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Abstract 
Purpose: The aim of this study was to identify contributing factors to 
the incidence of illness for professional team-sport athletes, utilizing 
training load (TL), self-reported illness and wellbeing data. Methods: 
Thirty-two professional rugby league players (26.0 ± 4.8 yr; 99.1 ± 9.6 
kg; 1.84 ± 0.06 m) were recruited from the same club. Players 
participated in prescribed training and responded to a series of 
questionnaires to determine the presence of self-reported illness and 
markers of wellbeing. Internal-TL was determined using the session 
rating of perceived exertion (sRPE) method. These data were collected 
over 29 weeks, across the preparatory and competition macrocycles. 
Results: The predictive models developed recognized increases in 
internal-TL (strain values of >2282 AU, weekly-TL >2786 AU and 
monotony >0.78 AU) to best predict when athletes are at increased risk 
of self-reported illness. In addition, a reduction in overall wellbeing 
(<7.25 AU) in the presence of increased internal-TL as previously 
stated, was highlighted as a contributor to self-reported illness 
occurrence. Conclusions: These results indicate that self-report data 
can be successfully utilized to provide a novel understanding of the 
interactions between competition-associated stressors experienced by 
professional team-sport athletes and their susceptibility to illness. This 
may assist coaching staff to more effectively monitor players during 
the season and to potentially implement preventative measures to 
reduce the likelihood of illnesses occurring.  
 
Keywords: URTI; predictive modelling; rugby league; wellness; sRPE   
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Introduction 
In order to maximize performance and limit any detrimental effects 
associated with excessive exercise stress in team-sport athletes, it is 
pivotal for coaching staff to understand the optimal dose-response 
relationship between exercise training and adaptation.1,2 It is well 
established that frequent high-intensity and high-volume training can 
result in physiological disturbances in an athlete.3,4 These responses 
cause short-term reductions in performance, therefore adequate 
recovery is necessary to elicit the fundamental supercompensation 
response prior to subsequent training bouts.1,5 Importantly, if a period 
of intense training is not well tolerated by an athlete, the incidence of 
illness and injury is likely to be increased.6,7 

More specifically, the occurrence of illnesses is common in high-
level athletes due to the well-established association between large 
increases in training load (TL) and suppressed immune function.8-10 
This can be exacerbated by competition demands such as psychological 
stress, reduced sleep and sub-optimal nutritional intake, which may 
further inhibit an individual’s immune functioning.11 The presence of 
illnesses such as upper respiratory tract infections (URTIs) is of great 
concern for team-sport athletes, given their infectious nature and the 
potential negative influence on performance and wellbeing.12 Thus, 
these athletes should be appropriately monitored to identify periods 
when they are at increased risk of illnesses.10,13,14  

There is limited research describing the influence of factors such 
as training and competition demands on the incidence of illness in 
professional team-sport athletes. Moreover, the research available on 
this topic has predominantly involved collecting biochemical markers 
of endocrine and immune status, which is logistically impractical in 
high performance team-sport environments.16,17 The development of 
more practical and non-invasive methods to assess an athlete’s fatigue-
recovery profile in this context is therefore of great interest.  

Subjective wellbeing questionnaires are recognized for their 
ability to assess fatigue and psychological variables (e.g. mood and 
attitude), and provide information regarding individual responses to 
exercise stress.2,18 While these questionnaires are now widely used by 
strength and conditioning coaches to assess how athletes are coping 
with the stress of training,19  research has not yet assessed their ability 
to predict when athletes are at increased risk of illness susceptibility.   

Therefore, the purpose of this investigation was to ascertain 
whether self-report athlete monitoring tools are able to predict periods 
of increased risk of an illness. It was hypothesized that reductions in 
perceived wellbeing, in concert with heightened internal-TL scores and 
periods of stressful competition, would be probable predictors for the 
incidence of illness in professional team-sport athletes.  

 
Methods 
Subjects  
Thirty-two professional rugby league players (age = 26.0 ± 4.8 years; 
body mass = 99.1 ± 9.6 kg and height = 1.84 ± 0.06 m) were recruited 
from a club competing in the National Rugby League (NRL) 
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competition (n = 18) or the New South Wales (NSW) Cup second-tier 
competition (n = 14). Participants comprised of a range of playing 
positions, including forwards (n = 13), backs (n = 10) and adjustables 
(n = 9) who performed the same training together as a squad. 

 
Design 
A longitudinal research design was conducted, whereby self-reported 
illness, internal-TL for training sessions and match-play, and 
perceptual wellbeing ratings were collected for 29 weeks during the 
2014 Australian Rugby League season. This period included the 
preparatory and competitive macrocycles. These data were used to 
develop predictive models to identify factors contributing to the 
incidence of self-reported illness. Prior to the commencement of the 
study, all players were provided with information detailing the aims 
and requirements of the study and provided informed consent. The 
Institutional Human Ethics Committee approved the research and 
experimental procedures. 

 
Methodology 
Training Requirements 
A periodized game-specific training program was prescribed and 
completed at the discretion of coaching staff. The program varied 
according to the specific objectives for each macrocycle and the 
scheduling of competitive matches. The preparatory period (November 
to February) aimed to apply a demanding training stimulus to develop 
physiological capacities required for match-play. The training program 
progressed from high-volume and low-intensity exercise during the 
preparatory period, to lower-volume and higher-intensity training 
during the competitive period (March to October). During the 
competition period the focus of training was to maintain capacities 
developed during preparation, whilst incorporating game-specific skills 
and post-match recovery. Table 1 provides a brief overview of the 
yearly training plan prescribed for professional rugby league players.  
 

***INSERT TABLE 1 NEAR HERE*** 
 
Quantification of Training Loads 
The intensity of individual training sessions was estimated using the 
Category Ratio-10 rating of perceived exertion (RPE) scale.20 This 
scale requires athletes to rate the global intensity of the entire training 
session on a scale from 0-10, where a score of 0 denotes complete rest 
and 10 indicates maximal effort.20 Athletes provided RPE scores 
individually to a member of the research team at 30 minutes following 
each training session to eliminate any affect that the final phase of 
training may have on scores.21 Internal-TL was subsequently calculated 
by multiplying the RPE value for each player by the duration of the 
training session (minutes), to provide an index of TL in arbitrary units. 
Training monotony and strain values were also calculated by dividing 
the weekly internal-TL by the standard deviation of the individual’s 
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weekly-TL (monotony), and then multiplying the athlete’s weekly-TL 
and monotony values (strain).22  

 
Self-Reported Information 
A multi-component wellness questionnaire (Figure 1) was 
implemented as part of the club’s monitoring practices, adapted from 
those used in previous research.18,23 The two-component questionnaire 
was completed by athletes on a weekly basis, prior to the first training 
day of the week. It was completed at the same time of day in order to 
minimize the potential for diurnal fluctuations in mood state and 
perceived wellness. The self-reported presence of an illness (Part A) 
was recorded, whereby athletes’ documented whether they were 
suffering from pre-determined symptoms common to that of URTI.10 
Part B evaluated the athlete’s perceived wellness and severity of 
muscle soreness using a 10-point Likert scale ranging from poor to 
excellent. Participants were asked to firstly rate their nutritional intake, 
based on how closely they had adhered to their individual dietary 
guidelines provided by the team’s dietitian. Secondly, they rated their 
sleep quality and quantity to reflect how well refreshed athletes felt 
upon waking. Finally, a holistic “how you feel” score was recorded, 
indicative of an athletes’ overall physical and psychological state, 
accounting for all aspects of perceptual wellbeing such as fatigue, 
mood, stress levels and soreness. In addition, six specific muscle sites 
were assessed for soreness (lower back, upper body, quadriceps, 
hamstrings, calves and groin), as they were identified by coaching staff 
to be of interest for their weekly player assessment.  
 

***INSERT FIGURE 1 NEAR HERE*** 
 
Statistical Analyses  
Descriptive statistics (mean ± SD) for weekly internal-TL and 
perceptual wellbeing ratings were calculated. Pearson’s Chi-Square test 
was conducted to assess differences in the count of illness instances for 
each macrocycle. Prior to further analysis, internal-TL and perceptual 
wellness ratings were verified for the assumptions of homogeneity of 
variance. Comparisons of internal-TL and perceptual wellness ratings 
between each macrocycle were analysed using repeated measures 
analysis of variance (ANOVA), with a statistical significance level of 
p < 0.05. Following, a Bonferroni post hoc analysis was conducted. 
This analysis was performed using IBM Statistical Package for the 
Social Sciences (SPSS) (v22.0, IBM Corporation, Somers, New York, 
USA).  

Beyond this, predictive models were developed to identify factors 
most likely to contribute to increased incidence of illness, including a 
decision tree, random forest and boosting models. These were 
developed using a range of variables from the dataset including training 
macrocycle, internal-TL values, wellbeing, muscle soreness ratings and 
the age of the athlete. In order to eliminate the variation of individual 
patterns in measures, raw data were converted to a Z-score. This 
represents the number of standard deviations the raw score is 
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distributed from the mean of that particular athlete’s previous data 
points. Additionally, to reflect a broader understanding of the overall 
muscle soreness experienced and wellbeing of the athlete, a mean value 
for each category was included. The models were further evaluated for 
their predictive abilities using an error matrix, which compares 
predictions with actual observations made. An error rate was also 
calculated as the proportion of incorrectly predicted outcomes by the 
total number of observations. Lastly, a receiver operating characteristic 
chart was included to provide information regarding the true positive 
rate against the false positive rate. The area under the curve for this 
chart was also examined, with a value of 1 indicating a 100% hit rate of 
predicting the target variable (illness). These analyses were completed 
using R  
(v R-3.1.3).24 An additional graphical user interface package was used; 
Rattle (v3.4.2).25 Both R and Rattle are open source software programs.  
 
Results 
Descriptive Statistics  
Self-reported illness information, internal-TL, perceptual wellbeing and 
muscle soreness information for each macrocycle is reported in Table 
2. Repeated measures ANOVA identified variation in internal-TL 
measures between macrocycles for weekly-TL (F3,270 = 152.58; p < 
0.001;  
η2 = 0.63), monotony (F3,270 = 153.29; p < 0.001; η2 = 0.63) and strain 
(F3,270 = 185.96; p < 0.001; η2 = 0.67). Post hoc analysis confirmed the 
largest difference in internal-TL measures were between specific 
preparation and competition phases for weekly-TL, monotony and 
strain, corresponding to a mean decrease of 2764 AU, 0.68 AU and 
5191 AU, respectively  
(p < 0.001). Differences in weekly illness incidence between 
macrocycles were not significant, similarly observed for weekly 
wellbeing and muscle soreness ratings. 

 
***INSERT TABLE 2 NEAR HERE*** 

 
Illness Prediction Models  
Decision Tree Model 
A decision tree model (Figure 2) was developed using a total of 556 
observations from the dataset. The tree represents a series of decisions 
referred to as ‘nodes’ that are interpreted in a top-down manner. Each 
node is numbered for reference purposes (top left corner). The 
contributing variable is listed on the first line in each node, and the 
value of change associated with illness presented on the second line. 
The third line is the cross-validated error of the node, representing the 
associated change in the accuracy of the model as new levels are added 
to the tree. The model was appropriately pruned to reduce the 
complexity of the model and to improve the accuracy. To explain the 
interpretation of this model, root node 1 identified reductions below -
2.05 SD of the ‘how you feel’ rating was identified as the first predictor 
contributing to the incidence of illness. If a ‘yes’ decision was made, 
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the following node (node 2) recognized reductions in wellbeing 
average below 7.25 AU as a contributor. From here, the tree divided 
into two branches, whereby if a ‘yes’ decision was made, the following 
node (node 3) identified reductions in measures including food Z-score, 
how you feel Z-score and reductions in muscle soreness average, were 
all recognized as contributors. However, if a ‘no’ decision was made at 
node 2, weekly-TL in excess of 2765 AU was identified as a predictor 
of illness. Following this decision, node 6 showed increased strain 
values and monotony values to contribute to the incidence of illness. 
Overall, this model possessed an error of 5.9% determined by the error 
matrix, and using the ROC curve an area under the curve was 
calculated at 46%.  
 

***INSERT FIGURE 2 NEAR HERE*** 
 

Random Forest Model 
The random forest algorithm builds a single model based the combined 
information from a large number of decision trees. Predicting variables 
are ranked according to the number of times they are presented in the 
series of decision tree models developed. The random forest model is 
then further evaluated for its prediction accuracy (mean decrease 
accuracy) and the nodes impurity or splitting criterion (mean decrease 
Gini). This model (Figure 3) was developed using 556 observations, 
and included 500 trees with 3 variables tested at each split. This model 
identified internal-TL measures strain, weekly-TL and monotony as the 
three greatest contributors to the incidence of illness, followed by self-
reported ratings for sleep and how you feel. This model possessed an 
overall error rate of 4.6% and an ROC of 74%.  

 
***INSERT FIGURE 3 NEAR HERE*** 

 
Boosting Model 
A boosting model was also developed (Figure 4), which provides 
information about contributing variables by taking into account the 
accuracy and inaccuracy of observations.25 The boosting algorithm 
associates a weighting score with observations in the dataset, thus the 
final model is constructed from the series of models output of weighted 
scores of variables, ranked in order of importance. This model 
possessed an overall error of 5.2% and an ROC of 80%.  

 
***INSERT FIGURE 4 NEAR HERE*** 

 
Discussion 
The main findings of this investigation demonstrate that by analyzing 
self-report measures using statistical modelling techniques, it is 
possible to predict periods of increased illness risk for team-sport 
athletes. To our best knowledge, the present study is the first to utilize 
such predictive modelling techniques based on self-reported 
information in team-sport athletic cohorts. The results highlighted the 
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influence of increasing training demands and fluctuations in athlete 
wellbeing between macrocycles as contributors to illness.  

The training and match-play requirements for team-sports 
provide an environment that is likely to increase an athlete’s exposure 
to pathogens at periods of heightened susceptibility to illness. It was 
not surprising to observe a total of 45 self-reported illness incidences 
during the data collection period, with the most commonly reported 
symptoms being runny nose, coughing and sore throat from the pre-
determined symptoms. These symptoms may result in negative effects 
on performance and wellbeing as noted in previous research,9 and may 
be indicative of excessive training stress. In the current study, ill 
athletes were often prevented from usual training and in the worst-case 
scenario prevented an affected athlete from match-play, which may 
potentially impact team performance. 

Internal-TL values varied significantly according to macrocycle, 
reflecting the application of periodization principles. Mean monotony 
and strain values were greatest during the pre-season period 
particularly during specific preparation, and were comparable with 
values previously reported for professional rugby league athletes1 and 
Australian football athletes.7 The heightened TL during this period is 
necessary to maximise physical capacities required for competition. In 
contrast, during competition a significant reduction in TL was observed 
in order to optimize post-match recovery, where emphasis is on quality 
of training and peak match performance.5 

The predictive models employed identified strain values >2282 
AU as a significant contributor to illness. Previous research has 
recognized that 89% of illnesses could be explained by a preceding 
spike in strain of athletes from a wide range of competition levels.22 
More specifically, increased strain values has been identified to be 
associated with reduced salivary immunoglobulin A concentration and 
a “worse than normal” stress response on the Daily Analysis of Life 
Demands questionnaire.26 The calculation of strain values for team-
sport athletes is therefore useful as it reflects periods of intensified 
training with minimal recovery between sessions. Additionally, 
weekly-TL values >2786 AU were recognized as a contributing 
variable to self-reported illness incidence, ranking as the second 
greatest contributor in the random forest model. Monotony values 
>0.78 AU was noted in the decision tree model as a contributor to 
illness incidence, supporting previous research that identified a 10% 
increase in weekly-TL (to ~3,400 AU) and monotony (to ~1.19 AU) 
could explain a 42% and 33% increase in illness incidence, 
respectively.7  

Collectively, the data presented in the current study provide 
evidence for the association between heightened internal-TL and the 
presence of self-reported illness. Whilst these data support previous 
research of the increased risk of illness associated with heightened 
training,22,27,28 the results of the present study are specific to the athletic 
cohort recruited. Further, it must be noted that these findings are 
applicable to other team-sport athletes, however the training load 
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values will vary depending on the typical training undergone by the 
athletes.  

Wellbeing measures were recognized as predictors of illness in 
the series of predictive models produced, in particular reductions in 
athletes’ average wellbeing and muscle soreness score. Variations in 
fatigue and psychological variables (e.g. mood and attitude) have been 
identified to be sensitive to training overload and cytokine markers, 
both known to have profound effects on immune functioning.29 These 
data provide evidence for the use of subjective wellbeing 
questionnaires, given their ability to assess individual responses to 
exercise stress and recovery states,2,18 thus, may be indicative of 
athletes’ susceptibility to illness risk. Previous research has recognised 
that 80% of staff in high-performance sport have developed their own 
questionnaire, as they are seen as practical and effective for wellbeing 
assessment.19 

While the current study provides important information regarding 
the use of self-report measures to predict illness, some limitations must 
be acknowledged. The present study did not assess pathological 
markers of illnesses, and solely relied on athletes’ perceived symptoms. 
It is not often feasible to collect such markers of illness in the team-
sport environment, given the logistical difficulties and associated costs, 
and therefore such analyses are not a common practice for similar 
athlete cohorts.19 Further, it must be noted that an increase in support in 
the literature proposing that self-report measures may be more sensitive 
and reliable than traditional physiological, biochemical and 
performance measures is evident.14,30,31  

Furthermore, the use self-report wellness information may be 
deemed a limitation as the reliability may be implicated if athletes 
report dishonest values. All athletes’ were familiar with the 
questionnaire, as it had been used for numerous seasons. They were 
educated of the tasks and the importance of its use, therefore were 
encouraged to report honest values. Although athletes were required to 
report a perceived illness and the symptoms associated, no pathological 
infectious cause may be evident. Previous research has recognized 
athletes to be unable to distinguish between both infectious and non-
infectious respiratory symptoms,32 therefore for the present study this 
self-report method may be deemed as a limitation.   

In conclusion, this study recognized the ability of self-report 
monitoring information to identify potentially contributing factors to 
the presence of self-reported illness for professional team-sport 
athletes. This was achieved by the development of a series of predictive 
models, using novel statistical modelling techniques. These findings 
emphasize the importance of multimodal athlete monitoring systems, 
incorporating the quantification of internal-TL and wellbeing responses 
given the predictive capacities these methods possess for the incidence 
of illness.  

 
Practical Applications  
Based on the current findings, it is evident that the internal-TL of team 
sport athletes should be monitored during all training sessions and 
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matches, given that intensified internal-TL measures were found to 
predict self-reported illness. An important factor to consider is that 
monitoring markers of TL and athlete wellness may only be useful if 
they can be quickly analysed to highlight players who display early 
indications of an illness. If these tools are to be used successfully to 
identify an increased risk of developing an illness, they must be able to 
identify such players before they undergo additional exercise-related 
stress. A particular emphasis on this in the applied team-sport 
environment is prevalent, as informing best practice is key, possibly 
achieved using a predictive approach as opposed to retrospectively. 
Future research should also examine the integration of other 
monitoring methods (e.g. global positioning systems and accelerometer 
data) with self-report measures to highlight periods when athletes may 
be at increased risk of illness. This could provide a comprehensive 
monitoring strategy to identify players who may need to have training 
altered to limit the chance of developing an illness, or to promote 
recovery an already present illness. 
 
Conclusion 
The results of the present study provide important information 
regarding how contributing factors to illness can be monitored for 
team-sport athletes. More specifically, weekly-TL >2765 AU, 
monotony >0.78 AU and strain >2282 AU were strong predictors of 
the incidence of illnesses for the cohort of athletes. As such, coaching 
staff should aim to identify players who exhibit TL-related variables 
above these thresholds, as these individuals may be at increased risk of 
developing an illness. In addition, our data demonstrate that perceptual 
ratings of overall wellbeing and muscle soreness were also related to 
the incidence of self-reported illness. While wellbeing questionnaires 
are now commonplace in monitoring practices for high-level sport, the 
results of this investigation provide further evidence for the usefulness 
of these tools.  
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Figure Captions 
 
Figure 1. Subjective questionnaire used for the present study. Part A 
includes the self-reported incidence of illness and the symptoms 
experienced. Part B includes a muscle soreness and wellbeing 
component, scored using the 1-10 Likert rating scale as depicted.   
 
Figure 2. Decision tree model representing a series of decisions 
referred to as ‘nodes’ that are numbered for reference purposes (top left 
of each node). The contributing variable is listed on the first line in 
each node, and the value of change associated with illness presented on 
the second line. The third line is the cross-validated error of the node, 
representing the associated change in the accuracy of the model as new 
levels are added to the tree. 
 
Figure 3. Random forest model depicting predicting variables that are 
ranked according to the number of times it presents in the series of 
models developed. They are further evaluated for their prediction 
accuracy (mean decrease accuracy) and the nodes impurity or splitting 
criterion (mean decrease Gini). 
 
Figure 4. Boosting model representing the variables of importance 
contributing to the incidence of illness. The boosting algorithm 
associates a weighting score with observations in the dataset, thus the 
final model is constructed from the series of models output of weighted 
scores of variables, ranked in order of importance. 
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