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ABSTRACT
The main motivation of this research is to help reduce the Green House Gases (GHG) emissionsof the electricity sector, and counteract the effects on nature and people. Traditional methods ofpower planning are not optimised to achieve this, and only consider Capital Expenditure(Capex) and Operational Expenditure (Opex) reduction as their main objectives. MinimisingGHG emissions is now an additional objective of power planning. One way of achieving this is byoptimising the distance of generators to the loads to reduce the transmission losses, and also byharnessing the available regional sources of renewable energies and increasing their integrationin the network. Efficient load forecasting methods, capable of describing the regionalbehaviours of the electricity consumption are developed in this research, and can providepriceless input to electricity planners. Such forecasting methods, known as spatial forecasting,can be used to extract short-term and medium-term information of the electricity consumptionof different regions. This work also provides tools for making decisions about the most accurateway of pre-processing consumption data and choosing the most efficient forecasting procedure.Chapter 1 talks about emissions of GHGs and their adverse effect on the nature. It introduceselectricity sector as one of the major contributors of human made GHG emissions. It thendescribes the components of electrical power network and the planning of it. Finally the chapterconcludes that an efficient spatial load forecasting method is required to help with spatialplanning of power networks. The spatial planning can include more regional components likeproximity of generation components to consumers, or the levels of harnessed renewable energyin each area. In such an approach, GHG reduction can be also considered along with Capex andOpex minimisation to plan the future of power networks.Chapter 2 provides definitions on power network components and the load forecastingmethods. It starts with definition of power systems and explanation on how electrical energy issuperior to all other forms of energy from end user point of view. Electricity generation systemsand the sources of energy to produce electricity are described next. Typical generation unitsizes in MW, continuity of the supply, and also its predictability are summarised in a table at theend of this section. Thereafter, transmission lines and distribution systems are described, asother component of electrical power networks. Importance of having an accurate forecast ofelectricity demand and the common ways to do it are presented next. At the end of this chapter,the deficiencies of current forecasting methods are highlighted and one major goal is defined forthis work. It is to overcome the deficiencies of individual forecasting methods by combiningthem and using them only where it performs efficient. It also mentions that the work is going toclosely look at the behaviour of input data to the forecasting method to seek better methods forpreparing them.



Chapter 3 describes South West Interconnected System (SWIS) as the case study for this work.The reasons for selecting SWIS as the case study are mentioned, followed by a quick history of itand how it has been expanded over the last hundred years. To be able to complete spatialforecasting, the area under study needs to be divided into regions. SWIS is then divided intoeight regions for this purpose. A visual presentation of the eight regions on the map is presentedat the end of this chapter for more clarity.Chapter 4 performs a short forecasting method on one of the SWIS regions. The selected regionis called Metro East. Metro East region is mainly composed of residential consumers. Unlikecommercial and industrial consumers, the residential ones are not following a workingschedule. That's why it makes them to behave differently and more randomly comparing to theother two. This means more complicated demand to forecast. This is the main reason that MetroEast is selected to be studied on this chapter. One of the main components of this chapter is tointroduce the methods that have been used for pre-processing of input data. The pre-processingstages include data resolution adjustment, replacement of missing data, removing outliers,clustering and signal reconstruction. A well pre-processed set of data is critical component ofany forecasting strategy. The second component of chapter 4 is to generate one day ahead andseven day ahead forecasts of Metro East electricity consumption, using three different trainingmethods. The forecasted results are comparable to other studies done on short term loadforecasting. However the author questions the accuracy of classic approach of load forecasting.Classic approach is basically what have been done in the field of load forecasting for decades,which is very similar to the works done in chapter 4. In classic approach, a method gets testedon a case study with an acceptable level of accuracy. Then that method gets introduced as a veryaccurate tool to be applied on demand forecasting purposes. This work is showing that suchaccurate method cannot be accurate at all when being applied to other different case studies.Future chapters study this in further details, and come up with some guidelines on how to haveaccurate load forecast based on the nature of the case study in hand.Chapter 5 applies the methods of load forecasting developed in chapter 4 onto eight differentcase studies. By doing this, it can be seen that there is no single method of forecasting that canbe accurate for all case studies out there. Temperature sensitivity and distribution of the loaddata of all the regions is closely studied for fifteen years of data. A load type determinationcriterion is presented in Table 5. By using this table, and preparing Rayleigh, GeneralisedPareto, and Generalised Extreme Value distributions of the load data under study, anyone willbe able to say whether their load under study is mainly commercial, residential or industrial.The outdoor temperature is one of the main inputs of short term electricity forecasting. Samechapter shows that residential loads are having a greater temperature sensitivity comparing tothe other two. The results of one day and seven day ahead forecasts of the eight regions arepresented at the end of chapter 5, using two methods of neural networks and decision trees. Theresults suggest that the two methods need to be used alternatively based on the characteristicsof the case study and ambient temperature to achieve the best result.Chapter 6 explains the system based medium term load forecasting. The approach to mediumterm forecasting is completely different to the one developed for the short term one. Two maindifferences between Short-Term Load Forecasting (STLF) and Medium-Term Load Forecasting(MTLF) are the availability of weather data and the forecasting objectives. Because of the natureof the weather, temperature forecasts of a year ahead are completely impossible. Also inmedium term load forecasting the focus of planners is mainly on peak load and energy



consumption forecasts. The forecasting method presented in this chapter is achieved bysuperimposing annual trend, annual seasonality and forecasted residuals by neural networksand decision trees. Similar to chapter 5, the forecasting strategy is applied to eight different casestudies for comparison. It is concluded that based on the case under study, the accuracy of themethods changes. It also provides some advices on the best practices to perform medium loadforecasting, considering the characteristics of the load. For instance, it conclude that forindustrial regions regression trees performs better than neural network based methods. Thesame applies to CBD region where commercial load dominates. For some residential areasneural networks behave better. This is because of higher nonlinearity of residential load.The major contributions of this work can be summarised as below:- The topic of the study, i.e. spatial load forecasting and the potential of using it in efficientpower planning, is relatively a new topic in the electricity market literature. Moreover, many ofthe known spatial load forecasting methods have not yet been widelyused because of the size,variety, and availability of the data required. The methodology proposed in this study cansuccessfully be appliedto spatial forecasting.- While conventional methods are useful for short-term predictions with acceptable accuracy,they fail when medium-to-long term load forecasting is dealt with. The methodology conceivedand implemented in this thesis is significantly better than those known as state-of-the-art andcan give very satisfactory results for medium-term predictions.- The load analysis criterion, particularly using Q-Q (Quantile vs. Quantile) plots is a unique andoriginal finding of this work. While Q-Q plots are largely used in traditional statistics to comparetwo samples of data, it has never been applied before for electricity load forecasting purposes.Based on its definition and use, an electricity planner can understand which part of the load isthe dominating factor (i.e. whether it is residential, commercial or industrial). And then, basedon this, he/she can decide how to go ahead with choosing the most effective forecasting method.Based on this, the thesis provides a very useful criterion for decision making in the energymarket.- One of the major findings of the thesis is that there is no one optimum way of forecastingelectricity load in different scenarios. The results presented in the thesis have shown that amethod that can accurately forecast the load on a system (3% error for a year ahead) canperform completely different in forecasting another system (observed errors of around 14%).This study demonstrates that a method which is claimed to have a given accuracy can beconsiderably inaccurate when applied on a different case study.- Using an ambient temperature-based criterion (i.e. the average maximum temperature of themonth) to choose the correct forecasting method is another major finding of the study. In fact,the author has demonstrated that for a temperature sensitive load, different forecastingmethods should be used and then combined to get the most accurate result.
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1 MOTIVATION1.1 ABSTRACTThis chapter provides a motivation for this thesis. It includes a brief background on climatechange, and introduces global warming as a probable source of future disasters. The chapterclassifies anthropogenic greenhouse gases1 (GHGs) [3] according to their sources of emission,and describes the electricity sector as the dominant source of GHG emissions globally. Itconcludes that anthropogenic GHG emissions of electricity sector should be limited andcontrolled. To achieve that, a reliable electricity planning strategy based on realistic loadforecasts is required. The wider scope of the following chapters is given at the end of thissection.
1.2 CLIMATE FACTORSDuring the daytime about 1,370 Watts of solar radiation reaches each square meter of theatmosphere’s outer surface. Only one quarter of this amount of energy enters the earth’satmosphere (see Figure 1), and the remaining is reflected back to space. A large amount ofEarth’s radiation is absorbed and reflected back to the earth from the atmosphere because ofthe existence of GHGs that cause a natural ‘greenhouse effect’, keeping Earth’s surface relativelywarm. The most significant GHGs are water vapour (H2O) and carbon dioxide (CO2), and theminor GHGs include methane (CH4), nitrous oxides (NOx), ozone (O3), carbon monoxide (CO),and chlorofluorocarbons (CFCs). Human activities, such as, burning fossil fuels anddeforestation, influence the natural greenhouse effect and are known to cause globalwarming[4]–[6].
1.3 CONTRIBUTION OF ANTHROPOGENIC EMISSIONSEmissions of GHGs resulting from human activities are known as anthropogenic emissions.Radiative forcing is a parameter that shows the rate of energy change per unit area of globemeasured at the top of the atmosphere [7]. Positive net radiative forcing shows increasingtemperature of Earth-atmosphere system and negative net radiative forcing shows the opposite.Figure 2 shows principle components of climate change and their corresponding driving forces[6], [8].
1Greenhouse gases are atmospheric gases, both natural and anthropogenic, which absorb and emitradiationat specific wavelengths within the spectrum of infrared radiationemitted by the Earth’s surface,the atmosphere, and clouds. Thisproperty causes the greenhouse effect. Water vapour (H2O),carbondioxide (CO2), nitrous oxide (N2O), methane (CH4), and ozone (O3) are the primary greenhousegases in the Earth’s atmosphere. Moreover, there are a number of entirely human-made greenhouse gasesin the atmosphere, such as, the halocarbons and otherchlorine- and bromine-containing substances, dealtwith under the Montreal Protocol. Besides CO2, N2O, and CH4, the KyotoProtocol deals with thegreenhouse gases sulphur hexafluoride (SF6),hydro fluorocarbons (HFCs), and per fluorocarbons(PFCs)[133].

Chapter
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Figure 1: Earth’s average energy balance(extracted from[9]).Human activities are increasing GHG concentrations in the atmosphere[10], [11]:
 CO2 from burning fossil fuels in the electricity, transport, industrial (etc.) sectors, andland use change (LUC) [12]. As illustrated in Figure 2, CO2 emissions are the biggestcontributor to the positive radiative forcing caused by human activities.
 AtmosphericCH4 from agricultural related activities, livestock raising, losses from gasdistribution systems, landfills, etc [13].
 NOx as a fossil fuel burning by-product and from fertilizer use [14].
 Halocarbons from CFCs as refrigerants [15].
 Atmospheric O3 from releasing CO, hydrocarbons, and NOx which react to produce ozone[7].
 Atmospheric water vapour emissions, such as, evaporative cooling systems [16].Figure 3 shows the anthropogenic emissions of different sectors. Electricity with 27% shareplays as the biggest contributor of all the sectors in the level of global GHG emissions. It followsby other big contributors like land-use change, agriculture, energy sector rather than electricity,transportation and manufacturing and construction. The author's main motivation of this workis to help in reducing the GHG emissions of electricity sector by introducing more efficient toolsof electricity forecasting and planning.

1.4 POWER SYSTEMS COMPONENTSPower systems are composed of four main interconnected components [17]:
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 Demand: Electricity demand is defined as the amount of electricity required to serveexisting electrical loads in the network [18]. Regions of high populations or a highdegree of industrial activity require more electricity than low populations or low levelsof industrialisation. Electricity demand profiles also change with time [19].
 Generation: Electricity can be generated from different sources of energy and form thesupply side in an electrical network. Examples are coal fired power plants, gas turbines,combined heat and power (CHP), piston-engine-based power plants, fuel cells, hydropower, tidal power, wind power, geothermal power, solar powers, wave power,biomass-based power, and nuclear power [20].
 Transmission: Generated electricity of power stations is normally in the range of 11 kVto 21 kV. To decrease the losses of lines, where electricity needs to travel a long distance,step up transformers are used to increase the voltage to 138 kV or 230 kV. Transmissionlines are used to transmit electricity at this level of voltage towards consumers. Thiselectricity needs to be stepped down to lower voltages of 11kV to 69kV when it getsclose to the location of consumers [21], [22].
 Distribution: A distribution system provides the connection between transmissionsystem and consumers [22].

Figure 2: Principle components of radiative forcing of climate change(extracted from [6]).
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Figure 3: Global greenhouse gas emissions by sector(extracted from[23]).

1.5 POWER SYSTEM PLANNINGPower system planning encompasses generation planning, transmission planning, anddistribution planning. The three planning procedures are very similar in steps and objectivesbut they consider different components of the electricity system [24]. The objective of powersystem planning is defined as minimisation of expansion cost conforming to financial, resource,political and environmental constraints.2 Four different questions need to be answered in apower system planning procedure:
 WHAT capacity is to be installed to cover the demand in a reliable manner? [25], [26]
 HOW to select the best combination among the available and future technologies? [27]
 WHERE to place new facilities? (Facilities mainly consist of generation units in powergeneration planning, transmission lines and substations in power transmissionplanning, and distribution lines and substations in power distribution planning.) [28],[29]
 WHEN is the desired time to commission new facilities? [27]

2 Although cost constraints are the main objective of this definition, other variables are assumed asconstrained. A planner may add other main objectives to the problem, such as, minimising the GHGemissions, or minimising the space between generation facilities and the available resources.
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Planners have proposed different answers to the above questions. Historically, the leastattention was paid to the ‘WHERE’ question, and forms the basis of spatial load forecastingdescribed in chapters 5, 6, and 7.The main steps in power system planning are as follows:1) Taking into consideration the most reliable forecast of future demand data for thespecific planning horizon. Short-term horizons are used for day-ahead scheduling andreal-time grid management. Medium-term horizons are used for preparing maintenanceschedules for generation and transmission equipment, planning the most effective use oflimitedly available resources, and the pooling of resources with neighbouring utilities.Long-termhorizons are used for infrastructure additions [24].2) Studying the future available resources and technologies for producing and transmittingenergy and their related economics [30]–[32].3) Investigating economics of present and future facilities including capital cost, operatingcost, fuel cost and maintenance cost [33].4) Determining the internal rate of return, level of reliability, investment policies [33].5) Preparing the expansion scenarios considering constraints [27].6) Qualifying the output scenarios to check the solution viability[27].Forecasting of future parameters for power system planning is a challenging task[34]. Futuredemand and fuel costs are the main sources of uncertainty[35], and must be determined as aprerequisite for power expansion planning. Accurate load forecasting can improve electricitysystem planning for spinning reserve3, generation planning, scheduled utility maintenance,generation cost, and system reliability[36].
1.6 LOAD FORECASTINGLoad predictions are required for short time intervals for operational purposes, or longintervals over decades for power generation planning procedures [36]. Factors that influencefuture loads are GDP,4 population, ambient temperature, and humidity. The level of correlationamong these factors and the electrical load varies for different electricity systems[37].More detailed information on electricity demand forecasting will be given in future chapters.
1.7 FOCUS AND OUTLINE OF THIS PROJECTFigure 3 presents the electricity sector as the largest contributor (27%) to global anthropogenicGHG emissions. The main motivation of this work is to help reduce the GHG emissions of the
3The extra generating capacity available by increasing the power output of generators that are already inuse in a power system is known as spinning reserve.4Gross domestic product is a factor of country's overall economical output. GDP is closely related with thestandard of living. It is the market value of all final goods and services made within a country in oneyear[134].
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electricity sector. Traditional methods of power planning consider Capex5 and Opex6 reductionas their main objectives [38]. Minimising GHG emissions is now an additional objective of powerplanning [1], [2]. One way of achieving this is by optimising the distance of generators to theloads to reduce the transmission losses and also by harnessing the available regional sources ofrenewable energies and increasing their integration into the network [39]. The development ofan efficient load forecasting method capable of describing the regional behaviours of theelectricity consumption is a useful planning tool. Such forecasting method is known as spatialforecasting [40], which is discussed in Chapter2. Spatial power planning is mainly applied indistribution networks and for short-term planning purposes[40]. This work is going to look atthe spatial forecasting of the electricity consumption at a larger scale. The output of the workwould be useful for developing more efficient transmission and generation power plans. Belowis a description of the content of upcoming chapters.Chapter2 presents a comprehensive literature review of power system components and loadforecasting.Chapter 3 presents south western Australia electricity network known as SWIS7 as our casestudy.Chapter 4 discusses short-term load forecasting based on classic approaches.Chapter 5 introduces a new means of short-term load forecasting using an innovative systembased approach.Chapter 6 extends the ideas developed during chapter 5 and modify them to suite spatialmedium-term load forecasting.Chapter 7concludes the research with some potential applications and recommendations.Appendix Ais the bibliography.Appendix B presents some information on Western Australia public holidays that is used toconsider the effect of public holidays in electricity load forecasts.Appendix C are Australian distribution figures used to define sub-regions.Appendix D presents selected MATLAB codes used in this thesis.Appendix E is the nomenclature of this work.Appendix F is the glossary of the-terms used in this work.
5 Capex or capital expenditure are the funds used by companies to purchase physical assets such asbuildings, power plants and equipment.
6Opex or operational expenditure is the money that a company spends during its business as usual tocover its day to day costs. Examples are fuel costs, equipment rentals and salaries paid to staff members.7SWIS is the-term used to describe southwest Australian interconnected electricity network. Refer to 3.2for more details about SWIS.



2 LITERATUREREVIEW2.1 ABSTRACTThis chapter explains the concepts of power systems and load forecasting in more detail basedon the available knowledge and requirements of this work.8 A brief description of the case studyin this work and the reasons that it has been chosen are provided, followed by an explanation ofspatial load forecasting.
2.2 POWER SYSTEMSAn electric power system is a network of electric components that supply, transmit, andconsume electricity. Generation, transmission, distribution, and demand are the maincomponents of an electric power system [17].The world’s first power system was built in 1881 in England. The generation stations were twopower wheels and the application was to turn on a number of lights. The power source wasintermittent and the output was alternating current (AC) [41]. Due to advancements in powersystems technologies and applications since 1881, it has become an essential part of life in themodern world.Electrical energy is superior to all other forms of energy for the end user due to the followingadvantages [42]:

 Convenient form: It can be easily converted to other forms of energy.
 Easy control: Electric energy can be controlled by very basic circuit components.
 Great flexibility: With the help of conductors it can be easily transported.
 Cleanliness at the point of use: Given that consumers of electrical energy are usuallysituated far away from the electricity production sites,9 they experience no smoke,fumes, or poisonous gases.Figure 4 shows a very simplified diagram of a power system. Generation, transmission,distribution, and customers or loads are identified in the diagram. The working voltages of eachsection are also shown [43]. More details of power systems components are discussed in futuresections.

2.2.1 GENERATION SYSTEMSThe generation units generate electricity from different sources of energy (such as, coal, gas,sun, wind, and distillates), and form the supply side in an electrical network. Power generationunits can be a huge power plant or a small solar panel installed in a house.
8 As this work is focused on electricity demand forecasting, the literature review on other subjects givesan introduction of some power systems concepts to provide additional context for the reader.9 Exceptions can be places with small generators like diesel generators or factories that generate theirown electricity.

Chapter
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Figure 4: A simplified diagram of a power system(extracted from [43]).
Electrical energy can be generated from either renewable or conventional sources of energy[44]. A renewable resource has the ability to reproduce through biological or natural processesand renew with the passage of time. These sources can be harnessed to generate sustainableelectricity [45]. In-terms of availability and abundance, solar energy is the most accessiblerenewable energy. The amount of solar energy resource available on the surface of the Earth isaround 8000 times the world’s average energy requirements. This energy can be accesseddirectly using solar thermal or photovoltaic technologies, or indirectly from wind, wave, hydro,and biofuels [46]. Two other sustainable sources of energy are the gravitational forces of themoon and sun, known as tidal energy, and the Earth’s core thermal energy, known asgeothermal energy [47]. Figure 5 represents a summary of renewable sources of energy andtheir related renewable energy (RE) technology.
Summary information on RE generation is provided below [47]–[62]:10

 Wind power: Wind is characterised as a free, intermittent, clean, inexhaustible, andnondispatchable11 source of energy. Wind is generated from the uneven heating of theearth’s surface and atmosphere. Thus, it is known as an indirect form of solar energy.Although wind patterns on the Earth’s surface are derived mainly from differentialsurface temperature and atmospheric pressure, the Earth’s movement also affects winddirection around the globe, known as Coriolis. The pattern of the terrain is anotherfactor that influences wind intensity and direction. The terrain pattern is characterisedby items like surrounding trees, mountains, valleys, and buildings. Wind energy can beharnessed using wind turbines. The output power of a wind turbine is proportional to
10 An extensive review of renewable energies is beyond the scope of this thesis. Please see the sources forfurther information on renewable generation.11 Dispatching is the planned allocation of a generating plant to meet future loads on the system. Most ofthe renewable sources of electricity generation are considered nondispatchable because their generationis directly affected by natural variations in the reliability and strength of the source.
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the cube of wind speed. Wind variability is the main challenge in designing wind farmsand the integration of this source of energy into the electricity grid.

Figure 5: Renewable energy flow paths(extracted from [47]).
 Photovoltaic and solar thermal electricity: Solar radiation is electromagnetic radiationgenerated by the sun in wavelength ranges from X-rays to radio waves. The-term ‘solarradiation’ in renewable energy applications is the optical range of solar radiationbelonging to the spectral range of 300-400 nm. Solar radiation received by a surface ismade up of different components (see Figure 6). The components are direct beamradiation, reflected radiation from other objects, and diffuse sky (refer to section 1.2for adetailed discussion on solar energy components). Solar radiation patterns are moreregular compared to wind speed patterns. There are two main RE technologies toconvert sun radiation into electricity. Photovoltaic (PV), the most direct way ofconverting sunlight to electricity, is based on the electric voltage generated between twoattached electrodes in a solid or liquid system upon receiving optical radiation. Althoughthe efficiencies of commercial PV cells are in the range of 12-18%, much betterefficiencies (over 30%) have been achieved on experimental cells. In contrast, solarthermal systems convert solar radiation into heat. The heat is extracted from the short-wave sun radiation absorbed using a black-coated surface. This thermal energy can be
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used to form steam and drive a turbo-generator to generate electricity.12 Both of thementioned methods are relatively expensive, in-terms of capital costs, compared toother available methods of electricity generation.13
 Hydropower: The first electricity generation plant was built in 1881 using two waterwheels with hydropower turbines using the same concept today to generate electricity.Hydropower plants generate about 24% of the world’s electricity supply. The potentialenergy stored from water elevation in rivers, waterfalls, and dams, known as head, is anindirect form of solar energy. To clarify, solar energy causes the water on Earth toevaporate and form clouds, thus converting solar energy into mechanical potentialenergy. Latent heat is released when precipitation occurs, although some of the potentialenergy remains with water when it falls on high elevations. Rain drops that land on highelevation surfaces, like mountains, make rivers and the called head difference to powerhydroelectric power plants.
 Wave power: Wave energy can be defined as a concentrated form of solar energy. Aspreviously discussed, wind is generated from the sun. The movement of wind over theocean surface makes ripples, which then grow into swells, forming waves. Deep waterwaves can travel kilometres without any loss of energy. The concentration of this sourceof energy is greater than solar and wind energy. The power content of a wave isproportional to its period and square of its height. Although several technologicalsolutions have been developed to harness wave power and convert it to electricity, thesetechnologies are still in the earlier developmental stages when compared to wind andsolar technologies.
 Biomass: Biomass is very different from other renewable sources of energy. It is a fuelobtained from wood, straw, twigs, dung, agricultural residues, etc., and is used togenerate electricity. The world’s biomass resources can contribute over twice of theworld’s energy demand. Due to the low energy density and high transportation costs,biomass should be consumed locally to be beneficial. Three main technologies areavailable to generate electricity from biomass, namely direct combustion, gasification,and pyrolysis.
 Tidal Power: Tides are the vertical rise and fall of the oceans’ water. Rotation of theEarth around its axis generates large centrifugal forces causing the Earth’s diameter atthe equator to be 21 km larger than through the poles. For the same reason, the depth ofthe seas at the equator are also greater than at the poles. Because the speed of rotationaround the Earth’s axis is constant, sea depth differences do not generate tides. Instead,tides are formed by the rotation of the Earth within the gravitational fields of otherplanets and the sun, specifically, the gravitational fields of the moon and sun. Tidalbarrage can be used to harness the energy from the rise and fall of the tides. However,long payback periods and large capital expense requirements discourage widespreadinvestment in this technology. Furthermore, although tidal power barrage is considered

12 The main current application of solar thermal systems is to produce domestic hot water, not electricitygeneration.13 Renewable energy technologies are becoming cheaper over time because of the advancement oftechnologies and mass production.
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non-polluting, the resulting changes in tidal patterns have significant environmentaleffects.
 Geothermal power: Geothermal energy is the thermal energy from underground sourcesof hot water and steam, and can be used to generate electricity. In some cases, they areas visible as hot water or steam springs. The basics of geothermal power plants are verysimilar to other power plants except that they do not burn fuels to generate electricity.In a typical geothermal plant cold water is pumped underground to exchange heat withgeothermal reservoirs and to make steam required to propel turbines.

Figure 6: Solar radiation components(extracted from [55]).
In contrast to renewable energy resources, non-renewable sources of energy consist of a naturalsource, once depleted, cannot be reproduced for future use. Fossil fuels and nuclear power arethe main sources of non-renewable electricity generation, as described below [63]–[66]:

 The most common way of producing electricity is by burning fossil fuels (coal, oil, ornatural gas) in a boiler to produce steam to turn a turbine mechanically connected to anelectrical generator. There are three main reasons to seek alternatives for the use offossil fuels in energy generation. Firstly, as a non-renewable resource, fossil fuels arefinite, and therefore will one day be unavailable as a form of energy generation. Thesecond issue with fossil fuels is the geographic location of current reservoirs, which iscontrolled exclusively by a limited number of governments in-terms of both price andavailability. Finally, contaminants are produced through the burning of fossil fuels,which severely affect the environment.
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 In 1905, Albert Einstein discovered that when atoms break apart the mass of atoms canbe converted to a massive amount of energy. Scientists later found that 0.45 kg ofradioactive uranium can produce energy equal to burning 1.4 million kg of coal. Theprocess of breaking atoms apart is called fission. The first attempts of harnessingnuclear power were to make weapons with the first nuclear bomb tested by the UnitedStates of America in New Mexico during the 1940s. By the 1950s, efforts were focusedon controlling nuclear power to generate electricity, leading to the construction of theworld’s first commercial nuclear power plant in England in 1956. A nuclear reactor,required to harness nuclear power, is equivalent to a boiler in a fossil fuel generationplant. The main components of a nuclear power reactor are: a nuclear fuel core; a systemto control the fission rate, and; a cooling system to keep the fuel from overheating.Although the harnessing of nuclear power to generate electricity is almost CO2 free, itindirectly impacts the environment through water pollution, radioactive dust,radioactive gas, and other radioactive waste, such as, chlorofluorocarbons.The key characteristics of different sources of electricity generation, presented in Table 1,shows the typical size of a single generator unit, output variation in time, the outputpredictability, and whether or not the generator is dispatchable.
Table 1: Generator characteristics by energy source(extracted from [47]).Energy source Typical unit size Variable Predictable DispatchableCoal 500 MW No Yes YesNuclear 500 MW No Yes YesGas CCGT14 Up to 500 MW No Yes YesGas open cycle 100 MW No Yes YesHydro withreservoir Up to 500 MW No Yes YesPumped storagehydro Up to 500 MW Yes Yes YesCHP15 Up to 100 MW Usually Usually No, because it isheat ledEnergy crops andmunicipal solidwaste Up to 40 MW (atpresent in UK), in futurelarger units No Yes Yes
Wind Up to 5 MW Yes Not accurately NoLandfill gas 1 MW No Yes YesRun-of-river hydro 100 kW Yes Not accurately NoPhotovoltaic cell 1 kW domestic, up to100 kW commercial Yes Not accurately NoWave No commercialexamples yet Yes Not accuratelyover long-term NoTidal No recent Yes Yes No
14 Combined cycle generation technology.15 Combined heat and power plant, also known as cogeneration.
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2.2.2 TRANSMISSION SYSTEMSThe purpose of the electricity transmission is to deliver the electricity generated by powerplants to substations located near to the loads. Although different methods of powertransmission have been developed and tested, the most common way of transmitting electricalpower is the AC system. High voltage direct current (HVDC) technology is mainly used for verylong distances (greater than 600 km). The problem with AC transmission on very long cables isincreased reactive power. Other applications of HVDC systems are submarine cabling of longerthan 50 km and the connecting of two non-synchronised AC power networks [67]. Single phaseAC systems are also used for electrifying railways [43]. Different countries use differentfrequencies, for example, 50 Hz in Australia, Europe, and parts of Asia, and 60 Hz in the USA.The most ubiquitous and economic means of power transmission are overhead power lines.Thus, the determination of line voltage drop, line losses, and the efficiency of transmission areimportant considerations in design and operation of transmission systems [48]. Overheadtransmission lines are classified into three groups, according to line analysis requirements [42]:
 Short transmission lines are less than 50 km long with a line voltage of less than 20 kV.Due to the short length and relatively low line voltage, the capacitance effects of the linecan be neglected and power engineers only consider line resistance and inductions forcalculations.
 Medium transmission lines are between 50 km and 150 km with a line voltage rangingfrom 20 kV to 100 kV. In this case, the line capacitance is divided and lumped ascapacitors shunted to the line at one or several points.
 Long transmission lines are longer than 150 km with a voltage higher than 100 kV. Theline characteristics (including capacitance) are assumed to be uniformly distributedalong the length of the line.To decrease the power losses of transmission lines, the output voltage of power plants is usuallyincreased16 by a step-up transformer and transmitted to distant places using overhead lines. Atcloser proximity to the load locations for distribution, the voltage is decreased using step-downtransformers. Transmission line voltages are normally higher than 110 kV [68]. Lower voltageslike 66 kV and 33 kV are classified as sub-transmission voltages. Voltages lower than 33 kV aretypically used for distribution purposes [43].

2.2.3 DISTRIBUTION SYSTEMSThe main differences between distribution and transmission systems are proximity to loadcentres and voltage levels. There is no universal distinction between transmission anddistribution lines [69]. Generally speaking, transmitting the electricity from generationsubstations to regional depots can be considered transmission, transmission from the depot tocentral area warehouses is sub-transmission, the warehouses to local wholesale vendors formsthe primary distribution, and finally, from vendors to local consumers is secondary distribution[70] (Refer to Figure 1 and Figure 4 for further clarification). The problem with this figure is thetypical voltage levels. The definition of high voltage and low voltage lines changes over time,
16 Based on electrical circuit rules, the power loss of a conductor is proportional to the square of currentflowing through it. Because the line resistance is constant, a step-up transformer can reduce the currentby increasing the secondary voltage and help to decrease the power losses of transmission lines.
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that is, lines that are considered high voltage today, may be referred to as low voltage in 20years time. Thus, it is preferable to distinguish between three main distribution systemcomponents (see Figure 8) from generation to consumers for use [42]:
 Feeders are conductors that connect sub-stations to the area where power is to bedistributed. The main concern in the design of the feeders is carrying current capacity,which is usually constant in each feeder because no tappings17 are taken from it. SA andSB are feeders in Figure 8.
 Distributors are conductors where tappings are taken to supply consumers. Obviouslythe current is not constant in this case and the main concern in distributor design is thevoltage drop across its length. AB, BC, CD, and DA present distributors in the followinggraph.
 Service mains are cables that connect distributors to consumers’ premises up to themetering point. Service mains are shown with small arrows onFigure 8.

2.2.4 DEMANDThe end points of every power network are consumers, who differ in patterns of demand fromavailable electricity based on their different needs. Three types of consumers are examinedwithin this thesis:
 Residential consumers: Demand patterns of residential consumers are the hardest topredict as each household uses electricity in a different way according to their needs andpreferences [71]. In areas where electricity is being used for cooling and heatingpurposes, however, there will be a strong correlation between residential demand andambient temperature [72].
 Commercial consumers: Commercial demand can also correlate with ambienttemperature. However, after deducting the temperature dependant component ofcommercial demand, demand, in general, is easier to predict and remain fairly constantduring working hours [73].
 Industrial consumers: Unlike two previous categories, industrial demand does notcorrelate strongly with ambient temperature. However, it is not easily predictable due tofluctuations in work load and overhaul periods [74].

2.3 LOAD FORECASTINGOne of the critical tools of planning is to foresee the future. Forecasting of future parametersaffects business activities such as: following up technological evolutions, revenue estimation,maintenance planning and replacement of major plant and equipment. To predict the electricityconsumption of an electricity network in a specific point of time in future is called electricityload forecasting. This section reviews the methodologies and practices used for electricity loadforecasting.
17A tap is a connection from the transformer winding that allows a specific number of turns to be selected.
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In operating power systems, the main application of electricity forecast is to assure that enoughsupply is available to match the load. The range of forecasts can be from a couple of hours,known as short-term forecast, to long-term forecasts, which can be up to 30 years. Forecastinghorizons from seven days to two years are considered medium-term forecasts [75].18 Thisresearch is concerned with short-term and medium-term forecasts (long-term forecasts arebeyond the scope of this thesis).

Figure 7: Typical operating voltages from generator to consumer(extracted from [70]).

18 These definitions can be changed according to the planning requirements. The time horizonsmentioned here are for the purpose of this thesis.
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Figure 8: Distribution system components(extracted from [76]).Long-term forecasts are mainly needed for capacity expansion plans and long-term investments.Medium-term forecasts are used for maintenance scheduling while short-term and very short-term forecasts are useful for operation planning, economic dispatching, load exchange andcontracting with neighbouring networks [77].An accurate load forecast is a vital part of each power system. Because energy storage systemsat large scale are not yet very well applied on power systems, the most accurate forecast isrequired to help with short term investment decisions [75].Electricity load forecasting approaches can be categorized into different groups based on factorssuch as: application type, the area of application (generation, transmission or distributionplanning), the time frame (short-term, medium-term, long-term), and the tools to be used tocomplete the forecast [75].There are two main methods of forecasting electricity load. One is statistical-based models andthe other one is artificial intelligence-based models[78]. There is no specific preference onwhich methodology to use and it all depends on the application. Below is a brief explanation ofthese methods. More detailed comparison of these methods with examples will be discussed infuture chapters.
2.3.1 STATISTICAL-BASED MODELSStatistical-based approaches are widely used in different forecasting applications. They workvery well under normal conditions but as it will be shown in future chapters they are notcapable of capturing complex nonlinearities[79]. This usually happens with sudden changes ininput data like weather parameters[80]. Two of the mostly used statistical models areregression models and time series.
2.3.1.1 Regression MethodsRegression is the study of relations between variables and is one of the most widely usedmethods of load forecasting. After working out the relation among variables the resulting
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formula can be used to predict future variables. Input values can either be estimated orassumed. In load forecasting applications the inputs can be weather data, day of the week orholidays [80].The regression equation can be either linear on nonlinear. By initial investigation of the data,the forecaster can decide which equation to go for. It can be linear, polynomial, exponential,trigonometric or other functions. The coefficients of the equations need to be solved tominimize the sum of squared errors. The model needs to be kept as simple as possible to makeit easy to solve for the coefficients of the equations. Refer to [81] for traditional methods oflinear regression, multiple regression, and exponential methods that have been applied for aday ahead forecasting.
2.3.1.2 Time Series MethodsTime series methods work well with the data sets having internal structure. This can beautocorrelation, seasonal behaviours or trends. Electricity load data do have thesecharacteristics and therefore time series methods is one of the favourite methods of electricityload forecasting [80][82].A time series model can be broken into below components. These components can be added forforecasting purposes19.

 Trend component. This can be any trend (line, polynomial, exponential, etc) andrepresents the long-term pattern of the series.
 Seasonality: This component is when the data repeats itself in a given period of time. Inload forecasting applications several seasonal behaviours are present (daily, weekly).
 Residuals: Residuals are the remainders of above components which presentrandomness in the system.Methods named ARMA, ARIMA, ARMAX and ARIMAX are all different variations of time series.The following can be used to translate the meaning of each method:
 AR: Autoregressive
 MA: Moving average
 IMA: Integrated moving average
 X: With exogenous variableApplication of time series is presented in future chapters. For more examples the reader canrefer to [83] which presents the seasonal auto regressive moving average (ARMA) and doubleseasonal Holt-Winter exponential smoothing.

2.3.2 ARTIFICIAL INTELLIGENCE-BASED MODELSHistorically many artificial intelligence-based methods were proposed to help with loadforecasting applications but, because of the shortage of computational resources they were noteasy to apply. Lately after introducing advancements in computer technologies, tools became
19Applications of such combinations are provided in future chapters.
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capable of handling complex computations required to do artificial intelligence-based forecasts[84].Below is a summary of the artificial intelligence-based methods mainly used for electricityforecasting purposes.
2.3.2.1 Neural NetworksArtificial neural networks have been used widely for load forecasting [85]. Artificial neuralnetworks are generally used for non linear curve fittings. Neural networks can have differentarchitectures. Examples are Hopfield, back-propagation and Boltzman machine. The mostpopular one in electricity load forecasting is back-propagation which is abbreviation for“backward propagation of errors”. Back-propagation networks utilise constantly valuedfunctions and supervised learning. After feeding a set of input and output data to the network itstarts to optimize its weights. When the network is trained and the weights are set another setof input and output data can be used for model validation. When the validation is satisfactorythe model can be used to generate outputs for the new sets of inputs[86]. In our case the inputswill be weather data, day of the week data, month of the year data, year and public holidays andthe output will be the electricity demand. More details and applications of artificial neuralnetworks are presented in future chapters.
2.3.2.2 Fuzzy Logic SystemsFuzzy logic was introduced in 1965 by Lotfi A. Zadeh. Unlike classical logic, fuzzy logic does notassign a specific numeric value to each parameter. Qualitative rules are used instead to relatedinputs to outputs[87]. To simplify, for example, there is not an exact number to define whethersomething is cold or hot. Fuzzy logic can define a rule for such variable which is basically acurve to qualify this characteristic. To generate outputs a reverse procedure is used which iscalled difuzzification [88]. Fuzzy logic has been applied for daily peak forecasting in [89].
2.3.2.3 Support Vector MachinesSupport vector machines SVMs are supervised learning methods to recognize patterns in datasets and are usually used for classification and regression analysis. Although they are mainlyused for linear classifications they can be modified using what is called kernel trick to performnonlinear classifications. SVMs have been used in forecasting electricity demands and attractiveresults are found compared to statistical methods [90]. Support vector regression based onstatistical learning theory has been used for load forecasting in [91].2.4 CONCLUSIONMany different methods have been used for load forecasting. Each of these forecasting methodshas its own capabilities. Statistical based-models works well under normal operations but theyare not very reliable in dealing with sudden changes in input variables like weather data. Asstated in 2.3.2, artificial intelligence based models works well with system nonlinearities. Theyare very good for short-term load forecasting applications where randomness is small. Inlonger-term load forecasts where degree of uncertainty increases, the artificial intelligence-based methods become less efficient and will have large forecasting errors.
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The author is after innovative methods to resolve the above deficiencies of different methods.This goal is going to be achieved in future chapters by combination of both statistical andartificial intelligence-based methods, and by intensive pre-processing of data and classifying thearea into sub-regions to achieve a better classification of the data sets. Three methods ofregression trees, neural network, and auto regression with exogenous variables (ARX) areapplied in this work. These methods are chosen to further investigate the behaviour of eachmethod in load forecasting. Artificial neural networks is chosen as representative for artificialintelligence-based methods, ARX is chosen as a representative of statistical-based methods.Regression trees as a regression method with if-then tree architecture represents a method thatis both statistical-based and artificial intelligence-based.The preparation of input data and selection of an appropriate optimization algorithm plays acritical role in accurate load forecasts, which is explored in more detail in Chapter 5.



3 CASE STUDY3.1 ABSTRACTThis chapter introduces SWIS as the case study of this work. It also represents the concept ofmeshing and the items to consider when preparing a mesh for electricity planning purposes.The visual presentation of the SWIS mesh is shown at the end of the chapter.
3.2 SOUTH WEST INTERCONNECTED SYSTEM (SWIS)The South West Interconnected System (SWIS) was selected as the case study for this research.The SWIS is located in the South West of Western Australia and has some unique characteristicsthat make it an ideal case study for load forecasting studies, for example:

 The SWIS is an isolated network, thereby eliminating the effect of multiple networks oneach other, making the regional study of load consumptions relatively straight forward[92].
 There are various types of regions with different load patterns present in the SWIS.These unique characteristics will be used in future in the thesis to test the developedplatform on different sub-systems and test the effect of input behaviours on the results.
 The SWIS is highly temperature sensitive with electricity used to cool or warm residents.Thus, the load fluctuates dramatically by ambient temperature changes. This isimportant for the sub-systems with a higher residential component. In general, thegreater the temperature sensitivity of a region, the greater the nonlinearities within thesystem, making the system more complicated to forecast.
 The SWIS network has experienced constant growth in the last 15 years, like most otherelectricity networks around the globe.

3.3 BRIEF HISTORY OF THE SWISThe SWIS has developed to provide power to Western Australia. The network was originallyexpanded to satisfy the requirements of population growth and later on developed to supportindustrial activities associated with mining and export of raw materials.The beginning of the SWIS was in 1913 after the merging of several independent poweroperations in Perth Area. By 1916 the first power station was built in Western Australia at EastPerth with the total capacity of 12 MW. The power was provided to Perth using 6.3 kV lines. Thetotal demand was below 4 MW at that time. The SWIS has constantly grown since then and thecurrent SWIS is capable of managing the system peak load of 4028 MW[93].

Chapter
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3.4 DIVIDING THE SWIS INTO REGIONSTo forecast the electricity consumption within a specified location, where the consumers arephysically close to each other, is known as spatial load forecasting. There are few sources in theliterature on spatial load forecasting. The idea of spatial load forecasting is well explained in[40], [94]. A comparison and selection method of spatial forecasts is presented in [95]. [96]solved the problem of spatial load forecasting using local movement, and [97] combinedtrending and land-use based methods to develop a spatial load forecasting method. Althoughthese sources explain the idea of spatial load forecasting, all of them only applied it todistribution systems. As the main interest of this research is to assist power planners, the focusis on developing spatial forecasting methods useful to generation and transmission planners. Toget to that point the area under study (the SWIS) needs to be divided into different sub-regionsproper for spatial studies.Meshing is the act of dividing the area under study into small sections. Mesh generation isstudied in detail in [98]. The main concern in [98]is to define mesh with optimal shapes tocapture more information out of the system under study. For example, it provides ways togenerate optimal meshes for finite element analysis purposes. Although the idea sounds verysimilar, the application of mesh generation is unique in this chapter and is different from thepresentation in [98]. It has to be suitable for spatial studies of electricity load and power systemplanning. The author is not very concerned about the shape of the meshes being produced. Themeshing method and resolution vary according to the utility type that is going to be planned.For instance, distribution utilities serve small loads distributed in small areas inside the servicearea. Regular meshing with high resolution can be very handy in this case. On the other hand,transmission and generation utilities cover a relatively large area where low resolutionirregular meshing can be applicable.Given that meshing is a vital prerequisite for spatial forecasting and planning steps, the areaselection should be undertaken in a way that helps the future steps. Below is a list of importantcharacteristics that help define a proper mesh in general power planning applications:
 Type of electrical load: Electricity load can be residential, commercial, industrial, or acombination of them. It will be a good idea to place the consumers of each type in onesub-section.
 Proximity: Consumers of close substations will be placed in one division.
 Population: The population concentration affects the load consumption in the area and itwould be good to put the areas of similar population in one category.
 Average temperature and relative humidity: Because temperature and relative humidityare the most important weather inputs, which affect the electricity consumption, placingthe areas of similar average temperature and relative humidity will help the spatialpower system planning.
 Availability of renewable sources of energy: It is important to consider the availability ofthe renewable sources of energy in the meshing step. This decision will ease the studiesaround renewable energy integration into the grid.
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Based on the requirements of the problem, meshing can be regular or irregular [94]. Regularmeshing involves dividing the area under study into equal sub-sections, with each sectionpresented by an equilateral convex polygon. Irregular meshing is used when the shape of thesub-sections is not the main requirement and the emphasis is more on putting the areas of thesame characteristics in one group. See Figure 9 for more clarification.

Figure 9: Irregular (left side) and regular (right side) meshing (extracted from [94]).
Appendix C presents some of Australia’s distribution figures related to the above characteristics.According to the mentioned characteristics, the SWIS can be divided into eight different sub-systems. The mentioned sub-systems are in accordance with the Western Power regions (TheSWIS operator) as mentioned in [93]. Using the same regions as the ones used by the networkoperator makes the results of this work more understandable to people in the industry.

 CBD20: The CBD sub-system is the heart of the state’s capital of Perth. With multi-storeyoffice buildings, it is an ideal sub-system for commercial electricity load behaviours.
 Metro East: This sub-system is composed of the eastern part of the Perth metropolitanarea and is mainly composed of residential buildings, making it an ideal location forresidential load behaviours.
 Country Goldfields: Located in the eastern part of Western Australia and is mainlycomposed of mining companies, which makes it a perfect one for pure industrial studies.
 Metro North, Metro South, Country North, Country South, and Country East are othersub-systems of the SWIS. These regions are mixed regions with some dominated byindustrial loads and others by residential loads.To visualise these regions, the procedures shown in Figure 10 are followed and a computerprogram is coded to generate a mapping tool.

20Central Business District
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Firstly, a map of the area is captured using Google map services and then, considering the abovecharacteristics, the region is divided into eight different sub-systems.21 Then the boundarycoordinates are recorded and using a computer coded program the polygons are regenerated.The code can be found in section ix of Appendix D.The generated meshes considering all the aforementioned characteristics are presented inFigure 11 and Figure 12. Figure 11 divides the SWIS area into five sub-sections, and Figure 12magnifies the metro area and divides it into four smaller divisions. These maps will be used forpresenting the calculated short-term and medium-term forecasts on a map. In Chapter 6, apotential application of this tool is shown.

Figure 10: Meshing tool development steps.3.5 CONCLUSIONThis chapter described SWIS as the case study for this thesis. Different regions of SWIS aredescribed and a meshing tool is developed to divide the area into sub-regions.

21 The selected sub-systems are very similar to the ones defined by the local transmission systemOperator Company, known as Western Power. The reason was that the output of this work can be readilyapplied to the existing system in the industry.
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Figure 11: SWIS area meshing.
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Figure 12: Metro area meshing.



4 SHORT-TERM LOAD FORECASTER (CLASSIC APPROACH)4.1 ABSTRACTIn this chapter, an innovative method for one day ahead and seven days ahead forecasts ofelectricity load is proposed. The proposed forecast method was tested on a residential load ofSWIS. The case under study is tested under realistic conditions by considering minimum andmaximum forecasts of temperature and relative humidity as available future inputs. Threedifferent nonlinear approaches of neural networks, regression trees, and auto-regression withexogenous variables (ARX) were applied to fit a model with the mean absolute percentage error(MAPE). Artificial neural networks is chosen as representative for artificial intelligence-basedmethods, ARX is chosen as a representative of statistical-based methods. Regression trees as aregression method with if-then tree architecture represents a method that is both statistical-based and artificial intelligence-based. The results confirm improvement in all three trainingmethods. As it was expected artificial intelligence-based model performs better than thestatistical-based approach in short-term load forecasting applications. Regression trees withdaily MAPE of 1.98% and weekly MAPE of 3.40% show the best performance. The obtainedresults confirm the functionality and high accuracy of this method. Limitations of this classicapproach are also discussed, specifically, that the case study itself can dramatically affect theaccuracy of the forecasting method.
4.2 INTRODUCTIONThe complexities of contemporary electricity markets are enormous [99]. Electricity is tradedbased on bilateral contracts between energy providers and energy consumers. Electricitydemand forecasting has a very significant role in present electricity markets as accurate loadforecasting results in substantial financial savings and increased network reliability. Forecastsof a couple of hours to seven days ahead are known as short-term load forecasts (STLF).Applications of STLF include dispatching and commitment of generators, load shedding, and thedetermination of market prices.Due to its essential role in the electricity market, many methods for generating STLF have beendeveloped (for a review of previous methods, see [100]–[101] or literature review chapter).This chapter focuses on three methods: neural networks, regression trees, and ARX.All these three methods are used to solve the load forecasting problem in the literature.[102]applied neural networks for hourly load forecasts. Applications of artificial neural networks inone day ahead load forecasts have been addressed in [103]–[104].An adaptive neural networkapproach was used for seven day ahead forecasts of electricity load in [105]. Regression treeswere used to model a day ahead load in Spanish power systems [106] and have also been usedin combination with fuzzy clustering [107]. An application of ARX in STLF is addressed in [108].In this chapter, some modifications will be applied on these three methods to develop STLF ofup to seven days ahead. Refer to 4.3for a full description of the steps taken. Considering thementioned definitions of load forecasting horizons in Chapter 2, electricity load forecasts from acouple of hours ahead up to seven days ahead can be categorised as STLF. This chapter explores

Chapter
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the classic approach of load forecasting method for up to seven days ahead load forecasts with avery good level of accuracy and reliability. The reported results are slightly better than reportedones in the literature. This is because of additional data pre-processing works and model set up.The following section provides more details.
4.3 METHODOLOGYThe proposed methodology is a combination of data clustering, pattern recognition, and signalreconstruction techniques, and a training model to formulate the input-output relations. Threedifferent nonlinear training methods of artificial neural networks (ANN), regression treelearning, and auto-regression with ARX have been used in this study. To construct more thanone tree in regression tree method, techniques called ensemble methods can be used. Theensemble method can be bagging [109], random forest, boosted trees[110] and rotation forest.Bagging or bootstrap aggregating is a method used in machine learning algorithms to reducevariance and also help with over-fitting. Random forest is another method that can help with theproblem of over-fitting. Due to its performance under classification noise, bagging has beenselected for the construction of regression trees for ensemblesas reported in [111].The main intent of this work is to perform short and medium-term load forecasts of up to oneyear ahead. GDP and population growth play critical load in long term electricity forecasts.However, for a time period of less than a year the change in parameters like population and GDPis minor and they hardly affect the electricity load. By using them, the complexity of model willincrease and the accuracy will drop. As such, both GDP and population data are excluded fromthis work.A summary of the proposed method is illustrated in Figure 13. This flowchart is graduallyformed by the author during his move towards preparing high accuracy electricity forecasts.Here is how this chart is being concluded.
4.3.1 RESOLUTION ADJUSTMENTAs mentioned earlier, the resolution of electricity load data and weather information are not thesame and the first step in data pre-processing will be data resolution adjustment. The resolutionof provided temperature and relative humidity data were hourly. This is basically how theAustralian Bureau of Meteorology records its data. However for short term load forecasts theaccuracy will be higher if higher resolution is used. The resolution was changed to half hourlyby replacing each half an hour data with the average of neighbouring points and using firstorder hold for each 30 minutes of data.22Refer to Appendix D for a computer code generated toadjust data resolution. Temperature and relative humidity are selected as the main two inputsto the training methods as they have shown much higher correlation values comparing to theother inputs studied.
22See Appendix D for the codes.
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4.3.2 DEALING WITH MISSING DATA AND OUTLIERSScatter plots of the data sets show some visible outliers. Visible and non-visible outliers areremoved in the next step. Investigating the data sets again show some missing data points. Itcould be because of sensor failure or data transmission failure. Those missing points are to bereplaced by proper estimates.As recommended by [112], one dimensional median filtering can be used to remove outliers.However, median filtering alone is not capable of removing all the outliers automatically. Tocapture normal outliers a short window should be applied. A long window should be appliedafter that to capture outliers in a row. Human supervision is also required to remove outliers.The human expert can change the window sizes and investigate the data graphs and Q-Q23 plotsto ensure that the outliers have been removed properly. He/she can also specify and remove theoutliers by using Matlab brushing tool. The same tool will be used to remove load outliers. For acomprehensive study of Q-Q plots and outlier removal refer to Chapter 5. Missing data pointsare simply replaced by averaging neighbouring points. Refer to Appendix D for computer codesgenerated to estimate missing data points and outlier detection.
4.3.3 CLUSTERING AND SIGNAL RECONSTRUCTIONThe forecasting resolutions of weather data are different. Although sometimes these forecastsare available for every three hour of the next week, to avoid the loss of generality only minimumand maximum values of temperature and humidity are considered to be available to thisframework at the time of forecasting. While weather forecasters are able to provide seven daysahead forecasts for a range of variables in a limited resolution of time [113], forecasts beyondthis horizon are not reliable because of the unpredictable nature of influential variables onweather systems. According to the Australian Bureau of Meteorology (BOM), these variablesinclude: Surface pressure, Rainfall, Mean sea level pressure, Wind speed and direction,Geopotential height, Temperature, Relative humidity, Dew point, Combined sea and swell,Primary swell, Secondary Swell, Wind waves, and Wave period. This is why forecasted weatherdata cannot be directly used as an input for medium and long-term load forecastingapplications. (For more information about this, refer to Chapter 6 where medium-termforecasting is being developed).As stated by [29] the most important elements of weather for electricity demand forecasting aretemperature and relative humidity. This can be also verified by a quick correlation test betweenload data and temperature and relative humidity. To be useful for practical applications, inputdata for load forecasting applications should be realistic and available at the time of running theframework. As discussed earlier, and not to lose the generality of this method we assume thatonly the maximum and minimum forecasts of temperature and relative humidity are available
23 A Quantile vs. Quantile or Q-Q plot is a graph that shows the probability of two distributions at the sametime. By using Q-Q plots similarities and differences of two different distributions can be investigated.



C h a p t e r F o u rS h o r t - t e r m L o a d  F o r e c a s t e r  ( C l a s s i c  A p p r o a c h )| 45

at the time of forecasts. Thus, only the minimum and maximum values of temperature andrelative humidity for seven days are considered as the weather inputs of this framework.

Figure 13: Proposed technique for seven-day ahead load forecaster.To extract the weather distribution data out of available minimum and maximum forecasts,historical data of temperature and relative humidity are clustered24. Data sets of each clusterfollow a similar pattern. By recognising these patterns and using the maximum and minimumforecasts of temperature and relative humidity, the cluster distribution signals arereconstructed. Half an hourly temperature and relative humidity information of the next sevendays can be extracted from the reconstructed signals and be used for seven day ahead loadforecasting purposes. See 4.4 for examples.
4.3.4 INPUT DATAThe raw input data is composed of seven days ahead minimum and maximum temperature, andrelative humidity forecasts and historical load, temperature, and relative humidity data. After
24Clustering is used intensively in load forecasting applications to enable important informationconcerning seasonal weather variables and electricity consumption to be derived from the data set[135]–[136].
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resolution adjustment, the removal of outliers and the replacement of missing data points withmeaningful values, input matrixes were formed out of the available data. Preparing a set ofinput variables is a significant step in any training procedure as it can strongly impact on theaccuracy of the method. Input data include either variables that correlate strongly with theoutput data, or variables that help to classify the other input variables. Introducing more inputvariables to the problem without high correlation with outputs is avoided to increase theaccuracy of the model. Some of these inputs are indirectly used in the model. For example, byhaving an input as year number the model will be able to consider items like change of GDP andpopulation indirectly.After pre-processing and clustering the data, 13 sets of input variables were defined based onavailable temporal, load, and weather data as a feed for training models. The aforementionedinputs and a description for each are as follows:1. Year: Load data of any example usually varies on an annual basis. Annual trends willvary dependent on the year as a result of population increase and industrial growthspecific to the region within a particular time frame. By choosing a year as one separateinput, these kinds of changes can be captured.2. Month: Each month has its own specific patterns of temperature, relative humidity, windand rain fall. These control variables introduce seasonality in the load data that needs tobe captured.Considering months instead of seasons captures the seasonality of the datato a better degree.3. Day of the week: Each day of the week has its own load pattern, as the needs ofconsumers differ on different days of the week. Although some weekdays have similarload patterns, each day of the week was individually treated in this method. The mainreason is that similar days do not behave exactly the same. Therefore, placing them inless than seven groups would result in a loss of some vital information about the weekdays.4. Hour of the day: Load pattern also varies from hour to hour during the day.5. Temperature.6. Relative humidity.7. Previous day same hour load. This helps to capture the autocorrelations in load data.8. Previous week same hour load. This helps to capture the autocorrelations in load data.9. Holiday: Public holidays and weekends have some similarities in load patterns in thesame way that weekdays have similar consumption patterns. Defining this variable andits combination with day of the week variable enables the consideration of different daytypes’ load patterns. More information about the public holidays used in this researchare detailed in Appendix B.10. Average past 24-hour load: This variable highly affects each day’s consumption. This isfounded after running correlation tests between the average past 24-hour load and thenext day load.11. Average past seven days load: This variable shows a good correlation with load.12. Summer temperature: This value helps the classification of temperature in hot days.13. Winter temperature: This variable helps to distinguish the cold days’ temperature.
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4.3.5 TRAINING AND SIMULATIONThree different training methods of artificial neural networks, regression trees learning, andARX were applied using selected sets of input and output data, as specified in the previous step.The optimal architecture for each method was achieved by testing different configurations andobserving the output accuracy.The architecture of the neural network used is feed forward back-propagation with 40 hiddenlayers and one output layer. This configuration had the best regression for both training setsand validation sets. Training performance is set on minimising the mean absolute error. Refer toAppendix D for more details on this configuration.Decision trees architecture used considers 40 number of regression tree with 30 as theminimum leaf size.In ARX model, the order of output polynomial is set as 18,and the order of thirteen outputpolynomials are set at 18,20,16,19,20,16,20,20,20,19,20,19,20.After testing the trained model, the next step was simulating the results. Using selected sets ofinputs, single day ahead forecasts for any single day can be achieved. For seven days aheadforecasts because the input data for each day is not available some of the inputs need to beforecasted as the new input for a new day up to seven days.Refer to Sample Codes for setting up neural networks, regression trees and calculating the error.4.4 CASE STUDYA pure residential area, East Perth metropolitan area, was selected as the case study to test thismethod. A pure residential load was chosen to capture all the behaviours of households in thatarea without the additional complications of industrial load regularities25. Additionally, a pureresidential load model enables testing under the worst case. That's because residentialconsumers' behaviour is very nonlinear. They are not following a daily schedule like commercialor industrial consumers. Therefore, when the same method is applied on a combination ofindustrial load and residential load26, the output accuracy will be increased. The region consistsof one 6.6 kV and six 22 kV distribution substations and the total of 17 transformers.As mentioned in section 4.3, historical data of load and weather of the region under study arerequired. The load information of each individual transformer was extracted from the databaseof Western Power, the company responsible for building, maintenance, and operation ofWestern Australia’s South West electricity grid, known as the SWIS. The author approachedWestern Power (the SWIS network operator) in 2010. After several communications and phonediscussions they mentioned that the load information is not readily available and data
25Industrial loads have a completely different behaviourcompared to residential data. They are mainlyinfluenced by the situation of economy and factory work schedule. That's why it is better to study themseparately. For more information on load system behaviours refer to Chapter 5.26Commercial load behaviours are somewhere between residential and industrial loads. For moreinformation on load system behaviours refer to Chapter 5 system-based load forecasting approach.
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extraction is required. The author then moved to Western Power office and spent three monthsto extract all the demand load data of the SWIS. The data was extracted from two data basescalled PI and Saffaire and included fifteen years of load data of all the substations of the region.The data resolution was half an hourly and the size of the files was extremely big. Weather dataof the same period of time and locations was provided by Australian Bureau of Meteorology.The resolution of weather data was hourly.The load data were combined to determine the electricity load of the East Perth region. Thespecifications of input data to the short-term forecasting framework are presented in Table 2.
Table 2: Raw data specifications.Data Unit Resolution Start date End dateLoad MW Half hourly 01-Jan-1995 01-Jan-2011Temperature °C Hourly 01-Jan-1995 01-Jan-2011Relative Humidity % Hourly 01-Jan-1995 01-Jan-2011
Figure 14 shows the scatter plot of electricity consumption versus temperature over 15 years ofobservation. It can be used to observe the correlation between temperature and load changes.In air-conditioning science around 20 − 23 is known as the comfort region. Most of humansdo not use means of heating or air-conditioning in these temperatures where the temperature-load correlation is close to zero. At higher temperatures there is a positive correlation with loadand for lower temperatures the correlation is negative. This can be visually confirmed just byhaving a close look on the scatter plot. When the temperature increases above 23°C the loaddoes also increase. In other words a positive correlation exists between load data andtemperature in hot seasons. Alternatively when the temperature decreases below 20°C the loaddata again increases. In mathematical-terms this is a negative correlation which happens in coldseasons. This confirms the fact that people in Perth mainly use electricity for cooling andheating purposes. Unlike the region under study, for regions where gas heaters are widely used,the correlation of load with low temperatures is close to zero. An example of such region ispresented in[99].After clustering the data, more information can be captured from temperature and loadrelations of each cluster. Figure 15 and Figure 16 show daily temperature and load distributionof a sample cluster. In our study each cluster is a day of a certain month. For exampleWednesdays of April make one cluster. Using half hourly resolution each cluster will consist of24 (number of hours in a day) x 2(number of half hours in an hour) x 4.5 (number of weeks in amonth) x 15 (number of years) = 3240 data points. A regular pattern can be easily seen in bothof them. With the help of clustering, weather signals can be accurately reconstructed and alsoproper inputs for training models can be generated.By recognising these patterns and using the maximum and minimum forecasts of temperatureand relative humidity, the cluster distribution signals are reconstructed. Half an hourly
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temperature and relative humidity information of the next seven days can be extracted from thereconstructed signals and be used for seven day ahead load forecasting purposes. For each dayof the 7 day week there are 68 similar days to search into. The search is being done by lookingfor closest maximum and minimum temperature to the forecasted one.

Figure 14: Half hourly electrical load consumption (MW) versus temperature data (degrees Celsius) from 15 years ofobservations for East Perth metropolitan area.
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Figure 15: Daily temperature distribution of a sample cluster.

Figure 16: Daily load distribution of a sample cluster.
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4.5 FINAL RESULTS AND DISCUSSIONSThe models have been trained with 14 years of data from January 1995 to January 2010. Thetesting period is 2010. The one day ahead and seven days ahead forecasts of a sample week inApril 2010, are respectively presented in Figure 17 and Figure 19. Their residuals are shown inFigure 18 and Figure 20.

Figure 17: One day ahead forecasts of a sample week using three methods.
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Figure 18: Residuals of one day ahead forecasts for a sample week.

Figure 19: Seven days ahead forecasts of a sample week using three methods.
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Figure 20: Residuals of seven days ahead forecasts for a sample week.
The mean absolute percentage error (MAPE) was calculated as the comparing criterion. MAPEcan assign a number to the error of each method. MAPE has become somewhat of a standard inload forecasting applications. For few other works using MAPE to report the model accuracy thereader can refer to[114], [115] and [116]. The following is the formula that was used:

= − (4-1)Where: Actual electrical load in MWForecasted electrical load in MWNumber of forecasted data points
Table 3 shows the comparison between the three different methods that were used. Daily MAPEis the mean absolute percentage of each method for one day ahead forecasts of a week (seeFigure 17) and weekly MAPE presents the accuracy of each method for seven days aheadforecasts (see Figure 19).
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Table 3: Comparing the error and speed of applied training algorithms.Training algorithm Training speed Daily MAPE Weekly MAPENeural networks Slow 2.02 % 3.88 %Bagging regression trees Fast 1.98 % 3.39 %ARX Fast 4.51 % 5.08 %
[117] states that it is relatively an easy task to get to the MAPE of 10% in load forecastingapplication. But each percent lower MAPE in the forecast of electricity can potentially save up to£10 million in operating costs per year as investigated by [118].Comparing the achieved results from neural networks, bagging regression trees, and ARXrespectively with conventional methods of neural networks[114], regression trees, and timeseries [119] show improvement in accuracy for all of the tree training methods that have beenused. The improvement could be because of the more detailed data pre-processing methodsintroduced in this chapter. Among all of the applied methods bagging regression trees showsthe best results using the presented methodology.The improvement in the forecasting accuracy comes from, pre-processing of raw input data asstated in 4.3.1 and 4.3.2, size of the data set extracted, resolution of the data set extracted,clustering and signal reconstruction techniques as described in 4.3.3 and the 13 sets of inputvariables defined in 4.3.4.
4.6 CONCLUSIONIn this chapter, the problem of seven days ahead load forecasting has been solved. The proposedframework generates the seven days ahead forecasts based on a stable next day forecast and theseven day forecasts of maximum and minimum temperature and relative humidity. A pureresidential area has been selected as the case study to test the model under the worstconditions. For the training step of the proposed solution three different algorithms have beenapplied to investigate their ability to generate the best forecast. Regression trees show the bestperformance among the three methods. The accuracy of regression trees in this application isslightly better than neural networks and the training speed is noticeably higher. Although theachieved accuracy is good for seven days ahead forecasts, better accuracy is expected for casestudies with some level of industrial load involved. The reason is less nonlinearity andrandomness in behaviour.
4.7 CHALLENGING THE CLASSIC APPROACHAlthough the results are sound, this method is not necessarily the optimal solution to be used inany load system. The problem with a classic approach is the limited generalisability of the single
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case study to other load profiles, and in particular the variability resulting from the uniquesystem behaviour of the selected case study. The following chapter presents different casestudies, and based on the load determination criterion, a new rule will be presented to help theload analysts select the best forecasting method based on electricity load distributions. As MAPEmay not be the best method of comparing different forecasting methods, a modified version ofMAPE called MMAPE will be presented in the next chapter.



5 SHORT-TERM LOAD FORECASTER (SYSTEM BASED APPROACH)5.1 ABSTRACTAn innovative method of forecasting electricity load was introduced in the previous chapter.The forecast accuracy of the classic approach is satisfactory compared to the conventionalmethods of short-term load forecasting (STLF). However, in a classic approach, there are someunseen items that can dramatically affect the forecast accuracy and the reliable application ofthe method on other load systems. The major missing part in the classic approach is notconsidering the behaviours and characteristics of the system under study. In other words, inclassic approach, a method of forecasting gets developed and applied to all load forecastingproblems. In this work the reader will see that a method that is efficient on a case study may notbe as efficient on another one. Another important missing part is the detailed study of inputvariables, such as, temperature and relative humidity, and looking at their effects on systembehaviours. This chapter will examine those unseen parts and will introduce a system basedapproach that can be adapted to any existing load system to produce more accurate and reliableSTLF.
5.2 INTRODUCTIONTo better understand the deficiencies of the classic approach, this chapter will examine thebehaviours of eight regions in SWIS with different characteristics. The regions are: Metro North,Metro East, Metro South, CBD, Country North, Country South, Country East, and CountryGoldfields. The load pattern of each region is different. Some are purely residential, some aredominantly industrial, CBD is a mixture of commercial and residential and some are mixture ofall three. As the data extraction and pre-processing steps are similar to the previous chapter forall the regions, only a summary of the procedure is presented below. The focus of a systembased approach is different from a classic approach and gives the forecaster a tool to select thebest forecasting method by analysing the system load data and temperature sensitivity.
5.3 WEATHER DATAThe weather data comprises the temperature and relative humidity of seven locations in theSouth West of Western Australia. The chosen weather stations data can be used for eightregions selected earlier. For some cases the weather data of two or three stations are averagedto achieve the weather parameters of the region. The weather data of these locationswasprovided by the Australian Bureau of Meteorology (BOM)[113] upon the author'srequest. Thedata resolution is hourly and is from January 1995 to January 2011. However, according to theBOM reports, very few locations have a complete record of weather data. There are variousreasons for missing data. The site may have been closed, reopened, and upgraded to a fullweather site or downgraded to a rainfall only station during its existence, leading to somemissing data. There might also be missing data due to a damaged instrument or the absence or

Chapter
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illness of an observer. Some outliers are also visible because of machine faults or smallnoises.Table 4 contains the raw weather data provided by the BOM.
Table 4: SWIS raw weather data.Location Variables Start-date Finish-date Total number ofobservationsPerth T and RH 01-01-1995 01-01-2011 280,514Mandurah T and RH 01-01-1995 01-01-2011 280,514Bunbury T and RH 22-04-1999 01-01-2011 206,508Kalgoorile T and RH 01-01-1995 01-01-2011 280,514Geraldton T and RH 01-01-1995 01-01-2011 280,514Albany T and RH 01-01-1995 01-01-2011 280,514
A number of data analysis and adjustment steps needed to be performed on the weather data tomake them ready for the spatial STLF application. Here is how the weather data is mapped toeach region.

 CBD: Perth weather data is used for this region.
 Metro North: Perth weather data is used for this region.
 Metro South: Average of Perth and Mandurah weather data is used for this region.
 Metro East: Perth weather data is used for this region.
 Country North: Geraldton weather data is used for Country North.
 Country South: Average of Albany and Bunbury weather data is used.
 Country East: Average of Kalgoorlie and Perth weather data is used for Country East.
 Country Goldfields: Kalgoorlie weather data is used for this region.

5.3.1 RESOLUTION ADJUSTMENTAs mentioned earlier, the resolution of electricity load data and weather information are not thesame and the first step in data pre-processing will be data resolution adjustment. The resolutionof provided temperature and relative humidity data were hourly. This is basically how theAustralian Bureau of Meteorology records its data. The resolution was changed to half hourly byreplacing each half an hour data with the average of neighbouring points and using first orderhold for each 30 minutes of data.27
5.3.2 DEALING WITH MISSING DATA AND OUTLIERSAs recommended by [112], one dimensional median filtering can be used to remove outliers.The median filter considers each data point in a dataset and looks at its nearby points to decidewhether or not it is representative of its surroundings. If a large change is detected, the datapoint will be replaced by the median of neighbouring values. However, median filtering alone isnot capable of removing all the outliers automatically. To capture normal outliers, a short
27See Appendix D for the codes.
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window should be applied. A long window should be applied after that to capture outliers in arow. Human supervision is also required to remove outliers. The human expert can change thewindow sizes and investigate the data graphs and Q-Q (Quantile vs. Quanltile) plots to ensurethat the outliers have been removed properly.For single outliers that are detectable by human eye and are clearly standing out of the data set,the human supervisor can specify and remove them by using tools like Matlab brushing tool.The removed single points will be treated as missing data points later on. As suggested by [112],a straightforward technique to estimate and replace the missing data points is with the averageof neighbouring points.The Q-Q plot is a graphical technique for determining if two data sets come from populationswith a common distribution. By using Q-Q plots similarities and differences of two differentdistributions can be investigated. If the data sets are following the same distribution, the Q-Qplot will follow a 45 degree straight line. For more detailed information on Q-Q plots and theiruses in probability theory [120] can be read.Several items can be investigated by looking at Q-Q plot of two data sets. For the purpose of thiswork we are only interested in finding answers for below questions:
 Are there any outliers present? (Has the removal of outliers been efficient andsuccessful?)
 Do two data sets come from similar distribution?To examine the presence of outliers in a data set the Q-Q of the data set against normal(Gaussian) distribution can be drawn. Normal distribution is used because as stated in [121],physical quantities that are the result of many independent processes (such as measurementerror) often have distributions very similar to normal. Single points away from the 45 degreeline show the presence of outliers in a data set. Refer to 5.4.1 to see how normal Q-Q plots areused in this work to test the data sets for presence of outliers.Later on in the thesis under section 5.5.2, Q-Q plots of other distributions are tested to findinvaluable information about the behaviour of load data. To date, such behavioural analysis ofload data has not been addressed by any other sources available in the literature. And theauthor can be considered as the first people who applied this.

5.4 LOAD DATAElectricity load data of 440 transformers was extracted from the database of Western Power.The data resolution is half hourly and is from January 1995 to January 2011. By finding thelocations of transformers on the SWIS map and aggregating the load data, different regions loadcould be achieved. The regions are the same as the eight regions described in 3.4. CountryNorth, Country South, Country East and Country Goldfields are presented in Figure 21.Figure 22breaks down the Metro Region into four smaller regions called CBD, Metro North, Metro East
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12
Figure 21: SWIS area regions on map (country side regions).

Figure 22: Metro area regions on map.
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and Metro South. The recorded load data is full of outliers and missing values. To provide abetter view of the raw data, scatter plots of half hourly load samples for each region arepresented below (Figure 23to Figure 30). To plot the following figures, data cells with errormessages and no values should be replaced by NAN values.

Figure 23: Metro North electricity load data from 15 years of observation.
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Figure 24: Metro East electricity load data from 15 years of observation.

Figure 25: Metro South electricity load data from 15 years of observation.
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Figure 26: CBD electricity load data from 15 years of observation.

Figure 27: Country North electricity load data from 15 years of observation.
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Figure 28: Country East electricity load data from 15 years of observation.

Figure 29: Country South electricity load data from 15 years of observation.
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Figure 30: Country Goldfields electricity load data from 15 years of observation.
5.4.1 DEALING WITH MISSING DATA POINTS AND OUTLIERSFor single outliers that are detectable by human eye and are clearly standing out of the data set,the human supervisor can specify and remove them by using tools like Matlab brushing tool.The removed single points will be treated as missing data points later on. As suggested by [112],a straightforward technique to estimate and replace the missing data points is with the averageof neighbouring points. Based on the idea that the load of each hour of a day is similar to theload of a similar hour of a similar day of the neighbouring weeks, the missing values have beeninterpolated using the four neighbouring weeks.28 The author has come into the sameconclusion as discussed under data clustering section 4.3.3.After applying this method on the available data sets the Figure 31to Figure 38were obtained.By comparing these figures with the previous eight figures (Figure 23 to Figure 30), theefficiency of this method to remove outliers can be confirmed. Although the removals of someoutliers are pretty obvious just by visually comparing the graphs, Normal Q-Q plots of the newsets and raw sets will be presented in the next section to see the efficiency of this outlierremoval tennique.

28See Appendix D for the codes.
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Figure 31:Metro North electricity load data with removed outliers and estimated missing data points.

Figure 32: Metro East electricity load data with removed outliers and estimated missing data points.
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Figure 33: Metro South electricity load data with removed outliers and estimated missing data points.

Figure 34: CBD electricity load data with removed outliers and estimated missing data points.
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Figure 35: Country North electricity load data with removed outliers and estimated missing data points.

Figure 36: Country East electricity load data with removed outliers and estimated missing data points.
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Figure 37: Country South electricity load data with removed outliers and estimated missing data points.

Figure 38: Country Goldfields electricity load data with removed outliers and estimated missing data points.
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To better evaluate the capability of this method to remove outliers, standard normal Q-Q plotsfor all eight regions are presented below. Normal distribution is used because as stated in [121],physical quantities that are the result of many independent processes (such as measurementerror) often have distributions very similar to normal. Single points away from the 45 degreeline show the presence of outliers in a data set. In all cases, the left panel shows the quantiles ofraw data versus standard normal, and the right panel represents the same Q-Q plot after theoutliers have been removed. The outliers can be easily identified by comparing the two panels.

Figure 39: (a) Quantiles of Metro North raw load versus the quantiles of standard normal; (b) Quantiles of MetroNorth load with outliers and missing data points removed versus the quantiles of standard normal.Figure 39, Figure 40, Figure 41, Figure 42, Figure 43, Figure 45 and Figure 46: By looking atboth normal Q-Q plots it can be concluded that the data distribution does not exactly follow thedistribution of standard normal. If that was the case the majority of the blue dots should belocated on the 45 degree line showed as a dashed line. However, for this specific test we areonly after investigating the efficiency of the outlier removal methods used.Figure 44: By looking at both normal Q-Q plots it can be concluded that the data distribution isvery similar to the distribution of standard normal. If that was the case the majority of the bluedots should be located on the 45 degree line showed as a dashed line.
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Figure 40: (a) Quantiles of Metro East raw load versus the quantiles of standard normal; (b) Quantiles of Metro Eastload with outliers and missing data points removed versus the quantiles of standard normal.

Figure 41: (a) Quantiles of Metro South raw load versus the quantiles of standard normal; (b) Quantiles of MetroSouth load with outliers and missing data points removed versus the quantiles of standard normal.
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Figure 42: (a) Quantiles of CBD raw load versus the quantiles of standard normal; (b) Quantiles of CBD load withoutliers and missing data points removed versus the quantiles of standard normal.

Figure 43: (a) Quantiles of Country North raw load versus the quantiles of standard normal; (b) Quantiles of CountryNorth load with outliers and missing data points removed versus the quantiles of standard normal.
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Figure 44: (a) Quantiles of Country East raw load versus the quantiles of standard normal; (b) Quantiles of CountryEast load with outliers and missing data points removed versus the quantiles of standard normal.

Figure 45: (a) Quantiles of Country South raw load versus the quantiles of standard normal; (b) Quantiles of CountrySouth load with outliers and missing data points removed versus the quantiles of standard normal.
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Figure 46: (a) Quantiles of Country Goldfields raw load versus the quantiles of standard normal; (b) Quantiles ofCountry Goldfields load with outliers and missing data points removed versus the quantiles of standard normal.
5.5 RESIDENTIAL, INDUSTRIAL, AND COMMERCIAL LOADS’ BEHAVIOURThe behaviours of residential, industrial, and commercial loads are different. Although in thepractical case the load can be a combination of all the three types, it is important to study theproperties of each separately. This section distinguishes these loads from each other. Finally acriterion will be proposed to recognise the dominancy of any of the mentioned types in a loaddata set. This criterion can be used in places where the dominant type of load is not known.
5.5.1 TEMPERATURE SENSITIVITYFigure 47 to Figure 54 showeach region’s load versus temperature for 15 years of observation.The red line in each graph roughly shows the regression between load and temperature duringthe hot and cold seasons29. In most cases, the slope of the line shows positive regression for thehot season and negative regression for the cold season. The difference is in the slope. Thegreatest the slope the more the temperature sensitivity.Figure 47shows the scatter plot of Metro North load versus temperature. Positive regression forthe hot season and negative regression for the cold season are very clear in this figure. As such,this load is highly temperature sensitive in all the seasons. The reason for this type of graph is
29The linear regression is used to visually inspect the temperature sensitivity of the load data. Obviouslythe relation between temperature and load data is not a linear one.
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that Metro North is mainly a residential region, and people use electricity for cooling andheating purposes.

Figure 47: Half hourly load data (MW) versus temperature (degrees Celsius) of Metro North metropolitan area from15 years of observation.
Figure 48 shows the scatter plot of Metro East load versus temperature. Similar to Figure 47,positive regression for the hot season and negative regression for the cold season are very clearin this figure. As such, this load is highly temperature sensitive in all the seasons. The reason forthis type of graph is that Metro East is mainly a residential region, and people use electricity forcooling and heating purposes.Figure 49shows the scatter plot of Metro South load versus temperature. Positive regression forthe hot season and negative regression for the cold season are observable, although the slope ofthe line is less in the cold season. The reason for this type of graph is that Metro South is aresidential and industrial region, but still mainly residential.Figure 50 shows the scatter plot of the CBD load versus temperature. The line is similar toFigure 47. Although there is no industrial load in this region, there is a large commercial load.There are two main differences between commercial loads and residential loads. Commercialloads drop dramatically after business hours, and usually have lower heating demand andgreater cooling demand. This while the left portion of the line that deals with heating is prettyflat in commercial regions. The main reason for this is the heating load, which is generated byelectronic devices inside commercial buildings which needs to be removed by using
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Figure 48: Half hourly load data (MW) versus temperature (degrees Celsius) of Metro East area from 15 years ofobservation.

Figure 49: Half hourly load data (MW) versus temperature (degrees Celsius) of Metro South area from 15 years ofobservation.
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Figure 50: Half hourly load data (MW) versus temperature (degrees Celsius) of the CBD area from 15 years ofobservation.air-conditioners. This increases the slope of the line in the hot season and decreases the slope inthe cold season.Figure 51shows the scatter plot of Country North load versus temperature. In this graph, theline is flat in the cold season and has a slight slope in the hot season. This indicates that there isa little temperature sensitivity in the hot season and almost no temperature sensitivity in thecold season. This region has both residential and industrial loads. As it is mostly dominated byindustrial load, temperature sensitivity caused by residential component cannot be seen here.Figure 52 shows the scatter plot of Country East load versus temperature. This is similar toFigure 49, although there is a more visible slope in the cold season. This region has a greaterresidential load.Figure 53 and Figure 54 respectively show the scatter plots of Country South and CountryGoldfields load versus temperature. The lines are almost flat in these graphs, which indicatenegligible temperature sensitivity. Irrespective of the outside temperature, electricity loadvaries based on the factory demand. Both of these regions are dominated by industrial loads.It can be concluded that more residential load in a region will introduce more temperaturesensitivity and that more industrial load will reduce it. The behaviour of commercial loads issimilar to residential loads in the hot season and similar to industrial loads in the cold season.Notably, these conclusions are only valid for regions where electricity is used for both coolingand heating purposes. If electricity is not used for heating purposes in the cold season or for
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Figure 51: Half hourly load data (MW) versus temperature (degrees Celsius) of Country North area from 15 years ofobservation.

Figure 52: Half hourly load data (MW) versus temperature (degrees Celsius) of Country East area from 15 years ofobservation.
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Figure 53: Half hourly load data (MW) versus temperature (degrees Celsius) of Country South area from 15 years ofobservation.

Figure 54: Half hourly load data (MW) versus temperature (degrees Celsius) of Country Goldfields area from 15years of observation.
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cooling purposes in the hot season then the temperature-load regression for the season will bezero (flat line). The latter case is very rare, although an example is the use of absorption chillersin the hot season.
5.5.2 DISTRIBUTIONThis section will study the behaviours of different loads based on their distributions. Asdiscussed in 5.3.2 Q-Q plots can be used to determine whether two data sets come frompopulations with a common distribution. This section will investigate this more and will comeup with an invaluable criterion which can be used on load data to determine which of the loadcomponents (commercial, residential or industrial) are more dominant in the data set30.To capture useful information from the available load data, Q-Q plots of them versus eightdifferent distributions have been generated. The selected distributions are [122]: standardnormal, Gamma, lognormal, Weibull, generalised extreme value (GEV), generalised pareto (GP),Poisson, and Rayleigh (R). The number of available probability distributions in the literature iscountless. The above eight distributions are selected after a few tests on a bigger list ofdistributions. Each of the selected distributions at least fit pretty well with one of our datasets.For example Figure 55 shows a reasonable good fit between Metro North load and a few ofselected distributions such as standard normal, Gamma, Lognormal, Weibull, and GEV. But not agood fit with GP, Poisson and Rayleigh. Good fit with GP can be seen in Figure 58 with quantilesof CBD load and so on.
Figure 55 to Figure 62 show the Q-Q plots for each region's load versus the mentioneddistributions for a representative year.

30To date, such behavioural analysis of load data has not been addressed by any other sources available inthe literature.
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Figure 55: Plot of the quantiles of Metro North load versus various distributions. (a) Q-Q plot of Metro North loadversus normal distribution; (b) Q-Q plot of Metro North load versus gamma distribution; (c) Q-Q plot of Metro Northload versus lognormal distribution; (d) Q-Q plot of Metro North load versus Weibull distribution; (e) Q-Q plot ofMetro North load versus generalised extreme value distribution; (f) Q-Q plot of Metro North load versus generalisedPareto distribution; (g) Q-Q plot of Metro North load versus Poisson distribution; (h) Q-Q plot of Metro North loadversus Rayleigh distribution.
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Figure 56: Plot of the quantiles of Metro East load versus various distributions. (a) Q-Q plot of Metro East load versusnormal distribution; (b) Q-Q plot of Metro East load versus gamma distribution; (c) Q-Q plot of Metro East load versuslognormal distribution; (d) Q-Q plot of Metro East load versus Weibull distribution; (e) Q-Q plot of Metro East loadversus generalised extreme value distribution; (f) Q-Q plot of Metro East load versus generalised Pareto distribution;(g) Q-Q plot of Metro East load versus Poisson distribution; (h) Q-Q plot of Metro East load versus Rayleighdistribution.
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Figure 57: Plot of the quantiles of Metro South load versus various distributions. (a) Q-Q plot of Metro South loadversus normal distribution; (b) Q-Q plot of Metro South load versus gamma distribution; (c) Q-Q plot of Metro Southload versus lognormal distribution; (d) Q-Q plot of Metro South load versus Weibull distribution; (e) Q-Q plot ofMetro South load versus generalised extreme value distribution; (f) Q-Q plot of Metro South load versus generalisedPareto distribution; (g) Q-Q plot of Metro South load versus Poisson distribution; (h) Q-Q plot of Metro South loadversus Rayleigh distribution.
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Figure 58: Plot of the quantiles of the CBD load versus various distributions. (a) Q-Q plot of CBD load versus normaldistribution; (b) Q-Q plot of CBD load versus gamma distribution; (c) Q-Q plot of CBD load versus lognormaldistribution; (d) Q-Q plot of CBD load versus Weibull distribution; (e) Q-Q plot of CBD load versus generalisedextreme value distribution; (f) Q-Q plot of CBD load versus generalised Pareto distribution; (g) Q-Q plot of CBD loadversus Poisson distribution; (h) Q-Q plot of CBD load versus Rayleigh distribution.
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Figure 59: Plot of the quantiles of Country north region load versus various distributions. (a) Q-Q plot of Countrynorth region load versus normal distribution; (b) Q-Q plot of Country north region load versus gamma distribution;(c) Q-Q plot of Country north region load versus lognormal distribution; (d) Q-Q plot of Country north region loadversus Weibull distribution; (e) Q-Q plot of Country north region load versus generalised extreme value distribution;(f) Q-Q plot of Country north region load versus generalised Pareto distribution; (g) Q-Q plot of Country north regionload versus Poisson distribution; (h) Q-Q plot of Country north region load versus Rayleigh distribution.
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Figure 60: Plot of the quantiles of Country east region load versus various distributions. (a) Q-Q plot of Country eastregion load versus normal distribution; (b) Q-Q plot of Country east region load versus gamma distribution; (c) Q-Qplot of Country east region load versus lognormal distribution; (d) Q-Q plot of Country east region load versusWeibull distribution; (e) Q-Q plot of Country east region load versus generalised extreme value distribution; (f) Q-Qplot of Country east region load versus generalised Pareto distribution; (g) Q-Q plot of Country east region loadversus Poisson distribution; (h) Q-Q plot of Country east region load versus Rayleigh distribution.
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Figure 61: Plot of the quantiles of Country South region load versus various distributions. (a) Q-Q plot of CountrySouth region load versus normal distribution; (b) Q-Q plot of Country South region load versus gamma distribution;(c) Q-Q plot of Country South region load versus lognormal distribution; (d) Q-Q plot of Country South region loadversus Weibull distribution; (e) Q-Q plot of Country South region load versus generalised extreme value distribution;(f) Q-Q plot of Country South region load versus generalised Pareto distribution; (g) Q-Q plot of Country South regionload versus Poisson distribution; (h) Q-Q plot of Country South region load versus Rayleigh distribution.
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Figure 62: Plot of the quantiles of Country Goldfields region load versus various distributions. (a) Q-Q plot of CountryGoldfields region load versus normal distribution; (b) Q-Q plot of Country Goldfields region load versus gammadistribution; (c) Q-Q plot of Country Goldfields region load versus lognormal distribution; (d) Q-Q plot of CountryGoldfields region load versus Weibull distribution; (e) Q-Q plot of Country Goldfields region load versus generalisedextreme value distribution; (f) Q-Q plot of Country Goldfields region load versus generalised Pareto distribution; (g)Q-Q plot of Country Goldfields region load versus Poisson distribution; (h) Q-Q plot of Country Goldfields region loadversus Rayleigh distribution.
Although some of the selected distributions show pretty good fits with the load data available(see Figure 55 to Figure 62) , the goal here is to be able to distinguish between the available loaddata. For example standard normal quantiles and Gamma quantiles show good fits in manyregions and for the same reason they cannot be used to help us distinguish between the loaddata available. Among all the distributions, three carry vital information that help to distinguish
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the dominant component of the electricity load. Those three are Rayleigh (R), GeneralisedPareto (GP), and Generalised Extreme Value (GEV).To carry on with the test, three regions of East Perth, CBD and Country Goldfields are selected assamples of pure residential, commercial and industrial loads respectively. Figure 63 and Figure64 illustrate the Q-Q plots of all three types of load versus R and GP distribution. In both figures,the best fit is for commercial load. The residential load is not completely fitted, but is a fairlygood fit compared to the industrial load, which shows a totally different distribution.

Figure 63: (a) Q-Q plot of commercial load (CBD region) versus Rayleigh distribution; (b) Q-Q plot of residential load(East Perth region) versus Rayleigh distribution; (c) Q-Q plot of industrial load (Country Goldfilelds region) versusRayleigh distribution.
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Figure 64: (a) Q-Q plot of commercial load (CBD region) versus generalised Pareto distribution; (b) Q-Q plot ofresidential load (East Perth region) versus generalised Pareto distribution; (c) Q-Q plot of industrial load (CountryGoldfield region) versus generalised Pareto distribution.
The GEV distribution is shown in Figure 65. Unlike the other two distributions, the fit is verygood for the industrial and residential loads. The commercial load cannot be fitted by this typeof distribution.Based on these observations, a load type determination criterion can be developed. The user ofthis criterion may plot the load versus Rayleigh(R), Generalised Pareto(GP), and GeneralisedExtreme Value(GEV) distributions, and compare the output with the general rule presented in
Table 5 to find the dominant component of the load. Notably, this criterion can be only beapplied to areas where both electrical heating and cooling are being used by the customers.
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Figure 65: (a) Q-Q plot of commercial load (CBD region) versus generalised extreme value distribution; (b) Q-Q plotof residential load (East Perth region) versus generalised extreme value distribution; (c) Q-Q plot of industrial load(Country Goldfields region) versus generalised extreme value distribution.
Table 5: Load type determination criterion.
Load type Commercial Residential Industrial
Rayleigh Good Fairly good Bad
Generalised Pareto Good Fairly good Bad
Generalised Extreme
Value

Bad Good Good
5.6 FORECASTED RESULTSAfter pre-processing and clustering the data, 13 sets of input variables were defined based onthe available temporal and weather data as the feed for training models. Preparing a proper setof input variables is a significant step in any training procedure and can strongly affect theaccuracy of the method. Proper input data includes variables that correlate with the output dataor variables that help to classify the other input variables. The input variables are year, month,day of the week, hour of the day, temperature, relative humidity, previous-day same-hour
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demand, previous-week same-hour demand, holidays,31 average past-24-hour demand, averagepast-seven-day demand, summer temperature to distinguish the hot-day temperature, andwinter temperature to distinguish the cold-day temperature.The set of input variables to training models consists of 13 column vectors of input variableswith a total of 275,51332 observations in each vector and one column vector of the same size fortarget variables.Two different nonlinear training methods, namely, artificial neural networks (ANN) anddecision trees learning, were used in this study. Because of the poor performance of ARX on theavailable data set, as investigated in 4.6, it is excluded from the training methods used. Baggingdecision trees was selected for the construction of ensembles due to its performance underclassification noise[111]. To construct more than one tree in regression tree method, techniquescalled ensemble methods can be used. The ensemble method can be bagging [109], randomforest, boosted trees [110] and rotation forest. Due to its performance under classification noise,bagging has been selected for the construction of regression trees for ensembles as reported in[111].Input and target variables for the training period were used to find the optimumconfiguration for ANN and bagging decision trees.The models were trained with 14 years of data from April 1995 to December 2009. For all cases,the testing period is 2010. Upon completion of the training procedures, the trained models canbe used for future simulations. Using the single-day forecast, and the reconstructed temperatureand humidity signals (see 4.3.3 Clustering and signal reconstruction) as new inputs for thetrained models, the forecasting horizon can be stretched from one day to seven days.The architecture of the neural network used is feed forward back-propagation with 40 hiddenlayers and one output layer. The number of layers and type of feed forward network isdetermined after running few tests on load data from 1995 to 2008. This configuration had thebest regression for both training sets and validation sets. Training performance is set onminimising the mean absolute error.Decision trees architecture used considers 40 number of regression tree with 30 as theminimum leaf size. Similar to neural network architecture, these numbers are found by trial anderror on the data from 1995 to 2008. See codes for more details.Given that different regions have different average load, mean absolute percentage error(MAPE) may not provide a good comparison. For a better comparison of the performance of themodels out of sample data (during the test year), modified mean absolute percentage error(MMAPE) has been defined in equation (1).Equation (1) basically multiplies the MAPE value by a coefficient, which is a function of averageload in different regions. The resulting MMAPE is no longer affected by the average load of the
31A list of Western Australian public holidays has been used to generate the holidays input variable.32Half an hourly samples from April 1995 to December 2009
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region itself. In simple-terms MMAPE normalizes MAPE across all the regions and puts all theMAPEs on the same scale for comparison between them.
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For both models, the daily and weekly MMAPE were calculated for each month of the testperiod. The results are shown in Table 6 to Table 13.All these tables consist of twelve rows and five columns. Each row is representative of a monthof the year. The first two columns contain the daily MMAPE percentage of neural network anddecision trees models, respectively. The next two represent the weekly MMAPE of thosemethods and the last column illustrates the average temperature of that specific month over thetraining period.Table 6belongs to Metro North where consumers are a combination of residential and industrialones. All of the daily MMAPE values are below 5%. For the months of Jan to March neuralnetwork shows a better result compared to decision trees. For the rest of the year decision treesaccuracies are superior. In other words in hot months33 of the year neural network performsbetter than decision trees.

33Hot weather is when an occupant of a building feels the need to turn on the air-conditioning unit.Human conditions of comfort depends on many different items and it is explained in a very good level ofdetails by ASHRAE Standard 55—thermal environmental conditions for human occupancy[137]. In thisstudy we assume any dry bulb temperature above 23°C to be hot.
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Table 6: MMAPE of Metro North out of sample data (2010 as the test year).Daily MMAPENN Daily MMAPEDT Weekly MMAPENN Weekly MMAPEDT AverageTemperature(°C)
Jan 3.7% 4.9% 4.5% 5.6% 25.4Feb 3.3% 4.5% 4.2% 5.3% 24.4Mar 4.0% 4.6% 4.9% 5.5% 23.2Apr 2.7% 2.5% 3.5% 3.1% 18.8May 3.5% 2.4% 4.1% 3.2% 14.7Jun 3.4% 2.8% 4.1% 3.8% 11.8Jul 3.2% 2.6% 4.3% 3.5% 11.3Aug 2.7% 2.5% 3.3% 3.1% 12.3Sep 2.8% 2.3% 3.7% 3.1% 14.8Oct 2.4% 1.6% 3.2% 2.8% 17.5Nov 3.9% 3.4% 5.2% 4.7% 21.9Dec 4.8% 3.7% 5.5% 4.5% 22.5
Table 7 belongs to Metro East where the consumers of electricity are purely residential. All ofthe daily MMAPE values are below 3% which is much lower that previous table. For the monthsof Nov to Feb neural network shows a better result compared to decision trees. For the rest ofthe year decision trees accuracies are superior. It can be observed again that in hot months ofthe year neural network performs better than decision trees.
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Table 7: MMAPE of Metro East out of sample data (2010 as the test year).Daily MMAPENN Daily MMAPEDT Weekly MMAPENN Weekly MMAPEDT AverageTemperature(°C)
Jan 2.8% 3.4% 3.9% 4.1% 25.1Feb 2.3% 2.4% 3.5% 3.7% 24.4Mar 2.6% 2.4% 3.6% 3.5% 23.2Apr 2.2% 1.4% 3.3% 2.8% 19.1May 2.3% 1.4% 3.3% 2.9% 14.6Jun 2.1% 1.5% 2.9% 2.7% 12.0Jul 2.3% 1.8% 3.1% 2.9% 11.3Aug 2.3% 1.6% 3.3% 2.7% 12.3Sep 2.1% 1.4% 3.0% 2.8% 14.8Oct 1.9% 1.3% 3.0% 2.5% 17.3Nov 2.1% 2.5% 3.3% 3.8% 22.0Dec 2.3% 2.3% 3.3% 3.6% 22.5
Table 8 belongs to Metro South where consumers are a combination of residential andindustrial ones. All of the daily MMAPE values are below 4%. Similar to previous ones for hottermonths of the year (December to March) neural network performs better comparing to decisiontrees. For the rest of the year decision trees accuracies are superior.
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Table 8: MMAPE of Metro South out of sample data (2010 as the test year).Daily MMAPENN Daily MMAPEDT Weekly MMAPENN Weekly MMAPEDT AverageTemperature(°C)
Jan 3.8% 4.0% 5.0% 5.3% 25.5Feb 3.5% 4.0% 4.4% 5.3% 24.4Mar 3.2% 3.9% 4.5% 4.9% 23.3Apr 2.4% 2.0% 3.2% 3.1% 18.7May 1.8% 1.6% 3.2% 2.9% 14.7Jun 2.7% 2.1% 3.5% 3.2% 12.3Jul 3.3% 3.0% 4.1% 4.0% 11.3Aug 3.0% 2.5% 4.2% 4.0% 12.3Sep 2.7% 1.9% 3.8% 3.5% 14.8Oct 2.4% 1.4% 3.6% 2.9% 17.4Nov 3.3% 3.1% 4.5% 4.0% 22.0Dec 3.5% 4.0% 4.7% 5.3% 22.5
Table 9 represents the MMAPE values for the CBD region which is mainly composed ofcommercial consumers. All of the daily MMAPE values are below 5%. Similar to previous onesfor hotter months of the year (January to March) neural network performs better compared todecision trees. For the rest of the year decision trees accuracies are superior.
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Table 9: MMAPE of CBD out of sample data (2010 as the test year).Daily MMAPENN Daily MMAPEDT Weekly MMAPENN Weekly MMAPEDT AverageTemperature(°C)
Jan 4.3% 4.9% 5.5% 5.8% 25.5Feb 3.7% 4.0% 4.7% 4.9% 24.4Mar 4.1% 4.5% 5.4% 5.6% 23.1Apr 3.0% 3.0% 4.0% 3.8% 18.7May 2.0% 1.4% 2.8% 2.3% 14.7Jun 2.5% 2.4% 3.4% 3.3% 12.3Jul 2.6% 2.0% 3.7% 3.0% 11.3Aug 2.6% 1.4% 3.8% 2.3% 12.3Sep 2.9% 1.6% 3.8% 2.5% 14.8Oct 2.7% 1.5% 3.8% 2.5% 17.4Nov 3.3% 2.8% 4.3% 4.0% 22.0Dec 4.7% 4.2% 5.6% 5.1% 22.5
Table 10 contains the MMAPE values of neural networks and decision trees for Country Northregion. All daily MMAPE values are below 5%. Interestingly for this region decision treesperform better than neural network for the whole length of the year and irrespective of theambient temperature. Majority of consumers of Country North are industrial.
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Table 10: MMAPE of Country North out of sample data (2010 as the test year).Daily MMAPENN Daily MMAPEDT Weekly MMAPENN Weekly MMAPEDT AverageTemperature(°C)
Jan 4.2% 3.5% 5.3% 4.2% 24.6Feb 3.8% 3.3% 5.3% 5.0% 25.1Mar 4.7% 4.3% 5.8% 5.3% 24.4Apr 2.7% 2.3% 3.8% 3.5% 20.3May 3.9% 3.3% 4.8% 4.3% 16.9Jun 3.7% 3.1% 4.5% 4.2% 14.5Jul 3.7% 3.3% 4.8% 4.5% 12.2Aug 3.3% 3.1% 4.5% 4.4% 13.4Sep 3.1% 3.0% 4.9% 4.5% 15.3Oct 4.2% 3.9% 6.2% 5.3% 18.9Nov 3.9% 3.3% 5.2% 4.8% 22.9Dec 3.5% 3.0% 4.5% 4.2% 23.2
Table 11 contains the MMAPE values of neural networks and decision trees for Country Eastregion. All daily MMAPE values are below 5%. For this case decision trees perform better thanneural network for the whole length of the year and irrespective of the ambient temperature.Majority of consumers of this region are industrial.



C h a p t e r F i v eS h o r t - t e r m L o a d  F o r e c a s t e r  ( S y s t e m  B a s e d  A p p r o a c h )| 98

Table 11: MMAPE of Country East out of sample data (2010 as the test year).Daily MMAPENN Daily MMAPEDT Weekly MMAPENN Weekly MMAPEDT AverageTemperature(°C)
Jan 3.6% 3.3% 4.4% 4.1% 26.7Feb 4.2% 3.8% 5.5% 4.9% 25.2Mar 4.0% 3.8% 5.1% 5.0% 25.6Apr 4.1% 3.5% 5.2% 4.8% 25.7May 4.0% 3.5% 5.2% 4.6% 24.6Jun 4.3% 3.0% 5.2% 4.2% 12.2Jul 4.3% 3.7% 5.5% 4.5% 10.9Aug 3.8% 2.6% 4.7% 3.8% 12.1Sep 3.7% 2.6% 4.9% 3.5% 14.4Oct 3.5 3.3 4.8 4.5 18.0Nov 3.4% 3.1% 4.4% 4.2% 22.6Dec 3.1% 3.0% 4.2% 3.8% 23.3
Table 12contains the MMAPE values of neural networks and decision trees for Country Southregion. All daily MMAPE values are below 5%. For this case decision trees perform better thanneural network for the whole length of the year and irrespective of the ambient temperature.Majority of consumers of this region are industrial.
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Table 12: MMAPE of Country South out of sample data (2010 as the test year).Daily MMAPENN Daily MMAPEDT Weekly MMAPENN Weekly MMAPEDT AverageTemperature(°C)
Jan 4.3% 2.4% 5.8% 3.9% 21.7Feb 3.6% 2.7% 4.8% 3.6% 21.9Mar 2.9% 2.7% 4.4% 4.1% 20.9Apr 2.2% 2.1% 3.4% 3.0% 17.5May 3.1% 2.4% 4.3% 3.5% 14.7Jun 3.0% 2.7% 4.0% 3.9% 12.7Jul 2.8% 2.5% 4.0% 3.6% 11.9Aug 3.3% 2.9% 4.5% 3.7% 12.2Sep 3.3% 2.9% 4.4% 4.2% 13.7Oct 2.8% 2.3% 3.5% 3.1% 15.5Nov 4.3% 3.8% 5.7% 4.8% 19.9Dec 3.4% 3.4% 4.8% 4.5% 19.6
Table 13contains the MMAPE values of neural networks and decision trees for CountryGoldfields region. All daily MMAPE values are below 5%. For this case decision trees performbetter than neural network for the whole length of the year and irrespective of the ambienttemperature. Majority of consumers of this region are industrial.
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Table 13: MMAPE of Country Goldfields out of sample data (2010 as the test year).Daily MMAPENN Daily MMAPEDT Weekly MMAPENN Weekly MMAPEDT AverageTemperature(°C)
Jan 3.3% 3.0% 4.1% 3.7% 26.2Feb 3.1% 2.6% 4.1% 3.5% 24.4Mar 3.0% 2.3% 4.0% 3.2% 20.9Apr 3.1% 2.6% 4.0% 3.4% 16.8May 3.9% 2.1% 4.8% 3.1% 13.0Jun 4.5% 2.3% 6.5% 3.2% 11.1Jul 3.6% 2.3% 4.7% 3.9% 11.1Aug 3.9% 2.4% 5.6% 3.3% 13.1Sep 3.3% 2.6% 4.2% 3.8% 16.2Oct 3.8% 2.0% 4.8% 3.0% 20.4Nov 4.1% 2.5% 5.3% 3.1% 23.7Dec 3.7% 2.5% 4.8% 3.6% 23

5.7 CONCLUSION[123] performs extensive studies on accuracies of electricity forecasting methods, and discussesthe significance of accurate forecasts and their effects on electricity market. Interestingly, itconcludes that the MMAPE of less than 5% is within the range of adequate forecast. In simplewords, he demonstrates that accuracies of less than 5% have minimal impact on economics ofthe electricity market. Based on this research the presented MMAPEs in Table 6 to Table 13 areall considered as accurate.It is also observed that during the hot months neural networks are a better choice forforecasting the residential and commercial electricity load, and for the remainder of the yeardecision trees are better. This differs for the industrial load. It can be seen that decision treesare a better choice for all the months of the year irrespective of the ambient temperature.Decision trees are better than neural networks when the system nonlinearity is low. However,



C h a p t e r F i v eS h o r t - t e r m L o a d  F o r e c a s t e r  ( S y s t e m  B a s e d  A p p r o a c h )| 101

when the system nonlinearity increases neural networks are better. In load forecastingapplications, the higher the temperature sensitivity, the higher nonlinearities will be in thesystem. This is because the behaviour of consumers change with weather. They decide whetherto turn on-off sources of cooling or heating.It can be concluded that both methods are capable of forecasting the electricity load with highaccuracy, but one may perform better than the other, depending on the characteristics of thecase study. Using the load type determination criterion will help the planner to extract thedominant component of the electricity load and decide which method to use. This researchsuggests that bagging decision trees for industrial loads, and, based on the temperaturesensitivity of the system, decision trees or a combination of decision trees and neural networkscan be used. A similar approach can be applied to other forecasting methods to identify the bestpossible method in different conditions. Overall, a system based approach can be much morereliable than a classic approach.Here is an example to further clarify the benefits of a combined system based approach.By looking at the CBD region QQ plots (Figure 63 to Figure 65), a data analyst can conclude thatthe electricity consumers of that region are mainly commercial ones. Based on this conclusionhe/she will be able touse neural networks to forecast the electricity load on the hot months ofyear (which are January, February and March for this case), and decision trees to be used for therest of the year. See Figure 66 to see what he/she gets as the result, compared to using only onemodel.Blue bars represent the daily MMAPE of CBD region for 2010 as test year, using the systembased combined approach. Red bars and green bars respectively represent the daily MMAPEpercentage of the same region using neural networks and decision trees. System basedcombined approach guarantees the best result all year round.
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Figure 66: CBD MMAPE% versus month of the year for system based combined method, Neural networks anddecision trees (forecast for 2010 as the test year)
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6 MEDIUM-TERM LOAD FORECASTER (SYSTEM BASEDAPPROACH)6.1 ABSTRACTA system based approach for short-term load forecasting (STLF) of the SWIS was presented inthe previous chapter. This chapter will present a similar approach to solve the problem ofmedium-term load forecasting (MTLF). Two main differences between STLF and MTLF are theavailability of weather data and the forecasting objectives. Two methods are applied, namely,neural networks and regression trees, and the results are proven to be satisfactory for one yearahead spatial medium forecasts.
6.2 INTRODUCTIONOne of the main differences between STLF and MTLF is the availability of the information. Thetemperature forecasts of up to seven days, which play a significant role in STLF applications, arenot available for MTLF. The reason is that the complexity and random behaviour of climaticsystems make it unrealistic to forecast the weather information for a couple of months ahead.Another major difference between STLF and MTLF is their application in the electricity industry.Rather than looking for the amount of electricity consumed at each point in time, like STLF,planners are keen to have the information of peak load and energy consumption in medium-term forecasts[124].
6.3 INPUT DATA PREPARATION
6.3.1 EXTRACTING PEAK LOAD AND ENERGY CONSUMPTION DATAAs discussed in previous chapters, the available electricity load data is composed of half anhourly consumption data of eight regions. For medium-term load forecasting applications, peakload and energy consumption are required instead of half an hourly load data[125]. A functionis coded to extract energy consumption in kilo watt hour and peak load in kilo watt fromoriginal load data matrices.34 This involves rearranging the available data in monthly format andchronological order. This has been applied on all eight regions of the SWIS and the results arepresented in Figure 67 to Figure 74.The left panels present the extracted data in 168consecutive months35, and the right panels illustrate the energy consumption and peak loaddata behaviour of each month over 14 years.Figure 67 illustrates the prepared load data for CBD region. Seasonality in peak loadconsumption is very obvious by looking at the top left pane. There is also a constant rise of peakvalues over time. The bottom left pane represents the energy consumption for the same region.
34 See Appendix D for the codes.35From January 1996 to December 2009

Chapter
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Seasonality in the data is less obvious. There is a constant rise in consumption data during thecourse of fourteen years. The right panes show peak load and energy consumption of CBDregion with a coloured line dedicated to each month of the year. Because some seasonalityinformation is related to month of the year much less seasonality is present in these data sets. Aconstant growth is visible in all the values. This shows that CBD region have been underconstant expansion36during those fourteen years.

Figure 67: CBD load data preparation.Figure 68 illustrates the prepared load data for Country East region. Seasonality is very obviousby looking at the top left pane. There is a sharp rise in the first three years, and then there is adrop and a constant trend for the remaining years. Any rise in electricity demand figures in anevidence of expansion. A drop in a graph of an industrially dominated region like this is anevidence of plant decommissioning or economy down turn. The bottom left pane represents theenergy consumption for the same region. Seasonality in the data is less obvious. There is sharp
36 The term expansion here is referring to the growth in population, buildings and infrastructure whichresults in higher electricity demand.
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rise in the first three years and a constant trend for the remaining years. Same sort of increasingtrend for the first three years is present in the right panes.

Figure 68: Country East load data preparation.Figure 69illustrates the prepared load data for Country Goldfields region. There is sharp rise inthe first three years and almost a constant trend for the remaining years. At year ten there is adrop in the peak load electricity in the region. The bottom left pane represents the energyconsumption for the same region. Seasonality in the data is less obvious. There is sharp rise inthe first three years and a constant trend for the remaining years. At year ten there is a drop inthe electricity consumption in the region. Same sort of trend exist on the right panes. As statedearlier, the drop happening at around year ten could correlate with a decommissioning of amajor plant in the region or economy downturn.
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Figure 69: Country Goldfields load data preparation.Figure 70 illustrates the prepared load data for Country North region. There is a small drop inthe peak load in the first three years which is then followed up by a constant increasing trendsfor the following years. The bottom left pane represents the energy consumption for the sameregion. Seasonality in the data is less obvious. There is a small drop in the peak load in the firstthree years which is then followed up by a constant increasing trends for the following years.The right panes show peak load and energy consumption of Country North region with acoloured line dedicated to each month of the year. The same sort of trend is visible in monthlydata. It could be because of a plant decommissioning or overhaul on the first three years andconstant industrial expansion of the area for the rest of the years.
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Figure 70: Country North load data preparation.Figure 71illustrates the prepared load data for Country South region. There is sharp rise in thefirst three years and almost a constant trend for the remaining years. This could relate toindustrial expansions happened in the first three years.
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Figure 71: Country South load data preparation.Figure 72illustrates the prepared load data for Metro East region. Seasonality is very obvious bylooking at the graph. There is also a constant rise of peak and energy consumption values overtime. This is in line with constant expansion of the Metro East region during those fourteenyears.
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Figure 72: Metro East load data preparation.Figure 73illustrates the prepared load data for Metro North region. The top left panel shows thepeak load data for 168 consecutive months. Seasonality is very obvious by looking at the graph.There is also a constant rise of peak values over time. The bottom left pane represents theenergy consumption for the same region. Seasonality is very obvious by looking at the graph.There is a constant rise in consumption data during the course of fourteen years. The rightpanes show peak load and energy consumption of Metro North region with a coloured linededicated to each month of the year. Because some seasonality information is related to monthof the year much less seasonality is present in these data sets. A constant growth is visible in allthe values. This is in line with constant expansion of the Metro North region during thosefourteen years.
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Figure 73: Metro North load data preparation.Figure 74illustrates the prepared load data for Metro South region. The top left panel shows thepeak load data for 168 consecutive months. Seasonality is very obvious by looking at the graph.There is also a constant rise of peak values over time. The bottom left pane represents theenergy consumption for the same region. Seasonality is very obvious by looking at the graph.There is a constant rise in consumption data during the course of fourteen years. The rightpanes show peak load and energy consumption of Metro South region with a coloured linededicated to each month of the year. Because some seasonality information is related to monthof the year much less seasonality is present in these data sets. A constant growth is visible in allthe values. This is in line with constant expansion of the Metro South region during thosefourteen years.



C h a p t e r S i xM e d i u m - t e r m L o a d  F o r e c a s t e r  ( S y s t e m  B a s e d  A p p r o a c h )| 111

Figure 74: Metro South load data preparation.Based on the above observations regularities such as seasonality and trends are obvious on allthe peak load and energy consumption graphs.The seasonality is when the data set repeats itself in constant time intervals. It can be daily,weekly, monthly or yearly. Daily seasonality directly relates to regular daily activities at offices,houses and industrial facilities. Weekly seasonality happens mainly because different sort ofactivities are being performed during weekends compared to the week days. For industrialconsumers who work the same schedule around the week, this type of seasonality won't bepresent. Monthly seasonality is to do with temperature change over the period of each month.As studied earlier temperature changes play an important role on the amount of electricitybeing consumed. And finally, yearly seasonality is mainly to do with public holidays andtemperature.Trends in the data are the evidence of constant load change over a period of time. This could bebecause of population increase in residential and commercial areas. Trends are also visible in
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industrial loads where the industrial facilities go through expansion, decommissioning oroverhaul.
6.3.1 DEALING WITH TRENDS AND SEASONALITYIrrespective of the training model that it is being used for load forecasting, it is always a goodpractice to remove trends and seasonality from the data set before feeding them to the trainingmodel. If data with obvious seasonality and trend is being used as the input, the training modelwill capture those obvious trends and seasonality instead of focusing on capturing morerandom behaviours37 of the load data consumers. To avoid this, it was decided to deal withtrends and seasonality separately. In simple words the trends and seasonality are beingmodelled separately and get deducted from the load data. The remaining values or residuals willbe used in training models to capture random behaviours.The first step involved eliminating the last 12 samples of datasets, as the test year and theremainder of the data are analysed in a search for the best detrending methodology. Given thevisual characteristics of the graphs, polynomial trend was used to detrend the data. Severalpolynomials were fitted to the training data, and the goodness of fit, residuals bar plot, and thenorm of the residuals are presented in Figure 75to Figure 90.Figure 75 represents the energy consumption of the CBD region for thirteen years. The yearnumber fourteen is taken out of the data. It will be used as the test year to evaluate the model.The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottom paneshows the norm of residuals of each fit. The lower the norm of the residuals, the better the fitwill be. In this case the residuals are 124.5502, 116.2753, 114.4536 respectively for 4th, 5th and6th degree polynomial fits. The 6th degree polynomial fit with the lowest residual is showing thebest fit for the CBD energy consumption.

37Random behaviours are the same as residuals
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Figure 75: CBD energy consumption detrending.Figure 76 represents the peak consumption of the CBD region for thirteen years. The yearnumber fourteen is taken out of the data. It will be used as the test year to evaluate the model.The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottom paneshows the norm of residuals of each fit. All curves seems to be behaving very similar in-terms ofcapturing the data trend. The lower the norm of the residuals the better the fit will be. In thiscase the residuals are 415.3223, 413.4267, 412.8251, respectively for 4th, 5th and 6th degreepolynomial fits. The 6th degree polynomial fit with the lowest residual is showing the best fit forthe CBD peak consumption.
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Figure 76: CBD peak consumption detrending.Figure 77 represents the energy consumption of the Country North region for thirteen years.The year number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seems to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals, the better the fit will be.In this case the residuals are 44.597, 44.4497, 43.8084, respectively for 4th, 5th and 6th degreepolynomial fits. The 6th degree polynomial fit with the lowest residual is showing the best fit forthe Country North energy consumption.
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Figure 77: Country North energy consumption detrending.Figure 78 represents the peak consumption of the Country North region for thirteen years. Theyear number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seems to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals the better the fit will be.In this case the residuals are 89.8812, 88.6282, 88.0803, respectively for 4th, 5th and 6th degreepolynomial fits. The 6th degree polynomial fit with the lowest residual is showing the best fit forthe Country North peak consumption.
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Figure 78: Country North peak detrending.Figure 79 represents the energy consumption of the Country East region for thirteen years. Theyear number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seem to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals the better the fit will be.In this case the residuals are 37.6567, 36.4615, 35.1391, respectively for 4th, 5th and 6th degreepolynomial fits. The 6th degree polynomial fit with the lowest residual is showing the best fit forthe Country East energy consumption.
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Figure 79: Country East energy consumption detrending.Figure 80 represents the peak consumption of the Country East region for thirteen years. Theyear number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seem to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals the better the fit will be.In this case the residuals are 37.6567, 36.4615, 35.1391 respectively, for 4th, 5th and 6th degreepolynomial fits. The 6th degree polynomial fit with the lowest residual is showing the best fit forthe Country East peak consumption.
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Figure 80: Country East peak detrending.Figure 81 represents the energy consumption of the Metro South region for thirteen years. Theyear number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seems to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals the better the fit will be.In this case the residuals are 233.1321, 229.4652, 228.4735 respectively, for 4th, 5th and 6thdegree polynomial fits. The 6th degree polynomial fit with the lowest residual is showing thebest fit for the Metro South energy consumption.
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Figure 81:Metro South energy consumption detrending.Figure 82 represents the peak consumption of the Metro South region for thirteen years. Theyear number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seems to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals, the better the fit will be.In this case the residuals are 1067.4553, 1058.5343, 1053.0429 respectively, for 4th, 5th and 6thdegree polynomial fits. The 6th degree polynomial fit with the lowest residual is showing thebest fit for the Metro South peak consumption.
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Figure 82:Metro South peak detrending.Figure 83represents the energy consumption of the Country South region for thirteen years. Theyear number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seems to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals, the better the fit will be.In this case the residuals are 233.1321, 229.4652, 228.4735 respectively, for 4th, 5th and 6thdegree polynomial fits. The 6th degree polynomial fit with the lowest residual is showing thebest fit for Country South energy consumption.
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Figure 83: Country South energy consumption detrending.Figure 84represents the peak consumption of the Country South region for thirteen years. Theyear number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seem to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals, the better the fit will be.In this case the residuals are 219.3673, 194.7981, 188.9242 respectively, for 4th, 5th and 6thdegree polynomial fits. The 6th degree polynomial fit with the lowest residual is showing thebest fit for the Country South peak consumption.
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Figure 84: Country South peak consumption detrending.Figure 85 represents the energy consumption of the Country Goldfields region for thirteenyears. The year number fourteen is taken out of the data. It will be used as the test year toevaluate the model. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits.The bottom pane shows the norm of residuals of each fit. All curves seem to be behaving verysimilar in-terms of capturing the data trend. The lower the norm of the residuals the better thefit will be.In this case the residuals are 103.7916, 99.536, 99.1042 respectively, for 4th, 5th and6th degree polynomial fits. The 6th degree polynomial fit with the lowest residual is showing thebest fit for the Country Goldfields energy consumption.
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Figure 85: Country Goldfields energy consumption detrending.Figure 86represents the peak consumption of the Country Goldfields region for thirteen years.The year number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seems to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals, the better the fit will be.In this case the residuals are 207.1699, 197.0413, 189.7067 respectively, for 4th, 5th and 6thdegree polynomial fits. The 6th degree polynomial fit with the lowest residual is showing thebest fit for the Country Goldfields peak consumption.
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Figure 86: Country Goldfields peak detrending.Figure 87represents the energy consumption of the Metro North region for thirteen years. Theyear number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seems to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals, the better the fit will be.In this case the residuals are 205.4883, 194.7133, 194.13 respectively, for 4th, 5th and 6th degreepolynomial fits. The 6th degree polynomial fit with the lowest residual is showing the best fit forthe Metro North energy consumption.
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Figure 87: Metro North energy consumption detrending.Figure 88represents the peak consumption of the Metro North region for thirteen years. Theyear number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seems to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals the better the fit will be.In this case the residuals are 829.4341, 821.0249, 813.1431 respectively, for 4th, 5th and 6thdegree polynomial fits. The 6th degree polynomial fit with the lowest residual is showing thebest fit for the Metro North peak consumption.
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Figure 88: Metro North peak detrending.Figure 89represents the energy consumption of the Metro East region for thirteen years. Theyear number fourteen is taken out of the data. It will be used as the test year to evaluate themodel. The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottompane shows the norm of residuals of each fit. All curves seems to be behaving very similar in-terms of capturing the data trend. The lower the norm of the residuals, the better the fit will be.In this case the residuals are 38.3062, 36.648, 36.6411 respectively, for 4th, 5th and 6th degreepolynomial fits. The 6th degree polynomial fit with the lowest residual is showing the best fit forMetro East energy consumption.
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Figure 89: Metro East energy consumption detrending.Figure 90represents the peak consumption of the Metro East region for thirteen years. The yearnumber fourteen is taken out of the data. It will be used as the test year to evaluate the model.The top pane shows the data set with 4th, 5th and 6th degree polynomial fits. The bottom paneshows the norm of residuals of each fit. All curves seems to be behaving very similar in-terms ofcapturing the data trend. The lower the norm of the residuals the better the fit will be. In thiscase the residuals are 130.9652, 128.4241, 127.8772 respectively, for 4th, 5th and 6th degreepolynomial fits. The 6th degree polynomial fit with the lowest residual is showing the best fit forMetro East peak consumption.
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Figure 90: Metro East peak detrending.
It can be seen from the residual norms, the 5th and 6th degree polynomials show a reasonablygood level of fit with the smallest value of residual norms. Given that there is a very smallchange in the norm value from the 5th to 6th degree, and in order to reduce the complexity of themodel and to have a consistent detrending strategy for all types of loads, the 5th degreepolynomial has been chosen as the detrending method. Refer to Table 14 for details on the fittedpolynomials to the sixteen datasets under study.
Table 14: Polynomial fitted to SWIS regions data of peak and energy consumptions.

Load Data 5th degree polynomial
CBD energy (Mwhr) Y=-6.1z5-11z4 +24z3+8.9z2-13z+91
CBD peak (kW) Y=-5.4z5-10z4 +24z3+3z2-5z+2.3e+2
CN energy (Mwhr) Y=-0.49z5-6.4z4 +0.72z3+14z2+8.1z+46
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CN peak (kW) Y=-2z5-8.7z4 +4.3z3+20z2+12z+80
CE energy (Mwhr) Y=-1.3z5-7.1z4 +8.4z3+5.3z2-7.2z+31
CE peak (kW) Y=-2.2z5-8.2z4 +14z3+4.8z2-9.6z+60
CS energy (Mwhr) Y=-8.9z5+23z4 +45z3+5.4z2-17z+1.5e+2
CS peak (kW) Y=-14z5-35z4 +71z3+11z2-20z+2.6e+2
CG energy (Mwhr) Y=-3.7z5+0.16z4 +21z3-17z2-8.6z+1.3e+2
CG peak (kW) Y=1.6z5-3.3z4 +7.9z3-19z2-2.1z+2.2e+2
MN energy (Mwhr) Y=-9z5-9.7z4 +36z3+8z2-2.8z+2.4e+2
MN peak (kW) Y=-16z5-2.6z4 +66z3+16z2+11+5.2e+2
ME energy (Mwhr) Y=-1.8z5-0.76z4 +5.9z3+2.5z2+5.1z+45
ME peak (kW) Y=-3.4z5-2.7z4 +10z3+7z2+15z+1e+2
MS energy (Mwhr) Y=-5.6z5-9.5z4 +21z3-2.8z2+39z+3.2e+2
MS peak (kW) Y=-19z5-61z4 +65z3+26z2+76z+6.8e+2

The next step involves deducting the above trends from the available data. The result will be thedetrended residuals. The reason for deducting the trends from data is to help with forecastaccuracy. As there is not much visible information in residuals graphs and to avoid repeating thefigures for all the eight regions, only two regions will be presented here to clarify the steps thathas been taken.Figure 91represents the detrended residuals for the Metro East and Country Goldfields regions.Metro East is predominantly a residential region and Country Goldfield is an industrial one.They are chosen to show that seasonality is present in detrended residuals irrespective of thenature of the load.The top left pane shows the detrended residuals of the energy consumption of the CountryGoldfields region after subtracting the trend polynomial of " Y=-3.7z5+0.16z4 +21z3-17z2-8.6z+1.3e+2 " from the energy consumption data.The top right pane shows the detrended residuals of the peak consumption of the CountryGoldfields region after subtracting the trend polynomial of "Y=1.6z5-3.3z4 +7.9z3-19z2-2.1z+2.2e+2" from the peak consumption data.The bottom left pane shows the detrended residuals of the energy consumption of the MetroEast region after subtracting the trend polynomial of "Y=-1.8z5-0.76z4 +5.9z3+2.5z2+5.1z+45"from the energy consumption data.The bottom right pane shows the detrended residuals of the peak consumption of the MetroEast region after subtracting the trend polynomial of " Y=-3.4z5-2.7z4 +10z3+7z2+15z+1e+2"from the peak consumption data.As described earlier in the chapter the seasonality happens when the data set repeats itself inconstant time intervals. It can be daily, weekly, monthly or yearly. Daily seasonality directlyrelates to regular daily activities at offices, houses and industrial facilities. Weekly seasonalityhappens mainly because different sort of activities are being performed during weekendscompared to the week days. For industrial consumers who work the same schedule around theweek, this type of seasonality won't be present. Monthly seasonality is to do with temperaturechange over the period of each month. As studied earlier, temperature changes play animportant role on the amount of electricity being consumed. And finally, yearly seasonality ismainly to do with public holidays and temperature.
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Figure 91 confirms the above statements. As expected, the seasonality of the bottom panes isvisible. It can be seen that the data occasionally repeats itself, due to the fast response ofresidential consumers to the weather fluctuations. Another interesting aspect is that industrialprocesses are not affected much by changes in weather and electricity consumption is mainly afunction of the needs of the industrial processes.

Figure 91: Detrended residuals obtained from deducting trend values from the load data. Top left pane: detrendedresiduals of the Country Goldfields energy consumption; Top right pane: detrended residuals of the CountryGoldfields peak consumption; Bottom left pane: detrended residuals of the Metro East energy consumption;Bottomright pane: detrended residuals of the Metro East peak consumption;Although weather forecasts of more than one week ahead cannot be accurate, the seasonality ofweather is predictable. In other words, in a 24-hour day it is usually warmer at midday andcolder at night, and warmer in summer and colder in winter, etc. There is also some seasonalityin the behaviours of residential consumers based on the time of the day. For example,residential usage is low at midnight and high during the evening, etc.
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If residuals contain visible seasonality, running a training algorithm will likely forecast theseasonality and will not efficiently capture all the small fluctuations of the data. To fix theseissues seasonality needs to be removed similar to detrending the datasets.The Rafal Weron method, introduced in [99], was used to remove the seasonality of theavailable data. Rafal Weron method which is known as REMST38 uses the moving averagetechnique as mentioned in section 2.4.3 of [99]. Figure 92shows the residuals after the removalof seasonality. As expected, there is no significant change in industrial residuals. However, inorder to be consistent and because some areas have a mixture of industrial, residential andcommercial loads, this step was applied to all the regions.Following the data pre-possessing steps, the detrended deseasonalised residuals can be used asa feed to different training methods.

38REMST function can be download for free for MATLAB users fromhttp://fmwww.bc.edu/repec/bocode/r/remst.m
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Figure 92: Detrended deseasonalised residuals obtained from removing seasonality from detrended residuals. Topleft pane: detrended deseasonalised residuals of the Country Goldfields energy consumption; Top right pane:detrended deseasonalised residuals of the Country Goldfields peak consumption; Bottom left pane: detrendeddeseasonalised residuals of the Metro East energy consumption; Bottom right pane: detrended deseasonalisedresiduals of the Metro East peak consumption;
6.4 TRAINING AND RESULTSThe same training algorithms developed in Chapter 5were applied to the residuals of all eightregions of the SWIS. The architecture of the neural network used is feed forward back-propagation with 40 hidden layers and one output layerThe number of layers and type of feedforward network is determined after running a few tests on load data from 1995 to 2008. Thisconfiguration had the best regression for both training sets and validation sets. Trainingperformance is set on minimising the mean absolute error.
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Decision trees architecture used considers 40 number of regression tree with 30 as theminimum leaf size. Similar to neural network architecture, these numbers are found by trial anderror on the data from 1995 to 2008. See codes for more details.The training method was used to forecast the residuals in the test year and the trend, andseasonality information extracted earlier on was added to the test year. Figure 93shows thecomplete process in a flowchart. The forecasted value of energy consumption and peak load willbe a combination of forecasted residuals, forecasted trend component and forecastedseasonality.

Figure 93: Summary flowchart of medium-term electricity consumption/peak forecast.
The results of the procedure for one year ahead are presented in Figure 94 to Figure 109. Realmeasured data, neural network forecasted data, and regression tree forecasted data arepresented.Figure 94 represents the medium-term forecast of the energy consumption for the CBD regionfor the test year of 2010. The black line represents the real data of the test year. The red lineshows the forecasted value using Neural networks and the blue one represents the forecastedvalue using regression trees.Both methods are capable of forecasting the load during the testyear. The mean absolute error percentages are 4.47% and 4.24% for Neural networks andregression trees, respectively.As stated earlier a year ahead forecasts are impossible to generate. Because of that reason muchlower accuracies will be acceptable for medium term electricity forecasting. For instance,Ringwood study of Ireland electricity network [126] reports the MAPE value of 12.5%.
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Figure 94: CBD medium-term forecast of energy consumption.Figure 95 represents the medium-term forecast of the peak consumption for CBD region for thetest year of 2010. The black line represents the real data of the test year. The red line shows theforecasted value using Neural networks and the blue one represents the forecasted value usingregression trees. Both methods are capable of forecasting the load during the test year. Themean absolute error percentages are 7.94% and 7.41% for Neural networks and regressiontrees, respectively.
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Figure 95: CBD medium-term forecast of peak load.Figure 96 represents the medium-term forecast of the energy consumption for the CountryNorth region for the test year of 2010. The black line represents the real data of the test year.The red line shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 3.46% and 3.97% for Neural networksand regression trees respectively.
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Figure 96: Country North medium-term forecast of energy consumption.Figure 97 represents the medium-term forecast of the peak consumption for Country Northregion for the test year of 2010. The black line represents the real data of the test year. The redline shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 3.45% and 4.23% for Neural networksand regression trees respectively.
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Figure 97: Country North medium-term forecast of peak load.Figure 98represents the medium-term forecast of the energy consumption for the Country Eastregion for the test year of 2010. The black line represents the real data of the test year. The redline shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 5.51% and 5.97% for Neural networksand regression trees, respectively.

Figure 98: Country East medium-term forecast of energy consumption.
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Figure 99 represents the medium-term forecast of the peak consumption for the Country Eastregion for the test year of 2010. The black line represents the real data of the test year. The redline shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 7.70% and 10.19% for Neural networksand regression trees, respectively.

Figure 99: Country East medium-term forecast of peak load.Figure 100represents the medium-term forecast of the energy consumption for the CountrySouth region for the test year of 2010. The black line represents the real data of the test year.The red line shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 3.56% and 3.57% for Neural networksand regression trees, respectively.
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Figure 100: Country South medium-term forecast of energy consumption.Figure 101 represents the medium-term forecast of the peak consumption for the CountrySouth region for the test year of 2010. The black line represents the real data of the test year.The red line shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 3.03% and 3.18% for Neural networksand regression trees, respectively.
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Figure 101:Country South medium-term forecast of peak load.Figure 102 represents the medium-term forecast of the energy consumption for the CountryGoldfields region for the test year of 2010. The black line represents the real data of the testyear. The red line shows the forecasted value using Neural networks and the blue onerepresents the forecasted value using regression trees. Both methods are capable of forecastingthe load during the test year. The mean absolute error percentages are 6.53% and 8.94% forNeural networks and regression trees, respectively.

Figure 102: Country Goldfields medium-term forecast of energy consumption.
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Figure 103 represents the medium-term forecast of the peak consumption for the CountryGoldfields region for the test year of 2010. The black line represents the real data of the testyear. The red line shows the forecasted value using Neural networks and the blue onerepresents the forecasted value using regression trees. Both methods are capable of forecastingthe load during the test year. The mean absolute error percentages are 2.61% and 2.85% forNeural networks and regression trees, respectively.

Figure 103: Country Goldfields medium-term forecast of peak load.Figure 104represents the medium-term forecast of the energy consumption for the Metro Northregion for the test year of 2010. The black line represents the real data of the test year. The redline shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 2.67% and 4.51% for Neural networksand regression trees, respectively.
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Figure 104: Metro North medium-term forecast of energy consumption.Figure 105represents the medium-term forecast of the peak consumption for the Metro Northregion for the test year of 2010. The black line represents the real data of the test year. The redline shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 8.87% and 8.27% for Neural networksand regression trees, respectively.

Figure 105: Metro North medium-term forecast of peak load.



C h a p t e r S i xM e d i u m - t e r m L o a d  F o r e c a s t e r  ( S y s t e m  B a s e d  A p p r o a c h )| 143

Figure 106 represents the medium-term forecast of the energy consumption for the Metro Eastregion for the test year of 2010. The black line represents the real data of the test year. The redline shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 6.78% and 5.24% for Neural networksand regression trees, respectively.

Figure 106: Metro East medium-term forecast of energy consumption.Figure 107 represents the medium-term forecast of the peak consumption for the Metro Eastregion for the test year of 2010. The black line represents the real data of the test year. The redline shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 14.3% and 8.26% for Neural networksand regression trees, respectively.
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Figure 107: Metro East medium-term forecast of peak load.Figure 108 represents the medium-term forecast of the energy consumption for the MetroSouth region for the test year of 2010. The black line represents the real data of the test year.The red line shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 5.09% and 2.93% for Neural networksand regression trees, respectively.

Figure 108:Metro South medium-term forecast of energy consumption.
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Figure 109 represents the medium-term forecast of the peak consumption for the Metro Southregion for the test year of 2010. The black line represents the real data of the test year. The redline shows the forecasted value using Neural networks and the blue one represents theforecasted value using regression trees. Both methods are capable of forecasting the load duringthe test year. The mean absolute error percentages are 4.91% and 6.56% for Neural networksand regression trees, respectively.

Figure 109:Metro South medium-term forecast of peak load.
6.5 CONCLUSIONTable 15 presents the MAPE of neural network and regression trees for a year ahead forecasts.The table includes forecasts for both peak demand and energy consumption. The MAPE errorsare very different for different regions. They start from as little as 2.61% up to 14.3%. with onlyone exception, all the other sixteen MAPE values are below the 12.5% reported by Ringwood onhis studies of Ireland electricity network [126].The second observation is that the energy consumption forecasts are generally more accuratethan the peak demand forecasts. This was anticipated because of the more random behaviour ofpeak consumption39. The only exception is the Country Goldfields region where peak demandforecast is more accurate than the energy consumption forecast. Given that the electricityconsumption of the region is mainly because of the mines located in the area, the discrepancymay be due to a scheduled maintenance that lasted less than a month or a reduction in the
39From mathematical point of view, the energy consumption is the integral of instantaneous loadconsumed as a function of time. This makes the energy consumption graph to be always smoother thanthe instantaneous load graph.
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number of working shifts in one of the major mines. Unfortunately, this information is notavailable and cannot be discussed in more detail.The other interesting observation is the big change in MAPE values from as little as 2.61% to14.3% for different case studies. Bear in mind that the method used is the same and thedifference is the case study used. It can be concluded that accuracy of a method used on a casestudy cannot guarantee the similar sort of accuracies when being applied on a different casestudy. For example studies used on Ireland electricity market with high level of accuracies canperform poorly on Australian electricity market and vice versa. Therefore a tailor madeforecasting method is required for each electricity system under study.
Table 15:A year ahead MAPE of peak demand and energy consumption for all the eight regions of SWISRegion NN Based MTLF MAPE RT Based MTLF MAPECBD Energy Consumption 4.47% 4.24%CBD Peak Load 7.94% 7.41%Metro North EnergyConsumption 2.67% 4.51%Metro North Peak Load 8.87% 8.27%Metro East EnergyConsumption 6.78% 5.24%Metro East Peak Load 14.3% 8.26%Metro South EnergyConsumption 5.09% 2.93%Metro South Peak Load 4.91% 6.56%Country North EnergyConsumption 3.46% 3.97%Country North Peak Load 3.45% 4.23%Country East EnergyConsumption 5.51% 5.97%Country East Peak Load 7.70% 10.19%Country South EnergyConsumption 3.56% 3.57%Country South Peak Load 3.03% 3.18%Country Goldfields EnergyConsumption 6.53% 8.94%Country Goldfields Peak Load 2.61% 2.85%
For industrial regions regression trees performs better than neural network based method.These regions are Country North, Country East, Country South and Country Goldfields. The sameapplies to CBD region where commercial load dominates. For some residential areas neuralnetworks behave better. This is because of higher nonlinearity of residential load. Tosummarize and because all the regression tree based MAPE values are less than 10% it can beconcluded that regression tree based method is more reliable for medium-term forecasts.
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The proposed methodology provides a very good accuracy to medium-term forecasts of oneyear ahead. The results are reliable, and in most cases, are within10% margin of the real data.There is only one exception among the case studies, namely, the peak demand forecast of theMetro East region using neural networks. The forecast of the same variable using regressiontrees has an MAPE of 8.26%.



7 SUMMARY AND FUTURE RECOMMENDATIONS7.1 THE MOTIVATION OF THE WORKThe main motivation of this research is to help reduce the GHG emissions of the electricitysector, and counteract the effects on nature and people. Traditional methods of power planningare not optimised to achieve this, and consider Capex and Opex reduction as their mainobjectives [38]. Minimising GHG emissions is now an additional objective of power planning [1],[2]. One way of achieving this is by optimising the distance of generators to the loads to reducethe transmission losses, and also by harnessing the available regional sources of renewableenergies and increasing their integration in the network [39]. Efficient load forecasting methodscapable of describing the regional behaviours of the electricity consumption are developed inthis research, and can provide priceless input to electricity planners. Such forecasting methods,known as spatial forecasting [40], can be used to extract short-term and medium-terminformation of the electricity consumption of different regions. This work also provides tools formaking decisions about the most accurate way of pre-processing consumption data andchoosing the most efficient forecasting procedure.7.2 MAJOR CONTRIBUTION OF THE WORKMajor contribution of the work can be summarised as below.- The topic of the study, i.e. spatial load forecasting and the potential of using it in efficientpower planning, is relatively a new topic in the electricity market literature. Moreover, many ofthe known spatial load forecasting methods have not yet been widelyused because of the size,variety, and availability of the data required. The methodology proposed in this study cansuccessfully be appliedto spatial forecasting.- While conventional methods are useful for short-term predictions with acceptable accuracy,they fail when medium-to-long term load forecasting is dealt with. The methodology conceivedand implemented in this thesis is significantly better than those known as state-of-the-art andcan give very satisfactory results for medium-term predictions.- The load analysis criterion, particularly using Q-Q (Quantile vs. Quantile) plots is a unique andoriginal finding of this work. While Q-Q plots are largely used in traditional statistics to comparetwo samples of data, it has never been applied before for electricity load forecasting purposes.Based on its definition and use, an electricity planner can understand which part of the load isthe dominating factor (i.e. whether it is residential, commercial or industrial). And then, basedon this, he/she can decide how to go ahead with choosing the most effective forecasting method.Based on this, the thesis provides a very useful criterion for decision making in the energymarket.- One of the major findings of the thesis is that there is no one optimum way of forecastingelectricity load in different scenarios. The results presented in the thesis have shown that amethod that can accurately forecast the load on a system (3% error for a year ahead) canperform completely different in forecasting another system (observed errors of around 14%).

Chapter
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This study demonstrates that a method which is claimed to have a given accuracy can beconsiderably inaccurate when applied on a different case study.- Using an ambient temperature-based criterion (i.e. the average maximum temperature of themonth) to choose the correct forecasting method is another major finding of the study. In fact,the author has demonstrated that for a temperature sensitive load, different forecastingmethods should be used and then combined to get the most accurate result.7.3 THE STEPS OF THE PROJECTChapter 1 talks about emissions of greenhouse gases and their adverse effect on the nature. Itintroduces electricity sector as one of the major contributors of human made GHG emissions. Itthen describes the components of electrical power network and the planning of it. Finally thechapter concludes that an efficient spatial load forecasting method is required to help withspatial planning of power networks. The spatial planning can include more regionalcomponents like proximity of generation components to consumers, or the levels of harnessedrenewable energy in each area. In such an approach, GHG reduction can be also consideredalong with Capex and Opex minimisation to plan the future of power networks.Chapter 2 provides definitions on power network components and the load forecastingmethods. It starts with definition of power systems and explanation on how electrical energy issuperior to all other forms of energy from end user point of view. Electricity generation systemsand the sources of energy to produce electricity are described next. Typical generation unitsizes in MW, continuity of the supply, and also its predictability are summarised in a table at theend of this section. Then, transmission lines and distribution systems are described, as othercomponent of electrical power networks. Importance of having an accurate forecast ofelectricity demand and the common ways to do it are presented next. At the end of this chapterthe deficiencies of current forecasting methods are highlighted and one major goals is definedfor this work. It is to overcome the deficiencies of individual forecasting methods by combiningthem and using them only where it performs efficient. It also mentions that the work is going toclosely look at the behaviour of input data to the forecasting method to seek better methods forpreparing them.Chapter 3 describes SWIS as the case study for this work. The reasons for selecting SWIS as thecase study are mentioned, followed by a quick history of it and how it has been expanded overthe last hundred years. To be able to complete spatial forecasting, the area under study needs tobe divided into regions. SWIS is then divided into eight regions for this purpose. A visualpresentation of the eight regions on the map is presented at the end of this chapter for moreclarity.Chapter 4 performs a short forecasting method on one of the SWIS regions. The selected regionis called Metro East. Metro East region is mainly composed of residential consumers. Unlikecommercial and industrial consumers, the residential ones are not following a workingschedule. That's why it makes them to behave differently and more randomly comparing to theother two. This means more complicated demand to forecast. This is the main reason that Metro
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East is selected to be studied on this chapter. One of the main components of this chapter is tointroduce the methods that have been used for pre-processing of input data. The pre-processingstages include data resolution adjustment, replacement of missing data, removing outliers,clustering and signal reconstruction. A well pre-processed set of data is critical component ofany forecasting strategy. The second component of chapter 4 is to generate one day ahead andseven day ahead forecasts of Metro East electricity consumption, using three different trainingmethods. The forecasted results are comparable to other studies done on short term loadforecasting. However the author questions the accuracy of classic approach of load forecasting.Classic approach is basically what have been done in the field of load forecasting for decades,which is very similar to the works done in chapter 4. In classic approach, a method gets testedon a case study with acceptable level of accuracy. Then that method gets introduces as a veryaccurate tool for demand forecasting purposes. This work is showing that such accurate methodcannot be accurate at all when being applied to other different case studies. Future chaptersstudy this in further details, and come up with some guidelines on how to have accurate loadforecast based on the nature of the case study in hand.Chapter 5 applies the methods of load forecasting developed in chapter 4 onto eight differentcase studies. By doing this, it can be seen that there is no single method of forecasting that canbe accurate for all case studies out there. Temperature sensitivity and distribution of the loaddata of all the regions is closely studied for fifteen years of data. A load type determinationcriterion is presented in Table 5. By using this table, and preparing Rayleigh, GeneralisedPareto, and Generalised Extreme Value distributions of the load data under study, anyone willbe able to say whether their load under study is mainly commercial, residential or industrial.The outdoor temperature is the one of the main inputs of short term electricity forecastingSame chapter shows that residential loads are having a greater temperature sensitivitycomparing to the other two. The results of one day and seven day ahead forecasts of the eightregions are presented at the end of chapter 5, using two methods of neural networks anddecision trees. It suggest that the two methods need to be used alternatively based on thecharacteristics of the case study and ambient temperature for the best output.Chapter 6explains the system based medium term load forecasting. The approach to mediumterm forecasting is completely different to the one developed for short term one.Two maindifferences between STLF and MTLF are the availability of weather data and the forecastingobjectives.Because of the nature of the weather, temperature forecasts of a year ahead arecompletely impossible. Also in medium term load forecasting the focus of planners is mainly onpeak load and energy consumption forecasts. The forecasting method presented in this chapteris achieved by superimposing annual trend, annual seasonality and forecasted residuals byneural networks and decision trees. Similar to chapter 5, the forecasting strategy is applied toeight different case studies for comparison. It is concluded that based on the case under studythe accuracy of the methods change. It also provides some advices on the best practices toperform medium load forecasting, considering the characteristics of the load.7.4 FURTHER APPLICATIONS
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7.4.1 COMMERCIALISED MAPPING TOOLSInterpreting data from tables and figures may not be convenient for a planner and he/she mayrequire a visual representation of the forecasted load in each region. Using the mapping tool,developed in Chapter 2, all calculated values at any time of the test year can be visualised andcolour coded based on value. Figure 110, Figure 111,and Figure 112present some sampleoutputs of the mapping tool for the test year. This is much easier to understand and can helpprofessionals in the electricity sector make real-time decisions without needing to decipher thecomplicated details behind it.Two separate Matlab functions have been developed to generate proper maps based on theforecasted values. The codes are included in Appendix D.An example output of the code is presented onthe figures below.Figure 110 represents the map of Perth metropolitan regions consisting of Metro North, MetroSouth, Metro East and CBD regions. The colour coded bar on the right side of the figure assignscolours to loads from zero to 800 MW. This will help the planner to get an idea of the loadintensity at the first glance. More detailed information about the load is also presented on themap. The planner can individually look at each region and see the forecasted value at thespecific time. In this case forecasted loads at 2:30 pm of 15-Mar-2015 are 592 MW, 103.83 MW,814.9 MW and 288.8 MW respectively, for the Metro North, Metro East, Metro South and CBDregions.Figure 111 represents the map of Perth metropolitan regions consisting of Metro North, MetroSouth, Metro East and CBD regions. The planner can individually look at each region and see theforecasted value at the specific time. In this case forecasted loads on 9:00 am of 12-Jul-2010 are547.9 MW, 91.7 MW, 755 MW and 234.3 MW respectively for Metro North, Metro East, MetroSouth and CBD regions.
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Figure 110: Spatial load forecast of Perth metropolitan region at 2:30 pm of 15-03-2010.

Figure 111: Spatial load forecast of Perth metropolitan region at 9:00 am of 12-07-2010.
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Figure 112 represents the map of SWIS regions consisting of Country North, Country South,Country East, Country Gold fields and metropolitan region40. The colour coded bar on the rightside of the figure assigns colour to loads from zero to 1600 mega watts. This will help theplanner to get an idea of the load intensity at the first glance. More detailed information aboutthe load is also presented on the map. The planner can individually look at each region and seethe forecasted value at the specific time. In this case forecasted loads at9:00 pm of 12-Jul-2010are 94.1 MW, 69 MW, 275 MW, 180.5 MW and 1628.9 MW respectively, for the Country North,Country East, Country South, Country Goldfields and Metropolitan regions.

Figure 112: Spatial load forecast of SWIS region at 9:00 am of 12-07-2010.A commercial version of such tool can be designed for Western Australia electricity networkplanners. Such a tool can be also designed for any other electricity network. In this way insteadof seeing only one number as the total forecasted value for the network the planners can gathera detailed information of forecasted load distribution in different geographical regions.
7.4.2 DEVELOPING SPATIAL ELECTRICITY PLANNING METHODOLOGIES
7.4.2.1 Generation locations and transmission routesExisting literature on power expansion planning usually assumes the location of generators andtransmission lines as a given to simplify calculations [127]. The location of the generation plantsand transmission routes can have a significant impact on power losses. To assume the locationof generation plants and transmission routes in the power expansion planning is called spatialpower planning[128]. Spatial load forecasting techniques developed in this work can be used aseffective drive to produce reliable spatial power expansion planning strategies.
40The Metropolitan region consists of four regions. They are Metro North, Metro East, Metro South andCBD.
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7.4.2.2 Minimising GHG emissionsTraditional methods of power planning are considering Capex and Opex reduction as their mainobjectives [38]. Minimising GHG emissions is now an additional objective of power planning [1],[2]. One way of achieving this is by optimising the distance of generators to the loads to reducethe transmission losses and also by harnessing the available regional sources of renewableenergies and increasing their integration into the network [39]. The development of an efficientload forecasting method capable of describing the regional behaviours of the electricityconsumption is a useful planning tool. Now that these efficient spatial load forecasting methodsare developed, using the result of this work and combining it with traditional method of powerplanning, power planners can come up with multi-objective optimisation plans to reduce Capex,Opex and GHG emissions all at the same time [129].
7.4.3 BEHAVIOURAL STUDY OF LOAD PATTERNS AND THEIR EFFECTS ON FORECASTING

ACCURACYIn chapter 6 the author came to a conclusion that the same forecasting methodology can haveup to 10% difference in MAPE when applied to different case studies. It will be a veryinteresting area to be investigated in more details. A test criterion is also developed by theauthor that can be used to extract the dominant part of the load. It can determine whether theload is dominantly industrial, residential or commercial.
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B. PUBLIC HOLIDAYS IN WESTERN AUSTRALIA
Western Australia has 13 days of public holidays during each year. The following is asummarised list of those holidays and a short description of each [130]41:New Year’s Day: The first day of January is the beginning of the year, according to Gregoriancalendar.Australia Day: This day is celebrated each year on 26th of January in Australia.Labor Day: The first Monday of March is celebrated as Labor Day in Western Australia. The dateis different in the other states.Good Friday: As a day before Easter Sunday, this day is a public holiday across Australia.Christians commemorate the crucifixion of Jesus on this day.Easter Saturday: As the day before Easter Sunday and the day after Good Friday, this day is apublic holiday across Australia.Easter Sunday: Christians celebrate this day to commemorate the resurrection of Jesus after hiscrucifixion on Good Friday.Easter Monday: As the day after Easter Sunday, this day is a public holiday in Australia.Anzac Day: The 25th of April each year is considered the anniversary of Australian troopslanding on the Gallipoli Peninsula, Turkey during the World War I.Foundation Day: The first Monday of June is celebrated as foundation day in Western Australiato commemorate the foundation of the Swan River Colony.Queen’s birthday: As a constitutional monarchy, Australia celebrates the Queen’s birthday eachyear. The date is usually different in the other states. In Western Australia, this day is celebratedon the last Monday of September or on the first Monday of October.Christmas Day: The 25th of December is the day that Christians celebrate the birthday of Jesus.Boxing Day: The 26th of December is celebrated as the day after Christmas Day.New Year’s Eve: The 31st of December is one day before New Year’s Day, according to theGregorian calendar.The following tables show the distribution of public holidays in Western Australia from 1995 to2011.
Table 16:Western Australian public holidays from 1995 to 1999 inclusive.
41All information about Western Australian holidays has been extracted from this source.
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1995 1996 1997 1998 1999
New Year’s Day 1-Jan 1-Jan 1-Jan 1-Jan 1-Jan
Australia Day 26-Jan 26-Jan 26-Jan 26-Jan 26-Jan
Labor Day 6-Mar 4-Mar 4-Mar 2-Mar 1-Mar
Good Friday 14-Apr 5-Apr 28-Ma 10-Apr 2-Apr
Easter Saturday 15-Apr 6-Apr 29-Mar 11-Apr 3-Apr
Easter Sunday 16-Apr 7-Apr 30-Mar 12-Apr 4-Apr
Easter Monday 17-Apr 8-Apr 31-Mar 13-Apr 5-Apr
Anzac Day 25-Apr 25-Apr 25-Apr 25-Apr 25-Apr
Foundation Day 5-Jun 3-Jun 2-Jun 1-Jun 7-Jun
Queen’s
Birthday 2-Oct 30-Sep 21-Sep 28-Sep 27-Sep
Christmas Day 25-Dec 25-Dec 25-Dec 25-Dec 25-Dec
Boxing Day 26-Dec 26-Dec 26-Dec 26-Dec 26-Dec
New Year’s Eve 31-Dec 31-Dec 31-Dec 31-Dec 31-Dec

Table 17:Western Australian public holidays from 2000 to 2004 inclusive.
2000 2001 2002 2003 2004

New Year’s Day 1-Jan 1-Jan 1-Jan 1-Jan 1-Jan
Australia Day 26-Jan 26-Jan 26-Jan 26-Jan 26-Jan
Labor Day 6-Mar 5-Mar 4-Mar 3-Mar 1-Mar
Good Friday 21-Apr 13-Apr 29-Mar 18-Apr 9-Apr
Easter
Saturday 22-Apr 14-Apr 30-Mar 19-Apr 10-Apr
Easter Sunday 23-Apr 15-Apr 31-Mar 20-Apr 11-Apr
Easter Monday 24-Apr 16-Apr 1-Apr 21-Apr 12-Apr
Anzac Day 25-Apr 25-Apr 25-Apr 25-Apr 25-Apr
Foundation
Day 5-Jun 4-Jun 3-Jun 2-Jun 7-Jun
Queen’s
Birthday 2-Oct 1-Oct 30-Sep 29-Sep 27-Sep
Christmas Day 25-Dec 25-Dec 25-Dec 25-Dec 25-Dec
Boxing Day 26-Dec 26-Dec 26-Dec 26-Dec 26-Dec
New Year’s Eve 31-Dec 31-Dec 31-Dec 31-Dec 31-Dec
Table 18:Western Australian public holidays from 2005 to 2009 inclusive.

2005 2006 2007 2008 2009
New Year’s Day 1-Jan 1-Jan 1-Jan 1-Jan 1-Jan
Australia Day 26-Jan 26-Jan 26-Jan 26-Jan 26-Jan
Labor Day 7-Mar 6-Mar 5-Mar 3-Mar 2-Mar
Good Friday 25-Mar 14-Apr 6-Apr 21-Mar 10-Apr
Easter
Saturday 26-Mar 15-Apr 7-Apr 22-Mar 11-Apr
Easter Sunday 27-Mar 16-Apr 8-Apr 23-Mar 12-Apr
Easter Monday 28-Mar 17-Apr 9-Apr 24-Mar 13-Apr
Anzac Day 25-Apr 25-Apr 25-Apr 25-Apr 25-Apr
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Foundation
Day 6-Jun 5-Jun 4-Jun 2-Jun 1-Jun
Queen’s
Birthday 26-Sep 2-Oct 1-Oct 29-Sep 28-Sep
Christmas Day 25-Dec 25-Dec 25-Dec 25-Dec 25-Dec
Boxing Day 26-Dec 26-Dec 26-Dec 26-Dec 26-Dec
New Year’s Eve 31-Dec 31-Dec 31-Dec 31-Dec 31-Dec
Table 19:Western Australian public holidays from 2010 to 2011 inclusive.

2010 2011
New Year’s Day 1-Jan 1-Jan
Australia Day 26-Jan 26-Jan
Labor Day 1-Mar 7-Mar
Good Friday 2-Apr 22-Apr
Easter
Saturday 3-Apr 23-Apr
Easter Sunday 4-Apr 24-Apr
Easter Monday 5-Apr 25-Apr
Anzac Day 25-Apr 25-Apr42
Foundation
Day 7-Jun 6-Jun
Queen’s
Birthday 27-Sep 28-Oct
Christmas Day 25-Dec 25-Dec
Boxing Day 26-Dec 26-Dec
New Year’s Eve 31-Dec 31-Dec

42In 2011, Anzac Day and Easter Monday were observed on the same day, on April 25.



C. AUSTRALIA’S DISTRIBUTION FIGURES
The following are the distribution figures of power stations, resources, weather, and populationacross Australia, extracted from [113], [131], [132].

Figure 113:Major non-renewable energy resources distribution in 2010(extracted from [131]).
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Figure 114: Renewable energy power stations distribution (more than 3kW capacity) in 2010(extracted from [131]).

Figure 115: Australia’s electricity infrastructure in 2010 (extracted from [131]).
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Figure 116:Australia’s non-renewable energy resource infrastructure in 2010 (extracted from [131]).

Figure 117:Australia’s geothermal energy distribution (based on data from more than 5000 petroleum and waterboreholes) in 2010(extracted from [131]).
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Figure 118: Australia’s major operating hydro power stations in 2010 (extracted from [131]).

Figure 119:Distribution of Australia’s wind resources and major farms (more than 10 MW capacity) in2010(extracted from [131]).
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Figure 120: Annual average solar radiation and generation units of more than 10 kW capacity in 2010 (extractedfrom [131]).

Figure 121: Land use and bioenergy facilities in 2010 (extracted from [131]).
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Figure 122: Average annual relative humidity at 9 am (based on data from 1976 to 2005) (extracted from [113]).

Figure 123: Average annual temperature (based on data from 1961 to 1990) (extracted from [113]).
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Figure 124:Population distribution 2001 (extracted from [132]).



D. SAMPLE CODES
This Appendix contains some of the sample codes that have been developed for this research.The codes have been developed in Matlab unless otherwise stated.43

i. DATA RESOLUTION ADJUSTMENTThe resolution of weather data of seven different stations has been adjusted to half hourly usingthe following code.
%-------------------------------------------------------------------
-------
%Title: changing the resolution of temperature and humidity data
%-------------------------------------------------------------------
-------
%Status: has been tested and is working properly-modified on 22-06-
2011 and
%-------------------------------------------------------------------
-------
%Date: 27-04-2011
%-------------------------------------------------------------------
-------
%Usage: The resolution of BOM data are hourly and we are after half
an
%hourly resolution. Because of the nature of temperatue and humidity
fist
%order hold is applied in each half an hour period.
%-------------------------------------------------------------------
-------
%How to use this code: Matrix A is a cell input from Bom database
which is
%usually a n*2 matrix with hourly resolution of data. Matrix B as an
output
%of this code is a 2n*2 matrix with half an hourly resolution data
of
%temperature and humidity. First order hold has been used for
estimation of
%half an hourly data. Previous value is placed in the places in
which
%temperature and,humidity were not available.
%-------------------------------------------------------------------
-------
clc;
clear A b B Number_of_Rows Number_of_Columns Row_Counter
Column_Counter i j;

43Matlab is the main software that has been used in this study. A couple of codes have also beendeveloped in VBA and SAS environment.
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A=cell(1,1);
disp('Please copy and paste Matrix A and type return when
finished.');
disp('Hint: You may use Ctrl+Shift+V to paste data from excel data
sheet');
keyboard;
[Number_of_Rows , Number_of_Columns] = size(A);
%Date_Array_Double = datevec(A(:,1));
b= cell(0, Number_of_Columns);
%this part will make a matrix twice the size of the input matrix
with real
%values on odd rows and repeated values on even rows
for Row_Counter=1:Number_of_Rows
b=[b; A(Row_Counter,:)];
b=[b; A(Row_Counter,:)];

end
[i,j]=size(b);
B=zeros(i,Number_of_Columns);
%this part just replace the non number values with nan and replace
the
%remaining with its equivalent number......cell----> num
for Row_Counter=1:i
for Column_Counter=1:Number_of_Columns
if length(double(cell2mat(b(Row_Counter,Column_Counter))))==1;
B(Row_Counter,Column_Counter)=

cell2num(b(Row_Counter,Column_Counter));
else
B(Row_Counter,Column_Counter)= nan;

end
end

end
%this part replace even rows with an average value using foh
for Row_Counter=1:Number_of_Rows-1
for Column_Counter=1:Number_of_Columns
if B(Row_Counter*2-1)== nan
B(Row_Counter*2,Column_Counter)=

B(Row_Counter*2+1,Column_Counter)
elseif B(Row_Counter*2+1)== nan

B(Row_Counter*2,Column_Counter)= B(Row_Counter*2-
1,Column_Counter)

else
B(Row_Counter*2,Column_Counter)=mean([B(Row_Counter*2-

1,Column_Counter),B(Row_Counter*2+1,Column_Counter)]);
end

end
end

ii. ERROR MESSAGES AND MISSING DATA REPLACEMENT
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%-------------------------------------------------------------
-------------
%Title: no data to nan
%-------------------------------------------------------------
-------------
%Status: has been tested and is working properly
%-------------------------------------------------------------
-------------
%Date: 10-11-2011
%-------------------------------------------------------------
-------------
%Note: This code will get an input matrix of type cell and it
will find all
%the missing values and error messages with nan. The output
matrix is also
%cell type
%-------------------------------------------------------------
-------------
clc
clear A
A = cell(1,1);
disp('Please copy and paste Matrix A and type return when
finished.');
disp('Hint: You may use Ctrl+Shift+V to paste data from excel
data sheet');
keyboard;
[Number_of_Rows , Number_of_Columns] = size(A);
for i=1:Number_of_Rows
for j=2:Number_of_Columns %1st column contains date and time

data
if length(double(cell2mat(A(i,j))))~=1
A(i,j)=num2cell(nan);

end
end

end

iii. CONVERTING DATE VALUES TO NUMBERS
%-------------------------------------------------------------
-------------
%Title: date to vector
%-------------------------------------------------------------
-------------
%Status: has been tested and is fully functional
%-------------------------------------------------------------
-------------
%Date: 11-11-2011
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%Modified: 12-11-2011
%-------------------------------------------------------------
-------------
%Note: This code will get an input matrix of type cell and it
will convert
%all the date and time variables into numbers and will add new
columns for
%them. The output will be a double array(it will also
recognise the
%weekday)
%Example: this code will convert 11-Jan-2003 17:30:00 to
%[2003,01,11,17.5,7]...the last element is the weekday 7 means
saturday
%-------------------------------------------------------------
-------------
% X1 year
% X2 Month
% X3 Day
% X4 Hour
% X5 Weekday
disp('The input matrix should not contain any cell with error
message or value')
disp('Hint: You can remove them by using nodata2nan code')
a=input('Please specify the input matrix:');
[X1 X2 X3 X4 temp2 temp3]=datevec(a(:,1));
X4=X4+temp2/60;
for counter=1:length(a)
X5(counter,1)=weekday([num2str(X1(counter)),'-

',num2str(X2(counter)),'-',num2str(X3(counter))]);
end
%making the double type output matrix, with date vector
instead of dates
%and also the weekdays in the 4th column
b=[X1, X2, X3, X4,X5, cell2num(a(:,2:end))];

iv. MISSING DATA POINT ESTIMATION
%-------------------------------------------------------------
-------------
%Title: short-term estimation for missing transformers load
data
%-------------------------------------------------------------
-------------
%Status: has been tested and is working properly
%-------------------------------------------------------------
-------------
%Date: 28-02-2011
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%Modified: 11-11-2011
%-------------------------------------------------------------
-------------
%Usage: Among SWIS transformers load data there are some
places in which no
%good data is available for calculation. The main reason for
this is
%usually data transmission failure, which means that a
transmiter was not
%able to send data to the control room in that period of time.
The
%mentioned period of time varies from several minutes to few
days. Another
%source of this can be from outliers removal step.This
%code will compensate these faults by a reasonable
shortforecasting method.
%-------------------------------------------------------------
-------------
%Method description: According to the available literature on
electricity
%load consumption behaviors[Asber D, Lefebvre S, Asber J,
Nonparametric...]
% [Seppala A. load research and load estimation],
%[Hyndman RJ, Fan S. Density forecasting for long-term peak
demand...]
%and also the pactical methods which are using in the
electricty industries
%a transformer load in a specific time of a day is closely
related to
%previous and also future weeks load data at the same time of
the same day
%of the week. Using the existed autocorrelation in load data
this method
%is going to use as much as available data in previous and
future weeks 0f
%load data at the same time of the day to replace the missed
data with
%fairly accurate estimated ones.
%-------------------------------------------------------------
-------------
% Method accuracy level: Some important variables like ambient
temperature
% and humidity level have not been considered directly in this
short time
% estimating method, and this method is only based on
historical and future
% load data. The reason is that couple of hours of
transformers load data is
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% really a small value in comparison with the whole region
electricity load
% consumption and using load autocorrelation in this case is
reasonable.
%-------------------------------------------------------------
-------------
%How to use this code?: Matrix A is the input matrix which may
include some
% NAN DATA in it. The input is matrix A with date and time
information in
%the first four column, temperature in 5th column, relative
humidity in
%6th column and 7th column contains load information. The
% output of this code will be matrix B which has the same size
as matrix A
% but all of its cells are real numbers. Nans will replaced
with their
%proper estimation in the new array.
%THIS IS VERY IMPORTANT TO KNOW that this m file is to help
out the user to
%fill the missed cells as quick as possible. This is not a
fully automatic
%code and you will need to copy and paste it section by
section in Matlab
%workspace and feed it manually.
%-------------------------------------------------------------
-------------
% spline will be used for both interapolation and
extrapolation purposes
clc;
clear A B Number_of_Rows Number_of_Columns Row_Counter
Column_Counter x y i check
Number_of_Rows = input('How many Rows does your input matrix
have? :');
Number_of_Columns = input('How many columns does your input
matrix have? :');
A = zeros(Number_of_Rows, Number_of_Columns);
disp('Please copy and paste Matrix A and type return when
finished.');
disp('Array size will automatically change if it''s bigger
than the entered values.')
disp('Hint: You may use Ctrl+Shift+V to paste data from excel
data sheet');
keyboard;
B = A;
[Number_of_Rows , Number_of_Columns] = size(B);
missing_data=true;
test=0;
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while missing_data
for Column_Counter=8:8
if test==1
missing_data=false;

end
test=1;
for Row_Counter=1:Number_of_Rows

%this part will replace missing data by spline fitting
%maximum of four neighboring numbers will be used for

fitting
%336 is the number of intervals between two neighbors

"this
%number comes from half an hourly distribution of data

over a
%week"
if isnan(B(Row_Counter,Column_Counter))
clear x y
x=[];
x1=[];
x2=[];
y=[]; %load
y1=[];%temperature
y2=[];%relative humidity
check=0; %number of data points to fit
pdw=0; % weight for previous 30 minutes data point
for i = -2:2
if(Row_Counter+i*336>0) &&

(Row_Counter+i*336<Number_of_Rows)
if ~isnan(B(Row_Counter+i*336,Column_Counter))
x = [x i];
y = [y B(Row_Counter+i*336,Column_Counter)];
if ~isnan(B(Row_Counter+i*336,Column_Counter-2))
y1 = [y1 B(Row_Counter+i*336,Column_Counter-2)];
x1 = [x1 i];

end
if ~isnan(B(Row_Counter+i*336,Column_Counter-1))
y2 = [y2 B(Row_Counter+i*336,Column_Counter-1)];
x2 = [x2 i];

end
check = check + 1;

end
end

end

if (check > 1) %&& (Row_Counter > 9)
B(Row_Counter,Column_Counter)= ((spline(x,y,0)));
if length(y2)>1
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B(Row_Counter,Column_Counter-1)=
((spline(x2,y2,0)));

elseif length(y2)==1
B(Row_Counter,Column_Counter-1)= y2;

end
if length(y1)>1
B(Row_Counter,Column_Counter-2)=((spline(x1,y1,0)));

elseif length(y2)==1
B(Row_Counter,Column_Counter-2)= y1;

end
end
%if (check > 1) %&& (Row_Counter == 9)
% B(Row_Counter,Column_Counter)= (spline(x,y,0));
%end
if check==1

B(Row_Counter,Column_Counter)= (y);
if length(y2)>1
B(Row_Counter,Column_Counter-1)=

((spline(x2,y2,0)));
elseif length(y2)==1
B(Row_Counter,Column_Counter-1)= y2;

end
if length(y1)>1
B(Row_Counter,Column_Counter-2)=((spline(x1,y1,0)));

elseif length(y2)==1
B(Row_Counter,Column_Counter-2)= y1;

end
end
if check==0
disp('Cannot find enough neighbors to fit dada.');
Row_Counter
test=0;

end
end

end
end
end

v. Q-Q PLOTS OF ALL THE REGIONS
%-------------------------------------------------------------
-------------
%Title: all regions Q-Q plots of different distributions
%-------------------------------------------------------------
-------------
%Status: has been tested and is working properly
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%-------------------------------------------------------------
-------------
%Date: 02-02-2012
%--------------------------
close all
%-NP---------------------------------------------------
figure
subplot(4,2,1)
gqqplot(NP_ready(100000:117520,8),'norm')
grid
ylabel('NP quantiles')
xlabel('Normal quantiles')
title('(a)')
subplot(4,2,2)
gqqplot(NP_ready(100000:117520,8),'gam')
grid
ylabel('NP quantiles')
xlabel('Gamma quantiles')
title('(b)')
subplot(4,2,3)
gqqplot(NP_ready(100000:117520,8),'logn')
grid
ylabel('NP quantiles')
xlabel('Lognormal quantiles')
title('(c)')
subplot(4,2,4)
gqqplot(NP_ready(100000:117520,8),'wbl')
grid
ylabel('NP quantiles')
xlabel('Weibull quantiles')
title('(d)')
subplot(4,2,5)
gqqplot(NP_ready(100000:117520,8),'gev')
grid
ylabel('NP quantiles')
xlabel('Generalized extreme value quantiles')
title('(e)')
subplot(4,2,6)
gqqplot(NP_ready(100000:117520,8),'gp')
grid
ylabel('NP quantiles')
xlabel('Generalized pareto quantiles')
title('(f)')
subplot(4,2,7)
gqqplot(NP_ready(100000:117520,8),'poiss')
grid
ylabel('NP quantiles')
xlabel('Poisson quantiles')
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title('(g)')
subplot(4,2,8)
gqqplot(NP_ready(100000:117520,8),'rayl')
grid
ylabel('NP quantiles')
xlabel('Rayleigh quantiles')
title('(h)')
%-EP---------------------------------------------------
figure
subplot(4,2,1)
gqqplot(EP_ready(100000:117520,8),'norm')
grid
ylabel('EP quantiles')
xlabel('Normal quantiles')
title('(a)')
subplot(4,2,2)
gqqplot(EP_ready(100000:117520,8),'gam')
grid
ylabel('EP quantiles')
xlabel('Gamma quantiles')
title('(b)')
subplot(4,2,3)
gqqplot(EP_ready(100000:117520,8),'logn')
grid
ylabel('EP quantiles')
xlabel('Lognormal quantiles')
title('(c)')
subplot(4,2,4)
gqqplot(EP_ready(100000:117520,8),'wbl')
grid
ylabel('EP quantiles')
xlabel('Weibull quantiles')
title('(d)')
subplot(4,2,5)
gqqplot(EP_ready(100000:117520,8),'gev')
grid
ylabel('EP quantiles')
xlabel('Generalized extreme value quantiles')
title('(e)')
subplot(4,2,6)
gqqplot(EP_ready(100000:117520,8),'gp')
grid
ylabel('EP quantiles')
xlabel('Generalized pareto quantiles')
title('(f)')
subplot(4,2,7)
gqqplot(EP_ready(100000:117520,8),'poiss')
grid
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ylabel('EP quantiles')
xlabel('Poisson quantiles')
title('(g)')
subplot(4,2,8)
gqqplot(EP_ready(100000:117520,8),'rayl')
grid
ylabel('EP quantiles')
xlabel('Rayleigh quantiles')
title('(h)')
%-SP---------------------------------------------------
figure
subplot(4,2,1)
gqqplot(SP_ready(100000:117520,8),'norm')
grid
ylabel('SP quantiles')
xlabel('Normal quantiles')
title('(a)')
subplot(4,2,2)
gqqplot(SP_ready(100000:117520,8),'gam')
grid
ylabel('SP quantiles')
xlabel('Gamma quantiles')
title('(b)')
subplot(4,2,3)
gqqplot(SP_ready(100000:117520,8),'logn')
grid
ylabel('SP quantiles')
xlabel('Lognormal quantiles')
title('(c)')
subplot(4,2,4)
gqqplot(SP_ready(100000:117520,8),'wbl')
grid
ylabel('SP quantiles')
xlabel('Weibull quantiles')
title('(d)')
subplot(4,2,5)
gqqplot(SP_ready(100000:117520,8),'gev')
grid
ylabel('SP quantiles')
xlabel('Generalized extreme value quantiles')
title('(e)')
subplot(4,2,6)
gqqplot(SP_ready(100000:117520,8),'gp')
grid
ylabel('SP quantiles')
xlabel('Generalized pareto quantiles')
title('(f)')
subplot(4,2,7)
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gqqplot(SP_ready(100000:117520,8),'poiss')
grid
ylabel('SP quantiles')
xlabel('Poisson quantiles')
title('(g)')
subplot(4,2,8)
gqqplot(SP_ready(100000:117520,8),'rayl')
grid
ylabel('SP quantiles')
xlabel('Rayleigh quantiles')
title('(h)')
%-CBD---------------------------------------------------
figure
subplot(4,2,1)
gqqplot(CBD_ready(100000:117520,8),'norm')
grid
ylabel('CBD quantiles')
xlabel('Normal quantiles')
title('(a)')
subplot(4,2,2)
gqqplot(CBD_ready(100000:117520,8),'gam')
grid
ylabel('CBD quantiles')
xlabel('Gamma quantiles')
title('(b)')
subplot(4,2,3)
gqqplot(CBD_ready(100000:117520,8),'logn')
grid
ylabel('CBD quantiles')
xlabel('Lognormal quantiles')
title('(c)')
subplot(4,2,4)
gqqplot(CBD_ready(100000:117520,8),'wbl')
grid
ylabel('CBD quantiles')
xlabel('Weibull quantiles')
title('(d)')
subplot(4,2,5)
gqqplot(CBD_ready(100000:117520,8),'gev')
grid
ylabel('CBD quantiles')
xlabel('Generalized extreme value quantiles')
title('(e)')
subplot(4,2,6)
gqqplot(CBD_ready(100000:117520,8),'gp')
grid
ylabel('CBD quantiles')
xlabel('Generalized pareto quantiles')
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title('(f)')
subplot(4,2,7)
gqqplot(CBD_ready(100000:117520,8),'poiss')
grid
ylabel('CBD quantiles')
xlabel('Poisson quantiles')
title('(g)')
subplot(4,2,8)
gqqplot(CBD_ready(100000:117520,8),'rayl')
grid
ylabel('CBD quantiles')
xlabel('Rayleigh quantiles')
title('(h)')
%-CN---------------------------------------------------
figure
subplot(4,2,1)
gqqplot(CN_ready(100000:117520,8),'norm')
grid
ylabel('CN quantiles')
xlabel('Normal quantiles')
title('(a)')
subplot(4,2,2)
gqqplot(CN_ready(100000:117520,8),'gam')
grid
ylabel('CN quantiles')
xlabel('Gamma quantiles')
title('(b)')
subplot(4,2,3)
gqqplot(CN_ready(100000:117520,8),'logn')
grid
ylabel('CN quantiles')
xlabel('Lognormal quantiles')
title('(c)')
subplot(4,2,4)
gqqplot(CN_ready(100000:117520,8),'wbl')
grid
ylabel('CN quantiles')
xlabel('Weibull quantiles')
title('(d)')
subplot(4,2,5)
gqqplot(CN_ready(100000:117520,8),'gev')
grid
ylabel('CN quantiles')
xlabel('Generalized extreme value quantiles')
title('(e)')
subplot(4,2,6)
gqqplot(CN_ready(100000:117520,8),'gp')
grid
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ylabel('CN quantiles')
xlabel('Generalized pareto quantiles')
title('(f)')
subplot(4,2,7)
gqqplot(CN_ready(100000:117520,8),'poiss')
grid
ylabel('CN quantiles')
xlabel('Poisson quantiles')
title('(g)')
subplot(4,2,8)
gqqplot(CN_ready(100000:117520,8),'rayl')
grid
ylabel('CN quantiles')
xlabel('Rayleigh quantiles')
title('(h)')
%-CE---------------------------------------------------
figure
subplot(4,2,1)
gqqplot(CE_ready(100000:117520,8),'norm')
grid
ylabel('CE quantiles')
xlabel('Normal quantiles')
title('(a)')
subplot(4,2,2)
gqqplot(CE_ready(100000:117520,8),'gam')
grid
ylabel('CE quantiles')
xlabel('Gamma quantiles')
title('(b)')
subplot(4,2,3)
gqqplot(CE_ready(100000:117520,8),'logn')
grid
ylabel('CE quantiles')
xlabel('Lognormal quantiles')
title('(c)')
subplot(4,2,4)
gqqplot(CE_ready(100000:117520,8),'wbl')
grid
ylabel('CE quantiles')
xlabel('Weibull quantiles')
title('(d)')
subplot(4,2,5)
gqqplot(CE_ready(100000:117520,8),'gev')
grid
ylabel('CE quantiles')
xlabel('Generalized extreme value quantiles')
title('(e)')
subplot(4,2,6)
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gqqplot(CE_ready(100000:117520,8),'gp')
grid
ylabel('CE quantiles')
xlabel('Generalized pareto quantiles')
title('(f)')
subplot(4,2,7)
gqqplot(CE_ready(100000:117520,8),'poiss')
grid
ylabel('CE quantiles')
xlabel('Poisson quantiles')
title('(g)')
subplot(4,2,8)
gqqplot(CE_ready(100000:117520,8),'rayl')
grid
ylabel('CE quantiles')
xlabel('Rayleigh quantiles')
title('(h)')
%-CS---------------------------------------------------
figure
subplot(4,2,1)
gqqplot(CS_ready(100000:117520,8),'norm')
grid
ylabel('CS quantiles')
xlabel('Normal quantiles')
title('(a)')
subplot(4,2,2)
gqqplot(CS_ready(100000:117520,8),'gam')
grid
ylabel('CS quantiles')
xlabel('Gamma quantiles')
title('(b)')
subplot(4,2,3)
gqqplot(CS_ready(100000:117520,8),'logn')
grid
ylabel('CS quantiles')
xlabel('Lognormal quantiles')
title('(c)')
subplot(4,2,4)
gqqplot(CS_ready(100000:117520,8),'wbl')
grid
ylabel('CS quantiles')
xlabel('Weibull quantiles')
title('(d)')
subplot(4,2,5)
gqqplot(CS_ready(100000:117520,8),'gev')
grid
ylabel('CS quantiles')
xlabel('Generalized extreme value quantiles')
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title('(e)')
subplot(4,2,6)
gqqplot(CS_ready(100000:117520,8),'gp')
grid
ylabel('CS quantiles')
xlabel('Generalized pareto quantiles')
title('(f)')
subplot(4,2,7)
gqqplot(CS_ready(100000:117520,8),'poiss')
grid
ylabel('CS quantiles')
xlabel('Poisson quantiles')
title('(g)')
subplot(4,2,8)
gqqplot(CS_ready(100000:117520,8),'rayl')
grid
ylabel('CS quantiles')
xlabel('Rayleigh quantiles')
title('(h)')
%-CG---------------------------------------------------
figure
subplot(4,2,1)
gqqplot(CG_ready(100000:117520,8),'norm')
grid
ylabel('CG quantiles')
xlabel('Normal quantiles')
title('(a)')
subplot(4,2,2)
gqqplot(CG_ready(100000:117520,8),'gam')
grid
ylabel('CG quantiles')
xlabel('Gamma quantiles')
title('(b)')
subplot(4,2,3)
gqqplot(CG_ready(100000:117520,8),'logn')
grid
ylabel('CG quantiles')
xlabel('Lognormal quantiles')
title('(c)')
subplot(4,2,4)
gqqplot(CG_ready(100000:117520,8),'wbl')
grid
ylabel('CG quantiles')
xlabel('Weibull quantiles')
title('(d)')
subplot(4,2,5)
gqqplot(CG_ready(100000:117520,8),'gev')
grid
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ylabel('CG quantiles')
xlabel('Generalized extreme value quantiles')
title('(e)')
subplot(4,2,6)
gqqplot(CG_ready(100000:117520,8),'gp')
grid
ylabel('CG quantiles')
xlabel('Generalized pareto quantiles')
title('(f)')
subplot(4,2,7)
gqqplot(CG_ready(100000:117520,8),'poiss')
grid
ylabel('CG quantiles')
xlabel('Poisson quantiles')
title('(g)')
subplot(4,2,8)
gqqplot(CG_ready(100000:117520,8),'rayl')
grid
ylabel('CG quantiles')
xlabel('Rayleigh quantiles')
title('(h)')

vi. DATA PREPARATION FOR TRAINING
%-------------------------------------------------------------
-------------
%Title: Data preparation for training puposes
%-------------------------------------------------------------
-------------
%Date: 07-02-2012
%-------------------------------------------------------------
-------------
%Status: fully functional
%-------------------------------------------------------------
-------------
%Notes: the input of this code can be any matrix with the
label of _ready.
%The full list of probable input variables are NP_ready (from
MN file),
%EP_ready (from ME file), SP_ready (from MS file), CBD_ready
(from CBD
%file), CN_ready (from CN file), CE_ready (from CE file),
CS_ready (from CS
%file), , CG_ready (from CG file)
%-------------------------------------------------------------
-------------
clear all;
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clc;
close all;
% the user should change this part of the code based on the
file that
% he/she want to load
%attention: the user must change the last 3 lines accordingly
load('MN');
a=NP_ready; %a must have 8 columns at this stage and the
following is the explanation of each
% 1 year
% 2 month
% 3 day of the month
% 4 hour oh the day in 24 hours format
% 5 weekday, in a way that sun is 1, mon is 2,.... and sat is
7
% 6 temperature in degrees celsius
% 7 relative humidity
% 8 load in MW
temp1=a(:,3);
%we want the following 12 inputs this time
% the target variable is load
targets=a(:,8);
% X1 year
X1=a(:,1);
% X2 Month
X2=a(:,2);
% X3 hour
X3=a(:,4);
% X4 Weekday
X4=a(:,5);
% X5 temp
X5=a(:,6);
% X6 Humidity
X6=a(:,7);
% X7 previous week same hour load
X7= [NaN(168*2,1); targets(1:end-168*2)];
% X8 previous day same hour load
X8= [NaN(24*2,1); targets(1:end-24*2)];
% X9 avg month_day load at that half an hour ---useless---
worse results
%instead of that we are going to use this input
% X9 previous half an hour load
X9=[NaN(1,1);targets(1:end-1)];
% X10 is holiday
%-----holidays---X10
%sat and sun
X10=zeros(length(a),1);
for counter=1:length(a)
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if X4(counter)==1
X10(counter)=1;

end
if X4(counter)==7
X10(counter)=1;

end
end
%-------wa public holidays importing
[num, text] = xlsread('waholidays.xls');
holidays = text(1:end,1);
holidaycounter=5; %the first holiday after our data starts

for counter=1:length(a)
[x1 x2 x3]= datevec(holidays(holidaycounter),'mm/dd/yyyy');
if (X1(counter)==x1) && (X2(counter)==x2) &&

(temp1(counter)==x3)
midcounter=counter;
check=0;
while check==0

if midcounter>=length(a)
check=1;

end
X10(midcounter)=1;
if X3(midcounter)==23.5;
check=1;

end
midcounter=midcounter+1;

end
holidaycounter=holidaycounter+1;

end
end

% X11 Average load in the previous 24 hours
X11=filter(ones(1,48)/48, 1, targets); %Average load of
previous 24 hours X11(n)=mean(targets(n-47:n))

% X12 Average load in the previous seven days
X12=filter(ones(1,336)/336, 1, targets); %Average load of
previous week X12(n)=mean(targets(n-335:n))

NP_X=[X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12];
NP_targets=targets;
save('MN','NP_raw','NP_double','NP_without_outlier','NP_ready'
,'NP_X','NP_targets')

vii.NEURAL NETWORK AND DECISION TREE SET UP
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%-------------------------------------------------------------
-------------
%Title: Nueral network and decision tree set up
%-------------------------------------------------------------
-------------
%Date: 11-08-2011
%-------------------------------------------------------------
-------------
%Status: has been tested and is working properly
%-------------------------------------------------------------
------------
clear all;
clc;
close all;
% the user should change this part of the code based on the
file that
% he/she want to load
%attention: the user must change the last line accordingly
%1
%load('MN');
%2
%load('ME');
%3
%load('MS');
%4
%load('CBD')
%5
%load('CN');
%6
%load('CE');
%7
load('CS');
%8
%load('CG');
X1=X(:,1);
X2=X(:,2);
X3=X(:,3);
X4=X(:,4);
X5=X(:,5);
X6=X(:,6);
X7=X(:,7);
X8=X(:,8);
X9=X(:,9);
X10=X(:,10);
X11=X(:,11);
X12=X(:,12);
temp1=X(:,13);
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%selecting one year as test year
inputTRAIN=[X1(1:end-17520) X2(1:end-17520) X3(1:end-17520)
X4(1:end-17520) X5(1:end-17520) X6(1:end-17520) X7(1:end-
17520) X8(1:end-17520) X10(1:end-17520) X11(1:end-17520)
X12(1:end-17520)];
inputTEST=[X1(length(inputTRAIN)+1:end)
X2(length(inputTRAIN)+1:end) X3(length(inputTRAIN)+1:end)
X4(length(inputTRAIN)+1:end) X5(length(inputTRAIN)+1:end)
X6(length(inputTRAIN)+1:end) X7(length(inputTRAIN)+1:end)
X8(length(inputTRAIN)+1:end) X10(length(inputTRAIN)+1:end)
X11(length(inputTRAIN)+1:end) X12(length(inputTRAIN)+1:end)];
temp1TEST=temp1(length(inputTRAIN)+1:end);

targetTRAIN=targets(1:end-17520);
targetTEST=targets(length(inputTRAIN)+1:end);

%-------------------------------------------------------------
-----------
%Nueral Network Training
net = newfit(inputTRAIN', targetTRAIN', 40);
net.performFcn = 'mae';
net = train(net, inputTRAIN', targetTRAIN');

forecastLoadNN = sim(net, inputTEST')';
%-------------------------------------------------------------
---------
%bootstrap aggregated regression trees training

model=TreeBagger(40,inputTRAIN,targetTRAIN,'method','regressio
n','minleaf',30);
model=compact(model)

%Simulating the forecasts for both methods

forecastLoadNN = sim(net, inputTEST')';
forecastLoadRT = predict(model, inputTEST);

%1
%save('MN','NP_raw','NP_double','NP_without_outlier','NP_ready
','X','targets','net','model','forecastLoadNN','forecastLoadRT
')
%2
%save('ME','EP_raw','EP_double','EP_without_outlier','EP_ready
','X','targets','net','model','forecastLoadNN','forecastLoadRT
')
%3
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%save('MS','SP_raw','SP_double','SP_without_outlier','SP_ready
','X','targets','net','model','forecastLoadNN','forecastLoadRT
')
%4
%save('CBD','CBD_raw','CBD_double','CBD_without_outlier','CBD_
ready','X','targets','net','model','forecastLoadNN','forecastL
oadRT')
%5
%save('CN','CN_raw','CN_double','CN_without_outlier','CN_ready
','X','targets','net','model','forecastLoadNN','forecastLoadRT
')
%6
%save('CE','CE_raw','CE_double','CE_without_outlier','CE_ready
','X','targets','net','model','forecastLoadNN','forecastLoadRT
')
%7
save('CS','CS_raw','CS_double','CS_without_outlier','CS_ready'
,'X','targets','net','model','forecastLoadNN','forecastLoadRT'
)
%8
%save('CG','CG_raw','CG_double','CG_without_outlier','CG_ready
','X','targets','net','model','forecastLoadNN','forecastLoadRT
')

viii. MAPE CALCULATOR
%-------------------------------------------------------------
------------
%title: MAPE table generator
%-------------------------------------------------------------
------------
%date: 09-02-2012
%modified on: 13-02-2012
%-------------------------------------------------------------
------------
%status: has been tested and is working properly
%-------------------------------------------------------------
----------

clc
% to calculate MAPE
disp('-----------------------------');
disp('NN MAPE');
disp('-----------------------------');
%Jan
msg = sprintf('MAPE of Jan: %f ',mean(abs(targetTEST(1:48*31-
1)-forecastLoadNN(1:48*31-1)))/mean(targetTEST(1:48*31-1)));
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disp(msg);
%Feb
msg = sprintf('MAPE of Feb: %f',mean(abs(targetTEST(48*31-
1:48*(31+28)-1)-forecastLoadNN(48*31-1:48*(31+28)-
1)))/mean(targetTEST(48*31-1:48*(31+28)-1)));
disp(msg);
%March
msg = sprintf('MAPE of Mar:
%f',mean(abs(targetTEST(48*(31+28)-1:48*(2*31+28)-1)-
forecastLoadNN(48*(31+28)-1:48*(2*31+28)-
1)))/mean(targetTEST(48*(31+28)-1:48*(2*31+28)-1)));
disp(msg);
%April
msg = sprintf('MAPE of Apr:
%f',mean(abs(targetTEST(48*(2*31+28)-1:48*(2*31+28+30)-1)-
forecastLoadNN(48*(2*31+28)-1:48*(2*31+28+30)-
1)))/mean(targetTEST(48*(2*31+28)-1:48*(2*31+28+30)-1)));
disp(msg);
%May
msg = sprintf('MAPE of May:
%f',mean(abs(targetTEST(48*(2*31+28+30)-1:48*(3*31+28+30)-1)-
forecastLoadNN(48*(2*31+28+30)-1:48*(3*31+28+30)-
1)))/mean(targetTEST(48*(2*31+28+30)-1:48*(3*31+28+30)-1)));
disp(msg);
%June
msg = sprintf('MAPE of Jun:
%f',mean(abs(targetTEST(48*(3*31+28+30)-1:48*(3*31+28+2*30)-
1)-forecastLoadNN(48*(3*31+28+30)-1:48*(3*31+28+2*30)-
1)))/mean(targetTEST(48*(3*31+28+30)-1:48*(3*31+28+2*30)-1)));
disp(msg);
%July
msg = sprintf('MAPE of Jul:
%f',mean(abs(targetTEST(48*(3*31+28+2*30)-1:48*(4*31+28+2*30)-
1)-forecastLoadNN(48*(3*31+28+2*30)-1:48*(4*31+28+2*30)-
1)))/mean(targetTEST(48*(3*31+28+2*30)-1:48*(4*31+28+2*30)-
1)));
disp(msg);
%Aug
msg = sprintf('MAPE of Aug:
%f',mean(abs(targetTEST(48*(4*31+28+2*30)-1:48*(5*31+28+2*30)-
1)-forecastLoadNN(48*(4*31+28+2*30)-1:48*(5*31+28+2*30)-
1)))/mean(targetTEST(48*(4*31+28+2*30)-1:48*(5*31+28+2*30)-
1)));
disp(msg);
%Sep
msg = sprintf('MAPE of Sep:
%f',mean(abs(targetTEST(48*(5*31+28+2*30)-1:48*(5*31+28+3*30)-
1)-forecastLoadNN(48*(5*31+28+2*30)-1:48*(5*31+28+3*30)-
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1)))/mean(targetTEST(48*(5*31+28+2*30)-1:48*(5*31+28+3*30)-
1)));
disp(msg);
%Oct
msg = sprintf('MAPE of Oct:
%f',mean(abs(targetTEST(48*(5*31+28+3*30)-1:48*(6*31+28+3*30)-
1)-forecastLoadNN(48*(5*31+28+3*30)-1:48*(6*31+28+3*30)-
1)))/mean(targetTEST(48*(5*31+28+3*30)-1:48*(6*31+28+3*30)-
1)));
disp(msg);
%Nov
msg = sprintf('MAPE of Nov:
%f',mean(abs(targetTEST(48*(6*31+28+3*30)-1:48*(6*31+28+4*30)-
1)-forecastLoadNN(48*(6*31+28+3*30)-1:48*(6*31+28+4*30)-
1)))/mean(targetTEST(48*(6*31+28+3*30)-1:48*(6*31+28+4*30)-
1)));
disp(msg);
%Dec
msg = sprintf('MAPE of Dec:
%f',mean(abs(targetTEST(48*(6*31+28+4*30)-1:48*(7*31+28+4*30)-
1)-forecastLoadNN(48*(6*31+28+4*30)-1:48*(7*31+28+4*30)-
1)))/mean(targetTEST(48*(6*31+28+4*30)-1:48*(7*31+28+4*30)-
1)));
disp(msg);
%-------------------------------------
disp('-----------------------------');
disp('DT MAPE');
disp('-----------------------------');
%Jan
msg = sprintf('MAPE of Jan: %f ',mean(abs(targetTEST(1:48*31-
1)-forecastLoadRT(1:48*31-1)))/mean(targetTEST(1:48*31-1)));
disp(msg);
%Feb
msg = sprintf('MAPE of Feb: %f',mean(abs(targetTEST(48*31-
1:48*(31+28)-1)-forecastLoadRT(48*31-1:48*(31+28)-
1)))/mean(targetTEST(48*31-1:48*(31+28)-1)));
disp(msg);
%March
msg = sprintf('MAPE of Mar:
%f',mean(abs(targetTEST(48*(31+28)-1:48*(2*31+28)-1)-
forecastLoadRT(48*(31+28)-1:48*(2*31+28)-
1)))/mean(targetTEST(48*(31+28)-1:48*(2*31+28)-1)));
disp(msg);
%April
msg = sprintf('MAPE of Apr:
%f',mean(abs(targetTEST(48*(2*31+28)-1:48*(2*31+28+30)-1)-
forecastLoadRT(48*(2*31+28)-1:48*(2*31+28+30)-
1)))/mean(targetTEST(48*(2*31+28)-1:48*(2*31+28+30)-1)));
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disp(msg);
%May
msg = sprintf('MAPE of May:
%f',mean(abs(targetTEST(48*(2*31+28+30)-1:48*(3*31+28+30)-1)-
forecastLoadRT(48*(2*31+28+30)-1:48*(3*31+28+30)-
1)))/mean(targetTEST(48*(2*31+28+30)-1:48*(3*31+28+30)-1)));
disp(msg);
%June
msg = sprintf('MAPE of Jun:
%f',mean(abs(targetTEST(48*(3*31+28+30)-1:48*(3*31+28+2*30)-
1)-forecastLoadRT(48*(3*31+28+30)-1:48*(3*31+28+2*30)-
1)))/mean(targetTEST(48*(3*31+28+30)-1:48*(3*31+28+2*30)-1)));
disp(msg);
%July
msg = sprintf('MAPE of Jul:
%f',mean(abs(targetTEST(48*(3*31+28+2*30)-1:48*(4*31+28+2*30)-
1)-forecastLoadRT(48*(3*31+28+2*30)-1:48*(4*31+28+2*30)-
1)))/mean(targetTEST(48*(3*31+28+2*30)-1:48*(4*31+28+2*30)-
1)));
disp(msg);
%Aug
msg = sprintf('MAPE of Aug:
%f',mean(abs(targetTEST(48*(4*31+28+2*30)-1:48*(5*31+28+2*30)-
1)-forecastLoadRT(48*(4*31+28+2*30)-1:48*(5*31+28+2*30)-
1)))/mean(targetTEST(48*(4*31+28+2*30)-1:48*(5*31+28+2*30)-
1)));
disp(msg);
%Sep
msg = sprintf('MAPE of Sep:
%f',mean(abs(targetTEST(48*(5*31+28+2*30)-1:48*(5*31+28+3*30)-
1)-forecastLoadRT(48*(5*31+28+2*30)-1:48*(5*31+28+3*30)-
1)))/mean(targetTEST(48*(5*31+28+2*30)-1:48*(5*31+28+3*30)-
1)));
disp(msg);
%Oct
msg = sprintf('MAPE of Oct:
%f',mean(abs(targetTEST(48*(5*31+28+3*30)-1:48*(6*31+28+3*30)-
1)-forecastLoadRT(48*(5*31+28+3*30)-1:48*(6*31+28+3*30)-
1)))/mean(targetTEST(48*(5*31+28+3*30)-1:48*(6*31+28+3*30)-
1)));
disp(msg);
%Nov
msg = sprintf('MAPE of Nov:
%f',mean(abs(targetTEST(48*(6*31+28+3*30)-1:48*(6*31+28+4*30)-
1)-forecastLoadRT(48*(6*31+28+3*30)-1:48*(6*31+28+4*30)-
1)))/mean(targetTEST(48*(6*31+28+3*30)-1:48*(6*31+28+4*30)-
1)));
disp(msg);
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%Dec
msg = sprintf('MAPE of Dec:
%f',mean(abs(targetTEST(48*(6*31+28+4*30)-1:48*(7*31+28+4*30)-
1)-forecastLoadRT(48*(6*31+28+4*30)-1:48*(7*31+28+4*30)-
1)))/mean(targetTEST(48*(6*31+28+4*30)-1:48*(7*31+28+4*30)-
1)));
disp(msg);
%-------------------------------------
disp('-----------------------------');
disp('Average Temperture');
disp('-----------------------------');
%Jan
msg = sprintf('Average Temperature of Jan: %.1f
',nanmean(X5(1:48*31-1)));
disp(msg);
%Feb
msg = sprintf('Average Temperature of Feb: %.1f
',nanmean(X5(48*31-1:48*(31+28)-1)));
disp(msg);
%Mar
msg = sprintf('Average Temperature of Mar: %.1f
',nanmean(X5(48*(31+28)-1:48*(2*31+28)-1)));
disp(msg);
%Apr
msg = sprintf('Average Temperature of Apr: %.1f
',nanmean(X5(48*(2*31+28)-1:48*(2*31+28+30)-1)));
disp(msg);
%May
msg = sprintf('Average Temperature of May: %.1f
',nanmean(X5(48*(2*31+28+30)-1:48*(3*31+28+30)-1)));
disp(msg);
%Jun
msg = sprintf('Average Temperature of Jun: %.1f
',nanmean(X5(48*(3*31+28+30)-1:48*(3*31+28+2*30)-1)));
disp(msg);
%Jul
msg = sprintf('Average Temperature of Jul: %.1f
',nanmean(X5(48*(3*31+28+2*30)-1:48*(4*31+28+2*30)-1)));
disp(msg);
%Aug
msg = sprintf('Average Temperature of Aug: %.1f
',nanmean(X5(48*(4*31+28+2*30)-1:48*(5*31+28+2*30)-1)));
disp(msg);
%Sep
msg = sprintf('Average Temperature of Sep: %.1f
',nanmean(X5(48*(5*31+28+2*30)-1:48*(5*31+28+3*30)-1)));
disp(msg);
%Oct
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msg = sprintf('Average Temperature of Oct: %.1f
',nanmean(X5(48*(5*31+28+3*30)-1:48*(6*31+28+3*30)-1)));
disp(msg);
%Nov
msg = sprintf('Average Temperature of Nov: %.1f
',nanmean(X5(48*(6*31+28+3*30)-1:48*(6*31+28+4*30)-1)));
disp(msg);
%Dec
msg = sprintf('Average Temperature of Dec: %.1f
',nanmean(X5(48*(6*31+28+4*30)-1:48*(7*31+28+4*30)-1)));
disp(msg);

ix. SWIS MAP GENERATOR
function [ ] = SWISLoadMap(
CountryNorthLoad,CountryEastLoad,CountrySouthLoad,CountryGoldfieldsLoad,Met
roLoad ,DateandTime)
%SWISLoadMap gets the load in the Swiss-all region and generate the
% Date Created: 22-09-2011
%proper map presentation of the load data
% the input variables are the load of different regions in the following
% order
% Country North
% Country East
% Country South
% Country Goldfields
% Metro
%------------------------------------------------------
%METROLoadMap is a simillar function for metro area
%------------------------------------------------------
load SWIS_ALL
figure1=figure;
patch(oneX,oneY,0,'EdgeColor',[0 0 .5625]);
patch(twoX,twoY,0,'EdgeColor',[0 0 .5625]);
patch(indianoceanX,indianoceanY,0,'EdgeColor',[0 0 .5625]);
a=patch(countrygoldfieldsX,countrygoldfieldsY,CountryGoldfieldsLoad,'EdgeCo
lor',[0 0 .5625]);
b=patch(countryeastX,countryeastY,CountryEastLoad,'EdgeColor',[0 0 .5625]);
c=patch(countrynorthX,countrynorthY,CountryNorthLoad,'EdgeColor',[0 0
.5625]);
d=patch(countrysouthX,countrysouthY,CountrySouthLoad,'EdgeColor',[0 0
.5625]);
e=patch(metroX,metroY,MetroLoad,'EdgeColor',[0 0 .5625]);
colorbar
legend([a,b,c,d,e],'Country Goldfields','Country East','Country
North','Country South','Metro');
title({'Spatial load forecast of SWIS region on' DateandTime});
axis tight

% Create textbox
annotation(figure1,'textbox',...

[0.331802221886336 0.41969696969697 0.0442558192261187
0.0891837449640916],...
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'String',{MetroLoad 'MW'},...
'FitBoxToText','off');

% Create textbox
annotation(figure1,'textbox',...

[0.3213125 0.727272727272727 0.0728833887545345 0.032842879663688],...
'String',{CountryNorthLoad 'MW'},...
'FitBoxToText','off');

% Create textbox
annotation(figure1,'textbox',...

[0.5181875 0.466763005780347 0.0839890417170496 0.0447976878612716],...
'String',{CountryEastLoad 'MW'},...
'FitBoxToText','off');

% Create textbox
annotation(figure1,'textbox',...

[0.40725 0.238439306358381 0.0865
0.0491329479768784],'String',{CountrySouthLoad 'MW'},...

'FitBoxToText','off');

% Create textbox
annotation(figure1,'textbox',...

[0.690864003929868 0.501515151515151 0.0467418001813777
0.0682940970397602],...

'String',{CountryGoldfieldsLoad 'MW'},...
'FitBoxToText','off');

end

x. METROPOLITAN MAP GENERATOR
function [ ] = METROLoadMap(
MetroNorthLoad,MetroEastLoad,MetroSouthLoad,MetroCBDLoad,DateandTime )
%SWISLoadMap gets the load in the Swiss-all region and generate the
% Date Created: 22-09-2011
%proper map presentation of the load data
% the input variables are the load of different regions in the following
% order
% Metro North
% Metro East
% Metro South
% Metro CBD
%------------------------------------------------------
%SWISLoadMap is a simillar function for the whole SWIS area
%------------------------------------------------------
load SWIS_METRO
%x=x-50;
%y=440-(y-440);
figure1=figure;
patch([0 526 526 0], [0 0 880 880],0,'EdgeColor',[0 0 .5625])
% patch(threeX,threeY,0,'EdgeColor',[0 0 .5625]);
% patch(fourX,fourY,0,'EdgeColor',[0 0 .5625]);
b=patch(metroeastX,metroeastY,MetroEastLoad,'EdgeColor',[0 0 .5625]);
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c=patch(metronorthX,metronorthY,MetroNorthLoad,'EdgeColor',[0 0 .5625]);
d=patch(metrosouthX,metrosouthY,MetroSouthLoad,'EdgeColor',[0 0 .5625]);
e=patch(cbdX,cbdY,MetroCBDLoad,'EdgeColor',[0 0 .5625]);
colorbar
legend([b,c,d,e],'Metro East','Metro North','Metro South','CBD');
title({'Spatial load forecast of Perth metropolitan region on'
DateandTime});
axis tight

% Create textarrow
annotation(figure1,'textarrow',[0.423956931359354 0.429340511440108],...

[0.589551181102362 0.508661417322835],'TextEdgeColor','none',...
'String',{MetroCBDLoad 'MW'});

% Create textbox
annotation(figure1,'textbox',...

[0.389963660834455 0.588976377952756 0.0905208613728129
0.0283464566929138],...

'FitBoxToText','off');

% Create textbox
annotation(figure1,'textbox',...

[0.359008075370121 0.74488188976378 0.0945585464333782
0.0330708661417311],...

'String',{MetroNorthLoad 'MW'},...
'FitBoxToText','off');

% Create textbox
annotation(figure1,'textbox',...

[0.546433378196501 0.498212598425197 0.0969044414535666
0.0440944881889764],...

'String',{MetroEastLoad 'MW'});

% Create textbox
annotation(figure1,'textbox',...

[0.434724091520861 0.337582677165354 0.0820995962314939
0.0440944881889764],...

'String',{MetroSouthLoad 'MW'});
End



E. NOMENCLATURE
& Fixed plant operation and maintenance costs in $/MW.year
& Variable plant operation and maintenance costs in $/MW.hourCapital investment cost of generation unit in $Plant fuel cost in $/MWMaximum allowable number of generation units of type jX coordinate of the nearest load centre to generation unit iX coordinate of generation unit iY coordinate of the nearest load centre to generation unit iY coordinate of generation unit iNumber of generation units of type jBoolean regional exclusive variableℎ Hour counterMaximum capital investment considered for all the new generationunitsMaximum unit generation capacity MW/hourGlobal warming potentialMaximum predicted demand of a load node MW/hourMaximum number of types of generation unitsMaximum number of generation unitsObjective functionNumber of consumption nodesOptimisation horizon in yearsGHG emission in tons/MWGeneration output of a unit in MW/hourℎ Hour counterGeneration unit node counterType of generation unitConsumption node counterActual electrical load in MWForecasted electrical load in MWSpinning reserve (a positive number less than 1)Year counterGeneration plant annual full load equivalent operational hours
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F. GLOSSARY OF-TERMS
ABARE Australian Bureau of Agricultural and Resource EconomicsABM Agent based modelABS Australian Bureau of StatisticsAC Alternating currentAerosols Fine liquid or solid particles suspending in a fluid. In this documentaerosols are dealing with solid or liquid particles that are floating inthe atmosphere like smoke, air pollution, smog, and tear gas.Anthropogenic activities Activities caused by humans like burning fossil fuels anddeforestationARX Auto-regression with exogenous variablesBOM Bureau of MeteorologyCCGT Combined cycle generation technologyCHP Combined heat and power plantDC Direct currentDeregulated electricitymarket A deregulated market is owned and controlled by differentindividuals and enterprises. In this kind of market participants havemore freedom to decide and plan for their facilities.DG Distributed generationDistribution substation A distribution substation transfers power from the transmissionsystem to the distribution system of an area. Transformers insidedistribution substation reduce the voltage level from transmissionlevel to distribution level. They are also used to isolate distributionlines for maintenance and fault clearance purposes.Elitism Elitism is copying the best solutions to the next generation. Thisprocedure helps the solution not to lose the best individuals.G&T Generation and transmissionGA Genetic algorithmGDP Gross domestic productGEV Generalised extreme value distributionGHG Green house gasGlobal warmingpotential The estimate of global warming contribution of a given mass of agreenhouse gas. GWP is a relative measure of different GHGs incomparison with CO2. GWP of CO2 is 1.GP Generalised Pareto distribution
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Green house gases The atmosphere gases that absorb and emit radiation within thethermal infrared range. Most dominant atmospheric green housegases are water vapour and carbon dioxide.Gross domestic product Gross domestic product is a factor of country overall economicaloutput. GDP is closely related with the standard of living. It is themarket value of all final goods and services made within a countryin one year.GWP Global warming potentialHVDC High voltage direct currentIPCC Intergovernmental Panel on Climate ChangeLMP Locational marginal pricingLocational marginalpricing The Locational Marginal Price (LMP) is a market-pricing approachused to manage the efficient use of the transmission system whencongestion occurs on the bulk power grid.Locus The position of a gene on the chromosomeLRET Large scale renewable energy targetLTLF Long-term load forecast / forecastingMAPE Mean absolute percentage errorMeshing Meshing is the act of dividing the area under study into smallsections. Detailed study of different regions, their interactions andtheir effect on the whole area characteristics can be investigated in amore efficient manner by meshing.Monopolistic electricitymarket Monopoly in electricity market exists when a specific individual orenterprise controls the market and makes decisions for allcomponents.MTLF Medium-term load forecast / forecastingNIEIR National institute of economy and industrial researchNitrogen oxide Nitrogen oxide can refer to these compounds of nitrogen andoxygen: nitric oxide (NO), nitrogen dioxide (NO2), nitrousoxide (N2O), nitrate radical (NO3), nitrogen(VI) oxide, dinitrogentrioxide (N2O3), nitrogen(II,IV) oxide, dinitrogen tetroxide (N2O4),and dinitrogen pentoxide (N2O5).Pareto-optimal A set of optimum solutionsPearson correlationcoefficient Pearson correlation coefficient shows the linear relationshipbetween two variables. This coefficient varies from -1 to +1. Acorrelation of +1 shows the perfect positive linear relationshipsbetween two variables. Similarly, -1 correlation means perfectnegative linear relationship and 0 means no relationship betweentwo variables.PV PhotovoltaicRE Renewable energy
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RET Renewable energy targetSearch Space All possible solutions to the problemSpatial load forecasting Future prediction of electricity demand geographical distributionSpinning reserve A generating capacity that can be injected to the network in fewseconds in case of any failure occurrence at another generation unitor in case of sudden increment in load. It is impossible for agenerator to reach its full power and synchronised with grid in fewseconds and they should be in spinning mode.SRET Small scale renewable energy targetStatistical regression The relation between selected values of x and observed values of y(that helps to predict the future value of y in a given value of x).STLF Short-term load forecast / forecastingSWIS South West Interconnected System (interconnected electricity gridof the South West of Western Australia)T&D Transmission and distributionTrait Possible aspect of an individualTransmission congestion Transmission congestion occurs when there is insufficient energy tomeet the demands of all customers.Transmission substation A transmission substation connects two or more transmission lines.Some of them may have transformers to change voltage level butthey are mainly used to isolate transmission lines for maintenanceand fault clearance purposes.UNEP United Nations Environment ProgramWMO World Metrological Organisation
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