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Abstract

Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain
structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls
bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls
within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological
processes compatible with the constraints of balance control. We first derive general control constraint equations and then
introduce constitutive equations to identify potential control processes that link key variables that describe the state of the
BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and
bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the
environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their
desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables
more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation
may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation
capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast
number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different
control relationships may achieve the same objective, and the ‘integration of information’ occurring within a BMU may be
interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU,
which in turn leads to different observable BMU behaviors.
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Introduction

Organ tissues are comprised of groups of cells that coordinate

their activities so as to achieve a functional outcome. In bone, the

functional unit of cells is called a ‘basic multicellular unit’ (or

BMU) [1–3]. BMUs are transient functional groupings of cells that

progress through the bone, removing old bone and replacing it

with new bone. A single BMU comprises active osteoclasts and

active osteoblasts. Active osteoclasts resorb bone matrix at the

front of the BMU, whereas active osteoblasts are found towards

the rear of the BMU and form osteoid, which is later mineralized

to form new bone matrix [4]. The cells within a BMU reside

within the BMU cavity, which comprises the ‘cutting cone’,

‘reversal zone’ and ‘closing cone’ (see Figure 1) [5]. In a healthy

adult, there are about one million BMUs operating at any one

moment [6].

It has long been appreciated that bone formation is linked to

bone resorption [7]. In bone physiology, ‘balance’ refers to a mode

of BMU operation where the amount of bone resorbed equals the

amount of bone formed [8]. Authors speak of the coupling

between bone resorption and formation being ‘tight’, meaning that

bone volume is held constant over long periods of time [9].

Precisely how an individual BMU is controlled to achieve and

maintain bone balance has long fascinated researchers, as long-

term imbalance may lead to clinically significant disease processes

e.g. post-menopausal osteoporosis [10,11]. Exactly how a BMU

maintains homeostatic control of bone volume remains uncertain.

Many correlations between variables have been established [9,12–

15] which are suggestive that they may be part of a larger ‘control

system’, with many components operating simultaneously. The

control of remodeling processes within a BMU is complex, and

dealing with this complexity is a considerable obstacle to a deeper

understanding of BMU operation, experimental investigation and

to designing rational therapeutic interventions. The complexity of

the control systems arises from the several sources.

One source of the BMU control complexity arises because a

BMU integrates information gathered across multiple length scales

[15,16]. Information about the whole body is ‘fed’ into each BMU

in the form of neuronal and hormonal signals through nerves and

via blood vessels [15,17]. At the length scale of the ‘whole body’,

known signaling mechanisms include the sympathetic nervous

system, the sex hormones (particularly the estrogens and

androgens), corticosteroids (particularly the glucocorticoids),

somatotropin (or growth hormone), thyroid hormones (including

thyroxine and calcitonin), parathyroid hormone (PTH), vitamin D

and its activated derivatives, and adiponectin, to name some of the

better known systemic control molecules [13,15,17–21]. BMUs
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also receive information from a regional ‘tissue’ length scale. Over

the last decade there has been growing evidence that osteocytes

play an important role in interpreting conditions within the region

of bone matrix immediately surrounding a BMU. Osteocytes feed

this ‘regional information’ to the BMU and so modify its operation

[22,23]. The information is relayed via paracrine signaling

molecules, including nitric oxide, prostaglandins, osteoprotegerin

(OPG), the receptor activator of nuclear factor-kb ligand

(RANKL) and sclerostin, to name some the better known regional

signaling molecules [23–26].

Within the BMU cavity itself, there are many additional intra-

BMU signaling systems designed to maintain homeostasis. These

include cell-cell contact signaling (e.g. notch [14], Eph-Ephrin

[9,27]) and membrane bound (and soluble) RANKL-RANK

signaling [12], together with many autocrine and paracrine

signaling systems [13]. There are many additional important

regulatory molecules within the BMU cavity including proteases,

inhibitors of proteases, binding proteins and extracellular matrix

molecules including regulatory collagens, glycoaminoglycans,

glycoproteins and various bone-specific molecules that have been

identified, such as osteopontin and osteocalcin [18,28]. We note

that this list of signaling molecules is not exhaustive, and

undoubtedly further signaling molecules will be discovered.

A further source of complexity arises from the inevitable

interactions between all of the above-mentioned signaling systems.

For example, the intra-BMU signaling molecules may ‘overlap’

with signaling molecules employed at different length scales, with

molecules from both length scales influencing the operation of the

BMU. The RANKL-RANK-OPG system operates at the whole

body scale, the regional scale and within the BMU [25]. Further,

within the BMU the type and magnitude of a signaling molecule’s

influence on a particular BMU cell depends on the state of other

signaling systems. This interaction dependence with other

signaling systems is itself complex and non-linear, and can take

many forms. For example, one signaling molecule may require

another signaling molecule to be present for it to exert its

biological effect. A case in point is the anabolic effect of PTH on

osteoblasts, as the anabolic effect has been demonstrated to

depend on a functional insulin-like growth factor (IGF) signaling

system [13]. In this environment, identifying cause and effect is

challenging, to say the least.

A further important source of control complexity arises from the

fact that a BMU has multiple functional roles within bone. One

known purpose of BMUs is to release minerals from the bone

matrix, should this be required for blood mineral homeostasis [15].

For example, if calcium concentrations in the blood are too low,

PTH is released from the parathyroid gland. A constant elevation

of PTH stimulates an increase in BMU resorption of bone, which

increases blood calcium concentration. A second purpose of the

BMU is the repair of fatigue damaged bone [29]. Repeated

loading induces the formation of micro-cracks in the bone matrix,

which can grow, coalesce and may eventually result in a macro-

sized fracture of a bone [30]. In this case the role of BMUs is

thought to be to replace the old, damaged bone with new,

undamaged bone, thereby improving the overall structural

integrity of the bone [31]. Maintenance of the skeleton requires

a net bone volume balance so that at the conclusion of the passage

of a BMU, both bone mass and skeletal architecture are

maintained.

Given that there are multiple purposes for a BMU, it is not

difficult to imagine that the BMU may require a complex

algorithm to ‘decide’ what to do in a given circumstance. In the

parlance of control theory [32], a BMU requires multiple

‘objective functions’. It is also not difficult to imagine that the

control systems within a BMU must in some sense ‘know’ which

objective of the BMU takes precedence over another in a

particular situation, and so some kind of priority needs to be

established. For control this implies that the objective functions

need to be weighted, perhaps in a time dependent way [15].

For example, hypocalcemia demands correction, as the

consequences can be fatal for the organism. Hypocalcemia

induces an increase in the secretion of PTH by the parathyroid

gland, which then demands bone resorption. Under these

circumstances, bone resorption to alleviate hypocalcemia may

take precedence over maintaining bone volume required for

structural integrity of the skeleton [15]. For an imbalance to occur,

BMU controls need to be in some sense ‘overcome’. A

reprioritization of BMU objectives presumably occurs, and the

decreased risk associated with hypocalcemia is in effect traded for

an increased risk of fracture associated with a decreased bone

volume.

Figure 1. Idealized structure of cortical BMU in longitudinal section, showing cutting cone, reversal zone and closing cone. Cells of
the osteoclast lineage are shown in light to dark orange while cells of the osteoblastic lineage are shown as light to dark green. A capillary is shown at
the center of the BMU within a Haversian canal.
doi:10.1371/journal.pone.0040268.g001
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Finally, an important source of control complexity arises from

having to deal with the inevitable variability within the environ-

ment. For any system to behave in regular and predictable way in

the face of environmental variability, there are usually control

systems in place to stabilize the system, such that it returns the

system to its ‘set-point’ when perturbed. Otherwise small changes

in the operating conditions may lead to wildly different system

outcomes. Clearly an unstable BMU is incompatible with bone

balance.

We have now identified many sources for the complexity

associated with BMU control, and the challenge of understanding

bone volume homeostasis is clearly daunting. The issue confront-

ing us is how to make sense of available data on BMUs, and to

turn this data into an integrated understanding of bone physiology

that has explanatory power. This is typically the role of

quantitative or theoretical models. There has been a fairly long

history of mathematical and computational models of events in

bone turnover. Earlier models, such as those summarized in

Martin et al. [5] tended to focus on questions of rates of bone

turnover e.g. what rate of resorption, mineralization, or BMU

activation. More recently, computational models have been

developed to model the evolution of various bone cell lineages

and the role of specific signaling molecules [33–36]. Spatial aspects

of cell organization within trabecular and cortical BMUs have very

recently also been considered [37,38]. These past models tend to

be based on systems of differential equations.

A somewhat different approach to these past bone models is to

look to ‘control theory’ [32,39,40] to provide some kind of

framework for interpreting the available information on a BMU,

as it deals with principles of control of dynamical systems. Indeed,

that is what we will attempt to do in this paper and is the general

conceptual approach that has been taken by others to understand

bone regulation [15,16,35]. By doing this we hope to ‘step back’

from specific processes/interactions in a bone remodeling event

and instead focus on the general requirements to achieve bone

balance as well as the constraints this then imposes on various

interactions. This should help to provide an explanation for

observations in terms of control of bone balance and to

systematically predict other currently unknown control mecha-

nisms. In contrast, previous bone models of specific processes/

interactions can be viewed as specific examples of these constraints

known or assumed to occur.

The classical design control issue is ensuring a system maintains

a constant single output for a single input. This is typically

achieved using negative feedback control, so that the input is

adjusted to achieve a desired output [40]. However, more complex

systems with multiple processes also require control mechanisms to

see that separate processes within the system are coordinated.

Therefore within a BMU, we may expect to see negative feedback

control(s) and process coordination control(s). Both mechanisms

need to be considered for the homeostatic control of bone volume

by a single BMU.

To make any progress, it is clear we first need to reduce the

complexity described above. To do this, we would like the BMU to

be operating in as simple a way as possible. So for the purposes of

this study, we first assume that the BMU is established and steadily

moving through the cortical bone (i.e. initiation and termination

phases of BMU operation are not the focus of this paper). We

further assume that signals from the ‘whole body’ level and from

the ‘regional’ level to the BMU are in an averaged sense, time

invariant. This enables us to focus on fundamental bone balance

mechanisms operating within the BMU itself. This situation might

be approximated in a young, healthy adult, with constant bone

volume and normal bone turnover.

Even with these simplifications, there remain many signaling

systems operating within the BMU, and no one is sure how the

actions of these signaling molecules are integrated to maintain

bone balance. To tackle this problem one may first ask: what needs

to happen in a BMU to ensure bone balance is maintained? What

are the different possible general ways that bone balance may be

achieved? Having answered these questions one may then ask:

what signaling processes and mechanisms within the BMU are

potentially part of the BMU control systems to maintain bone

balance? We will attempt tentative ‘answers’ to these questions. Of

course for the reasons described above, the answers given here will

necessarily be incomplete and obviously will need to be modified

in the light of new information and new discoveries. Nevertheless,

we hope the conceptual framework we employed here to analyze

the BMU control problem will prove enduring.

In the following, we first describe a simple conceptual theory for

maintaining constant behavior of any system. Then general

control constraints are derived for maintaining bone balance. The

closest analogous approach in biological systems is found within

‘Biochemical Systems Theory’ or ‘Metabolic Control Analysis’

[41–44]. However instead of focusing on just chemical populations

(enzymes, metabolites etc) we will broaden our approach to

include other state variables (e.g. cells, bone volume etc). We then

focus only on a small sub-set of local controls that maintain bone

resorption and formation. It will become apparent that there are

many additional possible control constraints in a single BMU (see

Table 1). Local controls operating for resorption, and for bone

formation are then analyzed in detail. Finally, conclusions are

drawn. Please note, a list of symbols and their definitions can be

found in Table 2.

Methods

We first seek a general conceptual framework that will allow us

to interpret existing data, make predictions, and so better

understand how controls within a BMU may be arranged to

maintain bone balance.

Let the desired output of a system (e.g. bone volume) be called

the reference output. Let the desired reference output be the result

of reference inputs (e.g. cell numbers, rate of bone formation per

cell or rate of bone resorption per cell). The inputs are referred to

as ‘state variables’ of the process. In essence, a controller typically

manipulates the state variables so that the process delivers, as

closely as possible, the desired reference output (in our case,

constant bone volume) [32,40]. Typically, a controller compares

the actual input with the reference input, and changes the input to

minimize any difference. This is called negative feedback control

and is essential for homeostasis.

Negative feedback control is typically implemented using

proportional, integral or derivative controllers or some combina-

tion of the three [40]. For biological systems, the information

needed for feedback control is often carried via soluble chemicals

or on the surface of cells interacting in a region of space. A

negative feedback proportional controller may involve a signaling

molecule interacting with a cell, and the cell responding by

producing a ‘decoy’ molecule, which in turn limits the strength of

the original signal. The amount of signal attenuation depends

‘proportionally’ on the strength of the signal, though in most cases

the controller includes non-linearities, such as saturation [45].

However, proportional feedback control of an input cannot return

the input to exactly the reference value, as doing so removes the

drive to the controller [40]. Therefore, proportional control

usually delivers a residual deviation from the desired reference

output. If one desires the feedback controller to return the output

Bone Balance Control within a Cortical BMU

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e40268



variable to exactly the desired reference value, then a negative

feedback integral controller is usually employed. Finally, if one

wants a controller that anticipates future states, then a derivative

controller may be employed. This type of control could be part of

a predictive controller. We will try to identify proportional,

integral and differential control mechanisms for maintaining bone

volume homeostasis.

Let some model of a process (represented by a function G) relate

the model state variables to model outputs of interest. Letai

represent the ith model state variable and Gk is the kth system

output of interest. For small changes in state variables about an

equilibrium state Gk0, it may be found (using the first two terms of

a Taylor series) that,

Gk{Gk,0

ai{ai,0

&
LGk

Lai

Dai~ai,0
ð1Þ

System ‘sensitivity’ (xik) [46] can be defined, which compares the

change in a system output to a change in each of the model state

variables, viz,

xik~
ai,0

Gk,0

LGk

Lai

Dai~ai,0
ð2Þ

If the state variables are independent, a new value of Gk can be

predicted from an old value Gk,0 using the sensitivity parameters,

viz,

Gk~Gk,0(1z
XN

i~1

xik

ai{ai,0

ai,0

) ð3Þ

For homeostasis of some process represented by the model (e.g.

maintaining bone volume), we require Gk = Gk,0. For this to

happen, Equation (3) requires,

XN

i~1

xik

ai{ai,0

ai,0

~0 ð4Þ

This equation gives a constraint condition describing how

increments in the state variables ai need to be related to one

another so as to achieve constant output. Note that a constant

system output is required for homeostasis.

Using this general conceptual framework, we can identify

possible control constraint equations that a single BMU may

employ for bone balance. Our methodology is to start with a bone

volume ‘conservation equation’, and then introduce ‘constitutive

relationships’ that involve the state variables. A wide variety of

constitutive relationships may be chosen, but here we err towards

simple constitutive relationships. We then identify control

constraint equations (or control relationships) among state

variables describing bone volume, so that Equation (4) is satisfied.

In a few cases, we illustrate the control relationships that may be

implemented within a BMU based on reported experimental

research findings. However it is important to note that to date

there are no reported experiments investigating the operation of a

single BMU.

The reason we adopt this methodology is that we believe the

control mechanisms for maintaining bone volume balance are

likely to be constructed from the control constraints derived here.

Acting in concert, a set of process control equations identified here

will enable a BMU to maintain constant bone volume in the face

of variability. We now seek a suitable set of control constraint

equations for changes of bone volume.

Our focus is on a single BMU. In the case of bone turnover in a

young, healthy adult, we first require that bone formation by the

BMU be exactly equal to the bone resorption by the BMU. That is,

nf{nr~0 ð5Þ

where nf is the total rate of bone formation by all active osteoblasts in

the BMU, and nr is the total rate of bone resorption by all active

osteoclasts in the BMU. In other words bone volume remains

constant. For balance to occur, we note that the rates of bone

formation or resorption may change over time and so for example

bone turnover may increase, but any change that occurs in bone

formation and resorption needs to be equal, so that,

dnf{dnr~0 ð6Þ

where dnf is an increment in the total rate of bone formed by all

active osteoblasts within the BMU, and dnr is an increment in

the total rate of bone resorption by all active osteoclasts within

Table 1. Control relationships for bone balance within a BMU.

Control Rel. No. Variables Constants Control Relationship

CR1 k
r
, [OCa] k

f
, [OBa] krd½OCa�z½OCa�dkr~0

CR2 k
f
, [OBa] k

r
, [OCa] kf d½OBa�z½OBa�dkf~0

CR3 k
r
, [OBa] k

f
, [OCa] krd½OBa�z½OBa�dkr~0

CR4 k
f
, [OCa] k

r
, [OBa] kf d½OCa�z½OCa�dkf ~0

CR5 k
r
, k

f
[OCa], [OBa] ½OBa�dkf {½OCa�dkr~0

CR6 [OCa], [OBa] k
r
, k

f
kf d½OBa�{krd½OCa�~0

CR7 k
r
, k

f
, [OCa] [OBa] ½OBa�dkf {dnr~0½OBa�dkf {½OCa�dkr{krd½OCa�~0

CR8 k
r
, k

f
, [OBa] [OCa] dnf {½OCa�dkr{~0kf d½OBa�z½OBa�dkf {½OCa�dkr~0

CR9 k
r
, [OBa], [OCa] k

f
kf d½OBa�{dnr~0kf d½OBa�{krd½OCa�{½OCa�dkr~0

CR10 k
f
, [OBa], [OCa] k

r
dnf {krd½OCa�~0kf d½OBa�z½OBa�dkf{krd½OCa�~0

CR11 k
r
, k

f
, [OBa], [OCa] __ dnf {dnr~0kf d½OBa�z½OBa�dkf {krd½OCa�{½OCa�dkr~0

doi:10.1371/journal.pone.0040268.t001
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the BMU. For bone volume balance we require that Equation

(5) and Equation (6) be satisfied. If this occurs then balance is

maintained, that is bone volume remains constant even when

bone turnover changes.

We now introduce ‘constitutive equations’ describing how the

increments in the rate of bone volume formed may be achieved.

We first assume a very simple constitutive equation, namely, that

the bone formed in a given period of time is equal to the product

of the active osteoblast number ([Oba]) and the average rate of

bone (or osteoid) volume formed by each cell (kf), viz,

nf~kf ½OBa� ð7Þ

In this case, an increment in the rate of bone volume formed is

given by,

dnf~kf d½OBa�z½OBa�dkf ð8Þ

A similar constitutive relationship may be employed for the rate

of bone resorption by active osteoclasts ([OCa]), and so an

increment in the rate of bone volume resorbed is given by,

dnr~krd½OCa�z½OCa�dkr ð9Þ

Now substituting Equations (8) and (9) in Equation (6) leads to,

Table 2. Summary of symbols used and their definitions.

bavOCa time average birth rate of active osteoclasts

bOBa
0

initial number of active osteoblasts at position z = Z of the closing cone

bOBa(t) birth rate of active osteoblasts at time t

bOCa(t) birth rate of active osteoclasts at time t

G function relating model state variables to model outputs of interest

Gk kth system output of interest

Gk0 equilibrium or reference state of the kth system output of interest

k
f average rate of bone (or osteoid) volume formed by each cell

k
r average rate of bone volume resorbed by each cell

L
cc length of closing cone

M lOBa + lkf

[OBa] active osteoblast number

[OCa] active osteoclast number

r radius of the closing cone

rc Haversian canal radius required for bone balance

rth thickness of bone at z = Z measured in the radial direction

rth
max

upper limit on the amount (radial thickness) of bone that can be formed

r0 resorption cavity radius at some location z = Z along the closing cone

r1 current Haversian canal radius at some location z = Z along the closing cone

s
*OBa assumed specific form of the active osteoblast survival curve sOBa(t 2 t)

sOBa(t 2 t) active osteoblast survival curve

sOCa(t 2 t) active osteoclast survival curve

t time

T
avOCa average lifespan of active osteoclasts

Tf time required for the bone at a cross-section of the closing cone to achieve the radius of the Haversian canal

nBMU average velocity of the BMU

nf total rate of bone formation by all active osteoblasts in the BMU

nrcc total volume of bone formed by osteoblasts at some time t over the length of the closing cone

nr total rate of bone resorption by all active osteoclasts in the BMU

z position along long axis of the cutting cone with z = 0 at point of cone closure

Z specific position along z-axis of closing cone

Greek

ai ith model state variable

ai,0 equilibrium or reference value of the ith model state variable

lkf decay constant used in the bone formation rate per cell, Equation (22)

l
OBa decay constant used in the active osteoblast survival curve, Equation (21)

xik system sensitivity of the kth model output to the ith model state variable, as defined by Equation (2)

doi:10.1371/journal.pone.0040268.t002
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kf d½OBa�z½OBa�dkf~krd½OCa�z½OCa�dkr ð10Þ

This is our general control constraint equation. This is a very

general statement of the relationships between increments of the

state variables (the state variables being kf, kr, [OBa], [OCa]) that

are required to ensure that balance is maintained over time.

Equation (10) actually implies a ‘family’ of potential control

relationships for maintaining bone balance under various condi-

tions. For example, if all incremental variables are nonzero then

Equation (10) describes the relationship between them. Alterna-

tively if any one of the four incremental variables is set to zero,

then there are four combinations of relationships between the

remaining variables. Likewise, assuming any two of the incremen-

tal variables are set to zero, then there are six combinations of

relationships between the remaining variables. This gives a total of

eleven different control relationships.

Each of the eleven control equations that may be employed to

deliver constant bone volume in a single BMU is shown in Table 1.

However, while one would expect that some of these control

relationships are implemented in a BMU, it is not necessary (or

even desirable) for all of them to be implemented. Indeed, some

might be contravened if there is a more important BMU objective

than bone volume homeostasis. For these reasons, the eleven

control relationships should be considered as a guide to developing

potential control systems, some of which may be implemented

within the BMU, and some of which may not.

Results and Discussion

Investigation of Control Relationships within a BMU
As it is not possible to examine all the implications of the control

equations shown in Table 1, in this paper we only focus our

attention on the first two of the control equations, that is,

equations CR1 and CR2 (shown in Table 1). For each control

relationship, we first discuss what each of these relationships

implies and then consider how each relationship describing bone

resorption and bone formation may be implemented within a

BMU. We then look at experimental research reports in the

literature that might suggest such a control relationship occurs

within the BMU.

While often there is much that is suggestive and thought

provoking, unfortunately many biological research experiments

involve ill-defined systems, or use very different physical models

under a huge variety of environmental and initial conditions,

and often report a very limited set of observations on the system.

For example, experiments may take place in different species, or

use different cell cultures, often in a variety of ill-defined

conditions. Alternatively, ‘conditioned media’ is often added to

cell cultures, but the composition of the conditioned media is

not defined or its relevance to in vivo conditions is unclear. In

addition, many experiments take place under conditions far

from normal (e.g. gene knockout studies). Further, many

experiments have not yet been performed, and undoubtedly

much remains to be discovered about BMUs (there are for

example, no reports of experiments that directly interrogate a

single isolated BMU).

For all these reasons, interpreting research findings in terms

of BMU bone volume homeostasis needs to be done cautiously,

with any implications for bone balance being tentative until

verified. Of course confronted with such uncertainty our

interpretations are necessarily approximate and incomplete,

and so our conclusions are necessarily tentative. With this in

mind and with appropriate caution, let us now see how the

control relationships one and two in Table 1 may provide us

with a framework to help us understand how a BMU maintains

bone balance.

Control Relationship 1: CR1: krd½OCa�z½OCa�dkr~0
Bearing in mind the assumption of constant bone formation

rate, we then seek ways to maintain bone balance when state

variables change. Equation CR1 implies that there needs to be an

inverse relationship between the osteoclast number and individual

osteoclast resorption rate. That is, as the number of osteoclasts

increases the rate of resorption per osteoclast decreases, or vice

versa. Note the relationship only involves one cell type, active

osteoclasts, which are located within the cutting cone at the front

of the BMU. As such it is likely that this control relationship is

‘local’. This knowledge helps to focus our attention on ‘signaling

systems’ located within the front of the BMU.

Now the number of osteoclasts is by definition given by,

½OCa�~
ðt

0

bOCa(t)sOCa(t{t)dt ð11Þ

where bOCa(t) is the birth rate of osteoclasts at time t and sOCa(t-t)
is the osteoclast survival curve. This ‘convolution integral’ simply

acknowledges that the present number of osteoclasts is a function

of the time history of osteoclast production and osteoclast survival.

It is apparent that the osteoclast number at any one time is a time-

weighted average of prior osteoclast production rates and

apoptosis rates. Averaging acts like a (‘low-pass’) filter, smoothing

out ‘short-term fluctuations’ in the environment, leaving any

longer-term trend. If we define the duration of the time averaging,

we can then define what we mean by short-term fluctuations, and

what we mean by longer-term fluctuations that will produce a

trend.

As the lifespan of osteoclasts in humans is about ten days, an

appropriate averaging period is about ten to fourteen days [6].

This means fluctuations on the time scale of less than a day or so

would be considered short-term (e.g. daily fluctuations in hormone

levels influencing the osteoclast production rate). Short-term

fluctuations do not require active control relationships, as they

are simply ‘averaged out’ by the time integration shown in

Equation (11). Averaging over time is an important mechanism for

increasing stability of the system. However, environmental

fluctuations over a period of several days or weeks may well

produce a trend in osteoclast numbers (e.g. regions of higher

growth factor concentration in the bone matrix may lead to

sustained increases in the osteoclast production rate, or vice versa),

and so fluctuations on this longer time scale would need to be

controlled through active control processes if bone resorption is to

be maintained at a constant rate. Control systems in effect

‘manage’ the trends back towards a desired normal.

Let us assume first there are no control processes in operation

and that bOCa and sOCa are independent variables. In this case

Equation (11) is equal to,

½OCa�~bavOCaTavOCa ð12Þ

where bavOCa is the time average birth rate of osteoclasts and

TavOCa is the time average lifespan of osteoclasts. Inserting

Equation (12) into our control relationship CR1 leads to,

kr(bavOCadTavOCazTavOCadbavOCa)z½OCa�dkr~0 ð13Þ
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To relate this specific equation to the previous discussion and

general equation (Equation (4)), we note that the ‘alphas’ (ai) for

this equation are TavOCa, bavOCa, and kr, while the sensitivity

coefficient (x) for dTavOCa is krbavOCa, for dbavOCa is TavOCa and

finally for dkr is [OCa].

While it is possible to consider Equation (13) directly, to help

appreciate the significance of Equation (13) more fully, let the

average birth rate of osteoclasts be held constant. In this case,

Equation (13) simplifies to

krbavOCadTavOCaz½OCa�dkr~0 ð14Þ

This equation now suggests there may be an inverse relationship

between the rate of resorption and the average lifespan of an

osteoclast. Bearing in mind the assumptions, Equation (14)

furthermore quantifies the ratio of the magnitude of incremental

changes in osteoclast number and the average lifespan in terms of

measurable variables (actually the ratio of sensitivity coefficients)

required to maintain a constant osteoclast number, viz,

½OCa�
krbavOCa

~{
dTavOCa

dkr ð15Þ

Though rather extreme conditions (which may be required to

enable the relationship to be clearly observed using the exper-

imental methods currently available), such an inverse relationship

has been described in the clinical literature. Karsdal et al. [47]

reports:

Using inhibitors of both ClC-7 and the V-ATPase we have

provided evidence that inhibition of acidification prolongs

osteoclast life span.

So in this case a mechanism enabling the inverse relationship

between variables in Equation (14) is suggested in the literature,

namely, that a decrease in the rate of resorption by osteoclasts

decreases their rate of apoptosis, and so increases their lifespan.

This inverse relationship between rate of resorption and average

osteoclast lifespan is consistent with an osteoclast resorbing bone

matrix until the resorption pit beneath the osteoclast reaches a pre-

determined average depth, and the osteoclast then undergoes

apoptosis [6,47,48].

Next, let the average lifespan of osteoclasts be held constant and

allow the active osteoclast average birth rate and the rate of

resorption to vary. In this case Equation (13) simplifies to,

krTavOCadbavOCaz½OCa�dkr~0 ð16Þ

This equation suggests there may be an inverse relationship in the

BMU between the rate of resorption and the osteoclast birth rate.

A report of such an inverse relationship is difficult to find in the

literature, however. This does not mean such a relationship does

not exist. A possible explanation is that it does in fact exist but that

it is not prominent enough to have been detected using current

experimental methodologies. Let us continue with our examina-

tion of Equation (13) before considering Equation (16) again.

Now assume that the average rate of resorption by individual

osteoclasts is held constant, while the active osteoclast average

birth rate and life span vary. In this case Equation (13) simplifies

to,

bavOCadTavOCazTavOCadbavOCa~0 ð17Þ

This equation suggests there may be an inverse relationship in the

BMU between the average lifespan of the osteoclasts and the

average osteoclast birth rate. That is, if the rate of apoptosis of

osteoclasts is increased then their rate of replenishment needs to

increase so that osteoclast numbers are maintained. Maintaining

osteoclast numbers is actually a fundamental requirement for

BMU operation to be sustainable. Given that BMUs in long bones

exist for periods of months, compared to a lifespan of weeks for

osteoclasts [2,3,6,23], we might expect that there would be several

feedback mechanisms to ensure a relationship between the supply

of new osteoclasts and their rate of removal in the cutting cone.

One general mechanism suggested in the literature is that factors

released from the bone matrix stimulate osteoclast development

[6].

If we acknowledge that matching the supply of osteoclasts to

their rate of removal is an essential control requirement for the

existence of a BMU, Equation (17) may take precedence over

control requirements of lesser importance, such as a control

requirement for bone balance. Upon reflection about prioritiza-

tion of objectives, this is perhaps to be expected. However this

realization may help explain why Equation (16) is at least not

prominent, for if Equations (14) and (17) are operational as

described above, then Equation (16) potentially conflicts with

Equations (14) and (17). To explain this – Equation (14) requires

that an increase in resorption rate decreases the lifespan of the

osteoclast, and as a consequence, Equation (17) and the decrease

in osteoclast lifespan requires there be an increase in the birthrate

of osteoclasts. But if this pair of relationships is operational as

postulated above, this is incompatible with Equation (16), which

requires that an increase in the resorption rate cause a decrease in

the birth rate of osteoclasts.

So while Equation (16) could in principle provide a useful bone

balance control, it may not be implemented because it conflicts

with the sustainability of the BMU. Indeed, this conflict suggests

that if the BMU objective were not bone balance, but the BMU

objective was say cessation of its own operation, then Equation (16)

may be a useful part of a control system to shut down BMU

operation.

We may notice that if Equations (14) and (17) are operational as

described above and resorption increases, then together they imply

that the total bone volume resorbed per unit time will increase. As

noted in the discussion of Equation (6), this is not incompatible

with bone balance (it requires that the rate of bone formation be

increased to match the new rate of removal). Increased bone

resorption per unit time, may be useful for changing the diameter

of the resorption cavity while maintaining constant BMU speed, or

it may be useful for changing both BMU speed and resorption

cavity diameter.

Interestingly, this observation about Equations (14) and (17) and

BMU speed leads us to reconsider Equation (16). For if we now

have the objective of controlling BMU speed, then Equation (16)

may be a useful part of a control system. Indeed, we see that a

control system managing the speed of the BMU is not

incompatible with a control system managing BMU shutdown

(as zero speed is necessary for BMU shutdown and BMU shut

down may be regarded as an extreme control state for BMU

speed).

This brings us full circle. For if we have the objective of

controlling resorption, then Equation (16) may be a useful part of

our control system, for as the BMU speed is reduced Equations

(14) and (17) no longer imply osteoclast numbers increase. With
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Equation (15) operational alongside Equations (14) and (17), the

volume of bone resorbed may be held constant. Indeed, we are

now considering varying all three variables in Equation (12)

simultaneously (which was its original form before we simplified it

to three, two variable equations).

We now see that our analysis of Equation (12) has taken us on a

short but illuminating journey and enabled us to see how bone

balance can be maintained by two competing processes (one

driving the BMU faster, the other slowing the BMU down).

Because bone balance may be composed of two or more processes

‘pulling’ in different directions, we begin to uncover how the

objective of balance may be transformed into other BMU

objectives – such as that the BMU exist, that the BMU may

change its speed of progression or that a BMU may cease its

operations. All of these BMU objectives may be realized when

different emphasis is given to the control relationships for bone

balance. However taken together in the right proportions, they are

also compatible with the general objective of bone balance.

Indeed the control system defined by Equation (13) (or even

more generally, by Equation (10)) is actually in operation. These

complete control equations potentially allow all variables to vary

simultaneously, but in a coordinated way so that balance is

maintained. However the discussion above, stimulated by holding

one of the three variables constant at a time, is helpful when

attempting to discover the underlying processes enabling Equation

(13) to be satisfied, or when considering the possible dominance of

these various processes, recognizing that a BMU may have a need

to reprioritize objectives.

From the discussion above, we see a complex picture emerging

for control of bone volume. We can see that different control

relationships may achieve the same end, but when some additional

requirements are placed on the system, some control relationships

for a particular objective may no longer be viable. And we see that

control relationships that were not viable for one objective may

become useful for other objectives. Indeed, the ‘integration of

information’ within a BMU may be interpreted as different sets of

control systems coming to the fore as different information is

supplied to the BMU, which in turn may be interpreted as

different BMU objectives, inferred from associated observed BMU

behaviors.

Control Relationship 2: CR2: kf d½OBa�z½OBa�dkf~0
We now turn to control relationship 2 in Table 1. Like CR1,

Equation CR2 implies an inverse relationship between the active

osteoblast number and the active osteoblast formation rate. That

is, as the average number of osteoblasts increases, the average rate

of bone formation per cell decreases, and vice versa. Again it is

most probable that control relationship CR2 is also ‘local’, because

it involves only one cell type, active osteoblasts, which are located

within the closing cone towards the rear of the BMU. This

knowledge helps to focus our attention on signaling systems

located within this region of the BMU. However osteoclasts are

relatively long lived, and so to better understand what CR2

implies, we need to consider what is happening along the length of

the whole closing cone.

Importantly, it is believed osteoblasts do not move very far from

their origination point, generally staying at the location where the

developing osteoblasts first attach to the wall of the nascent osteon

(towards the rear of the reversal zone). The cells of the lineage of

developing osteoblasts extend from the region around the tip of the

BMU blood vessel to the wall of the reversal zone, a journey that

probably averages about two and half to three days [49]. On

contact with the reversal zone, developing osteoblasts differentiate

into active osteoblasts and begin osteoid formation [5]. Osteoblasts

then begin to fill the resorption cavity with osteoid, which later

mineralizes to bone (Figure 1). As the osteoid fills the closing cone

cavity, the radius r of the closing cone reduces over time, from the

initial resorption cavity radius (i.e. the future osteon radius) to the

final radius of the Haversian canal (for simplicity, we consider the

BMU to be rotationally symmetric).

Because active osteoblasts do not move very far in the

longitudinal direction along the closing cone, it is interesting to

contemplate the fact that as one moves along the closing cone

towards the rear of the BMU, it is like ‘looking’ further and further

back in time. The closing cone becomes a faithful record of past

events, and this record can be utilized for dating purposes and

inferring rates of bone formation [5].

The closing cone length can be measured in millimeters,

indicating that osteoblasts may survive many months (the average

lifespan in humans is quoted as averaging 150 days [4,5]). Because

there is a correlation between time and distance along the closing

cone, depending on what best suits our purpose, we may use

distance and time interchangeably to identify locations along the

closing cone. As a result of this interchangeability of distance and

time, we can count active osteoblast numbers by integrating over

the length of the closing cone, or equivalently we can take an

integral over time (i.e. as for Equation (11)). We begin by writing

the total number of osteoblasts both ways, and choose one or other

approach depending on our purpose. We take the origin of the z-

axis to be at the point of cutting cone closure, which coincides with

time zero.

Then the number of osteoblasts in a BMU observed at some

time t is given by,

½OBa�~
ðLcc

0

½OBa�(z)dz~

ðt

0

bOBa(t)sOBa(t{t)dt ð18Þ

where Lcc is the length of the closing cone, [OBa](z) is the number

of active osteoblasts at each location z along the closing cone at

time t, bOBa(t) is the birth rate of active osteoblasts (production

rate defined as the total number of new active osteoblasts per time)

at time t and sOBa(t-t) is the osteoblast survival curve (reflected in

time).

We note in passing that because the birth rate of osteoblasts

(bOBa(t)) is a process lasting on average two and half to three days

[49], then the birth rate of active osteoblasts is itself a time-

averaged function of this formation process. Short-term fluctua-

tions in osteoblast formation, perhaps up to a day or so, are filtered

out during the osteoblast formation process. It is possible that the

time period of fluctuations that are effectively filtered out may

become shorter as the diameter of the resorption cavity decreases

(assuming that the time spent in the proliferative stage of the

osteoblast formation process also decreases). This may lead to an

increased variability in bOBa(t) as the initial resorption cavity

diameter decreases.

Now by including the rates of bone formation per cell in the

integrations, we can also calculate the total volume of bone formed

by osteoblasts at some time t over the length of the closing cone,

viz,

nfcc~

ðLcc

0

ðt

0

kf (z,t)½OBa�(z,t)dtdz

~

ðt

0

ðt

0

kf (t,t)½bOBa(t)sOBa(t{t)�dtdt

ð19Þ
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Given the bone volume formed is to be matched with that

resorbed, we only require that the final volume of bone along a

closing cone is equal to that resorbed. In theory, the radius of the

Haversian canal could vary unevenly along its length and still be

consistent with bone balance. This undoubtedly happens to

varying extents in vivo [50]. However for convenience, here we

assume that the internal radius of the Haversian canal is constant.

Now because each cross-section of bone may be considered

independent of nearby cross-sections, we can focus on a particular

cross-section (say denoted by location Z), and consider some

representative interval centered at z = Z, perhaps up to few

osteoblasts in width (the interval size could be varied to

approximate the progression of a BMU in about one day). We

can then consider our control relationship (CR2) for each cross-

section of bone. CR2 requires that at each cross-section, a

differential increment of bone formed at that cross-section must be

zero, viz,

0~d

ðTf

0

kf (0,t)½bOBa(Z)sOBa(t)�dt ð20Þ

where Tf is the time required for the bone at a cross-section to

achieve the radius of the Haversian canal. To be clear, we note

that bOBa(Z) is constant at each location Z, but bOBa(z) may vary

with distance along the closing cone. Because bOBa(Z) represents

the initial number of OBas at a particular location Z, we later

denote it by bOBa
0 in equations below.

Very importantly, we note that (i) Tf is measured in months, and

that (ii) Tf is variable. The variability of Tf is evident visually as the

length of the closing cone is variable. Based on our previous

discussion of filtering, we may expect that because there is an

integral over time that is measured in many months, we might

expect that the time averaging will be an effective filter for longer

period fluctuations. This is true. Because the length of time for

averaging is so long – ‘short-term’ fluctuations may now be

measured in several weeks (as opposed to days used for CR1). This

integral over time effectively averages out the environmental

fluctuations, including that variability associated with changes in

osteoblast number or with their cellular rate of osteoid formation

or both.

However this averaging mechanism is also a control mecha-

nism, because trends in the bone formation rate over time are also

brought back towards normal by varying the time interval for bone

formation. One could view this control mechanism as being a

‘variable filter’ that dynamically adjusts itself to filter out

fluctuations in rates of bone formation. When the time period of

the fluctuations in bone formation increases, then the length of the

time integration also increases.

The physical mechanism for varying the filter properties is by

changing the closing cone geometry – the surface area available

for active osteoblasts to form bone changes dynamically with the

bone formation rate. If the bone formation rate is low, the length

of the closing cone and its surface area increases, and vice versa

(this is evident because integrals of time t may be replaced by

integrals over distance z, so that if Tf increases then so does the

length of the closing cone). An increase in surface area enables

active osteoblast numbers to increase, and vice versa.

To gain more quantitative insight into the process of dynamic

adjustment of the closing cone, we first consider a cross-section of

bone, and introduce two constitutive equations. The constitutive

relationships introduce new parameters describing osteoblast

survival and cellular bone formation rate, which reflect the tissue

specific circumstances observed during bone formation.

We assume that the active osteoblast survival curve is an

exponentially decreasing function with time, viz,

s�OBa~bOBa
0 e{lOBat ð21Þ

and that the bone formation rate per cell is an exponentially

decreasing function with time, viz,

kf~kf
0e{lkf

t ð22Þ

Using these constitutive equations, the thickness of bone formed in

a radial direction at each section may be calculated. Let r0 be the

resorption cavity radius, and r1 the current Haversian canal radius

at some location z = Z along the closing cone, then,

rth~r0{r1~
kf

0bOBa
0

M
(1{e{Mt) ð23Þ

where M~lOBazlkf
and rth is the thickness of bone at z = Z

measured in the radial direction. If Dzis the width of the cross-

section, then the volume of bone at each cross-section (as a

function of time) is given by,

dnf (z)~Dzprth(2r0{rth) ð24Þ

These are plausible forms for the constitutive equations because

they lead to results that are consistent with the quantitative results

of tetracycline labeling studies [51–53]. To demonstrate this, we

simply take the differential increment of bone radius with respect

to time to obtain,

drth

dt
~

dr1

dt
~{s�OBakf ð25Þ

That is Equation (25) is consistent with reported data [51–53].

This indicates that bone formation rates decrease exponentially

along the closing cone.

We immediately see from Equation (23) that there is an upper

limit on the amount of bone that can be formed, and that there is a

radial thickness of bone that can never be exceeded (rth
max). That is,

rth
max~

kf
0bOBa

0

M
ð26Þ

Clearly, if rth
max is less than r0{rc, where rc represents the Haversian

canal radius required for balance, then bone volume balance is

simply not possible.

Equation (23) also indicates that if the bone formation capacity

is low, then M needs to decrease in order to maintain a constant

rth. When rth is greater than r0{rc and rth decreases for any

reason, more time is required to form the amount of bone required

for balance. This extension in the time for bone formation is

actually realized by increasing the length of the closing cone, and

represents a fundamentally important mechanism for maintaining

balance in bone. The ‘beauty’ of this physical mechanism is that it

automatically adjusts itself to enable bone volume balance. The

mechanism only fails to match bone formation with bone

resorption when the maximum bone formation potential of the
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cells is less than the bone volume resorbed (i.e. it only fails when

rth
maxis less then r0{rc).

It is also interesting to contemplate the maximum osteoid

formation capacity relative to that required. In other words, what

‘factor of safety’ may be on the ‘total osteoid production capacity’

of osteoblasts, and how does this factor of safety evolve with age? It

is likely that the factor of safety on osteoid production capacity of

osteoblasts is a function of many factors, including system, regional

and locally produced signals that sustain the osteoblast population

and their bone formation capacity within the BMU.

Of course even if balance is theoretically possible, balance

‘failures’ of a practical nature may occur. For example, if the

formation rate is too slow there may be insufficient time available

to restore the bone volume. One can imagine other kinds of

failures occurring. For example, the increased size of the BMU

cavity as a result of the increasing closing cone length may

compromise the overall structural integrity of the bone. It is

desirable to minimize the size of BMU cavity so as to maximize

bone volume, thereby decreasing the risk of bone fracture. Clearly

there is a risk and cost associated with decreased bone formation

rates, even when bone volume is maintained.

Because of the interchangeability of t and z, Equation (23) also

describes the shape of the closing cone in longitudinal section (i.e.

radial thickness of bone with distance along the closing cone). If

the initial number of OBas (bOBa
0 ) is constant along the length of

the closing cone and the velocity of the BMU is also constant, then

the closing cone shape assumes a particularly simple form, viz,

rth~
kf

0bOBa
0

M
(1{e

{ Mz
vBMU ) ð27Þ

where vBMU is the average velocity of the BMU (for this equation,

z is measured from the initiation of the closing cone). We may also

take the differential change of the radial bone thickness (i.e.

Equation (24)) and setting the result to zero, we obtain an

expanded version of control relationship CR2 at a particular cross-

section of bone, viz,

kf
0

M
(1{e{Mt)dbOBa

0 z
bOBa

0

M
(1{e{Mt)dkf

0

~
kf

0bOBa
0

M2
½1{(Mtz1)e{Mt�(dlOBazdlkf

)

{
kf

0bOBa
0

M
e{Mtdt

ð28Þ

Again we may set various combinations of parameters to zero, and

so simplify the system so as to facilitate understanding. However,

we note that there are now five separate state variables, and if

these are taken in combinations two at a time, there are ten

possible sets of constraints. For the sake of brevity, we only

consider two of the possible combinations.

We first set dt in Equation (28) to zero. The resulting control

equation suggests that an increase in the bone formation rate

needs to be matched by an increase in the M. The character of this

control equation (i.e. dt in Equation (28) set to zero) is actually the

mechanism required during normal bone formation processes

within a rotationally symmetric BMU, for as osteoid is secreted by

the osteoblasts, the surface area available for cell contact

continually decreases.

Effectively, the secretion of osteoid by active osteoblasts leaves

the osteoblasts with less space, and less contact area for osteoblasts

to interact with osteoid. The continual reduction in contact area

and space sustains ongoing competition between the active

osteoblasts for contact area, space and nutrients. Eventually some

osteoblasts are forced off the contact surface. Without contact with

osteoid and pro-survival signaling through adhesion molecules the

active osteoblasts undergo apoptosis [54,55]. On the other hand,

osteoblasts that are most successful in the competition for contact

with the osteoid are more likely to undergo a transformation and

terminally differentiate into osteocytes. Clearly high rates of

osteoid formation (i.e. from the presence of many osteoblasts and

high bone formation rates) leads automatically to high rates of

apoptosis, and high rates of bone formation probably lead to

increased numbers of osteocytes. Both of these processes decrease

osteoblast survival, that is, when osteoid formation rates are high

both processes decrease osteoblast number at some future time.

The mechanisms responsible for this inverse relationship are

exactly the same ones implied by Equation (28) with dt set to zero.

These fundamental control processes [54,55] for bone formation

are consistent with control relationship two (i.e. CR2) in Table 1.

The special feature of Equation (28) is that time is also present

as a variable, and Tf can be increased as large as desired so as to

ensure that the final bone volume is maintained constant at each

cross-section of bone (dt in Equation (28) increases as Tf increases).

As noted previously, this is contingent upon active osteoblasts

actually having a capacity to remain alive and continuing to

produce osteoid. If they do not, then the bone volume formation

falls short of that required for coupling, even when time increases

without bound.

We have seen that the closing cone is a remarkable physical

device that both smoothes variability in the environment and acts

as an integral controller of the BMU bone formation rate, ensuring

coupling is maintained. Critically important is the observation that

the number of preosteoblasts produced does not exactly need to

match some predetermined number of active osteoblasts, as the

number of osteoblasts at a cross-section of the closing cone is not

fixed. Preosteoblast production rates can be variable, and initial

numbers of active osteoblasts can also be variable, yet balance in

bone volume will still occur. Indeed, the capacity of the closing

cone to change its surface area and so support a greater number of

active osteoblasts when their formation rate is lower, means there

is no unique cellular rate of production of osteoid required to

ensure balance. The only critical requirement for balance is that

the total production capacity of the osteoblast population is

sufficient to replace the bone removed.

Based on the foregoing discussion, one would expect that when

the variability in the environment increases, so does the standard

deviation in the length of the closing cones, and when the

maximum rate for osteoblasts to form bone is reduced, the average

length of the closing cone increases. In other words, the variability

in the length of the closing cone is providing information on the

variability of the BMU environment, while changes in average

length of the closing cone in BMU provides important information

on osteoblast capacity to produce osteoid. Simply stated, short

closing cones indicate high capacity to form bone, while long

closing cones indicate low capacity to form bone.

Conclusions
We have established a qualitative and quantitative framework

for analyzing bone volume balance control in a single cortical

BMU. This theoretical framework offers the possibility of a change

from the near dominance of discovery led bone research, towards

a directed search for processes compatible with the control

constraint equations that arise from this theoretical framework.

The essence of the approach is to express the differential change in
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bone volume as the difference between differential changes in

bone formation and resorption, and then introduce suitable

constitutive equations. By setting some state variables to zero, a

family of differential equations is found that may be applied to

both better understand and to identify candidate processes

involved in maintaining bone volume in bone following transit

of a single BMU. After deriving a general family of control

constraint equations, we focus our attention on just two control

constraint equations suitable for the understanding and identifying

local controls that may be acting during bone resorption or bone

formation.

It is found that averaging enables short-term fluctuations in the

environment to be smoothed out, so that control processes need

only be focused on long-term trend deviations. Substituting

constitutive equations of any desired complexity into the

differential control constraint equations enables insights into

relationships between the system state variables required for

homeostasis. Simple constitutive equations are employed here. We

find some experimental evidence for the theoretically postulated

inverse relationship between rate of resorption and average

osteoclast lifespan. We also find that bone balance may be

maintained by two competing processes (one driving the BMU

progression faster, the other slowing the BMU down). Because the

processes leading to bone balance may be composed of two or

more processes each ‘pulling’ in different directions, we begin to

uncover how the objective of maintaining bone may be

transformed into other BMU objectives – such as that the BMU

exist, that the BMU may change its speed of progression, that

bone turnover occurs or that a BMU may cease its operations. All

of these BMU objectives may be realized when different emphasis

is given to the control relationships for balance. However if these

control relationships are taken together in the right proportions,

they are also compatible with the objective of bone volume

balance.

Bone formation takes place in the closing cone, which may vary

in length. Actively secreting osteoblasts do not move very far from

their original point of attachment. The peculiarities of the bone

formation process result in a remarkable variable averaging

process that enables both short and long-term fluctuations in the

environment to be ‘averaged out’. This is, in effect, a powerful

integral controller that acts independently to match bone

resorption with the objective of bone balance, without the need

for any formal communication between the two processes of bone

resorption and formation (though formal communication systems

may play a role too). The only critical requirement for balance is

that the total production capacity of the osteoblast population is

sufficient to replace the bone removed. Quantitative analysis of the

closing cone dynamics reveals they are consistent with the

theoretical control prediction that osteoid secretion per cell varies

inversely with osteoblast number. Theoretical equations have been

derived for control relationships within the closing cone, and the

closing cone’s shape and length.

Of course, many signaling molecules are known to provide

additional information to assist in coupling bone resorption and

formation. These processes include the release of growth factors

from the bone matrix during resorption (and from the osteoclasts

themselves), and the release of OPG and soluble RANKL by cells

of osteoblastic lineage. Such signaling processes can be analyzed

using the remaining differential equations in the family of control

constraint equations shown in Table 1. These analyses will be the

subject of future work.
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