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Abstract

In this paper, we present a new framework for analyzing
and segmenting point-sampled 3D objects. Our method first
computes for each surface point the surface curvature dis-
tribution by applying the Principal Component Analysis on
local neighborhoods with different sizes. Then we model in
the four dimensional space the joint distribution of surface
curvature and position features as a mixture of Gaussians
using the Expectation Maximization algorithm. Central to
our method is the extension of the scale-space theory from
the 2D domain into the three-dimensional space to allow
feature analysis and classification at different scales.

Our algorithm operates directly on points requiring no
vertex connectivity information. We demonstrate and dis-
cuss the performance of our framework on a collection of
point sampled 3D objects.

Keywords: Scale-space, 3D object segmentation,
Expectation-Maximization algorithm.

1 Introduction

Recent developments in modelling and digitizing tech-
niques supported by the fast increase in the performance
of available graphics hardware, have resulted in an increas-
ing accumulation of 3D models and scenes. Moreover, the
World Wide Web is enabling access to large databases of
3D data providing a mechanism for their wide-spread dis-
tribution. This has led to an increasing need for the devel-
opment of efficient techniques for analyzing, categorization
and recognition of 3D objects in large data sets. Unfortu-
nately, objects available on the web have been designed for
visualization since they contain only geometric and appear-
ance attributes and usually lack semantic information that
would facilitate their automatic analysis.

Unlike 2D images, analyzing 3D free-form surfaces is

a much more complex task due to the shape and topology
complexity of 3D surfaces. In general, there is no simple
representation such as a matrix for 2D images that can be
used to analyze 3D surfaces. Issues such as surface sam-
pling resolution, occlusion and high dimension of the pose
space further complicate the problem. In this context, fea-
tures are intrinsic properties of the 3D shape which may
encompass local geometry and topology related to design
operations.

In this paper we investigate the extension of the
scale-space theory [1, 2] combined with the Expectation-
Maximization (EM) algorithm to the task of analyzing and
segmenting point sampled 3D objects. We focus on some of
most important features for 3D surfaces, which are patches
that have similar geometric properties such as curvature dis-
tribution and point positions. The main advantage of our
method is its simplicity and flexibility allowing the incor-
poration of different surface information such as curvature,
color and texture properties. The output of our system can
serve as input for many processing applications including
3D reconstruction from scanned data, 3D object matching
or 3D object retrieval from large 3D databases.

1.1 Previous work

Our method combines and extends existing techniques
from different research fields. In particular, we integrate
recent results from image processing, discrete geometric
modeling and scale-space theory.

Line features received a lot of attention from many re-
searchers. Hubeli and Gross[3] introduced a multiresolu-
tion framework for line-type feature extraction on triangle
meshes. Based on various classification operators they iden-
tify a set of feature edges and use thinning to extract lines
from the set of selected edges. The multiresolution pro-
cessing is based on the progressive mesh algorithm which
is restricted to well generated triangle soup models.

Proceedings of the 2004 International Conference on Cyberworlds (CW’04) 
0-7695-2140-1/04 $ 20.00 IEEE 



Polygon Mesh

Point cloud
extract

point features
describe

patch features4D
point features

feature
clusters

group
point features

Figure 1. Feature extraction pipeline.

Gumhold et al.[4] presented a line feature extraction
method using covariance analysis for classification. The
line features are represented by a minimum spanning graph.
This schema has been later extended by Pauly et al. in [5]
using a multi-scale classification. The extracted line fea-
tures are then modelled using snakes to gain more control
on the feature smoothness. Geometric snakes have also
been used in [6] to extract feature lines in triangle meshes
based on normal variation of adjacent triangles. A user in-
tervention is required in the system to specify an initial fea-
ture curve.

Bespalov et. al. [7] uses hierarchical decomposition of
a 3D model into features based on its spectral properties
[8]. Then the resulting hierarchical representation is used
for topological matching of 3D objects.

Feature extraction has been of interest in many appli-
cation fields including geometry simplification [9], non-
photorealistic rendering [5], topological matching of 3D ob-
jects [10, 7], surface extraction from volumetric data [11],
etc.

1.2 System overview

Figure 1 gives an overview of our feature extraction
pipeline. The input of our system is a set of point cloud
P = {pi ∈ �3} approximating some 3D object M . In
case a polygon soup model is given as input, we proceed by
sampling the object to generate the point cloud P . The algo-
rithm then starts by extracting for each point pi ∈ P a fea-
ture vector encoding the point position and the surface vari-
ation at that point (section 2). This is done by extending the
scale-space representation, extensively used in the context
of feature detection for images, to point sampled surfaces.
Then we group surface points into regions by modeling the
distribution of point features with a mixture of Gaussians
using Expectation-Maximization (EM) (section 3). The fi-

nal step is to describe the distribution of the surface prop-
erties of each region for use in other applications such as
querying 3D objects (section 4).

2 Feature extraction

The goal of the feature extraction phase is to compute
for each point pi ∈ P a feature vector encoding the surface
properties at that point. In particular, we focus on surface
variation and position features. Our feature vector extrac-
tion algorithm is based on the scale-space framework de-
veloped for segmenting 2D images [1].

2.1 Scale space framework for 3D models

Scale-space representation have been studied in the con-
text of feature detection for 2D images [1]. The basic idea is
to model an image as a convolution with Gaussian kernels
of varying width called scale. Given a scale-space repre-
sentation L(x, t) of an image x we can then apply a classi-
fication operator to measure the desired properties based on
the color, texture and pixel position.

To transfer these concepts to 3D surfaces, we need to
specify a suitable classification operator. Many operators
have been proposed in the literature. Guskov et. al.[12]
uses the Second Order Difference (SOD) and the Extended
Second Order Differences (SSOD) operators, constructed
respectively from the normals of two adjacent triangles and
from the average normals computed from the triangles of
one-ring of an edge. Since all computations are carried out
on a small region of support, these two operators perform
poorly on highly detailed or noisy surfaces. Hubeli et. al.[3]
introduced the Best Fit Polynomial (BFP) and the Angle
Between Best Fit Polynomial (ABBFP) operators. These
two operators have the advantage of being flexible because
the support can be adapted globally and locally and thus,
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are less influenced by noise. However, the main drawback
is the computational overhead, due to the polynomial fitting,
which becomes expensive for large models.

Various researchers have used surface curvature varia-
tion to measure the confidence that pi belongs to a feature
[5]. In our work we combine into one descriptor three fea-
tures: surface variation (curvature), color and position fea-
tures. These features are estimated at each point pi and at
different scales k.

To make the notion of scale concrete for irregularly sam-
pled 3D objects, we define the scale to be the size k of the
local neighborhood of a sample point pi, hence, the features
are computed on the k-nearest neighbors.

2.2 Surface curvature features

3D objects are different from 2D images. 2D images
are sampled on regular grids and are completely character-
ized by the color and texture values at each pixel. In the
other hand, one important property of 3D surfaces is the
surface curvature at each sample point. It can be completely
described by the distribution of the normals over the local
neighborhood. The size of this neighborhood can be used
as a discrete scale parameter.

The first step toward estimating the surface curvature is
to compute a tangent plane at each point pi of the 3D sur-
face. The tangent plane Tp(pi) associated with the sur-
face point pi is represented as a point ci called center,
together with a unit normal vector n̂i. The center and
normal for Tp(pi) are determined by gathering together
the k points of P , the sample surface points, nearest to
pi (the k-neighborhood of pi). This set is denoted by
Nbhdk(pi). The center and unit normal vector are com-
puted so that the plane Tp(pi) is the least squares best fit-
ting plane to the Nbhdk(pi). That is the center ci is the
centroid of Nbhdk(pi), and the normal n̂i is determined
using the principal component analysis (PCA). First the co-
variance matrix CV (pi) of Nbhdk(pi) is formed. Then, if
λ1 ≤ λ2 ≤ λ3 are the eigenvalues of CV (pi) associated
with unit eigenvectors v1, v2, v3, respectively, the normal
vector n̂i is chosen to be v1 or −v1.

Appending directly the normal vector v1 to the feature
vector of the sample point pi will increase the dimension of
the feature space. We rather deal with the eigenvalue λ1 as-
sociated to the normal vector. We adopt the same metric as
[9] and [5] where the surface curvature, called also variation
is defined as:

ωk(pi) =
λ1

λ1 + λ2 + λ3
(1)

Where k is the appropriate scale.

2.2.1 Scale selection

Finding the right scale parameter is often difficult and this
is why methods for automatic scale selection have been of
interest in many fields. Carson et. al.[1] make use of a local
image texture property known as polarity. It is computed at
a given pixel with respect to the dominant orientation in the
neighborhood of that pixel. This principle can be extended
to the 3D domain by using the surface variation property
which is computed at a given point with respect to the dom-
inant eigenvectors, and at different scales.

Pauly et. al.[5] avoids the optimal scale selection prob-
lem by using the feature persistency over scale. In this case
only the critical neighborhood size is required to be esti-
mated to avoid violating the prerequisite that all points of
the neighborhood belong to the same connected region. In
our case, we start by setting the maximum scale value kmax.
Then, for each point pi we evaluate the surface curvatures
at different scales ranging from k = 2 to k = kmax. Then
we select the scale koptimal which exhibits the strongest lo-
cal maximum in the surface curvature across the scale axis:
koptimal = argmaxk(ωk).

2.3 Combining surface curvature and position
features

The final descriptor for a given point consists of four val-
ues: one for the surface curvature and three for the point
position. The surface variation is the ωk(pi) computed at
the appropriate scale k. Then we append the (x, y, z) posi-
tion of the point to the feature vector. Including the position
generally decreases over-segmentation and avoids grouping
separated patches having the same geometric properties.

Finally, note that this formulation of the feature de-
scriptor is flexible allowing the appending of other proper-
ties. Incorporating features such as point color components
(L ∗ a ∗ b) and texture properties is straightforward and can
lead to better segmentation and analyzing of the 3D object.

3 Surface point grouping

The next step in our process is to group the surface points
into meaningful clusters. Recall that the output of previ-
ous steps is a set of four dimensional feature vectors which
can be considered as points in the four dimensional feature
space. In order to divide these points into groups, we make
use of the Expectation-Maximization (EM) algorithm [13]
to determine the maximum likelihood parameters of a mix-
ture of Gaussians in the feature space.

The EM algorithm is used for finding maximum likeli-
hood parameter estimates when there is missing or incom-
plete data. In our case, the missing data is the Gaussian
cluster to which the points in the 4D feature space belong.
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Assume that we are using K Gaussians in the mixture
model. The form of the probability density is as follows:

f(x|Θ) =
K∑

i=1

αifi(x|θi) (2)

where x is the 4D feature vector, αi are the mixing posi-
tive weights summing to 1, Θ = (α1, . . . , αK , θ1, . . . , θK)
represents the collection of parameters, and fi is a multi-
variate Gaussian density parameterized by θi = (µi,Σi)
with dimension equal four.

The first step in applying the EM algorithm is to initialize
the K mean vector µ1, . . . , µK and the K covariance ma-
trices Σ1, . . . ,ΣK to represent each of the K groups. The
initial covariances are set to the identity matrix. To initial-
ize the means, we partition the object’s bounding box into
N equal boxes, and then we find the average feature vector
on each of the K boxes. The update equations are:

E-step:

αnew
i =

1
N

N∑

j=1

p(i|xj ,Θold) (3)

µnew
i =

∑N
j=1 xjp(i|xj ,Θold)

∑N
j=1 p(i|xj ,Θold)

(4)

Σnew
i =

∑N
j=1 p(i|xj ,Θold)(xj − µnew

i )(xj − µnew
i )T

∑N
j=1 p(i|xj ,Θold)

(5)
where N denotes the number of four dimensional feature

vectors.

M-step:

p(i|xj ,Θ) =
αif(xj |θi)∑K

k=1 αkf(xj |θk)
(6)

Where K denotes the number of clusters. We have thus
far not discussed how to choose the number of mixture com-
ponents K. Many approaches have been proposed in the lit-
erature for an automatic estimation of K [1]. In our current
implementation, the number of clusters is set manually by
the user.

4 Describing the regions

After point grouping, the 3D object is partitioned into K
clusters we call regions. To describe each region character-
istics, we store a simple region descriptor.

The ith region descriptor’s main components are: its
centroid, the mean µi and the covariance matrix Σi of the

Table 1. Timing in seconds for different stages
of the processing pipeline on a 2.0GHz Athlon
with 1.0GByte of main memory. The maxi-
mum scale kmax = 120.

Model Dragon Cow Dino bunny
#vertices 100,250 11,610 23,984 34,823

Extraction 1, 151.3 106.12 250.82 336.11
Grouping 6.36 0.65 1.45 3.92

Description 1.24 0.12 0.32 0.83
Total 1, 158.90 106.89 252.59 340.86

ith Gaussian mixture to which it is classified. In order to
represent the shape distribution of the object’s surface in
the ith region we store also the distance histogram of the
points. This histogram is based on the L2 distance and is
computed in the same manner as described by Osada et. al.
in [14]. Incorporating the shape distribution is important for
tasks such as feature comparing, matching and querying 3D
objects.

Finally, we append to the region descriptor the mean sur-
face curvature in that region.

5 Results and Applications

In this section we present some of the results obtained
by our framework. Experiments were conducted on a col-
lection of 3D objects. We use both well known models such
as the ”Dragon” and models from the public domain such as
the 3DCafe [15] collection and our original data. The com-
puter used is an AMD Athlon(tm) 64, 2.0Ghz with 1.0GB
of RAM and WindowsXP operating system. The system is
implemented using Matlab.

Figure 2 shows some segmentation results on a set
of different 3D objects. Throughout these experiments,
the maximum scale kmax is set to 120. The number
of Gaussians in the mixture K (corresponding to the
number of classes) is set manually. The figure 2 shows
segmentation results for K = 4, 5, 6. From these results,
we can see that our segmentation algorithm performs
well for different classes of objects and is independent
from the surface complexity and topology. The tests
performed on common objects show that our approach is
robust against topological errors on the 3D surface. Our
method recovers faithfully the salient parts of the 3D object.

Performance. Table 1 summarizes the processing time
in seconds of each stage of our algorithm when using six
Gaussian components during the classification. We use the
kd-trees for computing the set of k-nearest neighbors of a
point pi. The table shows clearly that the surface curvature
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(a) (b) (c) (d)

Figure 2. Segmentation results on different point sampled models. Some of the objects have been
tesselated for the visualiztion purpose. (a) input objects. (b) Segmentation results with K = 4, (c)
with K = 5 and (d) with K = 6.
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estimation step is the slowest one. One way to speed it up
is to compute and then store the points connectivity prior to
feature extraction.

Limitations. One limitation of our algorithm is the
automatic selection of the maximum scale kmax. kmax in-
dicates the maximum neighborhood size. Wrong selection
of this value can lead to inconsistencies in the surface ori-
entation. As a result, features can be misclassified. Such
example appears in the dragon tail of figure 2. In our cur-
rent implementation, the maximum scale value is set manu-
ally. An automatic setting should be considered in the future
work.

Another remarkable drawback is that the number of clus-
ters K is set manually, thus preventing a fully automatic
segmentation. This issue has been extensively studied in
the context of image segmentation. However, for 3D ob-
jects, further research must be carried out to overcome this
limitation.

6 Conclusion and future work

We have presented a complete point sampled 3D ob-
ject analysis and segmentation algorithm. Our main con-
tribution is the scale-space classification and the embed-
ding of surface curvature and point position into the four
dimensional feature space. The features are extracted by
clustering the set of 4D features using the Expectation-
Maximization algorithm. And then, each cluster is repre-
sented by its centroid, the associated mean and covariance
matrix and finally, the L2 shape distribution of the cluster.

This representation offers many advantages. First the
method is robust in the presence of noise due to the scale-
space analysis. Second, it allows a hierarchical represen-
tation of a 3D object, as well as the combination of object
features using the set theory operators. Also, it can be use-
ful for many applications such as 3D shape matching and
shape-based 3D reconstruction.

As future work, it is necessary to solve the problem of
automatic maximum scale selection to avoid misclassifica-
tions such as the tail of the dragon model in figure 2. Also,
our framework allows incorporating other object properties.
For instance, many of the 3D models available on the web
relies on using texturing to simulate some effects. Hence,
it is necessary to incorporate in the feature space such
information.

Acknowledgements. The test data of bunny and dragon
models are from the Stanford 3D Scanning Repository. We
would like to aknowledge the Stanford Computer Graphics
Laboratory for making those data available. We would like
also to thank Hugues Hoppe for the cow and mechanical
part models. Finally, we thank the anonymous reviewers

for their valuable comments and suggestions.

References

[1] Chad Carson, Serge Belongie, Hayit Greenspan, and
Jitendra Malik. Blobworld: Image segmentation using
expectation-maximization and its application to image
querying. IEEE Trans. Pattern Anal. Mach. Intell.,
24(8):1026–1038, 2002.

[2] R.Gavilan David, Hiroki Takahashi, and Masayuki
Nakajima. Image categorization using color blobs in
a mobile environment. Computer Graphics Forum,
22(3):427–432, 2003.

[3] Andreas Hubeli and Markus Gross. Multiresolution
feature extraction for unstructured meshes. In Pro-
ceedings of the conference on Visualization ’01, pages
287–294. IEEE Computer Society, 2001.

[4] Stefan Gumhold, Xinlong Wang, and Rob MacLeod.
Feature extraction from point clouds. In Proceedings,
10th International Meshing Roundtable, Sandia Na-
tional Laboratories, pages 293–3050, 2001.

[5] Mark Pauly, Richard Keiser, and Markus Gross.
Multi-scale feature extraction on point-sampled sur-
faces. Computer Graphics Forum, 22(3):281–281,
2003.

[6] Lee Yunjin and Lee Seungyong. Geometric snakes for
triangular meshes. Computer Graphics Forum, 21(3),
2002.

[7] Dmitriy Bespalov, Ali Shokoufandeh, William C.
Regli, and Wei Sun. Scale-space representation of 3d
models and topological matching. In Proceedings of
the eighth ACM symposium on Solid modeling and ap-
plications, pages 208–215. ACM Press, 2003.

[8] Mark Pauly and Markus Gross. Spectral processing of
point-sampled geometry. In Proceedings of the 28th
annual conference on Computer graphics and inter-
active techniques, pages 379–386. ACM Press, 2001.

[9] Mark Pauly, Markus Gross, and Leif P. Kobbelt. Effi-
cient simplification of point-sampled surfaces. In Pro-
ceedings of the conference on Visualization ’02, pages
163–170. IEEE Computer Society, 2002.

[10] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura,
and Tosiyasu L. Kunii. Topology matching for fully
automatic similarity estimation of 3d shapes. In Pro-
ceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 203–212.
ACM Press, 2001.

Proceedings of the 2004 International Conference on Cyberworlds (CW’04) 
0-7695-2140-1/04 $ 20.00 IEEE 



[11] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke,
and Hans-Peter Seidel. Feature sensitive surface ex-
traction from volume data. In Proceedings of the 28th
annual conference on Computer graphics and interac-
tive techniques, pages 57–66. ACM Press, 2001.

[12] Igor Guskov, Wim Sweldens, and Peter Schroder.
Multiresolution signal processing for meshes. In Pro-
ceedings of the 26th annual conference on Computer
graphics and interactive techniques SIGGRAPH’99,
pages 325–334. ACM Press/Addison-Wesley Publish-
ing Co., 1999.

[13] A.P. Dempster, N.M. Laird, and D.B. Rubin. Max-
imum likelihood from incomplete data via the em al-
gorithm. Journal of Royal Statistical Society, 39:1–38,
1977.

[14] Robert Osada, Thomas Funkhouser, Bernard
Chazelle, and David Dobkin. Shape distributions.
ACM Trans. Graph., 21(4):807–832, 2002.

[15] 3Dcafe:. http://www.3dcafe.com.

Proceedings of the 2004 International Conference on Cyberworlds (CW’04) 
0-7695-2140-1/04 $ 20.00 IEEE 


