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Abstract

Over ten percent of the population are afflicted by osteoarthritis, a chronic disease of diarthrodial joints such as the knees

and hips, costing hundreds of billions of dollars every year. In this condition, the thin layers of articular cartilage on the

bones degrade and weaken over years, causing pain, stiffness and eventual immobility. The biggest controllable risk factor

is long-term mechanical overloading of the cartilage, but the disparity in time scales makes this process a challenge to

model: loading events can take place every second, whereas degradation occurs over many months. Therefore, a suitable

model must be sufficiently simple to permit evaluation over long periods of variable loading, yet must deliver results

sufficiently accurate to be of clinical use, conditions unmet by existing models. To address this gap, we construct a

two-component poroelastic model endowed with a new flow restricting boundary condition, which better represents the

joint space environment compared to the typical free-flow condition. Under both static and cyclic loading, we explore the

rate of gradual consolidation of the medium. In the static case, we analytically characterise the duration of consolidation,

which governs the duration of effective fluid-assisted lubrication. In the oscillatory case, we identify a region of persistent

strain oscillations in otherwise consolidated tissue, and derive estimates of its depth and magnitude. Finally, we link

the two cases through the concept of an equivalent static stress, and discuss how our results help explain the inexorable

cartilage degeneration of osteoarthritis.

Keywords: tissue, biomechanics, aggrecan, collagen, poroelasticity
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1. Introduction1

As we walk and run around, our knees and hips endure2

forces many times our body weight. They withstand these3

megapascal-scale pressures (Hodge et al., 1986) thanks to4

a 1–4 mm thick coating of articular cartilage on the ends of5

the bones in these synovial joints (Hunziker et al., 2002).6

This coating performs two vital roles: it allows the oppos-7

ing bones to slide smoothly against one another, and it8

protects the underlying bone from injurious stress concen-9

trations (Bader et al., 2011).10

∗Corresponding author. E-mail: francis.woodhouse@uwa.edu.au

The construction of articular cartilage is remarkably 11

simple (Hunziker et al., 2002; Kiani et al., 2002), as illus- 12

trated in fig. 1. A solid matrix of collagen fibres entraps a 13

high density of giant (∼200 MDa) bottlebrush-shaped ag- 14

gregates of aggrecan molecules. Each aggrecan is itself also 15

a large bottlebrush structure of mass 1–3.5 MDa (Bathe 16

et al., 2005), comprising many charged glycosaminoglycans 17

attached to a protein core. The charge density induces a 18

high osmotic pressure, which swells the cartilage with wa- 19

ter from the surrounding synovial fluid to form the tissue 20

interstitial fluid (Tepic et al., 1983). Interspersed through- 21

out the tissue are millions of chondrocyte cells, the only 22
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Figure 1: The construction of articular cartilage. Chondrocyte cells

are interspersed throughout a solid matrix of collagen, which retains

a dense suspension of giant bottlebrush-like aggregates of aggrecan

molecules, themselves each a bottlebrush. The structure of the chon-

drocytes and collagen divides the non-calcified cartilage above the

bone into the three distinct zones shown.

live components of articular cartilage, which synthesise all23

of the aggrecan and collagen (Goldring and Marcu, 2009).24

Articular cartilage functions through its mechanical25

properties as a poroelastic medium: a porous elastic solid26

saturated with fluid. At the instant of loading, the inter-27

stitial fluid bears all of the stress. Driven by the pressure28

difference between the tissue and the synovial space in the29

joint, water gradually exudes through the cartilage sur- 30

face into the synovial fluid, where it helps to lubricate 31

sliding of opposing cartilage faces in so-called mixed mode 32

lubrication (Ateshian, 2009; Gleghorn and Bonassar, 2008; 33

Katta et al., 2008; McCutchen, 1962). As fluid is lost, the 34

solid structure progressively deforms, transferring the load 35

to elastic compression of the high-density aggregates. Fi- 36

nally, when the load is released, the cartilage re-imbibes 37

fluid and swells. 38

If the loading is sufficiently frequent, the cartilage does 39

not have time to re-swell to its original size each cycle. 40

Instead, it undergoes consolidation: it will progressively 41

compress by a greater fraction every time it is loaded, ex- 42

uding less fluid and therefore contributing less to lubri- 43

cation, until a state of maximal average compression and 44

minimal average exudation is reached. As well as affect- 45

ing the elastic modulus, the high density of aggregates 46

also results in a low permeability of the solid to the inter- 47

stitial fluid, yielding a functional consolidation time of an 48

hour or more (Ateshian, 2009; Comper, 1991). During this 49

time, the coefficient of friction rises ten-fold (Gleghorn and 50

Bonassar, 2008). 51

In healthy tissue, chondrocytes synthesise new material 52

to repair any damage caused by high levels of compres- 53

sion and friction in late-stage consolidation. However, if 54

damage overtakes repair for some reason, the tissue gradu- 55

ally degrades over months or years. This debilitating con- 56

dition, termed osteoarthritis (OA) or non-inflammatory 57

arthritis, has a morbidity of over 10% of the population 58

and costs the economy hundreds of billions of dollars ev- 59

ery year in lost productivity (Bitton, 2009). Repairing the 60

tissue is difficult (Hunziker, 2002; Newman, 1998), and in 61

serious cases the only effective treatment may be surgical 62

joint replacement. 63

The aetiology of OA is complex. Both genetic and be- 64

havioural risk factors exist. Of the latter, abnormal joint 65

loading is particularly prominent. For instance, surgical 66

alteration of the menisci—tough rings of fibrocartilage in 67
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the knee which spread load over the articular cartilage—68

often causes early onset OA (Papalia et al., 2011), as does69

damage to ligaments, and certain occupations have higher70

rates of OA (Coggon et al., 2000). In these scenarios, the71

abnormal mechanical loading induces chondrocyte apop-72

tosis and damages the solid matrix (Chen et al., 2001;73

Grodzinsky et al., 2000; Jones et al., 2009; Kurz et al.,74

2005; Sandell and Aigner, 2001). A vicious cycle begins:75

the depleted chondrocyte population cannot fully repair76

the solid matrix, so subsequent loading of the structurally77

compromised tissue causes more damage and apoptosis,78

leading to further inadequate repair, and so-on (Goggs79

et al., 2003). The onset of early-stage OA is therefore80

intimately linked with the mechanical response of the car-81

tilage as a function of its integrity and loading patterns.82

To quantify this response, we need a mechanical model.83

Early linear ‘biphasic’ models codified the process of con-84

solidation (Ateshian et al., 1997), and complex finite el-85

ement studies are developing this further (Haemer et al.,86

2012; Mononen et al., 2012; Pierce et al., 2013). Such87

studies predict large spatial variations of strain and pres-88

sure (Suh et al., 1995; Wong and Carter, 2003) and exhibit89

frequency dependent consolidation rates under cyclic load-90

ing (Suh et al., 1995; Zhang et al., 2014). However, these91

models are either prohibitively complex for use over the92

long time scales of OA development, or lack pertinent in93

vivo details. In particular, many studies use a free flow94

condition for the pore fluid efflux when, in reality, the95

close proximity of other tissues will restrict flow (Wong96

and Carter, 2003), potentially causing a marked slowdown97

in the long-term consolidation rate (Halonen et al., 2014).98

In this paper we derive a simple, effective and tractable99

cartilage mechanics model explicitly from aggrecan and100

pore fluid dynamics. To model the effect of the narrow101

joint geometry in vivo, we introduce a new flow restriction102

boundary condition. We then study the model numeri-103

cally and analytically, first under static and then oscilla-104

tory loading. In both cases, we characterise the depen-105

dence on loading and flow restriction of two key proper- 106

ties: the time taken to consolidate, which corresponds to 107

the duration of mixed mode lubrication, and the strains 108

experienced through the cartilage. 109

In the static case, we first illustrate the essential fea- 110

tures of consolidation before exploring the influence of flow 111

restriction. We show that greater restriction slows down 112

consolidation, helping to preserve cartilage integrity. We 113

derive an approximate relationship between the consolida- 114

tion time scale, the applied load and the tissue’s biome- 115

chanical properties, and demonstrate its robustness over a 116

wide range of flow resistance values. 117

We then examine oscillatory loading, the more com- 118

mon usage pattern. First, we show that low levels of flow 119

restriction at the surface markedly temper long-term vari- 120

ability in the total cartilage thickness compared to a free- 121

flowing boundary, but significant strain variability persists 122

in the superficial zone. To quantify this, we solve the 123

consolidation problem linearised about the time-averaged 124

strain field, which yields approximations for three primary 125

quantities: the depth d of the high-strain region, the strain 126

variation range ∆, and the propagation speed v of com- 127

pression waves. We show that these quantities scale with 128

the loading frequency f as d ∼ f−1/2, ∆ ∼ f−1/2 and 129

v ∼ f1/2, and that ∆ varies inversely with the boundary 130

flow resistance. 131

The approximations we derive encapsulate the salient 132

points of cartilage biomechanics. Our results quantify in- 133

tuition as to why the early stages of OA depend so much on 134

behavioural factors: if flow restriction is altered through 135

surgery, or stresses are raised through abnormal posture 136

or gait, then mixed mode lubrication time falls, strains 137

and strain variability rise, and a potentially unrecoverable 138

cycle of damage begins. 139

2. Cartilage model 140

Healthy, non-calcified articular cartilage is not homo- 141

geneous. As illustrated in fig. 1, it is typically divided 142
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into three distinct regions (Changoor et al., 2011; Hunziker143

et al., 2002; Jadin et al., 2005). The outermost superficial144

zone, exposed to the synovial fluid within the joint cap-145

sule, makes up the first 5–10% of the thickness. It is char-146

acterised by surface-parallel collagen fibres and pancake-147

shaped chondrocytes. The next 15–20% is the transitional148

or intermediate zone, with isotropically-oriented fibres and149

scattered spherical chondrocytes. The remaining 70–80%150

comprises the radial or deep zone, wherein the matrix is151

oriented perpendicular to the bone and egg-shaped chon-152

drocytes are arranged in regimented columns. We will153

often refer back to these zones, especially the exposed su-154

perficial zone.155

Importantly, the aggrecan density is also inhomoge-156

neous: the density in the superficial zone is half of that in157

the deep zone (Klein et al., 2007; Maroudas, 1976; Smith158

et al., 2013; Wedig et al., 2005). This implies that the159

superficial zone will experience greater strains and consol-160

idate faster than if the distribution were homogeneous,161

while the opposite holds in the deep zone (Carter and162

Wong, 2003; Chen et al., 2001; Schinagl et al., 1996; Wil-163

son et al., 2007). With this in mind, we now construct our164

cartilage biomechanics model.165

2.1. Poroelastic equations166

The geometry we will model is equivalent to a so-called167

‘confined compression’ test. In such a test, a cylinder168

of cartilage is placed in a frictionless, impermeable well,169

tightly bounding all but its upper surface. A uniform,170

porous plate covers the exposed surface, through which the171

desired load is applied. The subsequent tissue compression172

is then measured over time. Due to the confinement, no173

lateral strain develops and flow through the tissue will only174

be vertical, with fluid exiting through the porous plate.175

Therefore, this geometry guarantees a one-dimensional de-176

formation state, with purely vertical pressure gradient and177

strain profile.178

Of course, the true in vivo cartilage loading scenario is179

not one-dimensional. However, it is a reasonable approxi- 180

mation in the more realistic case we consider here, where 181

a thin planar cartilage ‘slab’ is bounded below by an im- 182

permeable bone interface and subjected to upper surface 183

loading whose lateral extent is large relative to the tissue 184

thickness. As well as simplifying specification and anal- 185

ysis of our model, this geometry allows us to extract the 186

primary tissue behaviours without resorting to extensive 187

numerical simulations. 188

We adopt a poroelastic (Biot, 1955; Verruijt, 1995) or 189

‘biphasic’ (Ateshian et al., 1997) model of cartilage, con- 190

sisting of a particulate solid phase (representing the ag- 191

grecan, collagen, and other such constituents) saturated 192

by fluid. Both solid and fluid phases are assumed to be 193

intrinsically incompressible, so deformation is the result 194

of fluid efflux and consequent elastic strain by mass con- 195

servation. In addition, as the strain in loaded cartilage 196

can surpass 30% (Carter and Wong, 2003), a finite defor- 197

mation model is necessary; in one dimension, specifying 198

such a model is immensely simplified compared to higher 199

dimensions. 200

The cartilage has unloaded thickness H, with comoving 201

(material) coordinate z running from z = 0 at the bone to 202

z = H at the surface. We will couch our model in terms of 203

the engineering strain ε, where ε < 0 in compression, with 204

associated axial deformation gradient F = 1 + ε. The true 205

cartilage thickness at time t is then 206

h(t) =

∫ H

0

F dz = H +

∫ H

0

ε dz.

The corresponding work conjugate to the deformation gra- 207

dient is the first Piola–Kirchoff stress, but in one dimen- 208

sion its axial component coincides with that of the Cauchy 209

stress; therefore, for consistency with the cartilage litera- 210

ture, we take the liberty of denoting axial stresses by σ, 211

with σ < 0 in compression. 212

The total vertical stress σtot decomposes as σtot = 213

−p(z, t)+σ(z, t), with fluid pressure p(z, t) and solid stress 214

σ(z, t) (Verruijt, 1995). The solid stress σ(z, t) in turn 215
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depends on the strain ε(z, t). At time t, the tissue is216

subject to a prescribed compressive vertical surface stress217

Σ(t) 6 0 at z = H. Provided inertial and body forces are218

negligible, instantaneous equilibrium implies σtot satisfies219

∂σtot/∂z = 0, so it follows that σtot = Σ(t) for all z. Given220

the relationship between solid stress σ and strain ε, as well221

as the time-dependent behaviour of the fluid pressure p as222

a function of ε, this equilibrium governs the behaviour of223

the tissue over time for a given loading profile Σ(t).224

We first define the solid stress σ. In compression, the225

collagen matrix contributes little strength, with most resis-226

tance supplied by the aggrecan (Han et al., 2011). There-227

fore, we neglect the contribution of collagen to the stress.228

Now, suppose that the unloaded cartilage possesses an ag-229

grecan concentration distribution230

c0(z) = A0 + (A2 −A0)(z/H)2,

with c0(0) = A0 > A2 = c0(H). This profile is typical231

of those observed in experiments (Wedig et al., 2005). At232

non-zero strain, the one-dimensional deformed volume ele-233

ment is 1+ε, so the true aggrecan density in a compressed234

unit volume reads235

c(z, t) =
c0(z)

1 + ε(z, t)
.

(In higher dimensions, this would read c0/det(F), with F236

the deformation gradient tensor.) The high charge den-237

sity of the aggrecan molecules induces a strong, non-ideal238

osmotic pressure Π which can be fitted with a virial ex-239

pansion (Bathe et al., 2005; Comper, 1991)240

Π(z, t) = RT
[
α1c(z, t) + α2c(z, t)

2 + α3c(z, t)
3
]
,

where R is the gas constant, T is the temperature, and the241

αi are the virial expansion coefficients. It is this osmotic242

pressure which gradually supports a greater proportion of243

the load as the tissue strain develops towards steady state.244

Absent loading, the osmotic pressure causes cartilage245

to swell. Ordinarily this swelling is restrained by the col-246

lagen network. Our neglect of the collagen here means we247

cannot simply write σ = −Π, but instead must augment 248

the solid stress to mimic this restraint. We match ε = 0 249

to the unloaded swollen state and define an effective solid 250

stress 251

σ(z, t) = Π0(z)eΛε(z,t) −Π(z, t), (1)

where Π0 is Π at ε = 0 (i.e. with c = c0) and Λ is a large 252

positive constant to model unloading and buckling of the 253

collagen network under compression. This gives σ = 0 at 254

ε = 0, and σ ≈ −Π for moderate compression (ε < 0). In 255

fact, eq. (1) constitutes the stress in a hyperelastic material 256

with local strain energy density function 257

W (ε) = RT

[
(α1c0 + α2c

2
0 + α3c

3
0)
eΛε

Λ

− α1c0 log(1 + ε) +
α2c

2
0

1 + ε
+

α3c
3
0

2(1 + ε)2

]
.

Note that a three-dimensional formulation of the stress 258

would need to be in terms of appropriate work conjugates, 259

such as the first Piola–Kirchoff stress tensor if using the 260

deformation gradient as the strain measure as we do here. 261

In addition, the planar tensile effects of collagen may need 262

to be considered if the loading is sufficiently non-uniform, 263

such as in an indentation test. 264

We now define the fluid pressure p. The interstitial flow 265

obeys Darcy’s law for flow in a porous medium (Batchelor, 266

2000), whereby the flux q is proportional to the gradient 267

in pressure. In our Lagrangian viewpoint, this becomes 268

q(z, t) = − k(z, t)

1 + ε(z, t)

∂p(z, t)

∂z
. (2)

The function k(z, t) is known as the permeability. The fac- 269

tor 1/(1 + ε) serves to perform an inverse Piola transfor- 270

mation of the Eulerian permeability k into the Lagrangian 271

frame, resulting in an effective Lagrangian permeability 272

K = k/(1 + ε). This is derived in the appendix. 273

Denser aggrecan is less permeable, so k, like Π, is a 274

function of the compressed aggrecan concentration c. The 275

permeability fits a power law 276

k(z, t) =
k0

c(z, t)βk
,
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where k0 and βk are positive constants (Comper and Lyons,277

1993; Smith et al., 2013). An exponential relationship is a278

common alternative (Mow et al., 1984).279

In reality, the permeability of the tissue to water is a280

function not only of the aggrecan density, but also of the281

collagen matrix geometry. As mentioned earlier, the col-282

lagen matrix varies in its orientation and density through283

the tissue depth (Muir et al., 1970; Nieminen et al., 2001),284

thus potentially adding a depth-dependent component to285

the basic permeability k0. For clarity we neglect such ef-286

fects here, since collagen density variation affects perme-287

ability rather less than aggrecan (Muir et al., 1970), but288

we note that a change in the volume fraction of water and289

aggrecan can be interpreted as a change in k0.290

Putting together Darcy’s law and conservation of mass291

leads to the non-linear diffusion-type equation292

∂ε

∂t
=

∂

∂z

(
k

1 + ε

∂p

∂z

)
. (3)

This is derived in the appendix, following Gibson et al.293

(1967, 1981) and McNabb (1960).294

Combining eq. (3) with the equilibrium stress–strain295

relation296

Σ = σtot = −p+ σ = −p+ Π0e
Λε −Π (4)

yields a closed system. All that remains is to supply297

boundary conditions and the loading protocol for Σ(t).298

2.2. Boundary conditions299

We take the bone boundary z = 0 to be impermeable,300

so q(0, t) = 0, which implies pz(0, t) = 0 through eq. (2)301

(where pz denotes ∂p/∂z).302

The condition at z = H demands more careful consid-303

eration. A typical approach in consolidation problems is304

to suppose free flow through the upper surface by setting305

p(H, t) = 0 (Mow et al., 1984). In reality, the joint geom-306

etry will provide resistance to fluid exiting the cartilage307

surface. In the knee, for example, flow is restricted by the308

meniscus, as it forces the fluid to flow around and through309

its dense porous structure (Haemer et al., 2012). A simple 310

way to model this is to write the pressure as proportional 311

to the flux, essentially coupling the cartilage to another 312

porous medium whose far end is held at zero reference pres- 313

sure (in the synovial fluid). We write p(H, t) = γq(H, t), 314

which implies the Robin-type condition 315

p(H, t) = σ(H, t)− Σ(t) = −γ k(H, t)

1 + ε(H, t)
pz(H, t) (5)

by eqs. (2) and (4). The proportionality constant γ > 0 316

dictates the resistance, with higher γ giving lower flux. 317

2.3. Loading protocol 318

We will consider both static and oscillatory loading, 319

and reiterate that loads will always be compressive, so 320

Σ 6 0. Modelling static loading, where Σ is constant, 321

serves two functions: to understand the reaction of carti- 322

lage to loading in vulnerable situations such as prolonged 323

standing or kneeling, and to compare an oscillatory load 324

profile with its equivalent mean static stress. 325

For oscillatory loading, we will mimic typical activity 326

patterns using half-sinusoidal loading of frequency f and 327

mean Σ̄ 6 0. The instantaneous load is then 328

Σ(t) =

Σ̄π sin(2πft) if ft− bftc ∈ [0, 1
2 ],

0 if ft− bftc ∈ [ 1
2 , 1],

(6)

where b·c is the integer floor function, so x − bxc is the 329

fractional part of x. We will often compare oscillatory 330

loading with the case of static loading under the same 331

mean stress, where Σ(t) ≡ Σ̄. 332

2.4. Non-dimensionalisation and parameter selection 333

We now non-dimensionalise the system in order to un- 334

derstand its parameter dependencies. 335

There are several natural scalings. First, let z = Hẑ, 336

so the cartilage runs from ẑ = 0 to ẑ = 1. Now let c = A0ĉ 337

and c0 = A0ĉ0, so ĉ = ĉ0/(1 + ε), yielding the rescaled 338

aggrecan profile ĉ0(ẑ) = 1−(1−φ)ẑ2 with φ = A2/A0. This 339

then suggests setting k = k0A
−βk

0 k̂ to obtain k̂ = ĉ−βk . 340
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Next, define the pressure scale S = RTα1A0. Let341

Π = SΠ̂, where Π̂ = ĉ + a2ĉ
2 + a3ĉ

3 with rescaled virial342

coefficients a2 = A0α2/α1 and a3 = A2
0α3/α1. This scal-343

ing for Π implies identical scalings for the fluid pressure344

p = Sp̂, total stress σtot = Sσ̂tot and applied load Σ = SΣ̂.345

Combining these parameter groups yields a time scale346

τ =
Aβk−1

0 H2

RTα1k0
.

Setting t = τ t̂ recasts eq. (3) into the dimensionless form347

∂ε

∂t̂
=

∂

∂ẑ

(
k̂

1 + ε

∂p̂

∂ẑ

)
.

The cyclic loading frequency also then rescales as f = f̂/τ .348

Finally, the boundary condition in eq. (5) rescales to349

p̂(1, t̂) = −Γ
k̂(1, t̂)

1 + ε(1, t̂)
p̂ẑ(1, t̂), (7)

with rescaled boundary resistance350

Γ =
k0A

−βk

0

H
γ.

The form of τ implies a quadratic dependence of con-351

solidation time on cartilage thickness H. This holds ex-352

actly for homogeneous, unrestricted consolidation (Ver-353

ruijt, 1995). Here, however, the boundary resistance Γ354

goes inversely with H, and a lesser resistance promotes355

faster efflux, so the true effect on consolidation time of356

increasing H is likely sub-quadratic.357

The original eleven parameters have been reduced to358

six: a2, a3, φ, βk, Λ and Γ. Of these, we will fix the first359

five, as they correspond to material properties of the car-360

tilage itself, whereas Γ, our new resistance parameter, is361

primarily related to the environment external to the car-362

tilage. The values of the fixed physical parameters used,363

and the derived non-dimensional constants, are given in364

table 1. We have chosen parameters representative of typ-365

ical healthy cartilage in order to demonstrate and explore366

this model numerically, but the values appropriate to dif-367

ferent applications will vary with species, age, joint quality368

and tissue location (Korhonen et al., 2002; Shepherd and369

Parameter Value

RT 2.5 kPa mL/µmol (T ≈ 300 K)

α1 1.4× 10−1 µmol/mg ?

α2 4.4× 10−3 µmol mL/mg
2

?

α3 5.7× 10−5 µmol mL2/mg
3

?

k0 1.0× 10−3 mm2(mg/mL)βk/kPa/s †

βk 1.6 †

A0 100 mg/ml ‡

A2 60 mg/ml ‡

Λ 30

a2 3.1

a3 4.1

φ 0.6

Table 1: Parameter values chosen. Derived non-dimensional values

are below the line. ? Bathe et al. (2005); †Comper and Lyons (1993)

and Smith et al. (2013); ‡Wedig et al. (2005).

Seedhom, 1999). A realistic range of Γ is difficult to deter- 370

mine, since it depends heavily on the tissue environment 371

in vivo and therefore cannot be determined by standard 372

explant compression tests. In this work, we will explore 373

values between Γ = 0 (free-flowing) and Γ = 1, later fo- 374

cussing on Γ = 0.1 as a value that has a noticeable but 375

not unrealistically excessive effect. 376

The parameters in table 1 imply a pressure scale S = 377

35 kPa, and here we will consider average loads up to 378

15S ≈ 500 kPa. For a typical thickness H = 3 mm we 379

also get a time scale τ = 4.1 × 105 s, or 5 days; however, 380

the majority of the consolidation process occurs in a small 381

fraction of this time. Typical consolidation durations ex- 382

amined will be on the order of t̂ = 0.01, which is equivalent 383

to approximately 1 hour with the above value of τ . 384

Having completed our rescaling, we now drop the hat 385

notation where applicable and work exclusively with the 386

non-dimensional variables unless otherwise specified. 387
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3. Static loading388

To illustrate the process of consolidation and to ex-389

plore the fundamental effect of the boundary resistance,390

we begin by studying consolidation under a static stress.391

The basic progression of consolidation is the following.392

At the instant of first loading, the stress is borne entirely393

through hydrostatic pressure of the pore fluid and the tis-394

sue is infinitely stiff. This creates a pressure gradient at395

the semi-permeable surface, which induces fluid efflux. As396

the pore fluid is exuded, the solid structure deforms, pro-397

gressively transferring more of the load from hydrostatic398

pressure into elastic strain. Eventually an equilibrium is399

approached whereby the entire load is sustained by the400

solid phase and the remaining pore fluid is once again at401

background pressure (p = 0 here). This process is exem-402

plified in fig. 2: deformation continues for a long time (2–3403

hours under the time scale in section 2.4) compared to how404

quickly the top layers reach maximal strain due to progres-405

sive consolidation of deeper sections as the fluid is gradu-406

ally exuded. This effect is enhanced by the inhomogeneity407

of the aggrecan concentration, which effects a greater max-408

imal deformation of the superficial zone and lesser maximal409

deformation of the deep zone than is seen when compared410

to a homogenised equivalent (Federico et al., 2009).411

To understand the effect of boundary resistance, we412

first examine a static stress of non-dimensional magni-413

tude |Σ| = 15. (Recall that this is equivalent to a load414

of 500 kPa using the parameters in table 1, as discussed415

in section 2.4.) Figure 3A depicts the evolution of true416

cartilage thickness h(t) = 1 +
∫ 1

0
ε(z, t) dz for different val-417

ues of Γ, calculated by numerical integration of eq. (3).418

For a free-flowing boundary (that is, Γ = 0) the clas-419

sic displacement–time curve seen in confined compression420

tests with a free-flowing boundary is reproduced, with421

a basic consolidation time around 1–2 hours (Higginson422

et al., 1976; Mow et al., 1980). Increasing the boundary423

resistance clearly acts to slow down consolidation to some424

degree, but we would like to quantify this relationship.425

0.005 0.010 0.015 0.020 0.025
t

0.2

0.4

0.6

0.8

1.0

ζ ε/ε∞

0

0.2

0.4

0.6

0.8

1.0

0

Figure 2: Consolidation under a static load; |Σ| = 15, Γ = 0.05.

Lines are true material curves of initially equispaced points through

the cartilage thickness, i.e. ζ(z, t) = z +
∫ z
0 ε(z

′, t) dz′ against non-

dimensional time t for constant values of z. Colour scheme indicates

fraction of total eventual consolidation at each z through the thick-

ness, i.e. ε(z, t)/ limt→∞ ε(z, t), showing the slower rate of consoli-

dation near the bone than at the surface.

Free-boundary homogeneous consolidation obeys an ex- 426

ponential decay at large t (Verruijt, 1995), so we expect 427

similar behaviour here. The effect of Γ can be seen in the 428

global consolidation rate 429

χ(t) = − d

dt
log(h(t)− h∞), (8)

where h∞ is the steady-state consolidated thickness as 430

t→∞. (Recall that p→ 0 as t→∞ under a static stress, 431

so h∞ can be calculated by solving the steady-state stress 432

balance Σ = σ numerically for ε∞ incrementally in z and 433

then integrating.) The rate χ(t) is the instantaneous expo- 434

nential decay constant, fitting h(t)−h∞ ∝ e−χt at a given 435

t. Figure 3B indicates that our system does approach an 436

exponential decay at large t: after a transient period of 437

slower consolidation, χ approaches a constant. The rate 438

of approach is slower for greater Γ and never faster than 439

the free-boundary rate with Γ = 0. Indeed, we can use 440

eqs. (3) and (4) to show that 441

dh

dt
=
p(1, t)

Γ
=
σ(1, t)− Σ

Γ
,

which clarifies the effect of Γ in retarding consolidation. 442

The precise impact of Γ on this long-term rate can be 443

inferred by considering asymptotics of the system. For 444
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Γ = 0.8
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B

Figure 3: Consolidation under a static load of |Σ| = 15, for Γ = 0

(thick solid curve) and a uniform range between Γ = 0.2 and Γ = 1

(dashed curves). (A) Thickness h(t) as a function of non-dimensional

time t. Increasing Γ slows consolidation. (B) The consolidation rate

χ(t). Higher Γ causes a later trough and slower long-term χ. (C) The

rescaling χ(t)/λ against λt via the solution of eq. (12). Despite the

non-uniform aggrecan concentration present in the simulations, the

curves collapse remarkably well.

analytic tractability, we will suppose that the aggrecan445

concentration is uniform through the cartilage by replacing446

c0(z) with its spatial average c0; this renders the osmotic447

pressure Π and permeability k as functions purely of ε(z),448

removing the direct dependence on z. Now, suppose we are449

at large t nearing the steady state p = 0, ε = ε∞, σ = Σ,450

where homogeneity implies that ε∞ is also independent451

of z. Equilibrium −p+ σ = Σ implies452

∂p

∂z
=
∂σ

∂z
=
∂σ

∂ε

∂ε

∂z
.

Recalling the effective permeability K = k/(1 + ε), eq. (3)453

then reads454

∂ε

∂t
=

∂

∂z

[
K
∂σ

∂ε

∂ε

∂z

]
. (9)

We will now expand about the t → ∞ state. Let455

K∞ = K|ε=ε∞ and σε,∞ = [∂σ/∂ε]ε=ε∞ . Assuming an456

exponential decay towards the steady state at leading or- 457

der, write 458

ε = ε∞ + ηε1(z)e−λt +O(η2),

K = K∞ +O(η),

∂σ

∂ε
= σε,∞ +O(η),

where λ > 0 is the long-term consolidation rate and η � 1 459

is a small bookkeeping parameter. Substituting these into 460

eq. (9) and discarding terms of O(η2) yields 461

−λε1 = K∞σε,∞
d2ε1

dz2
. (10)

All that remains is to linearise the boundary conditions. 462

Expanding σ about ε = ε∞ implies 463

p = σ − Σ = ησε,∞ε1(z)e−λt +O(η2). (11)

Therefore, to first order in η, the bone boundary condi- 464

tion pz(0, t) = 0 implies that [dε1/dz]z=0 = 0, and the 465

surface boundary condition eq. (7) implies that ε1(1) = 466

−ΓK∞[dε1/dz]z=1. We are therefore presented with an 467

elementary Sturm–Liouville problem for the spectrum of 468

decay rates λ. 469

Let ν2 = λ/(K∞σε,∞). (Note σε,∞ > 0.) With the 470

boundary conditions, eq. (10) has solution ε1(z) ∝ cos νz 471

for ν satisfying 472

cot ν = ΓK∞ν. (12)

Properties of the function cot ν guarantee that there al- 473

ways exists exactly one solution in 0 < ν 6 π/2 for all 474

Γ > 0, which will be the dominant term. Equality is 475

achieved precisely when Γ = 0, which yields the free- 476

flow consolidation rate λ = (π2/4)K∞σε,∞. Non-zero Γ 477

moves ν away from π/2 towards 0, so the consolidation 478

rate λ ∝ ν2 falls. If Γ is still sufficiently small so that ν is 479

close to π/2, then we can expand cot ν ≈ −(ν − π/2) to 480

get the approximations 481

ν ≈ π/2

1 + ΓK∞
, λ ≈ (π/2)2K∞σε,∞

(1 + ΓK∞)2
.
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At the other extreme when Γ� 1 and therefore ν � π/2,482

we have cot ν ≈ 1/ν, giving the approximate solution483

ν ≈ (ΓK∞)−1/2, λ ≈ σε,∞
Γ

.

For intermediate values of Γ, neither approximation ap-484

plies. In this case, eq. (12) has no exact analytic solution,485

but it is easy to solve numerically.486

Figure 3C displays the rescaling of the consolidation487

curves χ(t) in fig. 3B by the solution λ of eq. (12) at488

the corresponding value of Γ; specifically, we plot λ−1χ(t)489

against λt. Even though λ is based upon a spatially-490

averaged aggrecan distribution and is only a long-time491

rate, the curves cluster remarkably well: the rate minima492

have aligned, and all trend near to χ → λ. This analysis493

therefore gives us good approximations for the long term494

behaviour of consolidating cartilage as a function of Γ.495

The analysis also supplies large-t approximations for496

the strain ε(z, t) and, via eq. (11), the pressure p(z, t),497

which both differ from their equilibrium values (ε∞ and498

0, respectively) in proportion to e−λt cos νz. Thus an in-499

creased boundary resistance Γ actually has two effects: as500

well as increasing the time scale λ−1, it also increases the501

spatial variation scale ν−1. In other words, the resistance502

both slows down and smooths out the consolidation pro-503

cess.504

4. Oscillatory loading505

In the previous section, we investigated the effect of506

static loading on our cartilage model. However, everyday507

stress patterns are not static, but cyclic. Over time, if508

the pattern stays the same, the cartilage will approach a509

periodic state with the compression fluctuating about a510

long-term mean. Depending on the form and frequency of511

loading, the long-term mean may differ significantly from512

that obtained by applying the same average static load513

(Kääb et al., 1998). Characterising when and by how much514

these differences occur is important for understanding the515

limits of long-term cartilage homeostasis.516

f = 13000f = 6500
1

0.7

0.8

0.9

h(t)

f = 26000
1

0.7

0.8

0.9

t0 0.025

h(t) f = 52000

t0 0.025

|Σ| = 5

|Σ| = 10

|Σ| = 15

Figure 4: Envelope of variation of cartilage thickness h(t) under

oscillatory stress, with small boundary resistance Γ = 0.01, against

non-dimensional time t. Four different non-dimensional frequencies

f are shown, with the same three values of mean stress Σ̄ (indicated)

evaluated at each frequency. As f increases, the envelopes become

progressively slimmer.

In this section, we will study the effect of oscillatory 517

loading on our model. In particular, we will explore the 518

effect of the boundary resistance Γ on strain and pressure 519

variation, both globally and locally. We will see that even 520

when the cartilage appears to be static globally, a region of 521

persistent local strain oscillations remains in the superficial 522

zone, whose magnitude and depth we can approximate. 523

4.1. Consolidation 524

We first demonstrate the oscillatory consolidation pro- 525

cess by examining how the cartilage thickness h(t) varies 526

with load profile. Using a cyclic stress as in eq. (6) and 527

setting Γ = 0.01, fig. 4 illustrates the envelope of h(t) at 528

varying frequency and mean stress, where the frequencies 529

shown are equivalent to doubling from 1/64 Hz to 1/8 Hz 530

under the time scale of section 2.4. Increasing the fre- 531

quency damps the variation, suggesting that many real- 532

world load patterns might be effectively simplified to some 533

equivalent static load. We will return to this point later. 534

The value of Γ used above might seem rather small 535

compared with the range we considered in the static con- 536
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0.8
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0.6

0.7
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1
h(t) Γ = 0.001

0 0.025t 0 0.025t

Figure 5: Cartilage thickness h(t) under oscillatory (f = 13000; grey

envelope of variation) versus static (dashed black) consolidation at

|Σ̄| = 15, for various indicated values of Γ, against non-dimensional

time t. Greater Γ first brings oscillatory consolidation closer to that

of static and narrows its envelope of variation, then slows down the

long-term consolidation rate.

solidation examples. In fact, small values of Γ markedly537

temper the variation in h(t). Setting |Σ̄| = 15 and f = 13000538

(equivalent to 1/32 Hz), fig. 5 compares the envelope of539

h(t) under oscillatory loading to that of static loading of540

the same mean stress at six values of Γ. As Γ increases to541

Γ = 0.05, cyclic variation in h(t) is heavily suppressed and542

the envelope approaches the static loading curve. Thus543

even at this slow frequency, a small amount of boundary544

resistance lends temporal stability to the cartilage. Be-545

yond Γ = 0.05, the behaviour enters the regime of fig. 3546

where increasing resistance slows down the whole consoli-547

dation process.548

However, there are important details missed by con-549

sidering only the thickness h(t). Figure 6 shows large-t550

envelopes of ε(z, t) through the cartilage depth z for two551

values of mean stress at low and high frequency. There552

0.2 0.4 0.6 0.8 1

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

0

ε(
z,

t)

z

|Σ| = 5

|Σ| = 15

f = 6500
f = 52000

Figure 6: Envelope of variation of the local strain ε(z, t) through the

cartilage thickness z under oscillatory loading, after allowing time for

consolidation, at moderate resistance Γ = 0.1. Two values of mean

stress Σ̄ are displayed, at two frequencies f each. The penetration

depth of the strain variation corresponds in proportion to the super-

ficial zone of cartilage. Variation is increased at higher stresses and

decreased at higher frequencies.

is a narrow but significant region near the surface where 553

non-trivial cyclic deformation occurs, thinner for higher 554

loading frequency; this effect has been seen in previous 555

studies of cyclic loading (Suh et al., 1995), but is less pro- 556

nounced here because of the moderating influence of the 557

boundary resistance. Nevertheless, this behaviour means 558

that we cannot neglect the effects of oscillations altogether 559

when considering the local mechanical environment. As 560

an aside, we note that the overlap of this region with the 561

superficial zone of surface-parallel collagen and pancake- 562

shaped chondrocytes seems unlikely to be coincidental (Wil- 563

son et al., 2006). 564

4.2. Superficial zone strain variation 565

We will now analytically quantify these superficial zone 566

oscillations. By making some judicious approximations in 567

the case of small oscillations, we can extract the param- 568

eter relationships governing the penetration depth, strain 569

variability and compression wave propagation speed of the 570

oscillating region. 571

Suppose we subject the cartilage to oscillatory loading 572

Σ(t) of period τ = 1/f . Until specified otherwise, no par- 573

ticular form of Σ(t) is assumed. For a periodic function F , 574
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define the cycle mean575

〈F (t)〉 =
1

τ

∫ τ

0

F (t) dt.

For sufficiently large t, the strain ε(z, t) is approximately576

periodic and decomposes into ε(z, t) = ε̄(z)+δ(z, t), where577

ε̄(z) = 〈ε(z, t)〉 and δ(z, t) has period τ with 〈δ(z, t)〉 = 0.578

Now, suppose that the strain fluctuations are suffi-579

ciently small that we may use δ as an expansion parameter.580

This is the case for high frequency or low magnitude ac-581

tivity, or high boundary resistance. We view K and σ as582

functions of ε and z, rather than as functions of z and t,583

writing K(ε; z) and σ(ε; z). Linearising about ε̄,584

K(ε; z) = K(ε̄; z) + δ(z, t)Kε(ε̄; z),

σ(ε; z) = σ(ε̄; z) + δ(z, t)σε(ε̄; z).

Henceforth, subscripts Fε refer to partial derivatives with585

respect to ε holding z constant, and Leibniz-style par-586

tial derivatives ∂/∂z (resp. ∂/∂t) will denote holding t587

(resp. z) constant but not holding ε constant. In addition,588

where unspecified, the arguments of K,σ and derivatives589

are taken to be (ε̄; z).590

Similar linearisation of eq. (4) implies591

Σ(t) = −p(z, t) + σ(ε̄; z) + δ(z, t)σε(ε̄; z). (13)

Linearising eq. (3) and substituting for p from eq. (13)592

gives593

∂δ

∂t
=

∂

∂z

[
K
∂σ

∂z
+K

∂

∂z
(δσε) + δKε

∂σ

∂z

]
. (14)

Since δ is periodic, we have 〈∂δ/∂t〉 = 0, so taking the594

cycle mean of eq. (14) and using 〈δ〉 = 0 gives595

∂

∂z

(
K
∂σ

∂z

)
= 0.

This shows K∂σ/∂z is constant. The no-flow condition at596

z = 0 implies the constant is zero, so ∂σ/∂z ≡ 0; in other597

words, σ(ε̄, z) is constant in z.598

Equation (14) now reads599

∂δ

∂t
=

∂

∂z

[
K
∂

∂z
(δσε)

]
. (15)

At this stage we approximate K and σε by their (presently 600

unknown) values K1, σε,1 at z = 1 and neglect their z- 601

derivatives, assuming that their variation with z is suffi- 602

ciently small compared to their value over the superficial 603

region of high δ-variation. Equation (15) then reduces to 604

linear form 605

∂δ

∂t
= K1σε,1

∂2δ

∂z2
, (16)

which is amenable to analytic solution. This diffusion 606

equation immediately indicates that the depth of the os- 607

cillating region scales as (K1σε,1)1/2. 608

We solve eq. (16) by Fourier expansion in time. De- 609

compose Σ(t) and δ(z, t) as 610

Σ(t) = Σ̄ +

( ∞∑
n=1

Σ̂ne
inωt + c.c.

)
,

δ(z, t) =

∞∑
n=1

δ̂n(z)einωt + c.c.,

where the angular frequency ω = 2πf = 2π/τ and ‘c.c.’ 611

denotes complex conjugate. Note that the Fourier coeffi- 612

cients Σ̂n and δ̂n are, in general, complex. Taking the nth 613

mode of eq. (16) implies 614

inωδ̂n(z) = K1σε,1
d2δ̂(z)

dz2
.

This has solution δ̂n(z) = Ane
(1+i)ψnz + Bne

−(1+i)ψnz, 615

where we have defined the spatial growth and decay rates 616

ψn =

(
nω

2K1σε,1

)1/2

.

Observe the complex exponents giving a temporal phase 617

shift linear in z, indicating propagation of compression 618

waves through the cartilage as opposed to instantaneous 619

deformation. The term in Bn yields a mode with angular 620

component ei(nωt−ψnz) which propagates in the direction 621

of increasing z; this corresponds to a compression wave 622

reflection off the bone at the base of the cartilage, whose 623

minor contribution we neglect by setting Bn = 0. 624

We now use eq. (13) and the boundary condition at 625

z = 1 to extract the coefficients An and cycle-averaged 626
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strain ε̄. Linearising eq. (7) in δ implies627

p(1, t) ≈ −Γ[K1 + δ(1, t)Kε|z=1]
∂p

∂z

∣∣∣∣
z=1

≈ −ΓK1σε,1
∂δ

∂z

∣∣∣∣
z=1

,

where we have used eq. (13) to substitute for p. Therefore,628

setting z = 1 in eq. (13) and recalling that σ is constant629

in z, we have630

Σ(t) = σ +

[
δ(1, t) + ΓK1

∂δ

∂z

∣∣∣∣
z=1

]
σε,1.

Taking the cycle mean yields Σ̄ = σ. This can be solved631

numerically for ε̄(z), which then enables calculation of K1632

and σε,1. Taking higher modes, we have633

Σ̂n = Ane
(1+i)ψn [1 + ΓK1(1 + i)ψn]σε,1,

which gives the coefficients An in terms of Σn.634

This analysis finally gives us the strain oscillation635

δ(z, t) =
1

σε,1

∞∑
n=1

Σ̂ne
(z−1)ψn+i[(z−1)ψn+nωt]

1 + ΓK1(1 + i)ψn
+ c.c. (17)

The magnitude of the surface deformations can be charac-636

terised by the z = 1 strain variance637

〈δ(1, t)2〉 =
1

σ2
ε,1

∞∑
n=1

|Σ̂n|2(
ΓK1ψn + 1

2

)2
+ 1

4

. (18)

When Γ = 0, this is directly proportional to the variance638

of Σ(t) and is independent of the oscillation frequency. A639

non-zero Γ has two effects: it decreases the amplitude of640

oscillations, with higher stress modes Σ̂n subject to pro-641

gressively stronger damping, and it introduces frequency642

dependence, with all modes subject to greater damping at643

higher frequencies (as seen in fig. 6).644

Until this point, our derivation has not assumed any645

particular form of the stress Σ(t). We now return to the646

‘semi-sine’ stress function in eq. (6). The n = 1 mode of647

eq. (6) is Σ̂1 = −iπΣ̄/4. Approximating eq. (18) by its first648

term and substituting for Σ̂1 gives a simplified expression649

for the standard deviation
√
〈δ(1, t)2〉 ≈ ∆, where650

∆ =
π|Σ̄|
4σε,1

[(
ΓK1ψ1 + 1

2

)2
+ 1

4

]−1/2

. (19)
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Figure 7: Approximate surface standard deviation ∆ (lines) of

eq. (19) compared to true standard deviation from numerical inte-

gration (symbols) as a function of loading frequency f (log scale), for

three stress values Σ̄ and at moderate resistance Γ = 0.1. Excellent

agreement is seen, even at lower frequencies.

If Γ = 0, then ∆ is independent of angular frequency ω. 651

When Γ > 0, the high frequency limit reads 652

∆ ≈ π|Σ̄|
Γ

(8σε,1K1ω)−1/2. (20)

Figure 7 shows ∆ as a function of frequency for three 653

mean stresses compared with the true standard deviation 654√
Var ε(1, t) from a sample of numerical integrations of 655

the full system, where Γ = 0.1. This value of Γ barely 656

affects the static consolidation rate (see fig. 3), but does 657

have a consolidated thickness close to that of the statically- 658

loaded equivalent (see fig. 5) which lends accuracy to the 659

approximation in eq. (19). 660

Each load cycle propagates as a compression wave through661

the cartilage. The n = 1 mode in eq. (17) has largest am- 662

plitude and therefore will dominate the propagation speed 663

and the depth of the oscillating region; hence there is a 664

wavespeed v = ω/ψ1 and a depth scale d ∼ 1/ψ1. As f 665

(and so ω) increases, we see waves of decreasing magnitude 666

∆ ∼ ω−1/2, with increasing propagation speed v ∼ ω1/2
667

and decreasing propagation depth d ∼ ω−1/2 over the 668

propagation time τ ∼ ω−1. These compression waves can 669

be visualised by plotting contours of constant ε(z, t), as 670

shown in fig. 8 for three different frequencies. The in- 671

crease in propagation speed v manifests as shallower con- 672
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Figure 8: Contours of the local strain ε(z, t) over non-dimensional

time t within the superficial zone 0.8 < z < 1 for three frequen-

cies f , with mean stress |Σ̄| = 15 and resistance Γ = 0.1. Timespan

corresponds to one, two and four complete cycles for the frequen-

cies from left to right. Contour levels are identical in each. Shal-

lower lines (indicated) demonstrate faster compression waves, and

shallower penetration of looping contours shows lessening depth of

variation.

tour gradients, and the decrease in propagation depth d673

and magnitude ∆ is seen in the shallower penetration of674

‘looping’ contours.675

The above analysis also yields the variation in fluid676

pressure. Using eq. (13) and approximating constants by677

their values at z = 1 as before, we find that678

p(z, t) =

∞∑
n=1

Σ̂ne
inωt

[
e(z−1)ψn+i(z−1)ψn

1 + ΓK1(1 + i)ψn
− 1

]
+ c.c.,

which gives the equivalent approximation to eq. (19) as679

√
〈p(1, t)2〉 ≈ π|Σ̄|√

2

[(
1 +

1

ΓK1ψ1

)2

+ 1

]−1/2

.

When Γ = 0, this vanishes because a free-flowing bound-680

ary does not sustain any pressure. However, when Γ > 0681

this approaches the constant π|Σ̄|/2 in the high-frequency682

limit.683

4.3. Equivalent stress684

The solution above has captured the variations in os-685

cillation amplitude, but it does not account for the change686

with frequency of the long-term average consolidated thick- 687

ness h̄ = limt′→∞ f
∫ t′+1/f

t′
h(t) dt, clearly visible in fig. 4. 688

At high frequency (and hence low ∆) h̄ is close to that seen 689

under the equivalent static stress, but lower frequencies de- 690

viate from this and consolidate to a lesser degree. We can 691

find a simple estimate of this effect, at least within the 692

superficial zone, by employing an extra term in the stress 693

expansion. 694

As before, suppose that σε, K and their ε-derivatives 695

can be approximated in the superficial zone by their values 696

at z = 1. Writing eq. (13) to the next order in δ and taking 697

the cycle mean implies 698

Σ̄ ≈ −〈p〉+ σ1 + 1
2 〈δ

2〉σεε,1,

where we have used the second derivative σεε,1 = σεε|z=1. 699

Requiring zero mean fluid flow at large t in tandem with 700

the z = 1 boundary condition implies that, under our ap- 701

proximations, 〈p〉 = 0. If we then use eq. (19) to estimate 702

〈δ2〉 ≈ ∆2, we get 703

Σ̄ = σ1 + 1
2∆2σεε,1. (21)

By substituting for the definitions of σεε,1 and ∆, this 704

could be numerically solved for a more accurate ε̄ than the 705

first-order approximation Σ̄ = σ1 we used before. The new 706

strain will be smaller than the first-order approximation 707

owing to the term in ∆2. Alternatively, we can use this 708

to define an equivalent stress Σeq: the static stress which 709

would induce the same mean superficial strain ε̄ as that of 710

oscillatory consolidation of a specified frequency and mean 711

stress Σ̄. Static consolidation obeys Σeq = σ1 as t → ∞, 712

so eq. (21) gives 713

Σeq = Σ̄− 1
2∆2σεε,1.

Note that σεε,1 < 0, so |Σeq| < |Σ̄|, and as f →∞ we have 714

that ∆→ 0 by eq. (20), so Σeq → Σ̄. 715

5. Discussion 716

Our results have important implications for the biome- 717

chanics of osteoarthritis development. In the introduction, 718
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we discussed how chronic abnormal loading through be-719

haviour or joint mechanics is a risk factor for OA. We will720

now explain how our results corroborate these risk factors721

and explain the onset of mechanically-induced OA.722

A likely early stage in many forms of OA is when chon-723

drocyte apoptosis overtakes chondrocyte proliferation. Two724

types of mechanical overload are known to cause apopto-725

sis, namely excessive strain ε and excessive rate-of-strain726

∂ε/∂t (Kurz et al., 2005), though more may exist. Assum-727

ing the transitory consolidation period has passed, these728

can be expressed in terms of the deep and superficial zones’729

mean strains ε̄deep and ε̄sup, the superficial zone strain730

variation ∆ and the loading frequency f . The first over-731

load, excessive compressive strain, corresponds to |ε̄deep|732

in the deep zone and |ε̄sup| + ∆ in the superficial zone.733

The second overload, excessive rate-of-strain ∂ε/∂t, will734

only occur in the superficial zone, where it corresponds to735

the product f∆. (If it were to occur in the deep zone, it736

would be the result of a traumatic instantaneous overload.)737

Considering how these change in different scenarios will in-738

dicate whether we expect to see mechanically-induced OA,739

and why.740

Most striking are the consequences of a partial or total741

meniscectomy in the knee, known to be a high risk factor742

for OA (Papalia et al., 2011). Removal of the meniscus has743

two key effects: it increases the magnitude of the stress on744

the central cartilage region by decreasing the contact area,745

and it decreases the resistance to fluid efflux at the contact746

interface. In terms of our model parameters, |Σ̄| rises and747

Γ falls. This causes considerable growth of the oscillation748

variance ∆ in eq. (20), as well as the more obvious rise in749

the mean strain magnitudes |ε̄deep| and |ε̄sup| through the750

rise in |Σ̄|. Therefore, all the key overload gauges—|ε̄deep|,751

|ε̄sup| + ∆ and f∆—will rise, causing increased apopto-752

sis. A vicious cycle begins: a reduced cell density implies753

slower synthesis of aggrecan, which compromises the me-754

chanical structure as the aggrecan content falls, leading to755

even greater overload and more apoptosis. As this cycle756

repeats unchecked, the tissue eventually degrades beyond 757

useful function. 758

Even without as extreme a change as a meniscectomy, 759

overloading can be induced merely by ligament injury or 760

misalignment of the knee. In this case, though the flow re- 761

sistance remains the same, the load distribution is altered 762

and one side of the joint is subjected to a higher stress 763

than is normal. Therefore, as for the meniscectomy, the 764

stress magnitude |Σ̄| rises with potentially damaging re- 765

sults if the ligament weakness or joint misalignment is not 766

corrected. 767

There is further potential for damage beyond over- 768

straining. We saw that a decrease in the boundary re- 769

sistance Γ will decrease the long-term consolidation time; 770

in other words, the flux of fluid exiting the cartilage will 771

start greater and decay faster than it did originally. This 772

means that the fluid available for mixed mode lubrication 773

between the joint faces will decrease quicker, increasing 774

the duration of cartilage-on-cartilage contact and conse- 775

quently degrading the superficial zone. The associated 776

fibrillation of the collagen matrix in the superficial zone 777

is another hallmark of early OA (Pritzker et al., 2006), 778

potentially causing with a further fall in Γ because of the 779

change in surface collagen geometry and density. Combin- 780

ing the consolidation time (section 3) with the equivalent 781

static stress (section 4.3) provides a gauge of how quickly 782

this high-friction regime will develop for different patterns 783

of activity. 784

In fact, the equivalent stress gives us another way to 785

classify activities by their potential for damage. It is possi- 786

ble that chondrocytes do not respond immediately to high 787

strain, provided it is not extreme, but rather are only sen- 788

sitive to the average strain over many cycles (Chen et al., 789

2003). The equivalent stress provides a means to quickly 790

classify which patterns of daily activity are likely to be 791

dangerous in this way and which are not. In particular, 792

by this measure, low-frequency activities will be less de- 793

structive than high-frequency activities of the same aver- 794
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age stress.795

To model the maintenance or loss of cartilage integrity796

over the course of years of activity, we must be able to797

efficiently describe the consequences of any short- or long-798

term change in the biomechanical parameters. The deriva-799

tions we have presented here provide exactly this. In the800

future, we hope to couple such a biomechanical model with801

lifestyle and genetic data to enable effective intervention802

through early prediction of osteoarthritis.803
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Appendix: Strain equation806

To derive the dynamics of the material response to807

stress, we follow Gibson et al. (1967, 1981) and McNabb808

(1960). Let ζ be the Eulerian (‘laboratory frame’) posi-809

tion coordinate, with the bone surface at ζ = 0 and the810

cartilage extending up to ζ = h(t) as the stresses and de-811

formations vary over time t. Now, let z be the Lagrangian812

(‘cartilage frame’) coordinate, where the cartilage always813

extends between z = 0 and z = H. We can regard one of814

these coordinate systems as a function of the other; thus,815

at some time t, a slice of cartilage at z will be at a po-816

sition ζ(z, t) in the laboratory frame. In particular, the817

total consolidated depth is h(t) = ζ(H, t), and the steady818

unloaded configuration is ζ(z, 0) = z.819

Let n(z, t) be the porosity field, i.e. the proportion of820

liquid to solid phase. Consider a small material element821

between z and z + δz at t = 0. The solid phase has mass822

ρ[1 − n(z, 0)]δz, where ρ is the solid phase density. At823

some future time t, the element lies between ζ(z, t) and824

ζ(z+ δz, t) with new thickness δζ = ζ(z+ δz, t)− ζ(z, t) =825

(∂ζ/∂z)δz, and has solid phase mass ρ[1−n(z, t)]δζ by in-826

compressibility. Conservation of solid mass therefore reads827

1− n(z, 0) = [1− n(z, t)]
∂ζ

∂z
. (A.1)

Let the velocities of the solid and fluid phases be vs and 828

vf , respectively. Fluid mass balance within a Lagrangian 829

unit volume plus fluid incompressibility implies 830

∂q

∂z
+
∂

∂t

(
n
∂ζ

∂z

)
= 0, (A.2)

where we define the specific discharge q = n(vf − vs). 831

The net flux q is taken to obey Darcy’s law, wherein the 832

pressure gradient must be referred to the Eulerian frame, 833

not the Lagrangian. Thus q obeys 834

q = −k∂p
∂ζ
,

which implies 835

q
∂ζ

∂z
= −k∂p

∂z

after changing variable. Substituting this into the fluid 836

mass balance eq. (A.2) gives 837

∂

∂z

(
−k∂p

∂z

/∂ζ
∂z

)
+
∂

∂t

(
n
∂ζ

∂z

)
= 0. (A.3)

At this stage we depart from Gibson et al. (1967, 1981) 838

and replace the porosity n with volume strain ε to obtain a 839

more ‘traditional’ poroelasticity equation (McNabb, 1960; 840

Verruijt, 1995). Let 841

ε =
δζ − δz
δz

=
∂ζ

∂z
− 1 =

1− n(z, 0)

1− n
− 1,

where the final equality is implied by solid mass balance 842

eq. (A.1). Then the porosity n reads 843

n = 1− 1− n(z, 0)

1 + ε
=
ε+ n(z, 0)

1 + ε
.

Substituting this into eq. (A.3) gives the final equation 844

∂ε

∂t
=

∂

∂z

(
k

1 + ε

∂p

∂z

)
as quoted by McNabb (1960). Note that the initial poros- 845

ity n(z, 0) is now rendered entirely implicit, and would only 846

be required to compute the fluid discharge velocity vf −vs 847

as opposed to the flux q. Note also that this is identical 848

to what would be obtained through an infinitesimal strain 849

theory approach, except that the permeability k has been 850

adjusted to an effective permeability K = k/(1 + ε) ac- 851

counting for the volume change. 852
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