, relation with concomitant infections, and 

influence of factors such as sex, season and location) for Salmonella spp., Cryptococcus spp., 

and MaHV-6 (a novel macropodid herpesvirus); and assessing their impact on the health 

[e.g. associations with physical examination findings, and effect on haematology (HMT) 

and blood chemistry (BLC) parameters, as well as peripheral blood cell morphologies 

(PBCM)] of the quokka.  This was coupled with a comprehensive analysis of their HMT and 

BLC parameters to construct reference intervals for apparently healthy animals.  

Comparisons were made between subpopulations.  Additional data was obtained for 

intraerythrocytic parasites (i.e. Theileria sp. and Babesia sp.), trypanosomes, microfilariae, 

and saprophyte fungi. 

 

To accomplish these outcomes, over 150 animals were captured between Rottnest Island 

and three mainland locations: Jarrahdale, Collie and Walpole.  Animals were anaesthetised, 

physically examined, and biological samples collected that included faeces, nasal swabs 

and blood.  The diagnostic methodologies used in this research allowed the detection and 

characterisation of the target organisms.  Culturing, serotyping and/or DNA sequencing 

were used for Salmonella spp. and Cryptococcus spp., while PCR, DNA sequencing and 

phylogenetics were used to detect and identify MaHV-6, Theileria sp., Babesia sp. and 

trypanosomes.  Due to the sample size handled in this project, a robust non-parametric 

approach was used to construct reference intervals for HMT and BLC, as recommended by 

the International Federation of Clinical Chemistry and Clinical and Laboratory Standards 

Institute.  These reference intervals were calculated for males and females on both 

locations: Rottnest Island and mainland.  This research project successfully grew, stored 

and established a bank of live organisms recovered from quokkas on Rottnest Island and 

the mainland of WA.  These included Salmonella serovars, mostly of the enterica group, C. 

neoformans var. grubii and C. magnus, as well as other yeasts.  Likewise, a bank of blood 

samples has also been established, along with a collection of more than 300 blood smears.  

All these materials and samples have significant value for future and retrospective studies.  

Lastly, as part of this chapter, and in an attempt to address an examiner’s request, an 

attempt to explore and visualise the interrelations of concomitant infections with HMT 

and BLC parameters of infected animals, was made (see below). 
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8.3 Health and disease status 

Quokkas on Rottnest Island and on the mainland of WA that this project studied were 

considered to be apparently healthy at the time of sampling.  This is supported by the 

absence of obvious signs of disease during examination, as well as the absence of 

statistical effect of the various organisms studied, on the HMT, BLC and PBCM of the 

animals. 

 

 Salmonella infections 

Key epidemiological characteristics of Salmonella infections in the Rottnest Island quokka, 

that were first described in the late 70s and early 1980s (Hart 1980 ; Hart, Bradshaw, & 

Iveson 1985 ; Hart et al. 1982 ; Iveson & Bradshaw 1973 ; Iveson & Hart 1983), appear to 

remain unchanged.  Data supporting this includes a similar prevalence of Salmonella to 

that published in previous studies (Iveson, Bradshaw, & Hart 2007 ; Iveson & Hart 1983), 

a seasonal pattern with a greater prevalence of Salmonella-positive cases in summer than 

in winter, and a lower prevalence of Salmonella-positive cases in populated areas of the 

island.  This absence of change in the basic aspects of the ecological relation between 

Salmonella and quokkas may reflect stability in the host-parasite-environment complex on 

Rottnest Island.  However, it is possible that this complex is indeed changing and may be 

more intricate than once thought.  For example, we have provided evidence of a strong 

association between a previously-identified microfilariae infection (Yen 1983), and 

Salmonella spp. infections in the Rottnest Island quokka, whereby animals positive to 

microfilariae were more likely to be infected with Salmonella spp., there was only weak 

evidence that Salmonella does not have an effect on the HMT and BLC of quokkas, and 

finally, four new Salmonella serovars were isolated (S. enterica subsp. enterica= 3, S. 

enterica subsp. diarizonae= 1).  Whether these findings and interactions started to occur 

recently or not, is difficult to establish when disease surveillance has not been carried out 

previously. 

 

Historically, Salmonella infections have been attributed for the most part to nutritional 

stress (Hart, Bradshaw, & Iveson 1985), however, the strong and significant association 

(p< 0.05) between microfilariae and Salmonella obtained in this study (see Section 4.3.4), 

where microfilariae-positive animals were 3.88 (CI 1.31-11.5) more likely of being 

positive to Salmonella than microfilariae-negative animals, may suggest that concomitant 

infection with microfilariae is a predisposing factor for Salmonella infections in Rottnest 

Island quokkas.  However, further research would be necessary to obtain proof of 
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causality.  Both organisms were found to be associated with lower WBC counts (p< 0.04), 

which suggest that both may be involved in some degree of immunosuppression.  

However, filarial nematodes are known for exerting a potent downregulating effect on the 

immune system of the infected host (Moore et al. 1993 ; O'Brien et al. 1979 ; O'Regan et al. 

2014 ; Ochsenbein et al. 1999 ; Semnani et al. 2008 ; Su et al. 2014 2666). 

 

Previous studies on Salmonella infections in Rottnest Island quokkas suggested that 

Salmonella did not cause disease (Hart 1980 ; Hart, Bradshaw, & Iveson 1985 ; Hart et al. 

1982 ; Iveson & Bradshaw 1973 ; Iveson & Hart 1983), and there were no negative effects 

of the bacterial infection on the physiology of the animals.  However, there appear to be 

some evidence that infection with Salmonella spp. is having some effect on the organic 

state of the animals.  More specifically, when compared to negative animals, positive 

animals had lower values of RBC, PCV, HGB, WBC, LYMPH, NEUT, EOS, and BASO, while 

MONO were lower in negative quokkas.  Blood chemistry profiles were also different, with 

positive animals having higher values for ALP, BILT, CREAT and UREA, and lower values 

for GLUC, PROT, and ALB, than those showed by negative animals.  Although these 

differences were found to be not significant by PERMANOVA analyses (i.e. p> 0.05), the p 

values obtained for haematology and blood chemistry, that ranged between 0.05 and 0.08 

(depending on the covariate used: sex or season), were considered as insufficient evidence 

of the absence of effect of Salmonella spp. infection on the physiology of the host.  In other 

words, these results could be considered as being suspicious of an active salmonellosis, 

and not simply a carrier asymptomatic stage.  However, there is not enough evidence to 

support this.  

 

It is impossible to predict whether or not Salmonella infections could become a 

threatening process for the Rottnest Island quokka at some point in the near future.  

However, it seems possible that downregulation of the immune system caused by 

increasing stressors (e.g. changes in climate, loss of habitat and concomitant disease such 

as microfilaria infection) could lead to widespread clinical salmonellosis.  

 

The prevalence (4.8%) and the serovar (S. enterica subsp. diarizonae (IIIb) ser. 50:k:z35) 

detected in mainland quokkas are worth noting.  Negative results for S. enterica subsp. 

enterica serovars from mainland samples suggest that the recovery of S. enterica ser. 

Muenchen and S. enterica ser. Newington (the only serovars recovered) from mainland 

quokkas in previous studies (Hart 1980 ; Hart, Bradshaw, & Iveson 1986), was in fact the 

result of cross contamination with trapping equipment previously used on Rottnest Island, 

as the authors proposed.  Serovars of the Salmonella enterica subsp. enterica group are 
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more pathogenic than serovars of the other five Salmonella groups (i.e. II, IIIa, IIIb, IV and 

V), and if animals on the mainland are immunologically naïve, this would explain the 

mortalities that Hart (1980) reported, with quokkas dying acutely some time after being in 

contact with the contaminated equipment.  Alternatively, the negative results for 

Salmonella enterica subsp. enterica in mainland quokkas obtained by this study, may be 

attributable to host immunity, in which case, the peracute mortalities reported by Hart 

(1980), may have been caused by either an infectious agent other then Salmonella spp., or 

by a different non-infectious disease process. 

 

 Cryptococcus neoformans var. grubii and C. magnus infections 

Previously, the only evidence of exposure to Cryptococcus spp. (particularly C. gattii but 

not only) in the quokka was for captive animals, where Cryptococcus spp. have been 

considered to be agents of both primary and secondary (or incidental) disease (ARWH 

archive records 1999-2014; Krockenberger et al. 2005 ; Vaughan 2008 ; Vogelnest & 

Portas 2010).  It has also previously been reported that quokkas can be asymptomatic 

carriers, where animals with secondary disease did not show signs of disease.  This study 

provides evidence that exposure to highly pathogenic Cryptococcus spp. occurs in wild 

quokkas, and that infection with C. neoformans var. grubii and C. magnus can be 

asymptomatic, with positive animals showing no detectable signs of clinical disease at the 

time of examination, supported also by the absence of significant differences in the HMT, 

BLC, and PBCM indicators. 

 

Despite the absence of clinical disease in Rottnest Island animals positive to C. neoformans 

var. grubii, the isolation of this yeast is significant for both animal management and public 

health.  C. neoformans var. grubii can form silent cryptococcal foci in the respiratory tract 

(Merchant & Packer 1967 p. 549-566), that under the right conditions (e.g. 

immunosuppression) can reactivate and become the source of fatal systemic disease 

(Garcia-Hermoso, Janbon, & Dromer 1999 ; also with C. gattii see Illnait-Zaragozi et al. 

2011 ; Krockenberger et al. 2002).  All captive individuals across Australian zoos (ex-situ) 

were sourced from Rottnest Island (mostly from settled areas due to easier trapping), and 

it is likely that a proportion of these animals therefore would have arrived at their 

collections with pulmonary cryptococcal foci and were at a greater risk of developing 

clinical disease than previously thought.  Disease due to C. neoformans var. grubii is likely 

to occur in Rottnest Island quokkas (in-situ), for which two main events must be present: 

immunosuppression of the host, and exposure to cryptococcal organisms as a result of 

environmental contamination.  Immunosuppression is likely to occur under rapid changes 
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in environmental pressures, particularly if these pressures unfold faster than the quokka 

can adapt to.  Whether greater exposure to the organism does or does not occur, and to 

what degree, can only be explored when the environmental source or sources for C. 

neoformans var. grubii are identified. 

 

Immunosuppression and exposure to a high number of infectious cryptococcal organisms 

are also two important factors to consider from a public health perspective, given that 

these two factors increase the risk of disease in humans.  Consequently, institutions 

responsible for public health and the Rottnest Island Authority are advised to considered 

exposure to C. neoformans var. grubii by people as likely.  Although it is generally accepted 

that cryptococcosis is not a zoonotic disease, unless the relevant studies are carried out, 

direct transmission from quokkas to humans can not be rule out.  Unless the 

environmental source(s) are determined, preventative measures and response protocols 

could not be implemented. 

 

At present, C. neoformans var. grubii infection does not appear to have a negative impact 

on the health of quokkas on Rottnest Island, determined by the absence of obvious clinical 

signs of disease, and no effect of C. neoformans var. grubii on the HMT, BLC and PBCM of 

positive animals.  However, clinical disease (cryptococcosis) is likely to occur at some 

point in time.  The risk of disease will increase according to the degree of environmental 

contamination, the degree of exposure to that environmental source(s), and the degree of 

immunosuppression of the host.  These factors would play a similar role in both, animals 

and people alike.  Whether this disease could present as a threatening process to the 

quokka in the future, it is possible but unlikely.  This is particularly because the organism 

is not known to be transmitted from animal to animal, which would reduce the risk of a 

widespread outbreak due to direct contact.  Additionally, C. neoformans var. grubii is 

known to be restricted to certain environmental sources typically found in settled areas, 

which according to the results of this study, would appear to be also the case on Rottnest 

Island.  These limitations (i.e. source and location) would theoretically restrict exposure to 

only animals in those areas.  Furthermore, quokkas on Rottnest Island are not known to 

move a great deal across the island, therefore limiting the groups that could come in 

contact with the environmental source or sources for C. neoformans var. grubii.   

 

 Macropodid herpesvirus 6 

A fatal case of a captive quokka at the Melbourne Zoo that succumbed to infection with 

Macropodid herpesvirus 2 (MaHV-2) (Callinan & Kefford 1981 ; Johnson & Whalley 1987 ; 
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Johnson et al. 1985 ; Wilks, Kefford, & Callinan 1981), was the beginning of a long standing 

hypothesis that quokkas were not the natural host for MaHV-2.  However, free-ranging 

quokkas were never tested for antibodies against MaHV-2 (or MaHV-1), until now.  This 

study tested over 100 animals across multiple subpopulations (covering at least 80% of 

the current geographical range of the species) and confirmed that the quokka is not the 

natural host for MaHV-2 or MaHV-1, given that seropositivity to MaHV-1 and MaHV-2 was 

only detected in one mainland animal.  If quokkas were the natural host for these two 

viruses, a greater prevalence and distribution would have been seen.  Consequently, these 

results help close an important chapter in the epidemiology of herpesviruses in 

macropods.  The seropositive animal (i.e. to both MaHV-1 and MaHV-2) detected on the 

mainland may indicate that these two viruses have circulated within the natural range of 

quokkas on the mainland, and that the natural host of MaHV-1 and MaHV-2 may share the 

same ecological niche as the quokka.  

 

Through PCR, sequencing and phylogenetic analysis, a novel gammaherpesvirus, 

tentatively identified as Macropodid herpesvirus 6 (MaHV-6), was detected in apparently 

healthy quokkas from all major subpopulations where animals were trapped.  These 

animals showed no evidence of disease based on HMT, BLC and PBCM datasets.  The 

absence of obvious disease and the widespread presence of MaHV-6 strongly suggest that 

the quokka is the natural host for MaHV-6.  Its prevalence in WA may be greater than this 

study determined, considering that two subpopulations (the southernmost ones) were not 

sampled due to logistic limitations, and that sample sizes for some mainland sites were 

small.   

 

Gammaherpesviruses are known to remain within the host LYMPH in latent form, avoid 

lytic replication and rarely cause disease; this seems to explain the asymptomatic 

presentation of MaHV-6 in the quokka.  However, such latency can be interrupted in the 

natural host through immunosuppression caused by concomitant disease, or from long 

term exposure to endogenous glucocorticoids due to chronic stress.  Chronic stress may be 

expected in quokkas on both Rottnest Island and the mainland due to various 

environmental challenges such as land clearing, loss of vegetation to disease, changes in 

weather patterns, agriculture, predation pressure from invasive animals, and the never 

ending expansion of human settlements.  The clinical presentation of MaHV-6 infection 

remains unknown.  However, although there is no evidence at this point in time, skin 

lesions (e.g. oral and cloacal ulcers), respiratory signs, and ocular and nasal discharges 

may be expected.  These clinical signs have been previously observed in animals with 
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clinical disease from all previous characterised macropodid herpesviruses (i.e. MaHV-1, -2, 

-3, and -4), except MaHV-5. 

 

Even though direct contact (animal to animal) would allow MaHV-6 to readily spread 

within a mob or subpopulation, predicting the overall impact within that subpopulation is 

not possible, as many aspects of the pathophysiology of MaHV-6 still need to be 

understood.  Conversely, if spill over from quokkas to other macropods were to occur, the 

effect of MaHV-6 infection in other species may be more serious, given that herpesvirus 

infections are usually fatal for species other than the natural host.  In any case, continuous 

surveillance of MaHV-6 in the context of health (i.e. screening for MaHV-6 coupled with a 

thorough and systematic physical examination) is desirable.    

 

 Haematology and Blood chemistry 

8.3.4.1 Reference Intervals 

Generally speaking, most of the variables measured for both HMT and BLC were within 

previously reported values for apparently healthy macropods.  However, there were 

significant differences between the haematology and blood chemistry profiles of quokkas 

on Rottnest Island and on the mainland (section 7.4.1).  These site differences are likely 

the result for the most part, of the interplay of multiple factors such as nutrition, water 

availability, climate, concomitant disease, presence/absence of predators.  However, stress 

may have also played a role.  Animal handling and anaesthetic protocols were the same for 

all trapping sites, however, in-trap times for mainland animals were longer than those of 

animals on Rottnest Island.  Additionally, animals on the northern sites (mainland) were 

subjected to longer physical restraint and semi-invasive procedures prior to being 

anaesthetised.  Thus, it is likely that Rottnest Island and mainland animals were exposed 

to different degrees of stress and therefore had different levels of endogenous 

glucocorticoids.  Whether stress played a significant role in the differences observed 

between the HMT and BLC of Rottnest Island and mainland animals, is unknown.  

However, it is a factor to take into account when considering using the calculated 

reference intervals.  Nonetheless, for most parts, the blood parameters suggest greater 

physiological challenge experienced by Rottnest Island animals. 

 

A number of restrictions should be applied to the use of the reference intervals presented 

in this work.  First, it is advisable that each reference intervals dataset is used for its 

corresponding subpopulation, considering that physiological parameters are unique to 

their host-parasite-environment relation.  Second, though these datasets can be used with 



 

213 
 

animals in captivity, it is desirable not to, given the absolute differences between the 

environmental and dietary conditions among other factors, of wild and captive quokkas.  

The reference intervals calculated and presented in this project, are not standalone sets of 

diagnostic data, and should be accompanied by other disease diagnostic techniques (e.g. 

physical examinations), and careful consideration of external factors (e.g. climate, time of 

the year, diet). 

 

Particularly significant observations recorded on quokkas in Rottnest Island, are revisited 

in this section.  These include a normocytic hypochromic regenerative anaemia, possibly 

haemolytic and intravascular in nature; the presence of neoplastic-looking lymphocytes; 

and low concentrations of vitamin E in plasma (compared to mainland animals). 

 

8.3.4.2 Anaemia 

The anaemic state of quokkas on Rottnest Island is most likely the result of multiple 

factors having a synergistic effect on their haematology.  Despite the absence of conclusive 

evidence for causation, some of the findings observed in this project may partly explain 

the anaemic state of quokkas on Rottnest Island, and are worth mentioning.  

 

Factors responsible for anaemia may include oxidative stress (free radical reactions), 

mechanical lysis of red blood cells, and blood loss.  Anaemia in quokkas on Rottnest Island 

has been attributed to a protein-deficient diet (Barker et al. 1974 ; Shield 1971), and 

although dietary studies were not carried out in this project, abundance of Heinz bodies 

(oxidised haemoglobin) in the erythrocyte of quokkas on Rottnest Island (compared to 

mainland animals) may have been an indication of high levels of oxidative stress.  Protein 

deficiency may be a possible pathway for triggering the formation of Heinz bodies, with 

protein-deficient diets involved in decreased activity of at least three erythrocytic 

enzymes that protect the cell from oxidative injury (Huang & Fwu 1993).   

 

Vitamin E levels in plasma were at least 3 mg/L lower in Rottnest Island animals when 

compared to mainland animals.  Further oxidative damage could be due to the low 

availability of vitamin E, a potent antioxidant that blocks oxidising reactions, hence 

preventing the propagation of reactive oxygen species (free radicals) (Brigelius-Flohé & 

Traber 1999).  Low concentrations of circulating vitamin E in plasma have been suggested 

as a possible aetiology for haemolytic anaemia in other species (Brigelius-Flohé & Traber 

1999 ; Dierenfeld, du Toit, & Miller 1988 ; Rucker, Morris, & Fascetti 2008 pp. 706-709) 

and has been linked to increased susceptibility to peroxide-induced haemolysis (Simon et 



 

214 
 

al. 1998), and diminished erythrocyte life span (Farrell et al. 1977 ; Losowsky & Leonard 

1967).  As a result of the oxidation of membrane lipids, the erythrocyte becomes more 

fragile and prone to lysis.   

 

Haemolysis could be further enhanced by the presence of intraerythrocytic parasites (i.e. 

Babesia spp. and Theileria spp.) that are known to cause physical damage to the 

erythrocyte (Clark 2004 ; Harvey 2012, p. 102; Thrall 2012d), and by the presence of 

circulating microfilariae (i.e. genus Breinlia sp.) that could cause erythrocyte lysis through 

destructive motility (Ishihara et al. 1981 ; Kitagawa, Sasaki, & Ishihara 1989 ; Nielsen et al. 

2006 ; Ziegler, Käufer-Weiss, & Zahner 1991).  Similarly, inflammatory processes in 

response to infection could also contribute to the anaemic state of the animals.   

 

Of these factors, Theileria sp. and microfilariae are the only two evident in mainland 

animals.  On the other hand, oxidative injury due to low dietary protein and vitamin E 

content, may not be present due to a greater variety and quality in their diets, while the 

negative results for Salmonella enterica serovars for mainland animals could mean that 

blood loss may also be absent.  However, increasing changes in climate, fire regimes, and 

land usage can affect the current host-parasite balance (i.e. Theileria sp. and microfilariae), 

as well as food availability, potentially increasing risk of oxidative injury to the 

erythrocyte and tissues due to diet.  Similarly, the risk of exposure to Salmonella spp. for 

mainland animals would likely increase through processes such as increased urbanisation 

and agriculture. 

 

Anaemia is likely to decrease overall animal fitness requiring: i) reallocation of energy 

from other processes such as immunity, reproduction and growth to regenerative bone 

marrow activity, ii) an increase of the overall metabolic rate at the expense of other 

physiological processes; iii) various degrees of impaired oxygenation of tissues; and iv) a 

possible shift in the metabolism of the animal to an anaerobic glycolysis, which in turn 

would favour a drop in the pH that could then cause cell injury by altering the chemical 

gradient across cell membranes. 

 

8.3.4.3 Flower cells and Atly 

Two morphologically unique lymphocytes were evident in quokkas, both with a highly 

polylobated nucleus.  In ‘flower cells’, the nucleus resembles the petals of a flower, while 

‘Atly’ cells have lobes that are not arranged in any particular shape.  Some interesting 

points to comment on include, the presence of these cells in Rottnest Island quokkas but in 
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quokkas on the mainland, and the presence of these cells in humans infected with HTLV-1 

a deltaretrovirus.  The reasons for the presence of flower cells in Rottnest Island animals 

but not in mainland animals remain unknown.  Two options are possible, that animals on 

Rottnest Island are being immunostimulated to a greater degree than animals on the 

mainland, perhaps due to a combination of heavier loads of microfilariae, the presence of 

chronic infections with serovars of the Salmonella enterica subsp. enterica group, 

restricted diets, and human interactions that mainland animals appear to not have.  

Indeed the morphology of flower cells differ from that of typical reactive LYMPH stained 

with Wright’s Giemsa (described in the quokka and other marsupial species Clark 2004), 

however, there is no evidence to support that these cells are nothing more than reactive 

LYMPH under stimulation.  Alternative, flower cells are neoplastic cells undergoing 

nuclear changes due to the effects of a retrovirus, as cells with evident morphological 

similarity have been observed in humans infected with HTLV-1 a deltaretrovirus, and are 

considered by some authors as being a sign of a pre-leukaemic or leukaemic state (Chang 

et al. 2008 ; de Oliveira et al. 2010 ; Shimoyama et al. 1983).  If this were to be the case, 

then quokkas and the population of Rottnest Island could become the first case of a 

widespread retroviral infection in macropods, with the likely possibility of being a 

immunosuppressive condition such as that in koalas (Phascolarctos cinereus), which in 

theory would make infected animals more prone to infection and severe disease.  However, 

once more, there is no evidence to support that flower cells are neoplastic in nature and 

associated to a retroviral infection.  

 

Nevertheless, from a conservation medicine point of view and wildlife population 

management, the questions surrounding flower cells in quokkas on Rottnest Island must 

be answered, and thorough studies should be carried out to conclusively establish what 

flower cells are and signify in the quokka.  

 

8.3.4.4 Vitamin E 

The low plasma concentrations of vitamin E for Rottnest Island animals are likely to 

represent a state of vitamin E deficiency, evident in the more prevalent oxidative damage 

to red blood cells for Rottnest Island animals than animals on the mainland.  Some of the 

possible implications of oxidative injury in animals on Rottnest Island have been 

previously outlined in section 8.3.4.2   

 

Low circulating vitamin E is a significant problem for captive animals, with values in 

Rottnest Island animals now in captivity being at least 50.4% below the lower limit (2.0-
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3.2 mg/L) (Vogelnest & Portas 2010), and at least 69.5% below the upper limit, of the 

reference interval calculated herein for wild animals on Rottnest Island (reference interval 

4.03-10.5 mg/L).  The values for captive animals reported by Vogelnest and Portas (2010) 

are at least 162% lower for the lower limit of the reference interval calculated for wild 

mainland animals, and at least 416% lower for the upper limit (5.23-16.5 mg/L).  Vitamin 

E for captive macropods is given in the form of a supplement.  The low levels indicate that 

supplementation of vitamin E for quokkas in captivity is insufficient, with animals in 

captivity consequently being at greater risk of tissue damage due to oxidative injury.  This 

may explain the high incidence of fat necrosis in captive quokkas.  In conclusion, it appears 

necessary to recommend a readjustment of the amount of vitamin E given to quokkas in 

captive conditions, to achieve circulating plasma concentrations of ~9.92 mg/L.  

 

8.4 Interrelations of concomitant infections with HMT and BLC for Rottnest 
Island and mainland S. brachyurus 

The following analyses were carried out in an attempt to determine and visualise the 

effect if any, of concomitant infections on the HMT and BLC profiles of Rottnest Island and 

mainland quokkas.  The intended goal is not to explain the mechanisms responsible for 

such differences, but simply to visualise possible patterns.  Henceforth, the reader is 

reminded that the results obtained through these analyses are not proof of causality. 

  

 Methods 

 

To obtain a better picture of possible patterns between concomitant infections and HMT 

and BLC profiles, HMT and BLC datasets were handled separately.  The final sample used 

in the following analyses (for each dataset), was that of animals with complete HMT and 

BLC, and that were tested for the following infectious agents (IA) [i.e. Salmonella spp., 

Cryptococcus spp., saprophyte fungi, MaHV-6, microfilariae (circulating form of the filarial 

nematode:helminth Breinlia sp.), Babesia sp., Theileria sp., and trypanosomes].  Data on 

nematode eggs and Eimeria sp. were excluded as their inclusion would have reduced the 

sample size for each dataset (i.e. HMT and BLC) to less than 30 observations.  Incomplete 

HMT or incomplete BLC, meant that some animals that were tested for all IA, were not 

included in the final dataset for analysis. Thus, the final sample sizes were 56 and 46 

observations for HMT and BLC, respectively.  These were used in the following analyses, 

non-metric multidimensional scaling (nMDS), Spearman Rank Order correlation matrix, 

and multiple regression (details on these tests are explained below).  To obtain 
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prevalences of concomitant infections, animals positive to more than one IA that appeared 

in both HMT and BLC datasets were counted once, thus the final sample size included 58 

animals.  Haematology and BLC variables were fitted to an approximate normal 

distribution by transforming the data using BoxCox transform (STATISTICA v. 9.1, StatSoft 

Inc.) and observed values were then range-standardised to a scale between 0 and 1.   

 

First, a non-metric multidimensional scaling (nMDS) of the HMT and BLC data was carried 

out, using a three-dimensional (three axes) model with Bray-Curtis similarity measure 

(Bray & Curtis 1957) in PAST v. 3.02 (Hammer, Harper, & Ryan 2001).  Using the distances 

or similarities between all observations (i.e. HMT and BLC), nMDS obtains a set of 

coordinates (three in this case) and attempts to place all data points in the 

multidimensional model.  These coordinates were extracted and used to carry out a 

nonparametric Spearman Rank Order correlation matrix (STATISTICA v. 9.1, StatSoft Inc.) 

to determine the correlations present between each of the axes of the nMDS model with all 

HMT and BLC variables.  Positive correlations indicated that animals towards that side of 

the axis (i.e. positive) were more likely to have higher values than animals on the opposite 

side of the same axis.  By contrast, a negative correlation indicated that animals towards 

that side of the axis (i.e. negative) were more likely to have lower values than animals on 

the opposite side of the same axis.  Subsequently, multiple regression (STATISTICA v. 9.1, 

StatSoft Inc.) was used to determine the correlations (R and F statistics) and their strength 

(Beta coefficient), between each of the axes of the nMDS model with all IA.  Due to 

insufficient observations (either only one or no positive observation captured in the final 

dataset) which would have effectively removed the likelihood of significance and 

correlation in any analyses, Babesia sp., and trypanosomes were excluded from both HMT 

and BLC datasets, while Cryptococcus spp. was excluded from the BLC dataset.    

Cryptococcus spp. and saprophytes were assessed separately in the haematology dataset, 

as more than one positive in each group was available for analysis.  Site was included as an 

independent factor given differences between the HMT and BLC of Rottnest Island and 

mainland animals observed in previous analyses (see results section in Chapter 4, 5, 6, 7).  

A positive correlation signified that positive animals were likely to be positioned towards 

the positive side of the axis, while a negative correlation meant that positive animals were 

more likely to be positioned towards the negative side of the axis.  Lastly, using the 3D 

nMDS axes coordinates for HMT and BLC datasets of positive and negative animals, 3D 

scatterplots were constructed for all IA.  The positions of all observations in the 3D 

scatterplots do not change across infectious agents, as the source of the data is the same, 

i.e. HMT and BLC response variables.  By contrast, positives and negatives do change.  

Animals having concomitant infections were identified by coloured polygons and circles.   
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To identify whether structures were present within each of the datasets (i.e. HMT and BLC 

with all IA), two separate unsupervised hierarchical cluster analyses using an unweighted 

pair-group average algorithm and an Euclidean similarity index were run (Sokal & 

Michener 1958).  Each cluster analysis is presented in the form of a dendrogram with 

bootstrapping analysis with 100 replications.  Dendrograms were then coupled with 

matrix plots of the HMT, BLC and nMDS axes coordinates data respectively.  Cluster 

analyses and matrix plots were carried out in PAST v. 3.02 (Hammer, Harper, & Ryan 

2001).  The response variables used in these analyses were white blood cell counts (WBC), 

neutrophils (NEUT), eosinophils (EOS), basophils (BASO), lymphocytes (LYMPH), 

monocytes (MONO), red blood cell counts (RBC), haemoglobin (HGB), packed cell volume 

(PCV), corpuscular haemoglobin concentration mean (CHCM), alkaline phosphatase (ALP), 

alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK), 

gamma-glutamyl transferase (GGT), total plasma protein (PROT), albumin (ALB), globulin 

(GLOB), calcium (CALC), phosphorus (PHOS), cholesterol (CHOL), total bilirubin (BILT), 

glucose (GLUC), creatinine (CREAT), urea (UREA) and vitamin E (VIT. E).  95% confidence 

intervals (CI) for estimates of proportions (i.e. prevalence), were calculated using the 

Jeffreys model (n≥ 40) (Brown, Cai, & DasGupta 2001).   

 

 Results 

 

Concomitant infections were present in 24 animals of 58 (41.4%, 95% CI 29.4-54.2).  

Overall, Salmonella spp., MaHV-6, Theileria sp. and microfilariae were the most common IA 

involved in concomitant infections (Table 8-1)  Of the concomitant infections detected, the 

most prevalent were MaHV-6 + Theileria sp. (ten animals), and Salmonella spp. + 

microfilariae (eight animals).  There was an equal proportion (i.e. 11) of animals infected 

with two and three IA, while only one animal (mainland) was positive to four IA (Table 

8-1).  

 
 
 



 

219 
 

Table 8-1 Summary of concomitant infections captured in both haematology and blood chemistry datasets 
combined, for Rottnest Island and mainland animals.  CI= confidence interval 
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95% CI † 
Rottnest Island 
n= 45 

+      +  1 4.3 0.8-21.0 
+    +    1 4.3 0.8-21.0 
   + +    1 4.3 0.8-21.0 

+  +   +   2 3.60 0.7-11.0 
+ +   +    2 3.60 0.7-11.0 
+ +  +     2 3.60 0.7-11.0 
+ +       4 7.10 2.5-16.1 

Mainland 
n= 13 

 + + +  +   1 4.3 0.8-21.0 
 + + +     2 3.60 0.7-11.0 
  + +    + 1 4.3 0.8-21.0 
  + +     4 5.40 1.5-13.6 
  + +  +   2 3.60 0.7-11.0 
  +   +   1 4.3 0.8-21.0 

No. of animals with concomitant infection on Rottnest Island 13 22.4 13.2-34.3 
No. of animals with concomitant infection on the mainland 11 19 10.5-30.4 

Total no. of animals with concomitant infection 24 41.4 29.4-54.2 
Total no. of animals tested 58   

† 95% confidence intervals calculated using Woolf’s method (1955) 

 

 

Spearman Rank Order correlation matrix analysis indicated a positive correlation of axis 1 

with WBC, NEUT, MONO, RBC, HGB, PCV, CHCM, ALT, AST, CK, PROT, ALB, GLOB, CALC, 

CREAT, UREA and VIT. E.  Of these, the strongest correlations were that of RBC, HGB, PROT 

and ALB.   Axis 2 was positively correlated with PHOS and CHOL, and had a negative 

correlation with MONO, while axis 3 was negatively correlated with BASO, and positive 

correlated with GLUC and UREA.  All correlations were significant at p< 0.05 (Table 8-2).  
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Table 8-2 Spearman rank order correlation results for correlations between axis 1, axis 2 and axis 3 of the 
nMDS 3D models for HMT and BLC response variables of Rottnest Island and mainland animals (combined 
sample).  HMT= haematology, BLC= blood chemistry. 
Dataset 3D nMDS WBC NEUT EOS BASO LYMPH  
HMT Axis 1 0.646 0.469 -0.198 0.253 0.249  
 Axis 2 0.206 0.177 0.061 0.121 0.067  
 Axis 3 -0.032 0.006 0.195 -0.289 0.064  
  MONO RBC HGB PCV CHCM  
 Axis 1 0.403 0.838 0.831 0.670 0.341  
 Axis 2 -0.320 0.108 0.071 -0.031 0.104  
 Axis 3 -0.240 -0.150 -0.191 -0.071 -0.262  
BLC  ALP ALT AST CK GGT  
 Axis 1 -0.165 0.516 0.482 0.556 0.043  
 Axis 2 -0.010 -0.341 -0.328 -0.245 -0.239  
 Axis 3 0.269 0.155 0.216 0.219 0.045  
  PROT ALB GLOB CALC PHOS  
 Axis 1 0.775 0.780 0.598 0.408 0.146  
 Axis 2 -0.128 0.033 -0.162 -0.244 0.434  
 Axis 3 0.124 0.107 0.107 -0.112 0.010  
  BILT GLUC CHOL CREAT UREA VIT. E 
 Axis 1 0.191 0.203 0.272 0.383 0.332 0.610 
 Axis 2 -0.011 -0.153 0.320 -0.124 -0.124 -0.075 
 Axis 3 -0.243 0.339 -0.262 -0.081 0.352 -0.186 
 

 

Significant correlations (p< 0.05) between 3D nMDS axes and infectious agents were 

obtained in the multiple regression analyses, for Salmonella spp., saprophyte fungi, MaHV-

6, Theileria sp., and microfilariae, but not for Cryptococcus spp. (Table 8-3).  Similarly, 

there were significant correlations of axes 1 and 3 with site in the HMT response variables 

(Table 8-3a), and of axes 1, 2, and 3 with site in the BLC response variables (Table 8-3b).  
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Table 8-3 Multiple regression results for correlations between axes 1, 2, and 3 of the 3D nMDS models for 
HMT and BLC response variables, with site and selected infectious agents.  HMT= haematology, BLC= blood 
chemistry. 
 Dataset 3D nMDS Infectious agent Beta p 
a. HMT 

n= 56 
Axis 1 
R= 0.912 
F (7,48)= 33.9 

Site 0.293 0.015 
 Salmonella spp. -0.327 0.001 
 Cryptococcus spp. 0.050 0.428 
 Saprophyte fungi 0.148 0.064 
 MaHV-6 0.221 0.077 
 Theileria sp. 0.274 0.002 
 Microfilariae 0.136 0.033 
 Axis 2 

R= 0.926 
F (7,48)= 41.4 

Site -0.160 0.139 
 Salmonella spp. -0.136 0.035 
 Cryptococcus spp. -0.057 0.320 
 Saprophyte fungi 0.220 0.004 
 MaHV-6 0.188 0.101 
 Theileria sp. -0.233 0.003 
 Microfilariae -0.768 0.001 
 Axis 3 

R= 0.916 
F= (7,48)= 35.8 

Site -0.364 0.002 
 Salmonella spp. -0.780 0.001 
 Cryptococcus spp. -0.028 0.642 
 Saprophyte fungi -0.207 0.010 
 MaHV-6 -0.262 0.034 
 Theileria sp. 0.231 0.006 
 Microfilariae -0.176 0.006 
b. BLC 

n= 46 
Axis 1 
R= 0.911 
F (6,39)= 31.7 

Site 0.521 0.001 
 Salmonella spp. -0.030 0.683 
 Saprophyte fungi 0.250 0.011 
 MaHV-6 0.029 0.824 
 Theileria sp. 0.322 0.001 
 Microfilariae 0.207 0.005 
 Axis 2 

R= 0.923 
F (6,39)= 37.3 

Site -0.317 0.006 
 Salmonella spp. -0.740 0.000 
 Saprophyte fungi -0.150 0.092 
 MaHV-6 -0.128 0.290 
 Theileria sp. 0.460 0.001 
 Microfilariae -0.231 0.001 
 Axis 3 

R= 0.824 
F (6,39)= 13.7 

Site -0.081 0.613 
 Salmonella spp. -0.093 0.360 
 Saprophyte fungi 0.279 0.036 
 MaHV-6 0.248 0.164 
 Theileria sp. -0.143 0.241 
 Microfilariae -0.619 0.001 
 

 

 

There was an obvious clustering of the HMT and BLC data by function of site (clusters A 

and B, Figures 8-1 and 8-2), showing that mainland animals generally presented higher 

values in both HMT and BLC analytes, than animals on Rottnest Island (heat maps, Figures 

8-1 and 8-2).  

 

Two clusters appeared to be evident in the HMT dendrogram for Rottnest Island animals, 

grouping the animals by those infected with Salmonella spp. and microfilariae (cluster C, 

Figure 8-1) and those that were not (cluster D, Figure 8-1).  Generally, animals positive to 

Salmonella spp. and microfilariae appeared to have lower values across all HMT analytes 
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(heat map, Figure 8-1).  This was also observed in the 3D scatterplots, where animals 

positive to microfilariae and Salmonella spp., appeared to have lower values for WBC, 

NEUT, MONO, RBC, PCV and CHCM, when compared to microfilariae-positive animals that 

were either positive to other IA different than Salmonella spp., or just positive to 

microfilariae (Figure 8-3).  Visual exploration of the next most common organisms 

involved in single infections and coinfection (i.e. MaHV-6 and Theileria sp.), it can be seen 

that when Salmonella spp. and microfilariae were present either as a coinfection or as a 

single infection, the HMT profiles of animals with MaHV-6 and Theileria sp. either as a 

single infection or as coinfections, were different than those of MaHV-6-Theileria sp. 

coinfected with another IA (Figure 8-4).  This was the case for both Rottnest Island in 

which Salmonella spp. and microfilariae were detected, and mainland animals in which 

microfilariae was detected but not Salmonella spp.  There were no other apparent 

differences by function of other organisms. 

 

Similarly to the Rottnest Island case, cluster analysis grouped mainland animals in two 

clusters, those that were positive to saprophyte fungi and other IA (mostly MaHV-6 and 

Theileria sp., cluster E: Figure 8-1) and those that were not positive to saprophyte fungi 

but positive to other IA (mostly MaHV-6 and Theileria sp., cluster F: Figure 8-1).  However, 

no apparent patterns in the HMT of these animals were observed in heat maps (Figure 

8-1) or 3D scatterplots (Figures 8-3, 8-4, and 8-5 right) by function of saprophyte fungi.   

 

There were no evident clusters in the BLC analysis of Rottnest Island animals (Figure 8-2).  

However, 3D scatterplots did show that animals positive to Salmonella spp. and 

microfilariae appeared to have a different (lower) BLC profiles than animals that were 

only positive to Salmonella spp., or positive to Salmonella spp. and other organisms 

(Figure 8-7 left).  By contrast, Rottnest Island animals with microfilariae single infection 

appeared to have different (lower) BLC profiles than Rottnest Island animals with 

Salmonella spp. single infection.  This was the case for all animals infected with 

microfilariae, either as a single infection or as coinfection (Figure 8-7 right).  By contrast, 

cluster analysis grouped mainland animals by those positive to MaHV-6, Theileria sp. and 

microfilariae (cluster C, Figure 8-2) and those that were positive to MaHV-6 and Theileria 

sp. but not to microfilariae (cluster D, Figure 8-2).  A subtle difference between the BLC of 

animals in these two clusters was observed in the 3D scatterplots (Figure 8-8), whereby 

animals in cluster C appeared to have a different (lower) BLC profile than animals in 

cluster D.  There were no other apparent BLC patterns in animals with other concomitant 

infections. 
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Figure 8-1 Cluster analysis and patterns of 10 HMT analytes of 44 animals from Rottnest Island (R) and 12 
animals from the mainland (M) that were tested for eight infectious agents (Salmonella spp., microfilariae, 
MaHV-6, Theileria sp., Cryptococcus spp., saprophyte fungi, Babesia sp., and trypanosomes).  Clusters A 
(Rottnest Island), B (mainland), C (coinfection with Salmonella spp. and microfilariae), D (no coinfection with 
Salmonella spp. and microfilariae), E (coinfection with saprophyte fungi and other organisms) and F 
(coinfection with other organisms but not with saprophyte fungi).  General patterns in axes 1, 2 and 3 
combined showed differences in Salmonella spp.-microfilariae negative animals (red doted lines), and 
Salmonella spp.-microfilariae positive animals (green doted line). 
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Figure 8-2 Cluster analysis and patterns of 16 BLC analytes of 47 animals from Rottnest Island (R) and 9 
animals from the mainland (M) that were tested for seven infectious agents (Salmonella spp., microfilariae, 
MaHV-6, Theileria sp., Cryptococcus spp., saprophyte fungi and Babesia sp. Trypanosomes were not included as 
there were no positive animals).  Clusters A (Rottnest Island), B (mainland), C (microfilariae-negative and 
coinfection with MaHV-6, Theileria sp. and saprophyte fungi), and D (microfilariae-positive and coinfection 
with MaHV-6, Theileria sp., and saprophyte fungi).  General patterns in axes 1, 2, and 3 combined showed 
differences in microfilariae-positive animals (blue doted line), and microfilariae-negative animals (green doted 
line. 
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Figure 8-3 3D scatterplots of axes 1, 2, and 3 coordinates of the nMDS analysis for HMT profiles of animals positive to Salmonella spp. (left), and animals positive to microfilariae (right).  
Animals with concomitant infections are indicated by polygons and circles.  Polygons: pink= Salmonella spp. and microfilariae, black= Theileria sp., red= MaHV-6, Theileria sp., and 
saprophyte fungi, dark blue= MaHV-6 and Theileria sp.; Circles: green= Cryptococcus spp., black= MaHV-6 and saprophyte fungi, light blue= Babesia sp.  *= Rottnest Island, **= mainland.  
Animals only positive to Salmonella spp. are from Rottnest Island.  Animals only positive to microfilariae are from both Rottnest Island (4) and mainland (1).   
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Figure 8-4 3D scatterplots of axes 1, 2, and 3 coordinates of the nMDS analysis for HMT profiles of animals positive to MaHV-6 spp. (left), and animals positive to Theileria sp. (right).  
Animals with concomitant infections are indicated by polygons and circles.  Polygons: green= MaHV-6 and Theileria sp., red= microfilariae and saprophyte fungi, dark blue= microfilariae, 
black= Salmonella spp., and microfilariae, light blue= saprophyte fungi; Circles: black= Salmonella spp. and saprophyte fungi, red= saprophyte fungi, pink= trypanosomes, dark blue= 
Cryptococcus spp. *= Rottnest Island, **= mainland. 

 

 

 

 

 
 

* 

** 

** 

** 

* 

** 

* 

* * 

** 



 

 

227 

 

 
Figure 8-5 3D scatterplots of axes 1, 2, and 3 coordinates of the nMDS analysis for HMT profiles of animals positive to Cryptococcus spp. (left), and animals positive to saprophyte fungi 
(right).  Animals with concomitant infections are indicated by polygons and circles.  Polygons: light blue= MaHV-6 and Theileria sp., red= MaHV-6, Theileria sp., and microfilariae; Circles: 
green= Cryptococcus spp., Salmonella spp., and microfilariae, dark blue= Theileria sp., black= MaHV-6 and Salmonella spp., red= MaHV-6.  *= Rottnest Island, **= mainland. 
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Figure 8-6 3D scatterplots of axes 1, 2, and 3 coordinates of the nMDS analysis for HMT profiles of animals positive to Babesia sp. (left), and animals positive to trypanosomes (right).  
Animals with concomitant infections are indicated by circles; light blue: Salmonella spp., pink= MaHV-6 and Theileria sp.  *= Rottnest Island, **= mainland. 
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Figure 8-7 3D scatterplots of axes 1, 2, and 3 coordinates of the nMDS analysis for BLC profiles of animals positive to Salmonella spp. (left), and animals positive to microfilariae (right).  
Animals with concomitant infections are indicated by polygons and circles.  Polygons: pink= Salmonella spp. and microfilariae, dark blue= Theileria sp., light blue= MaHV-6 and saprophyte 
fungi, red= MaHV-6 and Theileria sp.; Circles: black= Babesia sp.  All animals positive to Salmonella spp. are from Rottnest Island.  *= Rottnest Island, **= mainland. 
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Figure 8-8 3D scatterplots of axes 1, 2, and 3 coordinates of the nMDS analysis for BLC profiles of animals positive to MaHV-6 (left), and animals positive to Theileria sp. (right).  Animals 
with concomitant infections are indicated by polygons and circles.  Polygons: pink= MaHV-6 and Theileria sp., green= saprophyte fungi, light blue= Salmonella spp. and saprophyte fungi, red= 
microfilariae, dark blue= Salmonella spp. and microfilariae, black= Cryptococcus spp.; Circles: dark blue= saprophyte fungi.  *= Rottnest Island, **= mainland.   
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Figure 8-9 3D scatterplots of axes 1, 2, and 3 coordinates of the nMDS analysis for BLC profiles of animals positive to Cryptococcus spp. (left), and animals positive to saprophyte fungi 
(right).  Animals with concomitant infections are indicated by polygons and circles.  Polygons: black= Theileria sp., green= MaHV-6 and Theileria sp., light blue= Salmonella spp. and MaHV-6; 
Circles: dark blue= MaHV-6.  *= Rottnest Island, **= mainland. 
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Figure 8-10 3D scatterplots of axes 1, 2, and 3 coordinates of the nMDS analysis for BLC profiles of animals 
positive to Babesia sp.  Animals with concomitant infections are indicated by circles. Circles: black= 
Salmonella spp.  *= Rottnest Island. 
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 Discussion 

 

The distinctive clusters by site (A and B) in both the HMT and BLC cluster analyses 

indicating mainland and Rottnest Island animals have different HMT and BLC parameters, 

is in line with previous analyses carried out in this project (see Chapter 7 section 7.4.1), 

and with previous studies in other Australian wildlife species (Clark et al. 2003 ; Clarke et 

al. 2013 ; King & Bradshaw 2010 ; Pacioni et al. 2013).  These differences may be 

attributed to the interplay of multiple factors (e.g. diet, climate, predator presence, 

underlying disease) that vary between these two populations, as it has been proposed by 

other authors (Bennett et al. 2007 ; Clark 2004 ; Clark et al. 2003 ; Clarke et al. 2013 ; King 

& Bradshaw 2010 ; McKenzie, Deane, & Burnett 2002 ; Pacioni et al. 2013 ; Robert & 

Schwanz 2013).   

 

Of all coinfections present in quokkas, interactions between IA and effects on the host 

appeared to be more evident for coinfections with Salmonella spp.-microfilariae (Rottnest 

Island), and MaHV-6-Theileria sp. (mostly in mainland animals).  Other coinfections may 

have not been clustered in the analyses, not due to the absence of interactions between 

the IA involved in such coinfections, or the absence of patterns in their corresponding 

HMT and BLC profiles, but most likely as a result of a small sample size (i.e. insufficient 

number of cases).  This would be the case of coinfections such as Salmonella spp.-

microfilaria-Cryptococcus spp. (three animals), Salmonella spp.-MaHV-6-saprophyte fungi 

(two animals), Theileria sp.-Cryptococcus spp. (one animal), and MaHV-6-Theileria sp.-

trypanosomes (one animal).  

 

Clusters for the HMT of the Rottnest Island sample (Figure 8-1), grouped the animals by 

those that presented coinfection with Salmonella spp. and microfilaria (cluster C), and 

those that were positive either to Salmonella spp. or microfilariae, or other IA different 

than Salmonella spp. (cluster D); this is suggestive of an interaction between these two 

infectious agents, and its in line with results previously obtained for Salmonella spp. and 

microfilariae in this study, in which quokkas were more likely to be positive to Salmonella 

spp. if coinfected with microfilariae (OR= 3.88, 95% CI 1.31-11.5, p= 0.012) (see Chapter 4, 

section 4.3.2).  Interestingly, results of the 3D scatterplots and correlation analysis for the 

HMT component, appeared to suggest that Salmonella spp. may have a greater 

involvement in the low HMT seen in Salmonella spp.-microfilariae positive animals, than 

microfilariae (Figure 8-3), given that animals positive to other IA but not to Salmonella spp. 

presented HMT profiles with higher values.  The impact of this interaction (Salmonella 
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spp.-microfilariae) on the host, is further seen in the BLC profiles of infected animals 

(Rottnest Island) (Figure 8-7), where animals coinfected with Salmonella spp. and 

microfilariae showed different BLC profiles (for the analytes included by the correlation 

analysis) when compared to other coinfections.  However, in this case it appears that 

microfilariae may have a greater involvement in the different BLC profiles seen in 

Salmonella spp.-microfilariae positive animals, as animals that were positive only to 

Salmonella spp. appeared to have higher BLC than those that were only positive to 

microfilariae.  However, considering the methods used to detect Salmonella spp. (culture) 

and microfilariae (light microscopy), false negative animals may have been among the 

obtained results.  This means that it is possible that animals that were only positive to 

microfilariae or Salmonella spp. may have been positive to both.  Thus, it is plausible that 

both organisms are involved in the HMT and BLC parameters observed.  It is unknown 

why this interaction and its effect on BLC parameters were not highlighted by the cluster 

analysis.  Interestingly, the effect of Salmonella spp. and microfilariae on HMT profiles can 

be further observed even in the presence of other coinfections.  This is the case of the HMT 

profiles of animals coinfected with MaHV-6 and Theileria sp. (both Rottnest Island and 

mainland), that appear to be different when Salmonella spp. and/or microfilariae are 

present.  In both, that is wether Salmonella spp. is involved, or whether microfilariae is 

involved, HMT analytes appeared to be different (lower).   

 

Clusters E, F (HMT: Figure 8-1) and clusters C and D (BLC: Figure 8-2) obtained for the 

mainland sample, are characterised by a greater number of coinfections with MaHV-6 and 

Theileria sp.  A significant association (p= 0.001) between MaHV-6 and Theileria sp. has 

already been obtained in this project, in which MaHV-6 positive animals were 11 times 

more likely to be infected with Theileria sp. (OR= 11.0, 95% CI 2.31-52.3) than MaHV-6 

negative ones (see Chapter 6, section 6.4.5).  The inclusion of saprophyte fungi in cluster E 

but not in cluster F (HMT analysis), may be suggestive of an interaction between these IA 

and MaHV-6 and Theileria sp., and that the BLC profiles of animals coinfected with MaHV-6 

and Theileria sp. may be sufficiently different when coinfected with saprophyte fungi.  

However, there were no apparent patterns in the HMT and BLC profiles by function of 

saprophyte fungi of these animals.  Alternatively, the apparent involvement of saprophyte 

fungi in the clustering of the HMT of mainland animals may be an artefact of the small 

mainland sample size.   Similarly, the inclusion of microfilaria in cluster C but not in cluster 

D (BCL analysis) may suggest an interaction between microfilaria and MaHV-6 and 

Theileria sp., and that the BLC profiles of animals coinfected with MaHV-6 and Theileria sp. 

may vary sufficiently when also coinfected with microfilariae.  Lower BLC was observed in 

animals infected with MaHV-6 and Theileria sp. that were coinfected with microfilariae 
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suggesting that the presence of this helminth infection generates further impact on the 

BLC of these mainland animals. 

 

Coinfections with bacteria, viruses, helminths, and protozoans have been previously 

reported (mostly studied in pairs), and both synergistic and antagonistic interactions have 

been observed with various effects on the host (Cox 2001), however, it is generally 

understood that immunosuppression in different degrees is a common factor to them.  

Coinfections with helminths (such as Breinlia sp. which has been previously reported in 

Rottnest Island animals, and for which circulating microfilariae were detected in 

peripheral blood of Rottnest Island and mainland quokkas by this project), appear to 

enhance bacterial, viral and protozoal infections (Cox 2001).  In helminth and bacterial 

coinfections, helminths have been reported to facilitate and enhance the bacterial 

component.  Such is the case of filarial and M. tuberculosis coinfection (Salgame, Yap, & 

Gause 2013), and nematodes and Salmonella enterica ser. Typhimurium coinfection (Su et 

al. 2014).  Similarly, coinfection studies on gammaherpesviruses (such as MaHV-6) which 

are characterised by establishing latent infections, or infections that are “dormant”, and 

helminths, have shown that the latter can induce viral reactivation if T helper cells Type 2 

inflammation is present (Reese et al. 2014).  Helminths and protozoans (e.g. Theileria sp. 

and Babesia sp.) have been reported to have complex interactions in the coinfected host, 

both synergistic (Dwinger et al. 1994) and antagonistic (Behnke, Sinski, & Wakelin 1999).  

In relation to viral and protozoal infections, studies have shown that in concomitant 

infection, both tend to act synergistically thus prompting worse clinical conditions, and 

have been associated with reduced body condition and higher mortality rates in 

laboratory animals (Bordes & Morand 2011), and higher mortality rates in wild mammals 

(Munson et al. 2008) and birds (Alley et al. 2010).  Although there is no irrefutable 

evidence, it may be reasonable to considered that in the case of the quokka, if 

immunosuppression is taking place, the helminth and the viral components of their 

complex coinfections may be playing a greater role in such immunosuppressed state 

(Bordes & Morand 2011 ; Cox 2001) and may be favouring infections by other type of 

organisms (Behnke, Sinski, & Wakelin 1999 ; Mishra et al. 2014 ; Reese et al. 2014 ; 

Semnani et al. 2006 ; Semnani et al. 2008).    

 

However, these multi-factorial multi-pathogenic systems do not work one way, but are 

more dynamic, probably too dynamic that understanding the mechanisms responsible for 

the clinical status of the host, although not impossible, is a complex task.  For instance, 

while helminth infections can induce viral reactivation of a latent gammaherpesvirus 

infection (e.g. MaHV-6 in both Rottnest Island and mainland animals), that same latent 
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infection may be playing its role in allowing infected animals to cope with other challenges.  

Studies in animal models have shown that gammaherpesviral latent infection can lead to 

an enhanced immune state in the host, which in turn protects the host against other 

challenges (Reese 2016).  Is this one of the possible reasons why quokkas on Rottnest 

Island and the mainland may be able to cope with their complex coinfections? 

 

Some subtle discrepancies were observed between the HMT and BLC results obtained in 

the 3D scatterplots-correlation analyses for Rottnest Island and mainland groups 

(concomitant infection analyses), and those previously obtained (single infection 

analyses) through non-parametric multivariate analyses (e.g. PERMANOVA and ANOSIM) 

for Salmonella spp. (see section 4.3.3) and MaHV-6 (see section 6.4.4).  Possible 

explanations may include: i) previous analyses did not take into account concomitant 

infection, thus some of the differences seen in the current section may be attributed to the 

infection with a second organism, ii) difference in sample sizes, as both HMT and BLC 

datasets used in the current concomitant infection analyses used less animals than in 

previous analyses, and iii) innate differences in the statistical properties of the various 

statistical techniques used. 

 

 Conclusion  

 

Interactions between infectious agents and their effect on the host are characterised by 

unpredictability.  It can not be any other way given the many factors involved in 

concomitant infections.  Some of these factors are extrinsic in nature (e.g. diet, climate, 

changing habitat, predators), and other ones are intrinsic in nature [e.g. immune and 

physiological status, micro/macroparasite load, types of organisms involved (virus, 

bacteria, fungi, protozoa, helminth), the nature of the first infection (chronic or acute) 

when the second is acquired] (Cox 2001).  Although all microparasites detected in this 

study and the possible implications of their intricate interactions should ideally be taken 

into account at the moment of generating an overall impression of the clinical status of 

quokkas on Rottnest Island and the mainland, some findings appear to be more worth 

noting than others, namely Salmonella spp., microfilariae, MaHV-6, Theileria sp., flower 

cells in peripheral blood, regenerative normocytic hypochromic anaemia, and lower 

plasma levels of vit. E.  Of these, only microfilariae, MaHV-6, and Theileria sp. apply to 

mainland animals.  “Adding bags of sand to a rowboat until it sinks” was the analogy used 

by Rhyan and Spraker (2010) when referring to the impact of mounting stressors on 

disease transmission cycles.  In line with Rhyan and Spraker’s analogy, there are several 
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bags of sand already piling up in quokkas, and these “bags of sand” are known for altering 

the only machinery by which quokkas could cope with current and further challenges, 

their immune system.  

 

Although the following attempt lacks evidence and therefore is theoretical in essence, it is 

still important to reconstruct an overall picture of what may be happening in quokkas on 

Rottnest Island and the mainland.  Salmonella spp. and microfilariae were found to be 

intimately related and appear to exert the heavier effect on quokkas on Rottnest Island, 

with a possible downregulating effect of both agents on the immune system of the animals 

(lower WBC in Salmonella spp. and microfilariae infected animals).  However, it is likely 

that the helminth infection is altering the immune system of the animals to a greater 

degree than Salmonella spp. and consequently favouring the bacterial infection, as it has 

been previously reported in other species.  While this interaction and its downregulating 

effect is taking place on the host, MaHV-6 and Theileria sp. are found to be also intimately 

related, with MaHV-6 positive animals having a greater likelihood of being infected with 

the protozoan, perhaps due to a possible immunosuppressive effect of the virus that 

specifically benefits the protozoan.  Bridging across these coinfections in Rottnest Island 

and mainland animals, is microfilariae that has not only been associated with enhancing 

bacterial infections, but have also been associated with the reactivation of latent 

gammaherpesviral infections, such as MaHV-6 detected in animals from Rottnest Island 

and the mainland.  Interestingly, even though there were no significant differences in the 

prevalence of microfilariae between Rottnest Island and mainland animals, the degree of 

microfilaraemia was higher in the Rottnest Island group when compared to the mainland.  

In the context of protozoans (i.e. Theileria sp. ad Babesia sp.), the observed number of 

positive cases on Rottnest Island were insufficient for the statistical analyses to be able to 

detect any particular pattern in the HMT and BLC of infected animals, while on the 

mainland, the overall sample was too small, and the number of negative cases where 

insufficient to compare patterns against positive animals.  Despite this, it is likely that 

these protozoans are also playing their role in these coinfections and having an effect on 

the host.    

 

All these infections, which could be considered to be chronic in nature, may be 

contributing to the anaemic state of the Rottnest Island quokka, through processes that 

include inflammation, and changes in iron homeostasis induced by cytokines and cells of 

the reticuloendothelial system (Weiss & Goodnough 2005).  Furthermore, microfilariae 

and Theileria sp. may also be contributing to the anaemia, by direct damage of 

erythrocytes.  However, filarial infection has been reported to give protection against 



 

238 
 

anaemia during malarial infection (Salgame, Yap, & Gause 2013).  Anaemia may not be 

present on mainland animals due to better diets (e.g. higher uptake of vit. E), the absence 

of infection with serovars of the Salmonella enterica subsp. enterica group as seen on 

Rottnest Island, milder degree of microfilaraemia when compared to Rottnest Island 

animals, and higher levels of vit. E in plasma than their island conspecifics.   

 

The presence of flower cells, and lower levels of vit. E in plasma of Rottnest Island animals 

when compared to mainland animals, although not infectious, are two more factors adding 

to the overall pressure that concomitant infections already represent.  Flower cells and vit. 

E may be interconnected.  To the author’s knowledge, flower cells (described as 

lymphocyte-like cells with a flower shape nucleus) have only been detected in humans 

infected with human T-cell leukaemia virus type 1 (a deltaretrovirus), in both 

asymptomatic carriers and those with clinical disease (de Oliveira et al. 2010), a virus 

known for its immunosuppressive ability.  A study by Fukuda et al. (2005) showed that the 

morphology of the nucleus in flower cells of patients infected with HTLV-1, is the result of 

microtubule constriction by upregulation of the phosphatidyl inositol 3-kinase, an 

important regulatory protein involved in control of cell growth, survival, and malignant 

transformation (Krasilnikov 2000).  Interestingly, plasma levels of vit. E that has been 

linked to downregulation of the phosphatidylinositol 3-kinase pathway (Ni et al. 2005), 

were found to be lower in Rottnest Island animals than in mainland animals.  Could 

downregulation of the phosphatidylinositol 3-kinase pathway be absent or impaired in 

Rottnest Island quokkas due to low vit. E, thus enhancing abnormal proliferation and 

malignant transformation?  Are flower cells in peripheral blood of Rottnest Island quokkas 

neoplastic cells and a deltaretrovirus is involved considering the nuclear morphology of 

flower cells?, or are flower cells just atypical LYMPH that appear to be undergoing a 

greater degree of immunostimulation in response to ongoing pressures (e.g. diet shortage, 

human interaction, concomitant infection)?  Although these questions are legitimate, there 

is no conclusive evidence (probably no evidence at all) against or in favour of any 

hypothesis (i.e. neoplastic cells that denote pathology, or atypical reactive LYMPH).  For 

this reason, it did not appear reasonable to discuss the clinicopathological results in 

previous chapters in the context of an immunosuppressive disease.  Furthermore, there 

was no significant difference in the proportion of flower cells between infected animals 

(i.e. Salmonella spp., Cryptococcus spp., or MaHV-6) and non infected ones.  Regardless, it 

appears imperative to rule out a pre-leukaemic state in quokkas on Rottnest Island and 

further research is advisable. 
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Lastly, immunosuppression due to chronic exposure to increasing levels and sources of 

stress may be the tipping point in this concomitant infection story.  The consequences of 

allostatic overload on the infected animals may include increased susceptibility to 

infection, severity of clinical disease, shedding of infectious agents (e.g. Salmonella spp.), 

probability of reactivation of latent infections (e.g. MaHV-6) or dormant lesions (such as 

those in Cryptococcus neoformans var. grubii infection) and poor prognosis (Hing et al. 

2016).  

 

 

8.5 Improved protocols 

Disease surveillance and health monitoring are necessary tools to properly carry out 

conservation management of wild populations of any animal, including quokkas.  These 

tools do not just allow the collection and maintenance of up to date epidemiological data 

(e.g. prevalence, incidence, and distribution of infectious agents), but also facilitate the 

early detection of disease outbreaks, and contribute to decision making.  For this reason, 

the following guidelines are recommended for wild quokkas on Rottnest Island and the 

mainland of WA. 

  

Animal handling.  Calico bags were sufficiently sturdy to withstand hind limb claws of 

Rottnest Island animals, but light and manageable enough to offer great manoeuvrability 

of the animal from outside the bag, making it easier to restraint the animals’ head, to then 

carry out anaesthesia induction.  By contrast, calico bags are not sturdy enough to handle 

mainland animals and hessian bags are recommended instead. 

 

General anaesthesia and physical examination.  Anaesthesia induction of quokkas on both 

Rottnest Island and the mainland may be safely carried out with 5% isoflurane, delivered 

in 100% medical oxygen at a flow rate of 2.5L/minute.  Anaesthetic depth (usually 2-3 min 

post induction) is accurately assessed through the loss of general muscle tone, the absence 

of a corneal reflex and hindlimb withdrawal response.  Anaesthesia should be able to be 

maintained on 2-2.5% isoflurane with an oxygen flow rate of 2L/min.  At 1.5% isoflurane 

with the same oxygen flow rate, animals regained consciousness.  In addition to 

auscultation using a stethoscope, monitoring heart rate would be better achieved using a 

pulse oximeter which would also allow oxygen saturation to be monitored.  Anaesthetic 

and general physical examination data sheets (see section 3.3) should be completed every 

time an individual is anaesthetised and examined.  Physical examination should be 

undertaken every time an animal is trapped.  This examination should include: eyes, ears, 
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nose, oral cavity, coat, body condition, body weigh, skeletal structure, external parasites, 

as well as inspection of the pouch, tail, testes (if male), and cloacal region. 

 

Laboratory procedures.  All laboratory protocols and procedures used in this study were 

effective for screening and identifying Salmonella spp., C. neoformans var. grubii, MaHV-6, 

and piroplasms (i.e. Babesia sp. and Theileria sp.).  Procedures and protocols used in HMT 

and BLC studies were equally effective and reliable. 

 

Blood studies.  Blood can be used (section 3.4.2) for HMT, BLC, vitamin E, as well as 

serology for C. neoformans (all varieties), C. gattii, MaHV-6, and other infectious agents 

(e.g., T. gondii).  It is recommended that, unless light scattering and impedance standards 

are determined for erythrocytes and white blood cells in quokkas, future automated HMT 

analyses could be run using the same settings used in this project (i.e. multispecies 

software with canine setting on an ADVIA-120® automated HMT analyser; Bayer 

diagnostics division, Tarrytown, New York, USA).  Generally speaking, cellular morphology 

was still unaffected when performing blood smears within 2-3 h post collection. 

 

Disease surveillance.  Although the protocols and procedures used in this project were 

effective for sample collection, handling, and storage, as well as detection and 

identification of recovered organisms or DNA, some aspects of these protocols may be 

adjusted in order to improve detection and identification of the organisms in this study.  

For instance: i) for Salmonella spp. screening: faecal samples obtained through rectal 

palpation should be combined with cloacal wet swabs (in Amie’s medium); and swabs 

should be cultured on brilliant green agar and bismuth sulphite agar, in addition to XLD 

media; blood culture should be incorporated as a standard test in Rottnest Island animals 

to determine whether salmonellosis is present or not,  ii) for C. neoformans var. grubii 

screening: duplicate nasal swabs, single swabs from the ventral aspect of the animals paws, 

and swabs of potential environmental sources should be collected, a latex-cryptococcal 

agglutination antigen test (LCAT) should also be carried out, as well as PCR-finger printing 

to determine the molecular type of all isolates recovered.  

 

8.6 Management Implications of this study 

• Avoid long term changes to the environment which would force quokkas to be 

exposed to greater levels of endogenous glucocorticoids due to chronic stress, a 

powerful downregulator of the immune system.  This applies equally to Rottnest 
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Island and mainland groups.  Infectious organisms studied in this project (i.e. 

Salmonella spp., C. neoformans var. grubii, MaHV-6, microfilariae, Babesia sp. and 

Theileria sp.), are known to cause disease when the host is under chronic stress 

(e.g. loss of habitat, drought, food deprivation, feral animals competition). 

• In addition to standard cryptococcal tests (e.g. latex cryptococcal agglutination test, 

culturing and PCR of nasal swabs), animals from Rottnest Island destine for 

captivity or other types of conservation programs (e.g. translocation) should be 

screened for lesions in the cribriform plate consistent with cryptococcal pathology 

through nasal endoscopy.  However, this diagnostic technique is limited to the 

nasal cavity and would not answer the question of whether the animals carry 

pulmonary dormant lesions or not.   If detecting these lesions is considered a 

priority, then advanced imaging techniques such as magnetic resonance imaging 

or computed axial tomography may be considered, as these lesions are difficult to 

detect with radiography, or not detected at all.  This would enable identification of 

which animals are at a greater risk of disease, and subsequently carry out required 

management procedures.  

• In accordance to the serious implications of Salmonella in public health, it is 

important to the Rottnest Island Authority, as well as to the Department of Health 

of Western Australia, to be aware of the changes in richness, abundance, 

prevalence and distribution of Salmonella serovars on the island.  Although 

comparative studies of Salmonella loads in the environment and in quokkas were 

not carried out in this study, we support the use of quokkas as sentinel species to 

monitor the ecology of Salmonella serovars on Rottnest Island, as previous authors 

have proposed (Hart 1980 ; Iveson 1977).  

• Given the presence of Salmonella serovars (especially those in the Salmonella 

enterica subsp. enterica group) in Rottnest Island animals that are not evident for 

mainland populations, movement of animals from Rottnest Island to the mainland 

(as has happened at least once within the City of Mandurah) should be considered 

a Biosecurity risk and handled accordingly. 

• Agencies responsible for the conservation of Australian native fauna should 

consider spill-over of MaHV-6 from infected quokkas to other related species, as a 

possibility.  Although clinical disease in quokkas due to MaHV-6 infection has not 

been described, skin lesions in the form of ulcers (oral and cloacal), respiratory 

signs, and ocular signs (e.g. conjunctivitis) may be present, as these signs have all 

been observed in animals positive to MaHV-1, -2, -3, and -4.  Spill-over of MaHV-6 

may present fatal to other species. 
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• Tracking the incidence, prevalence and population abundance of flower cells and 

Atly in quokkas on Rottnest Island is considered by this project to be a top and 

urgent priority for the Rottnest Island Authority and the Department of Parks and 

Wildlife.  Given the absence of conclusive evidence indicating that either flower 

cells are or are not neoplastic in nature and represent a pre-leukaemic state in 

Rottnest Island quokkas, further studies are critical to answer what flower cells 

are and represent for quokkas.  See section 8.7 for the studies proposed for this 

task. 

• Given that low protein diets have been previously linked to anaemia, replanting on 

Rottnest Island could be directed towards high protein food plants (requiring 

nutritional analyses of food plant species).  

• Movement of animals from Rottnest Island to the mainland or vice versa is 

unadvisable, and should not be considered for various reasons.  First, if a 

retrovirus is responsible for the presence of flower cells and Atly, the risk of 

animal-to-animal infection must be considered.  Although Salmonella spp. 

infections can be treated if needed, the high abundance and richness of Salmonella 

spp. on Rottnest Island may present a serious problem for mainland animals, who 

may be immunologically naïve to it.  However, immunological testing would be 

necessary to confirm this.  Although C. neoformans var. grubii is not transmitted by 

direct contact, it is not known to what degree mainland animals are susceptible to 

this yeast.   

• Disease surveillance and health monitoring should include complete haematology 

and blood chemistry studies (including vitamin E), which are the only tools that 

would enable tracking of clinical and subclinical disease in quokkas caused by any 

infectious organism.  This course of action would require of an interdisciplinary 

approach led by veterinary personnel, with the support of professionals from 

animal conservation fields such as ecology, biology and zoology among others.  

Additional resources and procedures needed to carry out disease surveillance and 

health monitoring of quokkas may include transportation, anaesthesia, physical 

examination equipment, biological sampling reagents, and access to laboratory 

facilities and reagents needed to carry out the necessary tests (e.g. PCR, culturing, 

incubators, laminar flow cabinets, microscopes).  

• Changes in prevalence, distribution, incidence, presence or absence of disease 

among other aspects, are necessary to plan management strategies and an 

emergency response plan.  Although this is the right course of action for both 

mainland and island populations, it is strongly advisable that Rottnest Island 

Authority continues strict and uninterrupted monitoring of Salmonella spp., C. 
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neoformans var. grubii, MaHV-6, microfilariae and atypical lymphocyte populations 

in the quokka.  

 

8.7 Future Directions of Research 

• Ongoing disease surveillance and health monitoring of wild quokkas should 

include individuals from other subpopulations, i.e. Bald Island and Stirling Range.   

• Further comparison and analysis of the health and disease status of mainland and 

island subpopulations, would benefit of greater sample sizes, and a comparable 

representation of males and females for the mainland sample.  This would provide 

greater sensitivity of the statistical analyses necessary to compare both cohorts 

(i.e. island and mainland). 

• Determine the environmental source or sources for C. neoformans var. grubii on 

Rottnest Island, and assess and establish the epidemiological risk of infection in 

humans. 

• Determine latex cryptococcal agglutination antigen test (LCAT) titres for clinical 

and subclinical disease in quokkas on Rottnest Island for clinical management of 

cryptococcosis. 

• Determine the microfilariae species present in quokkas on Rottnest Island via PCR 

and sequencing, and investigate the effect of microfilariae on the immune system 

of the animals through in vitro stimulation of monocytes and macrophages with 

microfilarial lysate.  Production of cytokines such as IFN-𝛾𝛾, IL-10 and IL-13 could 

be considered.  

• Confirm that flower cells and Atly morphologies in animals on Rottnest Island are 

lymphocytes, through immunophenotyping using flow cytometry and 

immunohistochemistry.  Similarly, carry out cytological evaluation of bone 

marrow aspirates (biopsies).  This may improve the understanding of the 

pathophysiology of these cells and possibly define their clinical significance (if 

any).  Establish the presence or absence of a retroviral infection (specifically a 

deltaretrovirus) through molecular studies (e.g. RNA sequencing) and carry out its 

corresponding phylogenetic analysis.  If detected, further studies should aim to 

isolate in cell culture and further characterise this virus as well as establish the 

extent of distribution, determine transmission and infectivity.  

• Isolate MaHV-6 to allow its cytopathic effect to be defined.  Also, designing a 

serology test (e.g. a serum neutralisation test) to screen for antibodies against 
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MaHV-6.  This would provide the opportunity to screen other species sharing the 

same ecological niche as the quokka. 

• Catecholamines (CCs) as well as glucocorticoids (GCs) assays should be considered 

as part of the health screening of wild quokkas.  A variety of samples could be used 

for these assays.  If HMT and BLC studies are being carried out, then measurement 

of both CCs (adrenaline and noradrenaline) and GCs (cortisol) is advisable, and 

blood would be the sample of choice (Sheriff et al. 2011).  Non-invasive methods 

also exist and are used to measure GCs, this include saliva, urine, faeces and hair 

(Sheriff et al. 2011).  Similarly, stress surveillance, understood as the ongoing 

tracking of levels of stress in free-ranging quokkas in combination with infection 

parameters (Hing et al. 2016), would facilitate a better understanding of how these 

factors interrelate and affect their health, provided the proper multivariate 

correlational analyses are carried out (i.e. environmental variables),  In this 

context, given that all major organisms examined by this study (e.g. Salmonella 

spp., C. neoformans var. grubii, MaHV-6) are known to cause disease in the host 

when immunosuppressed, which is a possible outcome of chronic stress, stress 

surveillance is advisable. 

 

 

8.8 Conclusion 

This thesis not only provides new insight into the diseases and health of wild quokkas, but 

also presents updated data for disease aspects in this species.  The epidemiological data 

obtained (e.g. prevalence and distribution), has a high reliability factor considering the 

robust sample size used, and may be incorporated in future risk analysis planning.  This 

thesis also presents the first reference intervals for haematology, blood chemistry and 

vitamin E, of quokkas on Rottnest Island and selected locations on the mainland, which 

would aid in the assessment of the overall health of wild individuals by providing a 

baseline against which any changes can be measured.  Overall, the outcomes of this project 

have highlighted the need for continuous disease and health surveillance, and have 

provided evidence of the importance of wildlife health professionals in the conservation of 

Australian native wildlife.  Ongoing surveillance of infectious diseases and health 

monitoring in S. brachyurus is essential to a sound approach to conservation of this 

vulnerable species. 
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10. Appendices 

10.1 Appendices relevant to Chapter 4 

 Preliminary screening and isolation 

10.1.1.1 Xylose Lysine Deoxycholate agar plates 

Xylose Lysine Deoxycholate Agar (XLD) (BD Diagnostics, Maryland, USA) was prepared 

according to the manufacturer’s recommendations and used as a selective and 

differentiation media for the growth and isolation of Salmonella.  Briefly, 55 g of the 

dehydrated media were dissolved in 1 L of distilled water (DW) and mixed thoroughly.  

The solution was then heated until boiling point.  It was then left until it reached 55 – 60 ˚C 

and used immediately to prepare the culture plates.  Plates were then incubated at 37 ˚C 

for 24 h for quality control.  XLD agar plates contain xylose, which is fermented by 

practically all Enterobacteriaceae except Shigella species.  It also contains lysine that 

enables Salmonella to be differentiated from the non-pathogenic Enterobacteriaceae by 

slowing down the fermentation process of Salmonella on the xylose.  Additionally, it 

contains an indicator system that allows the visualisation of hydrogen sulphide (H2S) 

produced by Salmonella colonies, resulting in the formation of colonies with black centres, 

while sodium deoxycholate is use to inhibit gram-positive organisms (Zimbro et al. 2009).  

Typical Salmonella colonies in XLD, appear either red/pink (although the colony in itself is 

colourless) with or without pale/dark black centres (Wallace, Jacobson, & Hammack 

2009).  If typical colonies were not present, atypical Salmonella colonies (i.e. light yellow 

or yellow colonies with or without black centres) were then examined (Wallace, Jacobson, 

& Hammack 2009). 

10.1.1.2 Direct method with pre-enrichment 

This method was used to subjectively estimate the load of Salmonella in the sample.  It 

involved a pre-enrichment step with buffered peptone water (PW) used to resuscitate 

Salmonella that had been damaged due to conditions such as prolonged storage or 

freezing-thawing (Davies 2013).  Briefly, 0.5 g of the inner most part of the faecal sample 

were mixed with 5 mL of sterile PW in a 10 mL polycarbonate yellow cap sterile tube 

(SARSTEDT Aktiengeseilschaft & Co. Germany) and incubated at 37 ˚C for 20 h in a shaker.  

A 1:10 w/v ratio was used, as this same ratio was required in the indirect method with 

enriching medium.  Following incubation, a sterile cotton tip applicator (Multigate Medical 
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Products PTY LTD., New South Whales, Australia) was used to inoculate single XLD plates 

with a heavy inoculum using the entire surface of the agar plate; plates were labelled, 

sealed with Parafilm® (BEMIS, Wisconsin, USA) and incubated at 37 ˚C for at least 24 h.  A 

positive culture plate had bacterial growth compatible with Salmonella (see below). 

10.1.1.3 Indirect method with Delayed Secondary Enrichment 
(DSE)  

This method was used for the isolation and further identification of Salmonella.  In 

addition to a pre-enrichment step (that of the indirect method), it also involved a selective 

enrichment step with Rappaport Vassiliadis (RV) broth (Oxoid LTD., Hampshire, England) 

that enhances the growth of Salmonella while inhibiting the growth of other organisms, 

therefore increasing the likelihood of subsequent isolation.  Rappaport Vassiliadis was 

prepared according to laboratory instructions.  Briefly, 30 g of the dehydrated media were 

mixed in 1 L of distilled water while gently heated on a magnetic stirrer hot plate 

thermostat (IEC Pty Ltd, Australia) until dissolved.  Upon preparation of the media, 10 mL 

of this was dispensed in sterile single 50 mL polycarbonate screw-capped McCartney 

bottles (TechnoPlas Pty Ltd, St. Marys, South Australia) and autoclaved at 115 ˚C for 15 

min, after which vials were stored at 4 ˚C for further use.  Rappaport-Vassiliadis 

enrichment broth vials were inoculated with 10 µL of the already inoculated PW that was 

originally prepared for the direct method previously mentioned, and incubated at 42 ± 1˚C 

for 48 hours in a water bath.  A single un-inoculated RV vial was also incubated as a 

negative control.  A positive growth on RV enrichment broth was considered to be that in 

which cloudiness of the media was present.  Inoculation of XLD plates was performed by 

placing 30 µL of the inoculated RV enrichment broth on the surface of the agar and 

streaking out for single colonies with a sterile 10 µL disposable inoculation loop 

(SARSTEDT Aktiengeseilschaft & Co. Germany).  Plates were sealed with Parafilm® 

(BEMIS, Neenah, USA) and incubated for 18-24 hours at 37 ˚C.  Assessment of morphology 

and growth was done as previously described for cultures on XLD with the direct method. 

 

 Preliminary identification and storage 

10.1.2.1 Gram stain protocol 

Bacterial smears were prepared from colonies in nutrient agar (NA).  Fresh microscope 

slides were cleaned with Kimwipes Kimtech® (Kimberly-Clark Worldwide Inc., Roswell, 

USA) and flamed.  A small amount of a bacterial colony was emulsified in a drop of distilled 

water, and the smear was then fixed by heat.  Smears were then Gram stained using a 

modified protocol of that by Markey et al. (2013).  Briefly, crystal violet was applied for 30 



 

287 
 

sec followed by Gram’s iodine (fixative) for 30 sec as well.  Then Gram’s decolouriser 

(acetone) was added for 10 sec, upon which carbol fuchsin (counter-stain) was applied for 

30 sec.  Water washes were applied in between. 

 

10.1.2.2 Biochemical tests 

Initially, a PW broth was inoculated with a single colony from an NA plate.  Subsequently, 

3 – 5 drops of this inoculated PW were used to inoculate all other test tubes using a 3 mL 

sterile polyethylene disposable transfer pipette (SARSTEDT Aktiengeseilschaft & Co. 

Germany) and incubated at 37˚C for 24-48h with the lids loose.  Table 10-1 shows the tests 

performed and their corresponding description. 
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Table 10-1 Biochemical tests used for the preliminary identification of suspicious isolates on XLD agar plates 
Test Description and protocol 

Indole (I) 

determines the ability of an organism to produce indole from 
tryptophan.  Briefly, 0.5mL of Kovac’s reagent were added to 
the PW tube, gently shaken and examined after 2 mins.  
Indole positive was indicated as a red colour in the reagent 
layer, while an indole negative was indicated by a yellow 
colour in the reagent layer.  

Methyl Red test (MR) 

determines the ability of an organism to produce and 
maintain stable acid end products from the fermentation of 
glucose.  Briefly, two drops of methyl red solution (School of 
Veterinary and Biomedical Sciences, Murdoch University) 
were added to the MR tube test, shaken gently and examined 
immediately.  A methyl red positive test was considered to be 
a strong red colour, and a methyl red negative test was that 
one with a yellow colour 

Voges-Proskauer test (VP) 

determines the ability of an organism to convert the acid end 
products of glucose fermentation to neutral end products.  
This test was carried out by transferring 250 µL of MR 
culture media to a 1.5mL PCR tube (SARSTEDT 
Aktiengeseilschaft & Co. Germany), then 150 µL of solution 
VP A (5% α-naphthol in ethanol) and 50 µL of solution VP B 
(40% KOH) were added, the tube was gently shaken and the 
reaction was read 10-20 min later.  A test was considered to 
be VP positive if the reaction colour was red and negative if 
colourless 

Citrate (C) 

determines the capacity of an organism to use citrate as a 
sole source of carbon.  Briefly, the slant citrate media was 
inoculated with three to five drops of inoculated PW broth 
with a 3 mL sterile polyethylene disposable transfer pipette 
(SARSTEDT Aktiengeseilschaft & Co. Germany), and the tube 
was then gently rotated to make sure the PW broth covered 
the entire surface of the citrate agar.  A citrate positive test is 
one in which the media has changed to blue and has visible 
growth, where as a negative citrate test does not have any 
growth and there is no colour change 

Urea hydrolysis (U) 

determines the organism’s ability to hydrolyse urea to 
ammonia.  A positive urease test its indicated by a bright 
pink colour in the urea medium, where as a negative urease 
test is indicated by no colour change 

Lactose (carbohydrate fermentation) (L) 

determines the ability of the organism to ferment or not 
ferment lactose as a carbon energy source.  A positive lactose 
test is indicated by a change in colour from red/pink to 
yellow while a negative lactose test has no colour change 
post incubation 

Lysine decarboxylase (LD)   

determines the presence and activity of lysine decarboxylase 
which decarboxylates lysine to produce amine 1,5-
diaminopentane or cadaverine.  With acid production, due to 
glucose fermentation, the medium first turns yellow.  Then, if 
decarboxylation of lysine occurs, the medium then turns 
violet in response to the production of alkaline end-products.  
This test is performed with a blank control tube that doesn’t 
contain lysine.  Both tubes are inoculated with the PW broth 
media and a layer of sterile Parafilm oil is added as exposure 
to air could cause alkalinisation of the media resulting in a 
false positive reaction.  A positive lysine decarboxylase 
reaction is indicated by a purple/violet colour with turbidity, 
where as a negative lysine decarboxylase reaction is 
indicated by a yellow colour or no change without turbidity 
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10.1.2.3 Antiserum agglutination 

This test represented the last step in the preliminary identification of suspicious 

Salmonella isolates before storing for further processing.  Antiserum Salmonella 

Omnivalent Omni-O (A-60) and Antiserum Salmonella Polyvalent OMG (both from Bio-Rad 

laboratories, Marnes-la-Coquette, France), were used for this purpose.  The procedure 

required pure fresh colonies from NA plates.  Briefly: one drop of sterile water (Water for 

Injection BP, AstraZeneca Pty Ltd., North Ryde, Australia) and one drop of antiserum were 

placed separately on a microscope slide (Waldemar Knittel, Germany).  Using separate 

sterile 10µL disposable inoculation loops (SARSTEDT Aktiengeseilschaft & Co. Germany), 

one colony was mixed with the drop of distilled water to be used as a negative control and 

one colony mixed with the antiserum drop as well.  Colonies were suspended making sure 

a homogeneous mixture of both drops was obtained.  The slide was then rocked gently in a 

rotary movement.  A positive reaction was one in which there was agglutination with the 

antiserum; a reaction within the first 30 sec was considered strong, and a reaction in 

between 30 and 60 sec was considered weak.  A valid positive reaction was one in which 

agglutination was not observed on the negative control.  If agglutination was observed on 

the control suspension, the isolate was stored and sent for further identification, as all 

other tests were compatible with Salmonella. 

10.1.2.4 Storage 

Suspicious and confirmed Salmonella isolates were subsequently stored in Protect® 

Bacterial Preservers (Technical Service Consultants Limited, Lancashire, United Kingdom) 

cryovials according to the manufacturer’s guidelines.  Briefly, a 10 µL sterile disposable 

inoculation loop (SARSTEDT Aktiengeseilschaft & Co. Germany) was used to harvest a 

loop full of single colonies from the NA plate from which all previous tests had been 

performed.  The Protect® vial was then open, flamed and the colonies were inoculated 

onto the cryopreservative fluid and homogenised until a thick suspension was obtained.  

Subsequently, the vial was then flamed, capped and gently inverted six times and left to 

stand for at least 30 sec, after which most of the cryopreservative fluid was withdrew 

using a 3 mL sterile polyethylene disposable transfer pipette (SARSTEDT 

Aktiengeseilschaft & Co. Germany), having flamed the vial just previously.  Lastly, the vial 

was flamed, recapped and stored at -80 ˚C for further processing.  

 

 Revival, serotyping and antibiotic sensitivity 

Cryovials were transferred from -80 ˚C to a cryoblock (Technical Service Consultants Ltd. 

Lancashire, England), which had been pre-cooled to -20 ˚C for at least 1 h to extend the 
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available working time with the isolates.  In a laminar flow hood, the storage vial was 

opened, flamed and a single bead was extracted using a sterile hypodermic needle (Becton 

Dickinson, Franklyn Lakes, USA).  Subsequently, the vial was flamed, capped and returned 

to the cryoblock.  The bead was placed in nutrient broth (NB) media and incubated at 

37 ˚C for 24 h.  Having confirmed growth by turbidity in the medium, 30 µL of the 

suspension were inoculated on separate plates of NA and XLD and streaked out for single 

colonies.  Plates were incubated at 37 ˚C for 24 – 48 h.  Colony morphology on XLD was 

used to confirm that the revived organism had Salmonella morphology (quality control) 

and therefore confirming the growth on NA.  The 24 – 48 h range was used to allow the 

bacteria to reactivate and present its characteristic morphology.  Inspection for growth 

and contamination was done twice daily.  If colony morphology (on XLD) corresponded to 

the one in the records for that given isolate, a single colony on the NA plate was then 

subcultured onto a slant NA media prepared in 50 mL polycarbonate McCartney bottles 

previously autoclaved (TechnoPlas Pty Ltd, St. Marys, South Australia) and incubated at 

37˚C for 18 – 24 h.  Isolates were then submitted to the national reference laboratory for 

Salmonella in Perth at PathWest, Sir Charles Gairdner Hospital, Western Australia for 

serotyping by antisera slide agglutination (Kauffmann-White-LeMinor scheme) to detect O 

(somatic), H (flagellar) and K (capsular) antigens, which today is still widely accepted as 

the gold standard for identification of Salmonella isolates.  Two isolates were sent to the 

Australian Salmonella Reference Centre (Institute of Medical and Veterinary Science; IMVS 

Pathology) for further serotyping.  Upon serovar identification, isolates were revived once 

more as previously described.  A colony was subsequently subcultured onto a NA plate, 

streaked out for single colonies and incubated at 37˚C for 18 – 24 h.  Colonies in this plate 

were subsequently used to perform the antimicrobial susceptibility test, using the disk 

diffusion susceptibility method (gold standard) (Bauer et al. 1966).  Briefly, a bacterial 

inoculum of approximately 1-2 x 108 CFU/mL was applied onto a 150 mm (diameter) 

Mueller-Hinton agar (MHA) plate in a lawn format.  Paper antibiotic disks with a fixed 

concentration of the drug were deployed on the surface of the MHA plate and incubated 

for 16-24 h at 35 ˚C.  Susceptibilities of the isolates, which provide qualitative results (i.e. 

sensitive, intermediate, or resistant), were then obtained by measuring the zones of 

growth inhibition around each disk, which were then compared against the criteria of the 

Clinical and Laboratory Standards Institute (CLSI) (Clinical and Laboratory Standards 

Institute 2013). 
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10.2 Appendices relevant to Chapter 5 

 Isolation and storage protocols 

Inoculation of the BSA plates was by wiping the swabs over the entire area of the agar.  

Plates were labelled and sealed with Parafilm® (BEMIS, Wisconsin, USA) paper and 

incubated at 28±0.5 ˚C for 4 weeks.  Daily inspection optimised identification of colonies 

with yeast-suspicious morphology, i.e. opaque, mucoid in consistency (evident as smooth, 

high light reflectance), convex or flat in elevation, mostly circular (although varying shape), 

usually with an amorphous (i.e. uniform) structure, an entire edge, and produce yeast 

fermenting odour.  Plates were discarded if contaminated with filamentous fungi or 

bacteria. 

 

Suspicious colonies with BCE were then subcultured onto fresh BSA plates to further 

confirm the BCE in the absence of other growth.  Suspicious colonies were subsequently 

subcultured onto Sabouraud dextrose agar (SDA) plates (Microbiology, School of 

Veterinary & Biomedical Sciences, Murdoch University).  Two SDA plates were inoculated 

and streaked out for single colonies.  One plate was incubated at 28 ˚C; the second was 

incubated at 37±0.5 ˚C to confirm growth at animal body temperature.  Both were checked 

daily for growth and contamination. Preliminary confirmation of Cryptococcus spp. like 

yeast organisms was done through a series of tests on colonies from SDA incubated at 

28±0.5 ˚C.   

 

A Gram stain was performed by emulsifying a small colony in 15 µL of sterile water on a 

microscope slide (Waldemar Knittel, Germany) and fixed by heat.  The slides were then 

Gram-stained and observed under an Olympus BX50F4 microscope (Olympus Optical Co, 

Ltd. Japan) at 100x magnification.  Typical ovoid or circular Gram-positive cells, 

reproducing by budding, were considered confirmation of yeast.  

 

An India ink capsule positive test (Scientific Device Laboratory, Des Plaines, USA) was then 

used to visualise the capsule (characteristic of Cryptococcus species as well as some other 

yeast such as Rhodotorula spp.).  A small portion of a colony or a very small colony was 

emulsified on a microscope slide (Waldemar Knittel, Germany) in a drop of a 1:1 solution 

of sterile water (Water for Injections BP, AstraZeneca Pty Ltd., North Ryde, Australia) and 

India ink.  The slides were coverslipped and observed under an Olympus BX50F4 

microscope (Olympus Optical Co, Ltd. Japan) at 100x magnification.  The presence of a 
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capsule was confirmed by a light halo around the cell (caused by India Ink particles being 

exclude from the cell).  Subsequently, Gram-positive, budding-cell colonies scored as 

capsule-positive were then tested by the Christensen’s Urea Agar test (CUAT).  This test is 

the standard biochemical method for urease activity detection (Canteros et al. 1996 ; 

Christensen 1946).  Cryptococcus spp. have the ability to hydrolyse urea and generate a pH 

change; results of this test can therefore be used for the preliminary differentiation from 

other yeasts.  A heavy inoculum (i.e. not less than 10 colonies) was harvested usually from 

a 3 day-old SDA culture and plated onto slant Urea Base Agar (Oxoid Laboratories) and 

incubated at 28±0.5 ˚C and checked daily for growth and colour change of the media.  As a 

negative control, an uninoculated CUAT was always included.  A positive urease reaction 

was indicated by the agar turning pink. 

  

Lastly, colonies with yeast suspicious morphology on culture media, that were Gram-

positive (oval or circular) with evidence of reproduction by budding, capsule positive 

under India ink technique, and urease positive, were subcultured one last time onto SDA 

plates and incubated at 28±0.5 ˚C.  Colonies from SDA pure cultures were stored in 

Microbank™ System (PRO-LAB Diagnostics, Richmond Hill, Canada) cryovials according to 

the manufacturer’s guidelines.  Briefly: a loop (10 µL sterile disposable inoculation loop, 

SARSTEDT Aktiengeseilschaft & Co. Germany) full of single colonies16 was used to 

inoculate a Microbank™ cryovial that had been previously flamed.  Colonies were mixed 

until completely emulsified.  Subsequently, the vial was flamed once more, and the cap put 

back.  The vial was then mixed by inversion five times.  The excess cryopreservative was 

aspirated out of the vial using a 3 mL sterile disposable transfer pipette (SARSTEDT 

Aktiengeseilschaft & Co. Germany) having flamed the vial previously.  The vial was then 

stored at -80 ˚C for further processing. 

 

 Revival and preliminary identification protocols 

Cryovials were transferred from -80 ˚C to a cryoblock (Technical Service Consultants Ltd. 

Lancashire, England), which had been pre-cooled to -20 ˚C for at least 1 h to extend the 

available working time with the isolates.  In a laminar flow hood, the storage vial was 

opened, flamed and a single bead was extracted using a sterile hypodermic needle (Becton 

Dickinson, Franklyn Lakes, USA).  Subsequently, the vial was flamed, capped and returned 

to the cryoblock.  The bead was placed directly onto an SDA plate and moved on its surface 

as if streaking out.  Lastly, culture plates were labelled, sealed with Parafilm® (BEMIS, 

                                                             
16 due to the slow growth rate of the isolated organisms, colonies older than 24 h were stored in Microbank™ cryovials and 
not 18-24 h as indicated by the manufacturer 
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Wisconsin, USA) and incubated at 28±0.5 ˚C. for at least 3-5 days before growth started to 

appear.   

 

For preliminary biochemical identification, the API® 20 C AUX identification system for 

yeast (bioMérieux SA, Marcy-I’Etoile, France) was used according to the manufacturer’s 

guidelines.  Briefly: In-house 0.85% sodium chloride (NaCl) was prepared in aliquots of 2 

mL in 5 mL sterile Macartney Bottles and autoclaved at 121˚C for 15 min, for the 

inoculation of the API 20C AUX strips and kept at room temperature.  When inoculating 

the API® 20 C AUX strips, the incubation box (tray and lid) was prepared by adding 5 mL 

of sterile water (Water for Injections BP, AstraZeneca Pty Ltd., North Ryde, Australia) onto 

the tray, making sure it was evenly distributed.  Subsequently, one API® 20 C AUZ strip 

was removed from its packaging and delicately place into the tray, making sure no water 

would get in contact with the culture cupules.  Colonies were then harvested from pure 

culture SDA plates using a 10 µL sterile disposable inoculation loop (SARSTEDT 

Aktiengeseilschaft & Co. Germany) and mixed thoroughly with 2 mL of 0.85% NaCl until a 

suspension with a turbidity equal to 2 McFarland was obtained.  Next, an ampule of API C 

medium was inoculated with 100 µL of the NaCl 0.85% suspension using a 3 mL sterile 

polyethylene disposable transfer pipette (SARSTEDT Aktiengeseilschaft & Co. Germany) 

by gentle suction (taking care to not form bubbles).  The strip cupules (with the multiple 

culture media tests) except one (control) where then inoculated with 5 drops of the 

previously prepared suspension, taking care of not forming bubbles and to not overfilling 

the cupules.  The tray was then covered with its lid and incubated at 28±0.5 ˚C 

(temperature at which isolates had been cultured previously).  Readings were done at 48 

and 72 h.  A positive reading was that of a cupule with grater turbidity than the control 

cupule.  Interpretation of the numerical profile obtained (according to the result of each 

cupule) was done using the apiweb™ identification software with database v4.0 

(bioMérieux SA, Marcy-I’Etoile, France). 

 

 DNA extraction and molecular identification protocols 

The PowerSoil™ DNA isolation protocol was modified by adding four freeze-thaw steps, 

each time using liquid nitrogen and boiling water (10 min), and a step with protein kinase 

lysis over night.  More specifically, a loop full of fresh pure culture colonies of a 10 µL 

sterile disposable inoculation loop (SARSTEDT Aktiengeseilschaft & Co. Germany) were 

inoculated onto the PowerBead Tubes provided, that were then gently vortexed.  

Subsequently, four steps of freeze-thaw in liquid nitrogen and boiling water were 

performed with a final thawing step of 5 min.  Solution C1 was then added (60 µL) and the 
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PowerBead Tubes were vortexed briefly initially and then for 10 min at maximum speed.  

Tubes were then centrifuged at 10,000 x g for 30 sec at room temperature, after which the 

supernatant was transferred to a clean 2 mL Eppendorf tube.  Subsequently 250 µL of 

solution C2 were added to the tubes and vortexed for 5 seconds.  Proteinase K (i.e. 25 µL) 

was then added to each tube and incubated on a hot plate/shaker at 56 ˚C and 650rpm.  

Tubes were then centrifuged at room temperature for 1 min at 10,000 x g.  Avoiding the 

pellet, up to 600 µL of supernatant was transferred to a clean 2 mL Eppendorf tube 

(SARSTEDT Aktiengeseilschaft & Co. Germany).  Solution C3 was added (i.e. 200 µL) to 

each tube and vortexed briefly and then left to incubate at 4 ˚C for 5 min.  Tubes were then 

centrifuged at room temperature for 1 min at 10,000 x g.  Avoiding the pellet formed, 750 

µL of the resultant supernatant was transferred into a clean 2 mL Eppendorf tube, then 

solution C4 was added (750 µL) and the tube was vortexed for 5 sec.  At this stage, three 

loads of 675 µL of the resulting solution were added onto a Spin Filter separately and 

centrifuged at 10,000 x g for 1 min at room temperature (the flow through gets discarded 

after every load).  Having discarded the flow through after the third load and spin, 500 µL 

of solution C5 were loaded onto the Spin Filter and centrifuged at room temperature for 

30 sec at 10,000 x g.  The resulting flow through gets discarded and the Spin Filter was 

centrifuged one more time for 1 min at 10,000 x g.  Subsequently the Spin Filter was 

placed in a new clean 2 mL Eppendorf (Sarstedt, Numbrecht, Germany), and DNA was 

eluded by adding 100 µL of solution C6 directly onto the filter membrane and centrifuged 

at room temperature for 30 sec at 10,000 x g.  DNA was then stored at -20 ˚C for 

downstream applications.   

 

Extracted DNA from isolated yeast organisms was tested with Polymerase Chain Reaction 

(PCR).  Primers ITS1 (forward) 5’-TCCGTAGGTGAACCTGCGG-3’ and ITS4 (reverse) 5’-

TCCTCCGCTTATTGATATGC-3’ were used to amplify the Internal Transcribed Spacer (ITS) 

region in rDNA from all fungal isolates with an expected amplicon that varies among 

species (e.g. 710 bp in Saccharomyces cerevisiae and Suillus sinuspaulianus; in Rhizopogon 

spp. the region could be up to 850 bp) but is usually bigger than 700 bp.  These primers 

make use of conserved regions of the 18S, 5.8S, and 28S rRNA genes to amplify the 

noncoding regions (i.e. ITS 1 and ITS 2) between them (White et al. 1990) (Figure 10-1).   

 

 
Figure 10-1 Three coding and two internal transcribe spacer regions of the fungal nuclear ribosomal DNA, 
with approximate locations of PCR forward primer ITS1 and reverse primer ITS4 (dotted lines) used in this 
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study.  The arrows represent the 3’ end of each primer. 
 

PCR reactions were carried out in 25 µL reaction volumes containing 1 µL of DNA template, 

a working concentration of 0.5 µM of each primer (i.e. upstream: ITS1, and downstream: 

ITS4), and 2x PCR Master Mix (Promega Corporation, Madison, USA) containing 50 

units/mL Taq DNA polymerase, 1.5 mM of MgCl2, and 200 µM of dNTPs.  Cycling 

conditions were as follow: an initial denaturation of 1 min at 95˚C; 40 cycles with 95˚C for 

30 sec, 50˚C for 45 sec, and 72˚C for 1 min; and one last cycle with 95˚C for 30 sec, 50˚C for 

45 sec, and 72˚C for 7 min.  PCR products were visualised in 2% agarose gels, ran at 90 V, 

400 mAmp for 45 min.  Bands were then cut out with separate sterile scalpel blades, and 

DNA was then purified using the filter tip method.  Briefly, 100 µL filter tips were 

previously prepared by cutting enough off the bottom so they could fit into a 1.5 mL 

Eppendorf tube (previously UV sterilised) with the lid closed.  Excess agarose gel was 

trimmed off the cut bands and subsequently placed into the filter tips (already inside the 

Eppendorf tubes).  At this stage, Eppendorf tubes were centrifuged at 16,100 x g for 2 min 

upon which the filter tip was removed.  Agarose gel was removed by the filter membrane 

technique and the resulting flow through contained the purified PCR reaction product.  All 

PCR and sequencing reactions were carried out in an Applied Biosystems (AB) GeneAmp 

2720 Thermal Cycler.   

 

Sequencing was done at a 1/8 reaction using 1 µL of dye terminator mixture (Applied 

Biosystems, Scoresby, Australia) and 1.5 µL of 5x sequencing buffer (SABC, Murdoch 

University) in a 10 µL final reaction volume (a full reaction uses 8 µL of dye terminator in 

20 µL total volume) given that the concentration of DNA post PCR was within the expected 

threshold of 5-20 ng (DNA template required for a half reaction, that is 10 µL final reaction 

volume) as recommended by Applied Biosystems in their BigDye® Terminator v3.1 Cycle 

Sequencing Kit protocol.  Briefly, a master mix containing 1 µL of dye terminator mixture, 

1.5 µL of 5x sequencing buffer, 1 µL of 3.2 pM working concentration primer (ITS4), and 

4.5 µL of PCR grade water (Fisher Biotech, Perth, Australia) was prepared for each PCR 

product to be sequenced.  Lastly, 2 µL of purified DNA (i.e. cut band) were added to each 

reaction.  Tubes were then gently vortexed and centrifuged for less than 5 sec to ensure 

reactions were well mixed and at the bottom of the tubes.  Cycle conditions were: an initial 

step of 96˚C for 2 min (samples were placed on the plate when the temperature was near 

96˚C), then 25 cycles of 96˚C for 10 sec (denaturation), 50˚C (annealing temperature for 

the ITS4 primer used in the initial PCR protocol) for 5 sec, then 60˚C for 4 min (extension), 

and lastly a indefinite holding step at 14˚C. 

 



 

296 
 

Purification of sequence reaction products was done using the ethanol precipitation 

protocol for BigDye® Terminator v3.1 (BigDye® Terminator v3.1 Cycle Sequencing Kit, 

Applied Biosystems, Scoresby, Australia) method.  For each reaction, the entire sequencing 

reaction product was transferred to a 0.5 mL Eppendorf tube previously UV sterilised.  

Subsequently, in the following order, 1 µL of 125mM EDTA, 1 µL of 3M Sodium acetate pH 

5.2 and 25 µL of 100% Ethanol were added to each reaction tube.  Tubes were then briefly 

vortexed at low speed and left to incubate at room temperature for at least 20 min after 

which, tubes were centrifuged at maximum speed for 30 min.  At this stage, the resulting 

supernatant was removed using a vacuum pump with P200 filter tips (previously UV 

sterilised) and tubes were left upside down to dry for at least 3 min.  The DNA pellet (not 

visible) was then gently rinsed with 125 µL of 70% Ethanol, followed by a microfuge step 

at maximum speed for 5 min at room temperature.  Lastly, all the supernatant was 

removed using a vacuum pump with P200 filter tips (previously UV sterilised).  Tubes 

were placed in a Speedvac Concentrator (Savant Instruments, Inc. New York) to dry out 

and spin for 15 min before being submitted to the sequencing facility at the State 

Agricultural and Biotechnology Centre (SABC) located in Murdoch University, Western 

Australia. 

 



 

297 
 

10.3 Appendices relevant to Chapter 6 

 DNA extraction from peripheral whole blood 

The spin-column protocol for whole blood of the QIAamp® DNA MIni Kit (QIAGEN®, 

Hilden, Germany) was used.  Briefly, 20 µL of Proteinase K initially added to individual 1.5 

mL microcentrifuge tubes.  Subsequently, the maximum volume possible of whole 

anticoagulated blood (ranged from 25 µL to 100µL) was added to the microcentrifuge 

tubes and mixed with the proteinase K by pipetting up and down a couple of times.  The 

total volume was then adjusted to 220 µL by adding phosphate buffered saline (PBS) and 

mixed by pipetting up and down.  Then, 200 µL of buffered AL were added to the sample 

and microcentrifuge tubes were thoroughly mixed by pulse-vortexing for 15 s.  Tubes 

were then incubated on a hot plate/shaker at ~56 ˚C and 650 rpm for 10 min, upon which 

the mixture was then briefly centrifuged.  Next, 100% ethanol (200 µL) was added to each 

sample and mixed thoroughly by pulse-vortexing for 15 s. and then centrifuged once more.  

The suspension was then carefully transferred to a QIAamp Mini spin column, closed and 

centrifuged at 6,000 x g for 1 min.  Upon centrifugation, the filtrate was discarded and the 

spin column was put into a new 2 mL Eppendorf tube.  Buffered AW1 was then added (500 

µL) to the spin column and subsequently centrifuged at 6,000 x g for 1 min.  Once again the 

spin column was transferred to a new clean 2 mL Eppendorf tube and the filtrate was 

discarded.  With the spin column in a new 2 mL Eppendorf tube, buffered AW2 was added 

(500 µL) and centrifuge at 20,000 x g for 3 min.  Next, the spin column was transferred 

once more to a clean 1.5 mL Eppendorf tube and the filtrate discarded.  Lastly, the elution 

step was done by adding 200 µL of buffer AE onto the spin column, which was then 

incubated at room temperature (15-25 ˚C) for 1 min, and then centrifuge at 8,000 rpm for 

1 min. 

 

Extraction of DNA from whole blood with ISOLATE II Blood DNA Kit (Bioline Reagents Ltd., 

London, United Kingdom) involved a lysing step in a 1.5 mL microcentrifuge tube with 25 

µL of Proteinase K mixed with whole blood in volumes ranging from 25 µL to 100 µL.  

Adding PBS then adjusted this to a total volume of 200 µL.  Buffer G3 (200 µL) was added 

to the homogenate, which then was mixed by vortexing for 20 sec.   Microcentrifuge tubes 

were then incubated on a hot plate/shaker at ~70 ˚C and 650 rpm for 30 min.  DNA 

binding conditions were then adjusted by adding 210 µL of 100% ethanol and vortexed.  

Subsequently, each homogenate was then placed into an ISOLATE II Blood DNA Spin 

Column (within a 2 mL collection microcentrifuge tube) and centrifuged at 11,000 x g for 1 

min.  Samples that did not filtered entirely, were centrifuged once more at a higher g force 
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until no sample was left above the silica membrane.  The Spin Column was then washed 

with buffer GW1 (500 µL) and centrifuged for 1 min at 11,000 x g.  The Spin Column was 

then transferred to a new collection tube and the filtrate discarded.  Buffer GW2 was 

added next (600 µL) to the spin column and centrifuged for 1 min at 11,000 x g, and the 

filtrate discarded.  Residual ethanol was removed by a last centrifugation step of the spin 

column at 11,000 x g for 1 min.  The spin column was then transferred to a new clean 1.5 

mL Eppendorf tube and 100 µL of elution buffer G (preheated at 70 ˚C) were added onto 

the silica membrane and left incubating at room temperature (15-25 ˚C) for 1 min, before 

a last centrifugation step at 11,000 x g for 1 min.   

 

Next, purity and quantity of the DNA extracted from paired samples using QIAGEN and 

Bioline kits were compared using a NanoDrop™ 2000 spectrophotometer (Thermo 

Scientific™, Waltham, USA).  The ratio of absorbance at 260 nm and 280 nm (260/280) as 

well as the concentration of DNA/RNA recovered per µL were similar for both 

methodologies.  All DNA products were then tested by PCR, and reactions were then 

visualized in agarose gel (see protocols below).  Since all samples were negative, a spike 

analysis was then carried out to rule out the presence of potential inhibitors in the DNA 

extracted with both the QIAGEN and the Bioline kits.  For this, all PCR reactions were 

loaded with 0,5 µL of positive control template (equine herpesvirus type 1 or EHV-1).  

Subsequent results were satisfactory, as all PCR reactions provided a band on the agarose 

gel of the same size as the positive control.  Sequenced data obtained from one of the 

bands confirmed that EHV-1 was amplified.  Consequently, the remaining blood samples 

were therefore extracted using ISOLATE II Blood DNA Kit (Bioline Reagents Ltd., London, 

United Kingdom). 

 

 Nested PCR and sequencing methods 

This process followed previously described protocols (VanDevanter et al. 1996).  Briefly, 

primary reactions contained two forward primers: DFA (5’- GAYTTYGCNAGYYTNTAYCC -

3’) and ILK (5’- TCCTGGACAAGCAGCARNYSGCNMTNAA - 3’); and one reversed primer 

KG1 (5’ - GTCTTGCTCACCAGNTCNACNCCYTT - 3’).  Secondary reactions were run with 0.5 

µL of the primary reaction product, with one forward primer TGV (5’ - 

TGTAACTCCGGTGTAYGGNTTYACNGGNGT - 3’) and a reverse primer IYG (5’ - 

CACAGAGTCCGTRTCNCCRTADAT - 3’).  These primers were used to amplify a highly 

conserved region of the herpesviral DNA-dependant-DNA polymerase (DPOL) gene, with 

an expected sequence of 215 to 315 bp.  PCR reactions were carried out both primary and 

secondary, in 25 µL reaction volumes containing 1 µL of DNA template (primary reaction) 
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and 0.5 µL of the primary reaction product for the secondary reaction, a working 

concentration of 0.5 µM of each primer and 2X GoTaq® Hot Start Green Master Mix 

(Promega Corporation, Madison, USA) in reaction buffer (pH 8.5), 4 mM of MgCl2, and 400 

µM of each dNTPs.  Cycling conditions were the same for both, the primary and secondary 

reactions: an initial denaturation of 2 min at 94 ˚C; 45 cycles with 94 ˚C for 30 s 

(denaturation), 46 ˚C for 60 s (annealing), and 72˚C for 60 s (extension); and a final 

extension with 72 ˚C for 7 min.  All PCR and sequencing reactions were carried out in an 

Applied Biosystems (AB) GeneAmp 2720 Thermal Cycler.  

 

PCR products were visualised in 1.5% agarose gels made of 0.5x TBE buffer, stained with 

SYBR-Safe (Life Technologies, Carlsbad, USA) and ran at 90 V, 400 mAmp for ~45 min.  

Bands of the expected size were cut out using separate sterile scalpel blades and DNA was 

purified from agarose suing the filter tip method.  Briefly, 100 µL filter tips were 

previously prepared by cutting off the bottom enough so they could fit into a 1.5 mL 

microcentrifuge tube (previously UV sterilised) with the lid closed.  Excess agarose gel was 

trimmed off the cut bands and subsequently placed into the filter tips (already inside the 

Eppendorf tubes).  At this stage, microcentrifuge tubes were centrifuged at 15,000 rpm for 

2 min upon which the filter tip was removed.  The filter membrane removed the agarose 

gel and the resulting flow through contained the purified PCR reaction product. 

 

10.3.2.1 Sequencing 

Sequencing was done at a 1/8 reaction using 1 µL of dye terminator mixture (SABC, 

Murdoch University) and 1,5 µL of 5x sequencing buffer (SABC, Murdoch University) in a 

10 µL final reaction volume (a full reaction uses 8 µL of dye terminator in a 20 µL reaction) 

given that the concentration of DNA post PCR was within the expected threshold of 5-20 

ng (DNA template required for a half reaction, that is 10 µL final reaction volume) as 

recommended by Applied Biosystems in their BigDye® Terminator v3.1 Cycle Sequencing 

Kit protocol.  Briefly, a master mix containing 1 µL of dye terminator mixture, 1.5 µL of 5x 

sequencing buffer, 1 µL of 3.2 pmoles working concentration primer (TGV forward 

primer), and 4.5 µL of PCR grade water (Fisher Biotech, Perth, Australia) was prepared for 

each PCR product to be sequenced.  Lastly, between 2-3 µL of purified DNA (i.e. cut band) 

were added to each reaction.  Tubes were then gently vortexed and centrifuge for less than 

~5 seconds to ensure reactions were well mixed and at the bottom of the tubes.  Cycle 

conditions were: an initial step of 96 ˚C for 2 m (samples were placed on the plate when 

the temperature was near 96 ˚C), then 25 cycles of 96 ˚C for 10 s (denaturation), 46 ˚C 

(annealing temperature of the amplification protocol) for 5 s, then 60 ˚C for 4 m 
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(extension), and lastly an indefinite holding step at 12 ˚C.  PCR products were sequenced 

in both directions (forward and reverse). 

 

Purification of sequence reaction products was done using the ethanol precipitation 

protocol for BigDye® Terminator v3.1 (BigDye® Terminator v3.1 Cycle Sequencing Kit, 

Applied Biosystems, Scoresby, Australia) method.  For each reaction, the entire sequencing 

reaction product was transferred to a 0.5 mL microcentrifuge tube previously UV 

sterilised.  Subsequently, in the following order 1 µL of 125mM EDTA, 1 µL of 3M Sodium 

acetate pH 5.2 and 25 µL of 100% ethanol were added to each reaction tube.  Tubes were 

then briefly vortexed at low speed and left to incubate at room temperature for at least 

~20 m upon which tubes were centrifuged at maximum speed for 30 min.  At this stage, 

the resulting supernatant was removed using a vacuum pump with P200 filter tips 

(previously UV sterilised) and tubes were left upside down to dry for at least 3 m.  The 

DNA pellet (not visible) was then gently rinsed with 125 µL of 70% Ethanol, followed by a 

microfuge step at maximum speed for 5 m at room temperature.  Lastly, all supernatant 

was removed using a vacuum pump with P200 filter tips (previously UV sterilised).  Tubes 

were placed in a Speedvac Concentrator (Savant Instruments, Inc. New York) to dry out 

and spined for ~15 m before being submitted to the sequencing facility at the State 

Agricultural and Biotechnology Centre (SABC) located in Murdoch University, Western 

Australia.  Sequencing was carried out on a ABI 3790 96 capillary automatic sequencer 

(Applied Biosystems, Scoresby, Australia). 
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10.4 Appendices relevant to Chapter 7 

 DNA extraction from peripheral whole blood 

Extraction of DNA from whole blood with ISOLATE II Blood DNA Kit (Bioline Reagents Ltd., 

London, United Kingdom) involved a lysis step in a 1.5 mL microcentrifuge tube with 25 

µL of Proteinase K mixed with whole blood in volumes ranging from 25 µL to 100 µL.  

Adding Phosphate-buffered saline (PBS) then adjusted this to a total volume of 200 µL.  

Buffer G3 (200 µL) was added to the homogenate, which then was mixed by vortexing for 

20 s.   Microcentrifuge tubes were then incubated on a hot plate/shaker at 70 ˚C and 

650rpm for 30 min.  DNA binding conditions were then adjusted by adding 210 µL of 

100% ethanol and vortexed.  Subsequently, each homogenate was then placed into an 

ISOLATE II Blood DNA Spin Column (within a 2 mL collection microcentrifuge tube) and 

centrifuged at 11,000 x g for 1 min.  Samples that did not filter completely were 

centrifuged once more at a higher g-force until no sample was left above the silica 

membrane.  The Spin Column was then washed with buffer GW1 (500 µL) and centrifuged 

for 1 min at 11,000 x g.  The Spin Column was then transferred to a new collection tube 

and the filtrate discarded.  Buffer GW2 was added next (600 µL) to the spin column and 

centrifuged for 1 min at 11,000 x g, and the filtrate discarded.  Residual ethanol was 

removed by a last centrifugation step of the spin column at 11,000 x g for 1 min.  The spin 

column was then transferred to a new clean 1.5 mL Eppendorf tube and 100 µL of elution 

buffer G (preheated to 70 ˚C) was added onto the silica membrane and left to incubate at 

room temperature for 1 min, before a final centrifugation step at 11,000 x g for 1 min.  

Extracted DNA was stored at -4 ˚C. 

 

 PCR amplification 

10.4.2.1 Piroplasms 

Samples were screened for piroplasms, using a nested-PCR method that uses universal 

primers to amplify a 850 bp fragment of the 18S ribosomal RNA gene (18S rDNA) of 

piroplasms, as previously described (Jefferies, Ryan, & Irwin 2007).  Two sets of primers 

were used, first reaction primers (external) BTF1 (forward: 5’ -

GGCTCATTACAACAGTTATAG- 3’) and BTR1 (reverse: 5’ -CCCAAAGACTTTGATTTCTCTC- 

3’), followed by second reaction primers (internal) BTF2 (forward: 5’ - 

CCGTGCTAATTGTAGGGCTAATAC- 3’) and BTR2 (reverse: 5’ -

GGACTACGACGGTATCTGATCG- 3’).  PCRs of both primary and secondary reactions 

occurred in 25 µL containing 1 µL of DNA template (primary reaction) and 1 µL of the 
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primary reaction product for the secondary reaction, a working concentration of 0.4 µM of 

each primer, 1.5 mM of MgCl2, 100 µM of each dNTPs, with 0.02 U/ µL Kapa Taq DNA 

polymerase (Kapa Biosystems, USA) in reaction buffer (pH 8.5).  Cycling conditions were 

the same for the primary and secondary reactions: an initial denaturation of 5 min at 95 

˚C; 40 cycles with 94 ˚C for 30 s (denaturation), 52 ˚C for 30 s (annealing), and 72˚C for 2 

min (extension); and a final extension with 72 ˚C for 7 min.  All PCR and sequencing 

reactions were carried out in an Applied Biosystems (AB) GeneAmp 2720 Thermal Cycler. 

 

10.4.2.2 Trypanosomes 

Trypanosomes were detected using a nested PCR method, with trypanosome-specific 

primers targeting a variable region (~1,500 bp) of the trypanosome small ribosomal 

subunit RNA gene (18S rDNA), as previously described (McInnes, Hanger, et al. 2011).  

Two fragments (~900 bp each) of the trypanosome 18S rDNA were amplified using two 

nested PCRs that used one common primer set for the primary (external) amplification, 

SLF (5’ -GCTTGTTTCAAGGACTTAGC- 3’) and S762 (5’- GACTTTTGCTTCCTCTAATG- 3’).  

Two sets of primers for the secondary (internal) amplification were used, S825F (5’ -

ACCGTTTCGGCTTTTGTTGG- 3’) and SLIR (5’ -ACATTGTAGTGCGCGTGTC- 3’) for the first 

nested PCR (~959 bp), and S823 (5’ -CGAACAACTGCCCTATCAGC- 3’) and S662 (5’ - 

GACTACAATGGTCTCTAATC- 3’) for the second nested PCR (~904 bp).  PCR reactions 

were carried out in both primary and secondary, in 25 µL reaction volumes containing 1 

µL of DNA template (primary reaction) and 1 µL of the primary reaction product for the 

secondary reaction, a working concentration of 0.8 µM of each primer, 2 mM of MgCl2, 400 

µM of each dNTPs, with 0.04 U/ µL Kapa Taq DNA polymerase (Kapa Biosystems, USA) in 

reaction buffer (pH 8.5).  PCR conditions involved a pre-PCR step of 95˚C for 5 min 

(denaturation), 50 ˚C for 2 min (annealing) and 72 ˚C for 4 min (extension), followed by 35 

cycles of 94 ˚C for 30 sec (denaturation), 50 ˚C for 30 sec (primary reaction) 52 ˚C for 30 

sec (secondary reaction) (annealing), 72 ˚C for 2 min 20 sec (extension), and a final 

extension at 72 ˚C for 7 min.  

 

 Sequencing 

PCR products were visualised in 1% agarose gels made of 0.5x TBE buffer, stained with 

SYBR-Safe (Life Technologies, Carlsbad, USA) and ran at 90 V, 400 mAmp for ~45 min.  

Bands of the expected size were cut out using separate sterile scalpel blades and DNA was 

purified from agarose using the filter tip method.  Briefly, 100 µL filter tips were 

previously prepared by cutting off the bottom so they could fit into a 1.5 mL 
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microcentrifuge tube (previously UV sterilised) with the lid closed.  Excess agarose gel was 

trimmed off the cut bands and subsequently placed into the filter tips (already inside the 

Eppendorf tubes).  At this stage, microcentrifuge tubes were centrifuged at 16,100 x g for 

2 min upon which the filter tip was removed.  The filter membrane removed the agarose 

gel and the resulting flow through contained the purified PCR reaction product. 

 

Sequencing was done at a 1/8 reaction using 1 µL of dye terminator mixture (SABC, 

Murdoch University) and 1.5 µL of 5x sequencing buffer (SABC, Murdoch University) in a 

10 µL final reaction volume given that the concentration of DNA post PCR was within the 

expected threshold of 5-20 ng as recommended by Applied Biosystems in their BigDye® 

Terminator v3.1 Cycle Sequencing Kit protocol.  Briefly, a master mix containing 1 µL of 

dye terminator mixture, 1.5 µL of 5x sequencing buffer, 1 µL of 3.2 pmoles working 

concentration primer (TGV forward primer), and 4.5 µL of PCR grade water (Fisher 

Biotech, Perth, Australia) was prepared for each PCR product to be sequenced.  Lastly, 2-3 

µL of purified DNA were added to each reaction, and subsequently vortexed.  Cycle 

conditions were: an initial step of 96 ˚C for 2 m, then 25 cycles of 96 ˚C for 10 s 

(denaturation), 52 ˚C (annealing) for 5 s, then 60 ˚C for 4 m (extension).  PCR products 

were sequenced in both directions (forward and reverse). 

 

Purification of sequence reaction products was done using the ethanol precipitation 

protocol for BigDye® Terminator v3.1 (BigDye® Terminator v3.1 Cycle Sequencing Kit, 

Applied Biosystems, Scoresby, Australia).  For each reaction, the entire sequencing 

reaction product was transferred to a 0.5 mL microcentrifuge tube previously UV 

sterilised.  Subsequently, in the following order, 1 µL of 125mM EDTA, 1 µL of 3M Sodium 

acetate pH 5.2 and 25 µL of 100% ethanol were added to each reaction tube.  Tubes were 

then briefly vortexed at low speed and left to incubate at room temperature for at least 20 

m upon which tubes were centrifuged at maximum speed for 30 min.  At this stage, the 

resulting supernatant was removed using a vacuum pump with P200 filter tips (previously 

UV sterilised) and tubes were left upside down to dry for at least 3 m.  The DNA pellet (not 

visible) was then gently rinsed with 125 µL of 70% Ethanol, followed by a microfuge step 

at maximum speed for 5 m at room temperature.  Lastly, all supernatant was removed 

using a vacuum pump with P200 filter tips (previously UV sterilised).  Tubes were placed 

in a Speedvac Concentrator (Savant Instruments, Inc. New York) to dry out and spun for 

15 m before being submitted to the sequencing facility at the State Agricultural and 

Biotechnology Centre (SABC), Western Australia.  Sequencing was carried out on an ABI 

3790 96 capillary automatic sequencer (Applied Biosystems, Scoresby, Australia). 
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 Reference intervals for free-ranging females and males on Rottnest Island 

Table 10-2 Haematology reference intervals for males and females of anaesthetised free-ranging quokkas (S. brachyurus), sampled on Rottnest Island between March and December 2011.  
With the exception of platelets, all reference intervals were calculated using the non-parametric method.  Negative values of confidence intervals were interpreted as zero. 

        Reference Intervals a Confidence Intervals (CI) b c 
Parameter Sex n  Mean d  Median e SD e Min e Max e Lower limit Upper limit 2.5% 5% 90% 97.5% 
RBC (x10.e12/L) f 54 5.68 5.54 0.91 4.14 8.51 4.19 8.29 4.14 4.51 7.45 8.51 
 m 59 5.96 5.97 0.82 4.16 7.66 4.35 7.62 4.16 4.64 7.30 7.66 
HGB (g/L) f 54 107 106 17.3 53 149 60.5 148 53 86.4 135 149 
 m 59 109 109 13.1 80 140 82.5 138 80 89 130 140 
PCV (%) f 48 33.1 33 4 22 45 23.4 43.9 22 28 38.8 45 
 m 53 34 34.1 5.1 20 47 21.4 45.6 20 26.1 41 47 
CHCM (g/L) f 53 305 303 13.8 283 338 283 336 283 286 329 338 
 m 59 311 310 15.8 281 342 283 341 281 292 338 342 
MCV (fL) f 54 61.9 61.6 3.45 55.4 70.4 55.5 70.5 55.4 56.9 67.9 70.4 
 m 59 59.7 59.6 3.74 52.7 71.2 52.7 69.1 52.7 54 65.5 71.2 
Platelet (x10.e9/L) f  b 22 508 507 119 322 709 259 † 755 † 197  328  678  817  
 m c 18 492 478 108 327 813 313 ‡ 769 ‡ 271  361  651  930  
WBC (x10.e9/L) f 54 4.68 4.26 1.60 2.25 8.70 2.34 8.63 2.25 2.71 7.36 8.70 
 m 59 4.60 4.48 1.77 1.75 9.31 1.80 8.70 1.75 2.17 7.70 9.31 
Neutrophils (x10.e9/L) f 52 2.18 2.05 0.74 1.16 3.34 1.16 4.18 1.16 1.25 3.46 4.34 
 m 54 2.01 1.95 0.76 0.82 4.65 0.85 4.25 0.82 0.97 3.04 4.65 
Lymphocytes (x10.e9/L) f 53 1.95 1.65 1.12 0.62 5.17 0.63 5.15 0.62 0.72 4.34 5.17 
 m 55 2.03 1.92 1.11 0.59 5.36 0.60 4.90 0.59 0.70 3.91 5.36 
Monocytes (x10.e9/L) f 51 0.077 0.058 0.066 0.00 0.264 0.00 0.262 0.00 0.00 0.189 0.264 
 m 55 0.065 0.056 0.053 0.00 0.242 0.00 0.219 0.00 0.00 0.158 0.242 
Eosinophils (x10.e9/L) f 53 0.38 0.30 0.32 0.02 1.38 0.03 1.36 0.02 0.08 1.07 1.38 
 m 52 0.29 0.24 0.24 0.00 0.96 0.01 0.95 0.00 0.04 0.66 0.95 
Basophils (x10.e9/L) f 51 0.02 0.00 0.02 0.00 0.09 0.00 0.09 0.00 0.00 0.06 0.09 
 m 55 0.01 0.00 0.02 0.00 0.11 0.00 0.09 0.00 0.00 0.05 0.11 
Erythrocyte parameters are those of the ADVIA® 120.  WBC values are those after correction with nucleated red blood cells.  Polymorphonuclear cell values are those of the manual 
differential count.  Min= minimum, Max= maximum, f= female, m= male, RBC= red blood cell concentration, HGB= haemoglobin, PCV= packed cell volume, CHCM= corpuscular haemoglobin 
concentration mean, MCV= mean corpuscular volume, WBC= white blood cell count 
a reference intervals computed using the non-parametric method (when n≥ 40), 
b confidence intervals computed using a bootstrap method (when 20 <n< 120)  
c confidence intervals computed using a parametric bootstrap method (when n≤ 20) 

d standard method of the untransformed data, e robust method of the untransformed data  
† reference interval computed using the robust method for the untransformed data 
‡ reference interval computed using the standard method for the Box-Cox transformed data 
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Table 10-3 Blood chemistry reference intervals for males and females of anaesthetised free-ranging quokkas (S. brachyurus), sampled on Rottnest Island between March and December 
2011.  

        Reference Intervals a Confidence Intervals b 
Parameter Sex n  Mean c  Median d SD d Min d Max d Lower limit Upper limit 2.5% 5% 90% 97.5% 
CK (U/L) f 52 739 518 690 138 3,109 143 3,080 138 189 1,782 3,109 
 m 57 827 366 961 153 4,132 161 3,731 153 194 2,591 4,132 
ALT (U/L) f 53 218 205 56.2 151 374 151.4 362 151 159 321 374 
 m 55 204 200 41.6 132 309 134 302 132 150 282 309 
ALP (U/L) f 49 5,988 5,771 3,225 1,387 17,880 1,428 15,995 1,387 1,822 10,120 17,880 
 m 54 5,546 5,238 3,014 1,465 17,640 1,551 14,910 1,465 2,072 9,920 17,640 
AST (U/L) f 52 46.5 41.6 21.3 13 126 16.9 118 13 26.7 69 126 
 m 56 45.3 39.3 19.3 25 108 25 101 25 26.8 83.9 108 
GGT (U/L) f 40 19.4 19.4 6.4 8 30 8 30 8 11 29 30 
 m 42 15.7 15.2 4.4 8 29 8.1 28.6 8 10.1 22.8 29 
Protein (g/L) f  53 60.6 60.4 4.68 50.5 72.3 51.4 71.5 50.5 53.8 67.8 72.3 
 m  58 59.9 59.7 4.71 49.5 71.5 50.1 70.6 49.5 52.4 67.7 71.5 
Albumin (g/L) f 53 36.2 36.3 1.90 31.7 41.1 31.8 40.5 31.7 32.7 38.9 41.1 
 m 58 36.2 36.5 1.99 30 40.6 31 40.2 30 32.9 38.8 40.6 
Globulin (g/L) f 53 24.4 24.2 3.90 14.4 36 15.5 34.2 14.4 18.9 29.9 36 
 m 58 23.7 23.5 3.76 15.1 32.8 15.5 32.6 15.1 17.9 30 32.8 
Glucose (mmol/L) f 53 4.85 4.64 2.41 0.7 12.5 0.77 11.9 0.70 1.31 8 12.5 
 m 58 3.51 3.11 1.84 0.6 9.7 0.60 8.9 0.60 1.48 6.10 9.7 
Cholesterol (mmol/L) f 53 2.91 2.90 0.53 2 4 2.04 3.90 2 2.14 3.70 4 
 m 58 2.75 2.75 0.56 1.5 3.9 1.64 3.85 1.50 1.95 3.50 3.90 
Bilirubin (µmol/L) f 53 4.19 3.95 1.63 1 9 1.35 8.55 1 2 7.13 9 
 m 57 4.36 4.02 1.86 1.2 9.4 1.56 9.22 1.20 2 8.10 9.40 
Urea (mmol/L) f 53 7 6.83 1.34 4.8 10.3 4.91 10.2 4.80 5.37 9.20 10.3 
 m 57 6.80 6.64 1.61 4.2 12.3 4.20 11.5 4.20 4.39 9 12.3 
Creatinine (µmol/L) f 52 73.8 71.3 17.1 41 112 43.3 112 41 51.7 105 112 
 m 58 69 66.7 13.9 47 107 47 104 47 49.4 94.6 107 
Phosphorus (mmol/L) f 53 1.07 1.01 0.48 0.4 2.8 0.40 2.49 0.40 0.54 1.80 2.80 
 m 58 1.32 1.28 0.43 0.5 2.5 0.55 2.41 0.50 0.70 2.01 2.50 
Calcium (mmol/L) f 53 2.22 2.22 0.22 1.63 2.69 1.69 2.67 1.63 1.93 2.56 2.69 
 m 58 2.18 2.17 0.18 1.76 2.67 1.69 2.58 1.76 1.89 2.46 2.67 
Vitamin E (mg/L) f 52 6.94 5.90 1.77 4.05 11 4.12 10.6 4.05 4.36 9.62 11 
 m 56 6.19 5.90 1.92 3.84 10.9 3.90 10.6 3.84 4.13 9.48 10.9 
CK= creatinine kinase, ALT= alanine aminotransferase, ALP= alkaline phosphatase, AST= aspartate aminotransferase, GGT= gamma-glutamyl transferase; a  Reference Intervals computed 
using the non-parametric method (when n≥ 40), b Confidence Intervals computed using a bootstrap method (when 20 <n<120), c standard method of the untransformed data, d robust 
method of the untransformed data. 
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