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Abstract  

  

Ruminal acidosis is often characterised by decreased ruminal pH below pH 6.0, 

increased concentrations of ruminal D and L- lactate and volatile fatty acid concentrations 

in grain fed ruminants, creating an environment for growth of lactic acid producing 

bacteria such as S. bovis and Lactobacillus spp. and reduction in cellulolytic bacterial 

populations e.g. F. succinogenes.  

This thesis undertook genotypic studies of rumen microbial ecology based on five 

key bacterial species, Prevotella ruminantium, Fibrobacter succinogenes, Selenomonas 

ruminantium, Streptococcus bovis, and Lactobacillus spp. using quantitative real time PCR 

(qRT- PCR) of 16S rRNA genes.  This methodology enabled true genetic monitoring of 

ecological changes rather than traditional phenotypic microbial culture studies.   These 

genetic studies of rumen microbial ecology were aligned with changes in rumen 

metabolism. 

Application of qRT-PCR methodology was validated for complete and consistent 

extraction of DNA from mixed rumen samples to ensure reliable enumeration of rumen 

bacteria, and finally development of primers for use in the qRT-PCR assays. The qRT-

PCR methods were then used to monitor changes in rumen microbial ecology in cattle 

managed under commercial conditions in feedlots rather than experimental conditions.  

The key species were stabilised in the rumen microbial ecology within 7 days of 

introduction of cattle to feedlots irrespective of feeding hay and grain separately or via 

total mixed rations.  Moreover, metabolic indicators of high production potential coincided 

with the stable populations of the key rumen bacterial species F. succinogenes, P. 

ruminicola and S. ruminantium and no evidence of elevated S. bovis populations.  

Developmental changes in rumen bacterial ecology of steers born during either autumn or 
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winter/spring showed similar trends in bacterial populations when adapting to feedlot 

rations irrespective of time of calving.  However, the rumen protozoal populations were 

reflective of the time of calving with cattle born in winter/spring maintaining higher 

protozoal populations throughout the feedlot period.  In commercial dairy herds, rumen 

metabolic end products were consistently correlated with changes in key bacterial 

populations.  Rumen acidosis was observed in sheep fed lupins at 3 times maintenance.  

Decreased populations of F. succinogenes and increased populations of S. bovis with no 

decrease in rumen pH were observed in sheep fed high-fat soyabean diets.  

 Molecular techniques such as qRT-PCR used here as well as newer molecular 

genetic approaches such as next generation sequencing will allow for more comprehensive 

interpretation of ecological changes in the rumen leading to improved management and 

productivity of cattle and sheep especially during dietary transitions.   
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1 Literature Review 

1.1 Introduction  

This review describes the Australian cattle industry and its management practice of 

grain feeding in feedlots where livestock are grain-fed to deal with seasonal gaps in pasture 

supply and ensure year-round supply of high quality meat products to local and 

international markets.  

While grain feeding optimises livestock energy supply, it also has implications for 

ruminant health. Optimising production of grain-fed cattle has traditionally been achieved 

through metabolic and physiological assessments during the introductory period of grain 

feeding. Monitoring of changes in rumen microbial ecology (particularly overgrowth of 

lactic acid-producing bacteria) has been most commonly based on phenotyping using 

subculture techniques for rumen bacteria under laboratory conditions.  

In recent times, however, techniques have become available that may allow 

molecular assessment of rumen bacteria in livestock under field conditions.  This review 

outlines possible applications of molecular methods to monitor changes in rumen bacteria 

during dietary transition in feedlot, field and dairy feeding systems. 

1.2 The livestock industry in Australia 

The beef cattle industry is a major Australian agricultural industry, ranging from 

intensively managed livestock holdings in southern Australia through to extensive large-

scale cattle stations in the northern pastoral regions. The beef industry (including live 

cattle) contributes 13% to Australia’s total farm export value of $40 billion (ABARES 

Agricultural Commodities June 2013). Hooper (2010) estimated that about a quarter of 

Australia’s 133,000 farming establishments derived their main income from beef cattle 

farming while another quarter earned a significant portion of their income from beef cattle 
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in combination with grain farming and sheep. The 2011-12 Australian Bureau of Statistics 

indicated that the Australian beef cattle herd totalled 28.5 million head plus an additional 

2.7 million dairy cattle and 74 million sheep. 

 While Australian cattle and sheep are predominantly produced using grass-based 

feeding systems, many areas become deficient in feed quality and availability at specific 

periods of the year. For example, in the south west of Western Australia (WA) there is 

usually a summer/autumn feed gap, during which feed supplementation is required to grow 

or maintain livestock. Supplementation with grain is used when cattle or sheep are not able 

to meet marketable weights, or during summer in dryland grazing systems. Grain feeding 

is also used during drought to carry stock over and reduce weight loss when there is a 

shortage of pasture. Grain feeding is also used to meet customer demand for grain fed beef 

products irrespective of the season.  

Presently there are 450 accredited commercial cattle feedlots in Australia (ALFA, 

2014). About seven per cent of the WA beef industry and 17% of the national beef industry 

finishes cattle in feedlots, however at any one time usually only two per cent of the 

Australian cattle population is being fed in feedlots (2011). These figures do not include 

the sheep industry or the dairy industry, which relies on grain feeding to provide high 

producing dairy cows with enough energy and protein to maintain milk production. Hassel 

and Associates (2003) estimated that the cattle and dairy industries use about 35% and 

55% respectively of the 1.3 million tonnes of grain fed annually to ruminants.   

1.3 Diets for livestock 

 In Australia, cattle and sheep are fed under pasture grazing systems for the majority 

of their lives. In WA grazing production systems depend on rainfall with most rainfall 

falling during winter (Figure 1.1). This seasonal rainfall leads to pastures being productive 

during May/June to December but lacking in quality and quantity for the remainder of the 
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year (Figure 1.2). To account for seasonal variation in pasture supply and quality 

ruminants are fed conserved fodder such as hay and silage produced during spring or grain. 

Beef cattle are generally only grain fed to produce a high quality product or to meet protein 

and energy deficits in the diet. However, dairy cattle in dryland or irrigated pivot pasture 

systems are often supplemented with grain in-shed, usually following milking. Grain 

feeding is also used in WA sheep enterprises to increase fertility (using lupin) and to 

supply protein during feed shortages via short-term 21-day feedlots to meet market 

specifications. 

 

Figure 1.1 Average monthly rainfalls (1990-2010) at Vasse Research Centre, Busselton, 

Western Australia, which is representative of a Mediterranean environment (Source 

DAFWA 2011). 
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Figure 1.2 Production implications of seasonal changes in digestibility and energy of 

annual pastures (SGS, 2000). 

 Grain diets can be fed to ruminants as either a total mixed ration or pellets, or as a 

separate ration with hay or with dry pasture or standing crops.  To get the best production 

benefits from grain, the characteristics must be matched with the digestive capacity and 

requirements of the ruminant.  As one of the chief factors influencing rumen fermentation 

is variation in feed composition, it is important to consider diet quality, composition and 

protein energy balance when formulating diets. 

Diets should be formulated to provide the rumen microbes with nutrients that 

support optimal microbial synthesis and growth for energy and protein supply and supply 

the host animal with its vitamin and mineral requirements.  In order for diets to accomplish 

this nutrient supply, the pH of the rumen should remain relatively neutral to slightly acid 

i.e. between pH 6.0 – 7.0).  Variation in rumen pH can be minimised by feed management 

such as addition of feed buffers such as bicarbonate or ionophores (Lean et al., 2007). 

Management of feeding bunks can heavily impact on feeding disorders under feedlot 

conditions and reduce animal productivity, even leading to death. Feed bunk management 

practices such as multiple feedings and consistent time of feed delivery can be used to 
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reduce variability in intake (Schwartzkopf-Genswein et al., 2003; Pritchard and Bruns, 

2003) and the incidence of acidosis. Feeding grain and roughage separately appears to 

increase the risk of subacute acidosis compared to feeding cattle a total mixed ration 

(Krause and Oetzel, 2006) and this is particularly an issue when cattle are not adapted to 

grain feeding. Feeding prime lambs a total mixed ration during introduction to grain based 

diets reduced growth rates and feed efficiency compared to  the same diet fed in a pelleted 

form (Jones et al., 2000) due to the ability of the animals to select separate dietary 

components and ingest an imbalance of protein and energy. However, feedlot cattle fed 

finishing diets containing barley grain and separate roughage were able to self-regulate 

intake resulting in diets similar in composition, intake level and ruminal fermentation 

profile to those fed a total mixed ration (Moya et al., 2011). 

The rumen microbial population is divided into bacteria that ferment structural 

carbohydrates (cellulose and hemicelluloses) and use only ammonia as their nitrogen 

source and those that ferment non-structural carbohydrates (starch, pectin and sugars) and 

use either ammonia or amino acids as a nitrogen source (Russell et al., 1992). Refining 

dietary balance is therefore important in optimising animal production (Van Soest et al., 

1991). Crude protein content of the diet in grain-fed cattle  diets should be about 13-15% 

and high concentrations of non-protein nitrogen (from urea and sulphate of ammonia) 

should be avoided due to rapid production of ammonia and poor rumen fermentation 

(MLA, 2001). 

1.3.1 Importance of the rumen  

Carbohydrate polymers in plants are indigestible to most animals but can be 

hydrolysed and fermented by a range of organisms in the rumen (Krause et al., 2003a). 

Rumen fermentation is unique as the efficient breakdown of the cell wall relies on the 
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relationship between microorganisms that produce fibrolytic enzymes and the host animal 

providing the anaerobic fermentation chamber (Krause et al., 2003a).  

The forestomach is divided into four compartments including the reticulum, rumen,  

omasum and abomasum (McDonald et al., 2011; Hungate, 1966). The microbial activity of 

the rumen generates an anaerobic (mainly carbon dioxide (40%) and methane 30-40% and 

5% hydrogen, oxygen and nitrogen) environment. The temperature remains fairly static are 

38-42 
o
C due to the heat that is produced during rumen fermentation (Theodorou and 

France, 2005). Buffering capacity is provided by the production of copious quantities of 

saliva containing bicarbonate and phosphate salts, which help maintain the rumen at a pH 

of 5.5-7 (Pond et al., 1995; Theodorou and France, 2005; Owens et al., 1998; McDonald et 

al., 2011). 

The reticulo-rumen has no sphincter between its two compartments and is 

considered to a large extent to function as a single entity with chewed food entering the 

reticulo-rumen where it is subjected to microbial attack as well as mixing and propulsion 

of the reticulorumen musculature (Dijkstra et al., 2005), which helps with rumen flow and 

absorption of volatile fatty acids across the rumen wall. The epithelial lining of the 

reticulum is raised into folds forming honeycomb structure while the rumen is lined with 

papillae of various sizes for absorption of nutrients (Dehority, 2003) and sort feed particles 

allowing to go through to the abomasum. 

Digesta passes from the reticulum to the omasum via a sphincter. The omasum is 

filled will laminae (like leaves), tightly packed with finely divided ingesta. The role of the 

omasum is not well understood but it is known that water, ammonia, VFA and inorganic 

electrolytes are absorbed in the omasum (Dijkstra et al., 2005; Dehority, 2003; Hungate, 

1966). The digesta then passes to the abomasum, which is the equivalent of a monogastric 

stomach, where protein digestion begins via acid and enzymes excreted into the abomasal 
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lumen. Mixing of the digesta occurs through muscular contractions. The abomasum 

exhibits a circadian ultradian rhythm and as a consequence there is relatively continuous 

flow through of digesta. Distension of the abomasum, which inhibits reticulorumen 

emptying, is the main stimulus for its emptying (Dijkstra et al., 2005).   

The adult ruminant is adapted to digesting grasses and other roughages. Chewed 

grasses and roughage along with saliva are passed into the rumen. Contractions of the 

oesophagus pushes the food bolus into the rumen. The muscular wall of the rumen mixes 

the ingesta while the process of rumination allows the plant material to mix with the saliva 

enabling the rumen microbes to hydrolyse the plant celluloses, hemicelluloses, pectins, 

fructons, starches and other polysaccharides. These are broken down to monomeric and 

dimeric sugars some of which are subject to further microbial action(Hobson, 1997). 

The food is diluted with large amounts of saliva with approximately 150 L in cattle 

and 10 L in sheep. Saliva is essential to the lubrication of feed and pH buffering of rumen.  

The contents of the rumen are continually mixed by rhythmic contractions of its walls 

during rumination.  Plant material is drawn from the anterior end to the oesophagus and 

returned by a wave of contractions to the mouth. The major factor inducing the animal to 

ruminate is the tactile stimulation of the epithelium of the anterior rumen.  As a 

consequence, diets containing little or no coarse roughage may fail to supply the 

stimulation for rumination (McDonald et al., 2011). These muscular contractions mix fresh 

feed with microorganisms and wash the epithelium with fermentation fluids so that short 

chain organic acids can be absorbed (Russell and Rychlik, 2001). 

 Ruminants do not produce cellulose and hemicellulose fibre degrading enzymes, 

but they do harbour bacteria, fungi and protozoa that have the ability to breakdown these 

β-linked structured polysaccharides in diets (Russell and Rychlik, 2001; Krause et al., 

2003a).  Because cellulolytic bacteria cannot grow on cellubiose at pH below 6.0, pH 
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sensitivity is a general aspect of growth and not a limitation of cellulases. Cellulolytic 

bacteria cannot grow with a low intracellular pH, and an increase in pH gradient leads to 

anion toxicity. (Hungate, 1966) indicated that in modern feeding regimes the rapid 

fermentation of substrates leads to unstable microflora, acidosis and even death. Acid-

resistant ruminal bacteria have evolved with the capacity to let their intracellular pH 

decrease, maintaining a small pH gradient across the cell membrane, and preventing an 

intracellular accumulation of VFA anions (Russell and Wilson, 1996). 

1.3.2 Hind gut fermentation 

Most of the work on the ruminant digestive tract has focussed on the rumen, rather 

than the small and large intestine (Hofmann, 1989). Generally most carbohydrate digestion 

occurs in the rumen (65-90%) with nitrogen components flowing into the intestines (Pond 

et al., 1995). Microbial populations in the lower digestive tract including the hindgut and 

large intestine (caecum and colon) ferment food components that are resistant to 

endogenous hydrolytic digestion, mixed with considerable amounts of protein substances, 

producing similar proportions of VFAs as the rumen (Demeyer, 1991). 

When starch is not hydrolysed in the small intestine it passes to the large intestine 

and the colon, which in turn can reduce colonic pH and increase VFA concentrations. 

Cattle fed hay had a colonic VFA concentration of 25mM, while those consuming a grain 

ration had a colonic VFA concentration of 80mM (Russell, 1999). Management of grain-

based ruminant diets is therefore important. (Reynolds, 2006) studied starch digestion in 

dairy cows and found considerable capacity for starch digestion in the small intestine at the 

expense of microbial protein synthesis in the rumen. Some diets are formulated with the 

aim of increasing the amount of protein not taken up by the microbes so that the protein 

(called ‘bypass protein’) is instead digested in the hindgut. 
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1.3.3 Grains in the diet 

The metabolisable energy, protein and starch content of grain diets affect ruminant 

productivity via the impact of these dietary components on rumen fermentation (Table 

1.1). Starch content varies between cereal grains and influences how fast the grain breaks 

down in the rumen. Wheat, sorghum and barley have the highest starch level and lowest 

acid detergent fibre (ADF) of grains commonly fed to ruminants, while   lupins are 

frequently used as a low-starch alternative for ruminant feeding in WA (Table 1.1). Grains 

are often processed to optimise starch and fibre utilisation. Short particle lengths result in a 

highly fermentable diet in the rumen. The lack of structural carbohydrates leads to a 

reduced ruminal pH and increased risk of acidosis (Beauchemin, 2007). 

 

Table 1.1 Nutrient composition and structure of various grains. Adapted from (Sipsas and 

Seymour, 2008; Beretta and Kirby, 2004; Margan, 1994; Freer and Dove, 1984; Petterson 

et al., 1997; Rowe et al., 1999). 

Chemical composition Units Wheat Barley Oats Maize Sorghum Lupin 

Metabolisable energy (ME) MJ/kg 

DM 

13.0 11.6 10.5 13.5 12.4 12.2 

Crude protein (CP) % CP 13.0 12.0 11.0 10.0 10.0 32.2 

Rumen undegradable 

protein (RDP) 

% RDP 18 25 30 55 55 71 

Acid detergent fibre (ADF) %DM 2.6 5.3 14.0 2.4 2.8 19.7 

Starch %DM 70.3 64.3 58.1 75.7 71.3 1 

Grain structure        

Hulls %DM  13.0 25.0   24.0 

Testa + pericarp+aleurone %DM 15.0 7.7 9.0 6.0 7.9  
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Starch Endosperm %DM 82.4 76.2 63.0 82.0 82.3  

Embryo %DM 2.6 3.0 3.0 12.0 9.8  

1.3.4 Carbohydrates  

Dietary carbohydrates provide over half the energy requirements for maintenance, 

growth and production in the form of fibrous feeds containing cellulose, hemi-cellulose 

and grains rich in starch (Nafikov and Beitz, 2007; Annison et al., 2002). Carbohydrates 

are the most important source of energy for rumen microbes, with rumen microorganisms 

fermenting 80-95% in the rumen and the remainder in the small intestine (Nafikov and 

Beitz, 2007). Soluble carbohydrates are the most common carbohydrate found in forages 

with starch in the cell contents and insoluble structural carbohydrates in cell wall 

components constituting 30% of the dry matter in forage.  

Starch as both amylose and amylopectin is an important component of many 

ruminant diets, especially those containing cereal grains. However, too much of these 

readily fermentable carbohydrates can lower the digestibility of fibre. Starch is digested 

rapidly in the rumen but more slowly than soluble sugars (Mackie et al., 2002). Some 

cellulytic bacteria, such as certain strains of Fibrobacter succinogenes are also amylolytic 

(can degrade starch to disaccharide sugars). However, the principal amylase-producing 

bacteria, including Selenomonas ruminantium and Streptococcus bovis are the major starch 

fermenters with a limited ability to use other polysaccharides. These organisms together 

with soluble sugar utilisers, such as Megasphaera elsdenii, occupy a distinct ecological 

niche in the rumen (Theodorou and France, 2005). 



28 

 

 

Figure 1.3 Conversion of carbohydrates to pyruvate in the rumen (McDonald et al., 2011). 

 Hexoses are the main simple sugars produced in the first stage of fermentation of 

polysaccharides and are taken up and metabolised by microorganisms via the Embden-

Meyerhof glycolytic pathway to produce pyruvate (Figure 1.3). The main end products of 

complete carbohydrate metabolism are short chain fatty acids (acetic, propionic and 

butyric acids), carbon dioxide and methane (McDonald et al., 2011; Dehority, 2003; 

Annison et al., 2002) (Fig 1.4).  
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Figure 1.4 Conversion of pyruvate to volatile fatty acids in the rumen (McDonald et al., 

2011).  

Ruminants use the volatile fatty acids including acetate, butyrate and propionate as 

their main energy sources. Acetate is transported across the rumen wall unchanged and 

passes through the hepatic system where it is mostly utilised by peripheral tissues such as 

muscle, heart and adipose tissue. Propionic acid crosses the rumen wall and is extracted by 

the liver and converted to glucose via the gluconeogenic pathway and then passed into the 

hepatic vein to maintain glucose homeostasis.  Butyric acid is hydroxylated to D-3-

hydroxybutyric acid so that very little butyrate appears in the peripheral circulation.  D-3-

Hydroxybutyric acid is preferentially utilised by muscle and heart for energy  (McDonald 

et al., 2011).  

Ruminants have an obligatory requirement for glucose for particular body functions 

and depend on the process of gluconeogenesis from propionate to meet their glucose 
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requirements (Elliott, 1980). Gluconeogenesis is the metabolic pathway by which glucose 

is synthesised from substrates such as propionate, lactic acid and amino acids (Stryer, 

1995). This glucose then enters normal process of carbohydrate metabolism in the body. If 

the proportion of acetic acid produced in the rumen is high relative to propionate an 

apparent glucose deficiency can arise. In this situation body tissues are mobilised to meet 

the energy deficit and as a consequence of the oxidation of fat from adipose tissue, the 

concentrations of ketone bodies (β- hydroxy butyrate) in the blood will rise as will nitrogen 

excretion from the breakdown of muscle tissues (Orskov et al., 1991). 

 

1.3.5 Lipid digestion and metabolism 

Lipids are organic compounds serving an important role in biochemical and 

physiological functions in plant and animal tissues. They are relatively insoluble in water 

but soluble in organic solvents (Pond et al., 1995). Plants which are used as a ruminant 

feed source contain complex mixtures of lipids (phospho- and glycoglycerides, waxes and 

cutin) at levels of 30-40g/kg DM.   Plants are generally low in lipid content but rich in 

polyunsaturated fatty acids, especially linoleic acid. Concentrate diets vary in their lipid 

content from 20g/kg DM in wheat to 70g/kg in oats in the form of triglycerides. They are 

rapidly hydrolysed by bacterial lipases, liberating long chain fatty acids (LCFA) (Annison 

et al., 2002). If the lipid content of diets is >100g/kg DM  (McDonald et al., 2011) or at 

concentrations above 5-6% of the diet, lipids have an inhibitory effect on forage 

digestibility (Annison et al., 2002) and ruminant microbial activity is reduced and feed 

intake falls.  

In ruminants, dietary fats are extensively hydrogenated in the rumen before 

intestinal absorption so that absorbed long chain fatty acids are much more saturated than 

dietary fatty acids (Doreau and Chillard, 1997) and generally unesterfied (McDonald et al., 
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2011). The fatty acid composition of ruminant meat and milk is less a reflection of the fatty 

acid composition of the diet and more of ruminal biohydogenation (Nafikov and Beitz, 

2007; Annison et al., 2002). 

1.3.6 Protein digestion and nitrogen metabolism 

All cells require protein for part or all of their life cycle and proteins are highest in 

concentration in muscle tissues of animals, (Pond et al., 1995). Animals require amino 

acids for growth, reproduction, lactation and maintenance. Feed protein is partitioned into 

three fractions; non-protein nitrogen, true protein and unavailable protein (Sniffen et al., 

1992).   

Protein requirements for feedlot cattle are divided into the ammonia needed for 

ruminal digestion and the amino acids needed post ruminally (Owens and Gill, 1980). 

Protein contains about 16% nitrogen and is expressed as crude protein (CP) (where CP = 

total nitrogen x 6.25) (Freer et al., 2007; Wilson, 1981). Rumen microbes degrade a 

substantial fraction of the total nitrogenous material in feed, which is referred to as rumen 

degraded protein  (RDP) and is made up of peptides, amino acids and ammonia (Freer et 

al., 2007) (Figure 1.5). A small amount of protein is referred to as undegradable protein 

(UDP) because it escapes ruminal breakdown and flows to the abomasum and small 

intestine where 85% of UDP is made available to the animal (Coleman and Henry, 2002); 

UDP = CP - RDP. The UDP fraction is termed ‘escape protein’ or ‘protected protein’. The 

rumen microbes synthesis proteins and other nitrogenous material (microbial protein) for 

their own needs (Nolan and Dobos, 2005).  

Ruminant requirements for essential amino acids are met from microbes grown in 

the rumen and digested in the small intestine called bypass protein, as well as dietary 

protein that is intestinally degraded (Leng and Nolan, 1984). While bacteria can use 

ammonia, it is often produced in excess of bacterial utilisation, excessive ammonia is 
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produced nitrogen excretion increases, which increases the energy cost of urea synthesis 

(Russell et al., 1992) (Figure 1.5).  

Ruminants are not generally efficient at capturing nitrogen and therefore excess 

ruminal ammonia is a primary end product of ruminant nitrogen metabolism because the 

imbalance of protein and carbohydrate in many cases cannot be counteracted (Krause and 

Russell, 1996). This imbalance needs to be considered when formulating diets for 

ruminants as nitrogenous compounds can be the most wasteful dietary constituents, it is a 

challenge to manipulate the diet to improve nitrogen utilisation and reduce excretion. 

 

Figure 1.5 Digestion and metabolism of nitrogenous compounds in the rumen (McDonald 

et al., 2011) 
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metabolisable energy in combination rather than in isolation (Nolan and Dobos, 2005; 

Russell et al., 1992).  Chikunya et al. (1996) noted that rumen degradable protein is 

influenced by carbohydrate supply. Modification of ingested feed proteins by rumen 

microorganisms has major implications for the supply of amino acids to the intestines and 

tissues.  

Smaller amounts of C4 and C5 branch-chain volatile fatty acids are derived mainly 

from the fermentation of branch-chain amino acids in dietary protein. Microbial cells are a 

major source of amino acids but are also a significant source of metabolisable energy for 

the host animal (Freer et al., 2007). 

1.4 Phenotypic indicators of rumen adaptation 

Phenotypic indicators of rumen adaptation are chemical and biochemical indicators 

that determine if the rumen is functioning effectively. The indicators have been developed 

over years of research and are commonly used in rumen studies to determine if rumen 

fermentation is having a positive or negative effect on the ruminant and if feed is being 

utilised effectively. The main phenotypic indicators are outlined below.  

1.4.1 Lactic acid 

Lactic acid in ruminants is associated with the metabolism of pyruvate both in the rumen 

and endogenously (Mackenzie, 1967). Lactic acid has a pKa of 3.86 and is the simplest of 

the hydroxycarboxylic acids and can exist as two isomers, L- (+) lactate and D - (-) lactate 

(Ewaschuk et al., 2005). The L- (+) form is identical to that produced in muscle from 

glycogen (product of anaerobic glycolosis) during exercise and is readily metabolised by 

the liver and heart. The D (-) form is typically 30-38% of the lactate found in the rumen 

and is not produced by mammalian tissue (Owens et al., 1998).  Lactate is produced in 

significant amounts when diets are rich in starch and sugars with lactate concentration 
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increasing to up to 80 mM in the rumen and a decrease in rumen pH from near neutral to 

5.5-5.0 (Moller et al., 1997) during periods of acidosis.  

Bacteria in the rumen are classified phenotypically as either lactate utilisers e.g. 

Megaspharea eldensii and Selenomonas ruminantium which are usually sensitive to low 

pH, or lactate producers e.g. Streptococcus bovis and Lactobacillus spp. which are not 

sensitive to low pH. The relative normal proportions of these two bacterial phenotypes 

determine if lactate accumulates in the rumen.  Under normal rumen conditions lactate 

concentrations generally do not surpass 5µm, but can exceed 40 mM during severe 

acidosis (Owens et al., 1998). 

In a study undertaken by Hristov et al. (2001) where the ruminal L-lactate 

concentration was not affected by the increased grain content of the diet or by reduced 

protozoa numbers in the rumen, lactate concentrations remain below 1mmol/L throughout 

the study. 

Lactate concentration could be considered as an indicator of lactic acidosis and 

rumen function in livestock. However, it is important to note that the process of rumen 

sampling and saliva contamination can impact lactate concentrations significantly. 

1.4.2 Growth rates  

Growth rate of livestock is a general indicator of how well the rumen is functioning 

and if animals are adapting to the feed source supplied. Performance studies reviewed by 

Brown et al. (2006) indicated that animals introduced to a feedlot diet ad libitum for 55-

90% grain in 14 days or less generally show reduced performance during both the 

adaptation period and over the entire feeding period. 
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1.4.3 Rumen pH (power of hydrogen) 

Rumen pH is critical to a normal stable rumen environment as it impacts 

dramatically on rumen physiology, microbial population ecology and the nature and 

concentration of fermentation products. The rumen pH represents the negative log10 of 

hydrogen ion concentration in water based solutions. The normal pH range in the rumen is 

between pH 5.5 – 7.0, while the outer limits are pH 4.5-5.5 and 7.0 to 7.5 (Dehority, 2003). 

In beef cattle consuming high grain diets, the ruminal pH can range from 5.6 to 6.5 with 

the average typically around 5.8-6.2.  However it can drop below 5.6 for a period during 

the feeding cycle (Nagaraja and Nagamine, 2007). 

The primary ruminal base is ammonia with the major buffers being bicarbonate and 

phosphate.  Removal of lactic acid and volatile fatty acids when absorbed across the rumen 

wall at optimum concentrations can help stabilise the pH around neutral (Owens et al., 

1998). When rumen balance is not maintained such as during increases in lactic acid and 

VFA production, there can be a downward spiral of rumen pH. Lactic acid is a 10 times 

stronger acid than the volatile fatty acids (pKa 3.9 vs. 4.9) (Nagaraja and Nagamine, 2007). 

Ruminal pH is very responsive to feeding and chewing behaviour, with rumen pH 

generally decreasing following feeding and increasing during rumination (Allen, 1997). 

Rumen pH can vary considerably over a day and ruminants have a highly developed 

system of salivary input to maintain ruminal pH within a physiological range, however if 

the acid production is more than the system can buffer, rumen pH can decrease drastically 

(Krause and Oetzel, 2006).  Therefore it is important when measuring pH to not just 

consider the mean pH but also the fluctuations that occur, particularly when at suboptimal 

concentrations of <5.6 (Nagaraja and Nagamine, 2007). 

When ruminants are fed diets lacking in fibre, the physiological mechanisms of 

homeostasis are disrupted. Salivation in particular decreases, which leads to a decline in 
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ruminal pH, alteration of microbial ecology and animals becoming more susceptible to 

metabolic disorders (Russell and Rychlik, 2001). Decreases in ruminal pH decreases dry 

matter intake, fibre digestibility and microbial yield, which reduces production and 

increases feed costs (Allen, 1997). Rumen pH in dairy cows fed 65% grain for three weeks 

decreased to below pH 5.6 for about 4.6 hours, indicating rumen dysfunction and subacute 

ruminal acidosis (Hook et al., 2011).   

 Although rumen pH can be used to reflect functional change in the rumen, rumen 

pH is difficult to measure with any consistency. Bramley et al. (2008) showed that 

rumencentesis and use of cannulated cattle was the best means for assessing rumen pH. 

However, these methods do not enable sample collection continuously over long periods of 

time under commercial feedlot conditions. 

1.4.4 Volatile fatty acid  

Volatile fatty acids (VFAs) principally acetate, propionate and butyrate but also to 

lesser extent valerate, caproate, iso-butyrate, iso-valerate, 2-methylbutyrate and traces of 

various other acids are produced in the rumen as end products of rumen fermentation. 

Acetate and butyrate are used efficiently for fattening animals but do not make a net 

contribution to the glucose supply, while propionate can be used for gluconeogenesis but 

can reduce milk fat when present in higher proportions than acetate (Russell et al., 1992). 

 During the fermentation process energy is conserved in the form of adenosine 

triphosphate (ATP) and subsequently utilised for the maintenance and growth of the 

microbial population. Only a small proportion of the potential energy in glucose is 

captured by the microorganisms (2 moles of ATP per 1 mole of glucose when converted to 

2 moles of pyruvate). VFAs are not utilised by the microbes but are a major source of 

absorbed energy for the host animal (France and Dijkstra, 2005).  
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 Early work showed that a variety of ruminal bacteria produced end products that 

could not be detected in ruminal fluid. These intermediates include succinate and lactate, 

which are subjected to secondary fermentation by bacterial species such as Selenomonas 

ruminantium and Megasphaera elsdenii (Russell and Rychlik, 2001). 

The ratio of VFAs produced is strongly influenced by the diet, with roughage diets 

producing lower concentrations of propionate to acetic acids and grain-based diets 

producing a higher ratio of propionate to acetate (Czerkawaski, 1986). Cattle fed on a 

Timothy hay or high fibre diet had higher concentrations of volatile fatty acids and 

different ratios of volatile fatty acids than cattle fed a 90% concentrate diet  (Lana et al., 

1998), there was a large increase in the molar proportion of butyric acid.(Table 1.2).  

Table 1.2 The rumen fluid characteristics of steers fed Timothy hay (forage) or a 90% 

concentrate diets. Adapted from (Lana et al., 1998). 

Measurement Forage Diet 90% Concentrate Diet 

Acetate, mM 59.1 55.6 

Propionate, mM 12.8 29.8 

Butyrate, mM 6.0 40.1 

Total VFA, mM 77.9 125.5 

Acetate:Propionate Ratio 4.6 1.9 

Rumen pH 6.5 5.7 

 

 Manipulation of rumen fermentation is commonly used to improved production. 

Orskov et al. (1991) indicated that changes in VFA proportions produced in the rumen 

only benefitted the energy economy of the animal when they changed the fermentation 

energy.  
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1.4.5 Rumen contractions and outflow rate digesta 

Rumen solid turnover time in cattle is 1.3-3.7 days and 0.8- 2.2 days in sheep 

(Dehority, 2003). Factors that influence outflow rate include the intake of concentrates, 

feed particle size and concentration of solids (Hungate, 1966; Pond et al., 1995).  

The rumen has a well-developed pattern of contractions of the various 

compartments of the reticulo-rumen that circulate the digesta through the different sections 

of the reticulum, rumen, omasum and abomasum. The contractions are imperative for 

rumination (Pond et al., 1995), which occurs for up to eight hours a day. Mixing of the 

rumen reticulum contents aids in inoculating fresh ingesta with a mass of micro-organisms 

in the fermenting digesta and incorporates the saliva through the rumen contents. This 

works to enhance absorption by replenishing the fermentation acids absorbed by the rumen 

epithelium. It also counteracts the flotation of solids during fermentation and assists in 

movement of digesta to other organs in the digestive tract. When large particles are 

ruminated, surface area and fermentation rate are both increased. Rumination triggers 

saliva flow, which maintains a favourable rumen pH for the microbes and the animal 

(Russell and Rychlik, 2001). The mixing is accomplished by contractions of the wall of the 

rumen and reticulum, and contractions are coordinated with movement of the other 

digestive organs (Hungate, 1966). These muscular contractions mix fresh feed with 

microorganisms and wash the epithelium with fermentation fluids so the microbial short 

chain organic acids can be absorbed (Russell and Rychlik, 2001).  

 If ruminants are fed fibre deficient diets, the mixing motions, eructation, 

rumination and saliva flow decrease and fermentation acids accumulate and rumen pH 

declines (Russell and Rychlik, 2001). The importance of fibre digestion is supported by the 

practical observation that cattle usually are fed at least 10 to 15% forage to ensure normal 

rumen function (Russell and Wilson, 1996).  
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1.4.6 Ammonia and nitrogen outflow 

Ammonia in the rumen fluid is the final end product of proteolysis by the mixed 

rumen populations and is a major source of nitrogen for protein synthesis and the major 

source of nitrogen by many bacterial species. (Nolan and Dobos, 2005).  Rumen ammonia 

concentrations are usually explained by an increase in microbial protein synthesis and 

enhanced ammonia assimilation, however work done by Lana et al. (1998) indicated that 

ammonia concentrations were correlated with the deamination rate of amino acids by 

rumen bacteria. The ability of bacteria from forage fed cows to deaminate amino acids is 

influenced more by changes in pH than those fed 90% concentrates, indicating there was a 

difference in the populations of ammonia-producing bacteria. 

1.4.7 Ruminal Acidosis 

Extracellular and blood pH are maintained by the body’s buffering systems of 

which the bicarbonate system is quantitatively the most important.  The addition of 

significantly large amounts of acid (or alkali) to the blood is necessary for the body’s 

buffering capacity to be exceeded and pH changed.  Changes in the normal acid-base 

balance towards either acidosis or alkalosis can cause ill health.  The common cause of 

acidosis is the excessive, uncompensated loss of bicarbonate ions due to production and 

adsorption of large quantities of fixed acid such as lactic acid produced from acute 

carbohydrate engorgement in ruminants (Blood et al., 1983). 

When rumen fermentation rate is too high, lactic acid can accumulate in the rumen 

and blood.  Lactate absorbed into the blood can be converted to blood glucose via hepatic 

gluconeogenesis. Acute and chronic acidosis are significant ruminant production problems 

that can result from excess ingestion of readily fermented carbohydrates.  When production 

of acids exceeds their rate of removal, rumen pH can decrease to < 6.0, a rumen 

environment favouring the growth of S. bovis or Lactobacillus spp. populations as outlined 
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in Al Jassim and Rowe (1999). This occurs when ruminants are not adapted to readily 

fermented carbohydrates or to forage that is low in efficient fibre. While high grain diets 

predispose ruminants to acidosis, some grains pose a greater threat than others. Wheat is 

generally considered the worst grain as far as development of acidosis, while barley has 

been observed as the least predisposing cereal grain (Elam, 1976; Bird et al., 1999). 

 The cascade of physiological effects of acidosis, originating from the initial 

ingestion of carbohydrate depends upon the intensity and duration of the insult. Most 

critical is the pH threshold, which not only influences microbial growth rates and shifts in 

the ruminal populations but also significantly impacts the systematic metabolic state and 

the ability to catabolise certain metabolites (Nocek, 1997). In theory animals that have 

been adapted to a grain based diet should show greater resistance to acidosis.  However the 

results from a trial done by (Goad et al., 1998)  indicated that there were similar changes in 

the ruminal fermentation patterns during subacute acidosis regardless of whether the steers 

were adapted to a grain or hay diet prior to induced acidosis. This suggests that the 

incidence of acidosis depends on the diet just as much as the previous dietary exposure of 

the ruminant. 

 Ruminal pH of 5.6 or below is considered the benchmark for ruminal acidosis; a 

pH of 5.0 to 5.6 is regarded as subacute or chronic acidosis and a pH below 5.0 or 

approaching 4.5 is considered acute acidosis (Owens et al., 1998; Kleen et al., 2003; 

Krause and Oetzel, 2006; Hristov et al., 2001; Nagaraja and Nagamine, 2007).  Russell 

(1999) showed that as ruminal pH decreases there is an increase in VFA concentrations, 

this decrease in ruminal pH can be exacerbated by reduced ruminal contractions during 

grain feeding, leading to a reduction in ruminal flow-through and fibre digestion by the 

microbial population. 
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Work done by Kleive et al. (2003) found that cattle suffering from acute acidosis had a 

100-fold increase in S. bovis within 24 days of the problem arising. This is supported by  

(Petri et al., 2013b) who found that under induced acidosis the  S. bovis and Lactobacillus 

spp. populations increased when analysed using parallel pyrosequencing technology. 

However, work by Kleive et al. (2003) found no increase in the S. bovis population with an 

increase in the starch content of the diet with the authors concluding that S. bovis was 

possibly not the major starch-utilising bacterium under the imposed dietary conditions. 

Golder et al. (2014) also demonstrated that the S. bovis and Lactobacillus spp. populations 

did not increase in dairy cattle that were exhibiting signs of acidosis. Diet changes carried 

out too rapidly or without proper transition will put animals at risk (Kleen et al., 2003).  

Cattle fed forage diets had higher concentrations of S. bovis than Lactobacillus spp. 

However, when transferred to a grain diet ruminal pH of the animals declined and S. bovis 

populations reduced while Lactobacillus spp. increased (Wells et al., 1997). In this study 

Lactobacillus fermentum appeared to inhibit the growth of S. bovis in the rumen (Table 

1.3). 

Table 1.3 The impact of diet and ruminal pH on most probable numbers (MPN) of S. bovis 

and Lactobacillus spp. when grown on MRS medium. Based on duplicate samples from 

two animals (n=4) (Wells et al., 1997; Russell, 1999). 

Diet Ruminal pH S. bovis                     Lactobacillus spp. 

             (cells/mL ruminal fluid) 

100% forage 6.8-6.7 3 x 10
7
 4 x 10

3
 

80% cereal and 20% forage 6.0-5.6 2 x 10
3
 5 x 10

7
 

  

Other studies indicate that as pH continues to fall S. bovis can no longer grow while 

Lactobacillus spp. increase leading to increasing starch fermentation, the production of 
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more lactic acid and pH levels as low 5.5 (Al Jassim and Rowe, 1999; Owens et al., 1998; 

Garrett et al., 1999). Declining ruminal pH also decreases the efficiency with which 

substrates are converted to VFA. Ruminal pH values of 5.5 to 5.0 with increased VFA 

concentrations, but normal lactate concentrations (<5mM) were indicative of subacute 

acidosis (Goad et al., 1998; Garrett et al., 1999). 

Clinical manifestations of lactic acidosis range from complete anorexia, loss of 

appetite, diarrhoea, lethargy, staggering, recumberancy and even death. Lactic acid may 

not consistently accumulate in the rumen fluid, but has been found in transient spikes of up 

to 20 mM when measured frequently during the day (Kennelly et al., 1999). 

Acute acidosis presents significant signs and symptoms, which if caught in time 

can be treated directly while symptoms of subclinical acidosis are insidious and 

considerably less overt. Subclinical acidosis is often dismissed as other problems, such as 

poor forage quality or bunk management and can cause significant economic loss, draining 

major productive efficiency from dairy herds. The major clinical manifestation of 

subclinical acidosis is reduced or inconsistent feed intake (Nocek, 1997; Krause and 

Oetzel, 2006). In many cattle operations the challenge is not the acute acidosis but rather 

subacute acidosis whereby very little accumulation of lactic acid is detected in the rumen 

however pH decreases (Nocek, 1997). 

 Schwartzkopf-Genswein et al. (2003) found that subclinical acidosis reduced 

performance and caused erratic feeding behaviour and intake by cattle resulting in a $15-

$20 per animal efficiency loss.  Smith (1998) found that although death is the primary 

concern with ruminal acidosis, illness can cause higher costs due to the extra labour and 

medication required and the resultant low animal performance. 

 Rumen acidosis may also have human health impacts because low ruminal and 

intestinal pH increases the risk of enterphemorrhagic O157:H7 E.coli shedding (Russell 
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and Rychlik, 2001; Steele et al., 2011). This can be combated by feeding cattle a high-

forage diet just before slaughter; however such a practice can also cause dark cutting meat. 

1.4.8 Control methods for acidosis 

Control of lactic acidosis has been well researched under induced acidosis 

conditions using various control methods ranging from grain type to antibiotic use to 

inhibit lactic acid-producing bacteria (Al Jassim et al., 2003; Al Jassim and Rowe, 1999; 

Bramley, 2004; Bramley et al., 2008; Coe et al., 1999; Commun et al., 2009; Doust, 1998; 

Elam, 1976; Gill et al., 2000; Godfrey et al., 1995; Godfrey et al., 1994; Grubb and 

Dehority, 1975; Holroyd et al., 1996; Horn et al., 1979; Huntington, 1997; Huntington and 

Britton, 1978; Keunen et al., 2002; Kleen et al., 2003; Knee, 2006; Krause and Oetzel, 

2006; Lean et al., 2007; Moya et al., 2011; Nagaraja and Nagamine, 2007; Owens et al., 

1997; Rowe, 1988; Rowe, 1999; Rowe et al., 1999; Schwartzkopf-Genswein et al., 2003; 

Smith, 1998; Walker, 2006; Zorrilla-Rios et al., 1992). Interestingly, the majority of the 

experiments referenced above were performed under induced acidosis conditions, which 

Nagaraja and Nagamine (2007) suggested might not reflect feeding conditions indicative 

of farm-based feeding systems. 

Control of acidosis can be targeted at several points in the feeding process, 

including: the starch level of the grain based feed; grain feeding amount and frequency 

and; use of feed additives such as ionophores, probiotics or buffers such as bicarbonate and 

bentonite to counteract low ruminal pH. Options used to control acidosis in cattle are 

outlined below (Owens et al., 1998; Rowe et al., 2002). 

1.4.9 Introduction and feeding management 

Grain choice plays an instrumental role in acidosis because rumen fermentation of grain 

and digestion of starch are influenced by grain characteristics (Rowe et al., 2002; Bird et 
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al., 1999). Grain choice is often influenced by price and availability, with barley and wheat 

being classed as high-risk grains due to their high starch fermentability (Table 1.1). The 

speed with which the chosen grain is introduced to the animals can also impact the 

potential development of acidosis. To avoid acidosis the ruminants must receive enough 

roughage before consuming the grain diet, which should be introduced in a step wise 

fashion over time (Rowe et al., 2002; Lean et al., 2007).While it is common practice to 

include sodium bicarbonate or bentonite into high grain diets to reduce acidosis, the use of 

such buffering agents is not thought to play a significant role in reducing acidosis because 

the acidosis development is too advanced by the time of their addition (Rowe et al., 2002). 

1.4.10 Use of feed additives in grain feeding systems 

Feed additives are used to reduce the severity of grain-associated disorders such as 

acidosis and in some instances have been shown to improve animal productivity and 

growth rates (Russell and Rychlik, 2001). Common additives include antibiotics such as 

monensin, lasalocid, virginiamycin and tylosin.  

Carboxylic polyether ionophores are produced by strains of Streptomyces and have 

been used extensively as feed additives. They are highly lipophilic and toxic to many 

bacteria, protozoa, fungi and higher organisms. Russell and Strobel (1989) found that 

carboxylic polyether ionophores improved production efficiency when fed to growing 

ruminants. The improved production efficiency  Bergen and Bates (1984) has been 

attributed to:: 

 Increased efficiency of energy metabolism in the rumen; 

 Improved nitrogen metabolism in the rumen and or animal; and 

 Retardation of feedlot disorders, especially lactic acidosis and bloat. 

The ionophores lasalocid and monensin inhibit major lactic acid-producing bacteria 

such as Lactobacillus spp. and Streptococcus bovis. while lactic acid producers that 
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produced an end product of succinate such as Selenomonas ruminantium  were not affected 

(Dennis and Nagaraja, 1981; Schelling, 1984). 

 Ionophores modify the movement of ions across the membrane of rumen microbes 

and have greatest impact against gram positive bacteria (Bergen and Bates, 1984). The 

ionophores monensin and lasalocid have been shown to decrease lactic acid in vitro 

(Dennis and Nagaraja, 1981) with cattle fed monensin displaying lower lactate 

concentrations and higher rumen pH than cattle on the control diets (Nagaraja et al., 1982).  

 Antibiotic use has been increasingly restricted in livestock grain feeding regimes 

(JETACAR, 1999). Virginiamycin is considered the most effective antibiotic for use 

within grain feeding systems. Work by Godfrey et al. (1993) showed including 

virginiamycin in cattle diets resulted in large liveweight gains, higher chaff intake and a 

reduction in diarrhoea. Additional work by Godfrey et al. (1995) indicated that 

virginiamycin was highly effective at reducing lactate concentration and acidity during  in 

vitro fermentation of rumen fluid during an acute grain challenge in vivo. Coe et al. (1999) 

showed that virginiamycin controlled the growth of lactic acid-producing bacteria and 

moderated ruminal fermentation in high starch diets likely to lead to rapid production of 

lactic acid. Virginiamycin can no longer be used in long-term feeding regimes and there is 

a need to evaluate its short-term strategic use (Rowe et al., 2002). 

 The impact of feed additives on restricting lactic acid-producing bacteria and 

maintaining rumen pH and rumen lactic acid concentrations will be key to understanding 

the long-term influence of these feed additives on the rumen microbial ecosystem and how 

they respond under long-term feeding regimes. 

1.5 Other grain feeding disorders 

As grain feeding increases within production systems grain disorders will continue to 

be a problem at a clinical and subclinical level. 
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Acidosis has implications for dry matter intake, rumenitis, liver abscesses, 

pulmonary bacterial emboli and laminitis (a diffuse aseptic inflammation of the laminae) 

(Brent, 1976; Garrett et al., 1999; Owens et al., 1998). The critical link between acidosis 

and laminitis appears to be the association with a persistent hypo perfusion. Management 

of acidosis is critical in preventing laminitis (Nocek, 1997).  

1.6 Microbial Ecology 

 Ruminants and their rumen microbial population exist in a reciprocally beneficial 

relationship.  In exchange, rumen microorganisms utilise the dietary complex 

carbohydrates and nitrogen for their own energy requirements via anaerobic glycolysis and 

anabolic processes. The normal rumen flora and fauna are established quite early in life 

(McDonald et al., 2011) via contact with an adult animal, usually the mother (Hobson and 

Stewart, 1997).  

 The rumen microbial community represents all major groups of microbes, 

obligatory anaerobic bacteria, ciliate, flagellate protozoa, chytrid fungi archaea and 

bacteriophages (Mackie et al., 2002; Tajima et al., 1999).  The microbial population 

consists entirely of either obligate (predominant) or facultative anaerobes.  The most 

numerous are the rumen bacteria, which fluctuate markedly in response to dietary offerings 

and changes (Krause and Russell, 1996; Hungate, 1966; Al Jassim et al., 2003; Rowe, 

1999).  

Work by (Tajima et al., 2000) showed that the most profound changes in the rumen 

bacterial population (based on development of clone libraries) occurred during the dietary 

change from roughage to hay-grain diets.  Using PCR amplification and a clone library of 

the 16S rDNA they analysed the bacterial population on days 0, 3 and 28 following a 

switch to a high grain diet. Well-known cellulytic bacterial populations remained high over 
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the first few sampling days (day 0 and 3) but moved to high numbers of Selenomonas-

Succiniclasicum-Megasphaera by day 28 (Tajima et al., 2000). 

Work outlined in Russell and Gahr (2000) indicate that there are 11 groups of 

microbes based on their substrate and product preference: 

1. Cellulolytic e.g. Fibrobacter succinogenes, Ruminicoccus Flavefaciens, 

Ruminococcus albus and Butovibryo fibriosolvens, 

2. Hemicellulytic e.g. Butyrivibrio fibrioslovens, Prevotella ruminicola and 

Ruminococcus spp. 

3. Pectinolytic e.g. Butyrivibrio fibriosolvens, Prevotella ruminicola, Lachnospira 

multiparus, Succinivibrio dextrinosolvens, Treponema bryantii and Streptococcus 

bovis. 

4. Amylolytic e.g. Bacteroides amylophilus, Streptococcus bovis, Succinimonas 

amylohilus and Prevotella ruminicola. 

5. Ureolytic e.g. Succinovibrio dextrinosolvens, Selenomonas spp., Prevotella 

ruminicola, Ruminococcus bromii and Butyrivirbio spp. 

6. Methanogens e.g. Methanobrevibacter ruminantium and Methanobacterium 

formicicum. 

7. Sugar utilising e.g. Treponema bryantii, Lactobacillus vitulinus and Lactobacillus 

ruminus. 

8. Acid utilising e.g.  Megasphera elsdenii and Selenomonas ruminantium. 

9. Proteolytic e.g.  Bacteroides amylophils, Prevotella ruminicola, Butyvibrio 

fibriosolvens and Streptococcus bovis. 

10. Ammonia producing e.g. Prevotella ruminicola, Megasphera elsdenii and 

Selenomonas ruminantium. 
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11. Lipolytic e.g.  Anaerovigrio lipolytica, Butyrovibrio fibriosolvens and Treponema 

bryantii.  

S. ruminantium rumen bacteria utilise acid and are ureolytic, producing ammonia from 

urea. Sawanon et al. (2011) suggested the synergy between S. ruminantium and F. 

succinogenes improves cellulolytic digestion.  

 

Another major group of rumen organisms are the Archaea or methanogens, which 

convert carbon dioxide and hydrogen to methane (Hobson and Stewart, 1997). While 

functionally significant to rumen microbial ecology they are numerically inferior; 

accounting for only 0.5-3% of total microbes (Mackie et al., 2002). 

Protozoa are the largest of the rumen microbes in size and represent about 40% of 

the biomass.  The protozoa fall into two orders, Holotrichs and Entodiniomorphs, and are 

obligate anaerobes, motile and eukaryotic (Mackie et al., 2002). They are able to transform 

the principal dietary components consumed in the diet into a variety of metabolites that can 

be utilised by the host ruminant. (Williams and Coleman, 1997) found that protozoa impact 

on the dry matter content of the rumen digesta, retention time, rumen volume, the rumen 

bacterial population diversity, VFA concentrations and proportions, pH and ammonia 

concentration.  

Fungi represent up to 10% of the biota in the rumen. They are obligate anaerobes, 

saprotrophic on ingested feedstuffs and contribute significantly to the ability of ruminants 

to utilise plant material and ferment structural polysaccharides (Mackie et al., 2002). 

Fungal hyphae breakdown the structural organisation of plants this allows bacteria to 

access the plant structural carbohydrates, such as cellulose and hemicelluloses.  
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The microbial components of the rumen population interact in terms of digestion and 

metabolism in ruminants. The diversity within the rumen makes it a very complex 

environment to monitor and interpret. 

1.6.1 Bacterial species present in the rumen  

Bacterial population numbers being quantified utilising molecular techniques may 

be higher as previously a majority of bacteria were non culturable under laboratory 

conditions (Karma, 2005). New microbiological technologies will help better quantify 

rumen microbial numbers and diversity. 

 Rumen bacteria have different roles in the complex rumen environment. For 

example, succinate producing and decarboxylating bacterial species interact in the rumen 

to produce propionate - the main gluconeogenic substrate for ruminal physiology. The 

balance between these two organisms is important as it can lead to the accumulation of 

succinate in the rumen (Wolin et al., 1997). Hungate was a pioneer of rumen microbiology 

and developed techniques for culturing and isolating rumen microbial ecosystems in the 

1950s. These methods enabled a better understanding of the complexity of the rumen 

microbial environment. The techniques relied on phenotypic characteristics and the ability 

to culture bacteria using lab-developed media and roll tubes. However, the majority of 

rumen microbes were not able to be cultured using Hungate’s techniques. New molecular 

methods have enabled a more sophisticated categorisation of the rumen microbial 

population. 

 Classification of rumen micro-organisms relied until relatively recently on 

microscopic and phenotypic differentiation, bacteria were classified using phenotypic 

characteristics such as cell shape, flagella, respiration vs. fermentation and nutritional 

attributes (Hungate, 1966) but there is little evidence that these criteria have evolutionary 
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or phylogenetic significance (Krause and Russell, 1996). Culturable counts are often 10 to 

100 fold lower than the total bacterial counts in the rumen (Brock, 1987). 

  However, the advent of 16S rRNA gene analysis has led to a more sophisticated 

genotypic categorization. Comparative sequence analysis of 16S rRNA genes (abbreviated 

to rDNA for the purpose of this thesis) has provided a means of describing microbial 

communities without the limitations imposed by phenotypic classification based on culture 

methods and biochemical identification. 16S rDNA sequencing has enabled new genera 

and species of anaerobic gram negative bacteria to be described and existing taxa to be 

reclassified (Jousimies-Somer and Summanen, 2002).Ribosomes are complicated 

structures that have evolved slowly providing a long-term natural history of evolution. The 

DNA-encoding sequences of ribosomes are relatively free from selective pressure, which 

means the invariable and hyper-variable regions of rRNA genes can be used to group 

bacteria into kingdoms, genera and species (Krause and Russell, 1996).  Bacterial 

ribosomes account for approximately 20% of cellular dry matter with each ribosome 

having a molecular mass of several million daltons. Bacterial ribosomes have a sedimation 

coefficient of 70, but each ribosomal particle can be further separated into particles of 50s 

and 30s. The 30s particle is in turn composed of the 16s rRNA genes particle (Neidhardt et 

al., 1990). Ribosomal genes are relatively complicated structures that, during evolution, 

have undergone relatively little selective pressure or gene transfer (Woese, 1987). The 18S 

and 23S rRNA genes are longer and contain more information with most analysis being 

conducted on the 16S genes region, on which most bacterial phylogeny is based 

(Stackbrandt and Hippe, 1996). The sensitivity of 16s rRNA genes methodology has been 

enhanced by polymerase chain reaction (PCR), which can give a visual image of bacteria 

in their natural environment (Amann et al., 1990). 
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Similarities in nucleotide sequences serve to relate microorganisms and can be used 

to identify uncultured microbes in environmental studies.  Comparative sequencing of 

bacterial rDNA indicates there is a high degree of genetic divergence among rumen 

isolates previously thought to represent strains of a single species.  Using the rDNA as a 

phylogenetic marker gene is now one of the most common methods used to identify 

genome fragments derived from specific groups of microorganisms that have not yet been 

cultured or that play an important role in the environment (Acinas et al., 2004).   

More recent application of metagenomic techniques has added further 

sophistication to the study of uncultured complex microbial systems (Suenaga 2012).  This 

new metagenomic approach became available after the study reported here was carried out 

and will be used to interpret and discuss the data collected.   

Outlined below are main known and isolated rumen bacteria. 

1.6.1.1 Prevotella ruminicola (formerly Bacteroides ruminicola)  

Prevotella ruminicola was the first rumen bacteria cultured and has a high 

prevalence under all dietary regimes, it can use multiple substrates and is not sensitive to 

pH changes (Stevenson and Weimer, 2007a)., making it an ideal key bacterium to monitor 

during dietary regime introductions.  

Prevotella ruminicola are gram-negative non-motile rods 0.8-1.0 m wide by 0.8-

8m long. They grow at low pH, are pleomorphic and degrade the cellulose derivative 

carboxymethylcellulose but cannot digest native cellulose, Prevotella hydrolyse starch and 

liquefies gelatine and its fermentation products in glucose medium include succinic, formic 

and acetic acid. (Russell and Wilson, 1996).  

Ammonia (NH3) is the only low molecular nitrogen source used efficiently by this 

species for growth (Dehority, 2003). Prevotella appears to be relatively more important in 
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animals receiving low starch rations. (Hungate, 1966) found that Prevotella constituted 

64% of the cultivable starch digesters in animals fed wheat straw but only 10% of the 

starch digesters in animals fed solely on grain mixture. Prevotella species constitute one of 

the most numerous groups recovered from the rumen (Avgustin et al., 1997; Gardner et al., 

1995; Tepsic and Avgustin, 2001) and from regions of the hindgut in many mammalian 

species (Avgustin et al., 1997). Studies of the 16S rRNA gene copies of cows showed 42 – 

60% of the gene copies were representative of the three most commonly isolated 

Prevotella species (Stevenson and Weimer, 2007b; Stevenson and Weimer, 2007a). 

Research by (Tajima et al., 2001) indicated the 16S rRNA gene copies of Prevotella 

species far exceeded those of the other eight species examined. 

1.6.1.2 Selenomonas ruminantium 

Bacteria from the species Selenomonas ruminantium are Gram negative, curved 

rods 0.9-1.1µm by 3.0-6.0 µm. These bacteria are motile with up to 16 flagella attached to 

the middle of the concave side of the cell (Stewart et al., 1997). 

Selenomonas ruminantium is detected at highest amount in animals fed on cereal 

grains. S. ruminantium constituted 22-51% of the rumen viable count in animals fed 

cracked corn and urea (Caldwell and Bryant, 1966). S. ruminantium converts ruminal 

lactate to VFA (Krause and Oetzel, 2006) and is a starch digesting bacterium isolated in 

the rumen, though not all strains are amylolytic. S. ruminantium  has been observed in 

direct microscope examination in sheep at 1.5- 428 x 10
6
 /mL (Hungate, 1966). 

There appear to be few propionate producing species in the rumen except S. 

ruminantium, which is capable of decarboxylating succinate (Wolin et al., 1997). Lactate 

fermentation by S. ruminantium and other species as well as conversion of lactate to 

acetate and propionate can be an important feature of rumen fermentation when fed a high 

grain diet. Slyter (1976) found that free glucose inhibited lactic acid metabolism with pure 
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cultures of S. ruminantium and slowed the rate of lactic acid utilisation, suggesting that S. 

ruminantium had a preference for glucose rather than lactate in a pure culture. S. 

ruminantium has complex enzymatic machinery and although it is a key lactate utiliser and 

propionate producer, S. ruminantium is also a lactate producer and some strains produce L-

lactate while others produce D-lactate from simple sugars. Interestingly when S. ruminantium 

runs out of substrate  this bacterium switches into lactate and converts it to propionate 

1.6.1.3  Mitsuokella multiacidus 

Bacteria from the species Mitsuokella multiacidus are non-flagellated, straight 

Gram-negative rods. The prevalence of these bacteria in the rumen is not known although 

they have been reported in other gut habitats Hobson (1997). This species is closely related 

to S. ruminantium based on the 16S rRNA gene, indicating the importance of qRT-PCR 

assay development to reduce cross amplification. Due to resource restrictions the use of S. 

ruminantium was considered the more important bacteria to monitor in this study. 

1.6.1.4 Megasphaera elsdenni (formerly Peptostreptococcus elsdenni) 

Megasphaera elsdenni is an anaerobic Gram negative coccus, 1.2 to 2.4m in 

diameter, which can digest soluble sugars (glucose, fructose and maltose) and some amino 

acids (Dehority, 2003). Work done by Hristov et al. (2001) indicated that reduced protozoa 

numbers did not impact on L-lactate concentrations and this may have been linked to 

enhanced activity of M. elsdenni. This is supported by work done by Kleive et al. (2003) in 

which steers fed on a rapidly adapted grain diet and a non-grain diet. M. elsdenni was not 

detected in steers without grain in the diet while they established a high lactic acid utilising 

population in the rumen of cattle. 
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 While this bacterium is an important component of the rumen in grain-fed cattle, it 

was decided that this population would not be monitored during this study due to monetary 

and time constraints. 

1.6.1.5  Fibrobacter succinogenes (formerly Bacteroides succinogenes) 

 There are three major cellulolytics in the rumen: Fibrobacter succinogenes, 

Ruminococcus flavefaciens and Ruminococcus albus of which Fibrobacter succinogenes is 

the most prevalent and was therefore chosen as a key bacterial species to be monitored 

during this study.  Fibrobacter succinogenes is non-motile, anaerobic and non-spore 

forming. It forms Gram-negative rods, which generally vary in diameter from 0.3-0.5 m 

and in length from 1-2 m. Fibrobacter succinogenes are very pleomorphic and can vary 

in shape.  F. succinogenes ferments only cellulose, glucose and cellubiose with its primary 

end products being acetic, succinic acids (Dehority, 2003) and formic acid (McDonald et 

al., 2011).   

Fibrobacter succinogenes is pH sensitive and degrades cellulose slowly due to the 

methods the bacterium uses to break down cellulytic material. Active cellulose digestion 

involves adherence of cells to the fibres via a glycoprotein glycocalyx (Costerton et al., 

1981),this protects cells from protozoa grazing and cellulolytic enzymes from degradation 

by ruminal proteases, retaining the cellodextrin products for use by the cellulolytic bacteria 

(Weimer, 1996). Cellulytic bacteria only grow in environments that have a favourable 

rumen pH – one that does not go below pH 6 for long periods. They are also particularly 

difficult to culture because they are obligate anaerobes and are very slow growing and 

therefore the sub culture techniques make them very difficult to quantify. 

The importance of cellulolytic bacteria for feedlot cattle is not clear; however, they 

are thought to play a role in keeping the rumen population stable. Cellulolytics such as F. 
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succinogenes disappear or are decreased in number in cattle with acidosis (Slyter, 1976). 

Lactobacillus spp.  

Lactobacillus spp. are predominant lactic acid-producing bacteria in the rumen. 

Under acidic conditions (pH 5.7) there can be 10
4
 Lactobacillus spp per mL but when pH 

drops to 4.5 numbers can rise to 10
9
/mL.  Lactobacillus vitulinus is a non-motile D-lactate 

producer while Lactobacillus ruminis is a motile L-lactate producer (Stewart, 1992). 

 On high forage diets Lactobacillus spp. are generally in lower numbers than S. 

bovis (3 x 10
7/mL

 versus 4 x 10
3/mL

) (Wells et al., 1997). They are also more resistant to low 

rumen pH. However, when ruminants are introduced gradually to grain there is a dramatic 

increase in Lactobacillus populations. Lactobacillus spp. can produce D- as well as L- 

lactate, however most do not produce large amounts of acetate and ethanol when glucose is 

the fermentation substrate (Kandler and Weiss, 1986).  

1.6.1.6 Streptococcus bovis 

Streptococcus bovis has been widely studied in relation to grain poisoning and 

acidosis in ruminants. Streptococcus bovis bacteria are gram-positive, non-motile and 

ovoid to coccal in shape and chains are sometimes formed and older cells may stain gram 

negative (Hobson, 1997). This bacterium is widely recognised in many studies as the main 

lactic acid-producing bacterium in cattle, sheep and horses. However, S. bovis is not 

normally a predominant ruminal bacterium, but rather is an opportunist bacterium that can 

outgrow other species when diets are high in soluble carbohydrates (Hungate, 1966). In 

cattle and sheep, the S. bovis populations remain low under normal feeding (e.g. high 

roughage diet), but increase significantly following dietary change from roughage to 

concentrate (Ghali et al., 2004; Jarvis et al., 2001). Using PCR-based techniques and 16S 

probes (Reilly et al., 2002) found that Streptococcus populations were relatively stable on 

fresh forage diets but were significantly affected when protein in the diet was low and 
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carbohydrate was available at supplemental concentrations. The accepted paradigm for 

lactic acidosis assumes that S. bovis is present at low concentrations in the rumen on high 

fibre diets but at high concentrations in high grain diets. While this is commonly observed 

in the rumen ecosystems, the magnitude of difference between high fibre and high grain 

diets is usually less than one log unit (Krause et al., 2003b).  Streptococcus bovis is known 

to have low proteinase activity and therefore a diet consisting of low nitrogen and low 

carbohydrate can limit the growth of the streptococci (Reilly et al., 2002) and is indicative 

of a decrease in ruminal ammonia concentration. 

Lactate produced by S. bovis is regulated by the activity ratio of lactate 

dehydrogenase to pyruvate formate-lyase, which in-turn responds to energy supply or the 

intracellular pH (Asanuma and Hino, 2002). S. bovis is resistant to low pH in the rumen as 

it can control its intracellular pH environment (Russell, 1998).  

1.7 Bacterial interactions 

The presence of many substrates capable of supporting anaerobic microbial growth 

underpins species diversity of the rumen. Metabolic products from one microbial species 

may become sources of energy for other species. It is the extent of these microbial 

interactions that regulate the concentrations and activities of individual microbe species 

and the fermentation products they generate from dietary substrates (Wolin et al., 1997).  

1.8 Rumen Protozoa  

Protozoa are present in the rumen at 10
3
-10

6
 cells/mL of rumen fluid (McAllister et 

al., 2006) and represent approximately 50% of the microbial biomass in the rumen. 

Protozoa have been shown to be important but not essential to rumen function (Jounany, 

1991). They are classified into two groups based on morphology. Isotrichidae (commonly 

called holotrichs) are ovid organisms covered with cilia that generally do not ingest food 
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particles and cannot utilise cellulose. The second protozoa grouping contains the 

ophryoscolecidae (or oligotrichs), which vary considerably in size and shape and can 

ingest food particles and utilise simple and complex carbohydrates including cellulose and 

vary in size to the entodiniomorphid protozoa (Hungate, 1966; McDonald et al., 2011). 

Work by (Hristov et al., 2001) indicated grain-fed  feedlot cattle were virtually free 

of protozoa or had dramatically reduced populations.  Brown et al. (2006) showed that 

protozoa numbers peaked with a diet of about 60-70% concentrate. In cows transitioned 

onto a 65% grain and 35% hay diet with subacute acidosis induced in week one, there was 

a significant increase in protozoa at week three followed by a significant decrease by week 

six (Hook and Steele, 2011).  

Despite a substantial decline in total protozoa numbers in the rumen of cows fed on a 

95% concentrate compared to a 62% concentrate diet, ruminal pH did not decrease below 

5.5 and L-lactate concentrations did not increase. This suggests that if an economically 

feasible method were developed to  (Hristov et al., 2001) control protozoa in feedlot cattle, 

it might be possible to reduce the recycling of bacterial nitrogen within the rumen and 

improve efficiency of protein utilisation without a concomitant increase in the incident of 

acidosis (Hristov et al., 2001). Brossard et al. (2004) found that sheep on a 60% wheat and 

40% alfalfa hay diet had increased numbers of entodinimorph protozoa. Hristov et al. 

(2001) found that reducing the rumen protozoa population by 42% did not affect the 

concentration of L-Lactate in the rumen. 

1.9 Changes in rumen bacterial ecology 

The rumen is ever changing, and this has been demonstrated predominantly with 

changes in nutrition (Tajima et al., 2001). Steers adapted to a grain diet prior to induced 

subclinical acidosis had higher numbers of lactate utilising bacteria than steers adapted to a 

hay diet prior to the induced acidosis. However lactate-using bacteria increased in both 
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groups over time following grain challenge (Goad et al., 1998). Culturing and counting 

bacterial species 

Traditionally bacteria have been classified using phenotypic characterisations, 

including cell shape, flagella, respiration and fermentation and nutritional attributes with 

little evidence that these were criteria for evolutionary or phylogenetic significance 

(Krause and Russell, 1996). Traditional methods of enumerating and identifying microbial 

populations within the rumen are time consuming and cumbersome and methods that 

involve culturing and microscopy can be inconclusive (Denman and McSweeney, 2006). 

The enumeration of specific species of bacteria in the rumen ecosystem is difficult with 

conventional techniques due to the large number of biochemical techniques required and 

the imprecision of these techniques. In addition,  many rumen microbes cannot be cultured 

in the laboratory (Karma, 2005). Outlined below are some of the techniques used to 

identify and quantify rumen bacteria. 

1.9.1 Isolation methods for bacteria from rumen samples 

Understanding of ruminal ecology historically was based on those microorganisms 

that can be quantified and characterised using culture-based techniques (i.e. substrate 

utilisation and fermentation products). However, these microorganisms have commonly 

been found to represent only 10 –15% of bacteria observed using direct microscope 

examination of rumen fluid via traditional anaerobic plating techniques (McAllister et al., 

2006). 

Traditional methods used to enumerate ruminal bacteria have relied on culture 

samples on semi-defined media. Once cultured, the bacterial colonies are then counted, 

purified and characterised using an array of techniques including microscopy, substrate 

utilisation and fermentation product assays, enzyme production and membrane fatty acid 

analysis (Krause and Russell, 1996). However, these methods can be inaccurate and 
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cumbersome as many bacterial populations fail to grow on cultures and a large number of 

colonies is required to attain statistical significance (Krause and Russell, 1996). 

 

Stewart et al. (1981) carried out key research into cellulytic bacteria. They isolated 

ruminal F. succinogenes from a cow and assessed its ability to attack cotton fibres and 

powdered filter paper. All the cellulytic isolates were cultured on the cotton fibre substrate 

but not the cellulose agar. This highlighted the selectivity of different strains under 

culturing and why it is difficult to accurately quantify and characterise the full spectrum of 

a bacterial species from initial rumen samples. 

Difficulty in culturing rumen bacteria often confounds enrichment and enumeration 

techniques for bacteria. In general, the culturable count is ten to a hundred fold lower than 

the total count (Brock, 1987). 

  

 Most bacteria in natural ecosystems are viable but not be to be cultured which 

complicated isolation and curtails the number of actual species, particularly as isolation 

may not always be reproducible in vivo (Tajima et al., 1999). Using molecular 

technologies to identify and count bacterial species is becoming common practice in 

complex environmental samples such as rumen fluid. 

1.9.2 Counting of bacteria for quantification 

The technology available to count bacteria has advanced from the traditional 

counting method using microscopes to the most probable number technique (MPN), which 

has lower precision than direct counting using the coulter counter (Dehority et al., 1989). 

Four counting methods were evaluated by Fiala et al. (1999). These were (a) the 

manual method, using a Helber bacteria counting chamber, (b) a coulter EPICS Elite flow 

cytometer-based method (c) counting using the portable microcyte flow cytometer and (d) 
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a coulter principle-based method. All these techniques gave adequate precision in 

measuring total cell density with no systemic differences between the methods (Fiala et al., 

1999). 

Bacterial size can be determined using the coulter counter. Baker (1990) found that 

organisms in an aqueous environment displace their volume in fluid so that the size of the 

organism can be expressed as its equivalent spherical diameter. This method contributes to 

classification of rumen microorganisms by size. 

Enriched bacterial growth media can over-estimate bacterial counts and do not enable the 

phenology of bacterial populations to be assessed. This limits the capacity to gain a full 

picture of the rumen population. Molecular technologies have progressed rumen microbial 

studies beyond culture methods. The issues associated with the culturing of rumen 

microbes has been overcome with the introduction of a new approached called 

metagenomics, in which the microbial DNA is extracted from the rumen samples and 

sequenced independent of cultivation (Attwood et al., 2008) 

1.10 Use of molecular tools to identify rumen microbiota 

Traditional phylogeny and enumeration methods for ruminal bacteria are tedious and 

inaccurate. In contrast, modern methods of bacterial classification do not require in vitro 

culture and can potentially detect a single cell (Krause and Russell, 1996). To obtain a 

good representation of the spectrum of rumen bacteria in a rumen fluid sample it is 

important to use molecular tools to achieve this. 

Molecular technology is becoming increasingly important in establishing the 

changes that occur in the rumen and other ecosystems. Molecular technology considered in 

this study included fluorescent in situ hybridisation (FISH), denaturing gradient gel 

electrophoresis (DGGE) and quantitative real time polymerase chain reaction (qRT-PCR). 

Of these techniques quantitative real time polymerase chain reaction was used to target key 
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bacterial species based on 16s rRNA genes. Since this study was undertaken metagenomics 

has progressed considerably enabling the diversity within samples to be more easily 

quantified (Petri et al., 2013c; Kittelmann et al., 2013; Morgan and Huttenhower, 2014b; 

Nikolaki and Tsiamis, 2013; Golder et al., 2014). These modern molecular techniques rely 

on a higher level of population analysis at the species level than that undertaken during this 

study, which aimed to study the overall population complexity rather than specific key 

species. Modern molecular methods include genome sequencing, pyrosequencing, 

proteomics and transcriptomics (Krause et al., 2013) and  techniques such as terminal 

restriction fragment length polymorphism (T-RFLP), which is a DNA fingerprinting 

technique used to compare complex microbial communities and next generation  

sequencing (NGS) (de la Fuente et al., 2014). de la Fuente et al. (2014)  concluded that 

earlier molecular techniques were still valuable in the study of microbial diversity and 

complex environments. However, the use of next generation sequencing provides a more 

cost effective alternative with a higher level of detail compared to single members of a 

microbial population. 

Metagenomics have progressed to enable massive parallel sequencing techniques 

that allow for rapid and economical DNA sequencing (Wang and Qian, 2009). Krause et 

al. (2013) note that the new technology of pyrosequencing can potentially elucidate 

bacterial interactions with their ruminant host to enhance animal health and productivity. 

At the time of this study (2003-2006) sequencing was expensive and difficult, which 

impacted on sequence quality however it did provide valuable information with regards to 

population changes of key species only previously monitored through culturing techniques. 

 

Polymerase chain reaction (PCR) is commonly used as a standard method in 

diagnostic and research laboratories and is now an essential tool in laboratory research. 
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PCR reactions detect PCR products at the end stage of exponential amplification Denman 

and McSweeney (2005). However qRT- PCR is now widely accepted as it is rapid, 

sensitive and reproducible with minimal risk of carryover contamination (Mackay, 2004). 

Quantitative or real time PCR is not performed at the end of the reaction, but rather during 

exponential amplification, which in theory will result in the doubling of product with each 

cycle (Rasmussen, 2001). Quantitative PCR allows the entire reaction to be viewed and 

product being generated throughout all stages of the reaction. SYBR Green is used as it 

binds to double stranded DNA, therefore as the reaction progresses the amplicons 

produced leads to a higher fluorescence (Denman and McSweeney, 2005). To test the 

purity of the amplicon a dissociation curve is undertaken to ensure the melting curve of the 

DNA is in one single sharp point and there are no non-associates products or primer dimers 

(Denman and McSweeney, 2005). 

 Real time PCR has allowed quick throughput methods, however it is important to 

note that qRT-PCR is only as reliable as the controls and standards that are developed in 

the analysis (Mackay, 2004). This highlights that when developing techniques to monitor 

bacterial populations it is important to constantly test the accuracy of controls, standards, 

and DNA extraction, and have well developed primers. 

1.10.1 qRT-PCR using SYBR Green 

SYBR Green is widely used in real-time PCR applications as an intercalating dye 

and is included in many commercially available kits. The binding of SYBR Green to 

double-stranded DNA is not specific, so reactions need to be optimised to reduce the 

amplification of nonspecific products. The use of a melting curve analysis eliminates the 

necessity for agrose gel electrophoresis because the melting of the specific amplicon is 

analogous to the detection of electrophoretic band (Giglio et al., 2003). (Giglio et al., 

2003) found that with increasing demand for high throughput analysis the characteristics of 
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SYBR Green may reduce optimisation times by avoiding the use of or limiting 

concentrations of SYBR Green in assays that target G + C rich targeted regions. 

SYBR Green has been reported in the literature since 1997, with little attention to 

other intercalating dyes for this application, which at times have been shown to have 

limited dye stability. In addition, the concentration of the dye can be affected by the 

melting temperature (Monis et al., 2005). (Monis et al., 2005) compared SYT09 to SYBR 

Green I and found it easier to convert conventional assays to RT PCR and for DNA melt 

curve analysis. 

  

1.10.2 Sequencing 

Recent progress in sequencing has allowed researchers to rapidly analyse the 16S 

rRNA genes on which most analyses of bacterial physiology are based (Krause and 

Russell, 1996).  In recent years the 16S rRNA gene sequence information has been used to 

characterise the diversity of microorganisms within the rumen ecosystem. Unlike methods 

based on specific genes sequences, rRNA based methods have been developed on the basis 

of bacterial phenology. Consequently their specificity is more appropriate for the 

evaluation of taxonomic diversity (McAllister et al., 2006). 

Studies of 16s rRNA genes indicate that the diversity of ruminal bacteria has been 

greatly underestimated with traditional methods of phylogeny and stymied by fastidious 

growth requirements making enumeration tedious and inaccurate. Bacterial diversity is 

therefore thought to be 100-1000-fold greater than the previously 5000 recognised in 

Bergeys manual of systematic bacteriology (Krause and Russell, 1996). 

The biotechnological approach has allowed glimpses into what the unique ruminal 

environment and importantly the changes that can occur in it over a very short period of 

time. The development of these molecular techniques has broadened our knowledge of the 
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rumen environment on both an ecological and functional level. Procedures such as RT-

PCR can be used to monitor changes such as dietary transition or antimicrobial agents with 

a degree of sensitivity and precision that was previously impossible (McAllister et al., 

2006). Work done in soils by Janssen (2006) indicates that, based on clone libraries, the 

nine bacteria thought to comprise the population in the soil actually represent less than 5% 

of the total bacterial population. This highlights that under a complex environment like the 

rumen we are not effectively documenting and describing ruminal changes through 

culturing.  Advances in DNA sequencing technologies and bioinformatics are allowing a 

better understanding of complex microbial communities such as the rumen, Morgavi et al. 

(2013) outlines how recent metagenomics was able to provide detailed information about 

physiology of the species being monitored within the rumen 

1.10.3 Use of Molecular techniques to identify rumen microbial population change. 

Tajima et al. (2001) monitored bacteria of cattle fed on a commercial diet under 

laboratory conditions.  Samples obtained via fistulation prior to their morning feeding 

showed the fibrolytic bacterium F. succinogenes fell 20 fold in the 3
rd

 day of introduction 

to the grain diet with a further 57-fold decrease at day 28. Another fibrolytic bacterium R. 

falvifaciens decreased by 10% at day 3 but remained at that level until day 28. P. 

ruminicola increased seven-fold on day 28.P. bryantii increased 263-fold and on day 3 and 

remained 10-fold higher on day 28 than at day 0. S. bovis increased 67-fold on day 3 

however on day 28 it decreased in comparison to the hay diet. S. ruminantium increased 

eight-fold during the diet switch but stabilised with only a two-fold increase at day 28. 

This indicates that there is a need to monitor bacteria over time rather that at one point of 

sampling. 



65 

 

The Tajima et al. (2001) study using 16S qRT- PCR formed the basis of 

development of techniques for my study with adaptations to deal with issues of cross 

reactivity with bacteria due to primers (outlined in the primer development section). 

Analysis of the community structure and bacterial diversity of steers fed either corn 

or hay was undertaken by Kocherginskiaya et al. (2001) using denaturing gradient gel 

electrophoresis (DGGE), which were further analysed by excising, reamplification and 

sequencing and also random shotgun sequence libraries. Kocherginskiaya et al. (2001) 

concluded that populations recovered through DGGE were consistently less diverse than 

those recovered by random sequencing, which also had substantially higher species 

richness. The species richness was higher in the corn diet for both methods. 

Rapid fragment length polymorphism (RFLP) can be used to examine bacterial 

diversity in the rumen. Krause et al. (2003b) used RFLP to determine the Lactobacillus 

spp isolates cultured throughout the digestive tract. rDNA sequencing of rumen fluid 

collected from animals fed a diet of haylage/corn silage/concentrate rations indicated 

several novel bacteria that had not before been isolated or characterised by 16S rDNA 

(Whitford et al., 1998). Sequences that clustered with P. ruminicola represented the 

majority of the clones isolated. Similarity varied from 94-97%. They analysed the species 

of P. ruminicola likely to be recognised by strain 23 signature. The work indicated that the 

presence of the signature strain alone might not predict strain relatedness. Their work 

indicates that Prevotella ruminicola like 16S sequences represent the most numerous 

sequences; however this cannot be used for quantification. 

 These different techniques give an insight into the rumen environment at a point in 

time without the need for culturing and the added influence of a non-appropriate growth 

medium for the targeted bacterial species. These techniques have also enabled scientists to 

determine the relationship between bacteria or microbes present in mixed environmental 
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samples (Janssen, 2006). Since this project there has been large jumps in the ability of 

metagenomics with McCann et al. (2014) outlining in their review that pyrosequencing of 

the 16 rRNA gene could reveal the taxonomic identify of bacteria and archaea to the genus 

level. While who genome shotgun sequencing is able to predict the functional capacity of 

the microbiome which is very exciting in the understanding of such a complex system. 

1.10.4 Phylogenetic relationship between bacterial strains 

The phylogenetic tree is an inferred evolutionary relationship between biological 

species. The introduction of direct retrieval and sequence analysis of some target genes, 

mainly those of rRNA  is used to evaluate genetic diversity and phylogenetic relationships 

of microorganisms without culturing (Tajima et al., 1999).  It has also allowed for major 

reorganisation among anaerobic taxa (Jousimies-Somer and Summanen, 2002). There is no 

exact 16S similarity limits defining specific taxa, in general species definition requires 

species similarities greater than 98% and molecular analysis has allowed the diversity in 

the rumen population to be explored.  

 Work by Wright et al. (2004) comparing the methanogen population and their 

relationships was undertaken using a universal methanogen primer for a PCR reaction and 

the restriction enzyme HaeIII along with rapid fragment length polymorphism (RFLP). 

The authors then sequenced the product and were able to identify that there was potentially 

a new order of methanogens to be confirmed with further study. This highlights the 

potential that new molecular technologies have in identifying diversity within populations 

such as the geographical or possible dietary differences in species diversity found by 

(Wright et al., 2007).  
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1.10.5 Primer design 

The design of primer oligonucleotide sequences are nucleotides that serve as a 

starting point for DNA amplification and are the key to success of molecular techniques. 

The PCR primers work by annealing to targeted regions of DNA to amplify a targeted 

section of single stranded DNA. The process starts with the reaction containing the DNA 

being heated to approximately 95 
o 
C, which melts the double stranded DNA to single 

strands. The temperature is then lowered to approximately 60 
o
 C to allow the primers to 

bond to the targeted regions (forward and reverse primers) which are then amplified. When 

designing primers for use on the real time PCR the shorter the amplicon length the better 

the consistency of the assay. Denman and McSweeney (2006) had product lengths of 120-

130 base pairs (bp) without cross reactivity. Primers designed by Tajima et al. (2001) were 

used to monitor a variety of bacteria in the rumen that varied from 485 to 869 bp. 

However, this primer length can be an issue because it can reduce the chance of cross 

reactivity as well as primer dimers in which non-targeted areas are replicated impacting on 

the qRT-PCR outputs.  The (Tajima et al., 2001) primers were designed to monitor cattle 

going onto concentrate diets. The S. bovis primer also picked up S. equinus and S. 

ruminantium as well as M. multiacida due to the similarity between their 16S rRNA gene 

region. Therefore, it is important to recognise the requirements for cross reactivity checks 

when developing primers.  

The shift in metagenomics studies in the last 10 years into new sequencing 

techniques, has allowed for the discovery of the biosphere in environmental samples and a 

better understanding of non-culturable populations that may have not been identified in 

earlier studies (Highlander, 2012). A study by Klindworth et al. (2013) showed that 

commonly used single pair of primers exhibited significant differences in the overall 

coverage and phylum spectrum with only 10 of the 512 primer pairs evaluated usable for 
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the new sequencing technology. Further recent studies by Dorn-In et al. (2015) outlined 

that with the new sequencing approach that many primers that targeted the 16s rRNA 

genes region allowing for sequencing of the total bacterial population also amplified the 

DNA of plants and other archaea and eukaryotic cells potentially misevaluating the targets 

with non-target DNA. Fredriksson et al. (2013) found that using two different primer pairs 

on the same wastewater samples generated different results in species diversity which is 

similar to the rumen environment. 

While metagenomics technology has progressed since my study, it has however 

allowed for a focus on the principles of key species variation using qRT-PCR that has 

dominated rumen studies since Hungates period all be it based on a culturing. The 

molecular technology this study implemented is a key step in understanding how these key 

species change during commercial feeding conditions.  

1.10.6 Sequencing 

 Sequencing allows the determination of the sequences of nucleotides (G+C or 

A+T) and these allow the genes that exist to be identified along the DNA. Sequencing is a 

enables ease of molecular analysis of samples, with the costs of the technique having 

dropped by two orders of magnitude since early 2000 These lower costs have seen the 

method shift from use solely by large sequencing centres into the hands of individual 

researchers (Shendure and Ji, 2008). The ability to source sequences online through 

databases such as Genbank has also made analysis of a variety of populations more 

accessible. 

 Since this study the advancement of metagenomics has allowed for rapid and 

economical sequencing of large numbers of samples, making it a more viable way to 

analyse bacterial ecosystems (Rothberg and Leamon, 2008). 
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1.10.7 DNA extraction techniques 

DNA extraction is crucial for molecular techniques, particularly when estimating 

cells/mL. If DNA extraction is not completed correctly, extrapolation of data can be 

incorrect or inconsistent and may not be representative of the population diversity that 

occurs in the sample being analysed. DNA extraction from environmental samples can lead 

to poor DNA yield or inhibitory substances in the extracted DNA (Yu and Morrison, 

2004). Yu and Morrison (2004) reported a DNA extraction technique that improved DNA 

yield by more than six times. The extraction of gram positive and gram-negative bacteria 

can be very different and it is therefore important to achieve a consistent and complete 

extraction of pure cultures and rumen samples. While much work has been done on DNA 

extraction it appears that plant materials such as tannins or plant polysaccharides or lignin 

which bind tannins may inhibit PCR quality DNA (Krause et al., 2001). This is often as 

issue with rumen samples which can be high in varied feed sources being consumed by the 

ruminant at the time. 

Many DNA extraction techniques for rumen and environmental samples are 

outlined in the literature (Sharma et al., 2003; Anderson and Lebepe-Mazur, 2003; Miller 

et al., 1999; Chaudhuri et al., 2006). These studies suggest that each situation requires 

some adjustment to the extraction method to deal with the variation in each sample 

1.11 Aims  

The aims of this study have several dimensions.  Firstly, to monitor the key bacterial 

changes use qRT- PCR under field conditions in feedlot cattle, standard dairy cows in a 

shed and sheep. Secondly to determine if these key bacterial changes link with metabolic 

changes in ruminal pH, volatile fatty acid concentrations and molar proportions, and L- 

and D-lactate concentrations in cattle or sheep during introduction to grain diets.  Thus far 

most studies on grain-induced acidosis have been conducted under experimental, 
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controlled conditions; a major point of difference for this study will be the use of practical, 

commercial feedlots for screening different feeding regimes representative of the normal 

feeding strategies in place under present Western Australian beef industry practice.   

Changes in rumen microbial ecology will be monitored using molecular qRT-PCR 

techniques focusing on selected bacterial species within the rumen of cattle and sheep.  

The molecular techniques will be cross-referenced with traditional culturing methods and 

traditional metabolic indicators of rumen acidosis. The qRT-PCR technique was chosen 

due to the high precision of this approach, its novelty at the time of the study, and the 

ready access to appropriate equipment at the Murdoch State Agricultural Biotechnology 

Centre (SABC) at Murdoch University. Studies by Tepsic and Avgustin (2001) indicated 

that other molecular techniques available at the time such as FISH were not suitable due to 

the intense florescence of feed particles as well as the difficulty in counting bacteria 

adhered to the feed particles. 

Undertaking a molecular quantification of changes in rumen bacterial populations 

using qRT-PCR required several methods to be developed. These included establishing the 

relationship between traditional Coulter counter values and turbidity (spectrophotometer 

reading) to develop the standards for quantification in the qRT- PCR techniques.  

Moreover, it was essential to extract DNA of sufficient quality and yield from pure 

cultures of each bacterial species as well as mixed populations present in rumen samples. 

Finally, and most importantly was the development of appropriate and effective primers 

suitable for the RT-PCR reactions so that the primers targeted the desired rumen bacteria 

within the rumen samples. 

1.12  Hypotheses under test 

The hypotheses under test in this study were: 
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1. The molecular technique of quantitative real-time polymerase chain reaction (qRT-

PCR) can be developed using pure cultures of rumen bacteria as reference to 

monitor the changes in population ecology of rumen bacteria in mixed rumen 

samples collected under practical commercial feeding regimes.  

2. Changes both microbial and biochemical will be similar with separate feeding of 

roughage and grain compared with a total mixed ration of cattle  

3. Time of calving has a long-term influence on the rumen microbial ecology 

subsequently established in new-born cattle.   

4.  Feed additives such as antibiotics will reduce the incidence of acidosis through the 

bacterial ecology established in the rumen during any grain introduction. 

5.  Feeding grains with low starch content e.g. lupins or soybeans will not predispose 

ruminants (sheep in this instance) to acidosis.    

6. Fibre utilising rumen bacteria (Fibrobacter succinogenes) populations will 

decrease during grain feeding and any associated reduction in rumen pH. This 

supports the finding of Tajima et al. (2001)  were the F. succinogenes population 

declined 3 fold in day 3 and 57 fold in day 28 following a dietary shift form hay to 

grain. 

7. Lactic acid utilising rumen bacteria (Selenomonas ruminantium) populations will 

increase with an increase in the grain component of the diet. 

8. Prevotella ruminicola will be the most prevalent bacteria in the rumen during 

dietary transition. This is expected as the bacterium is known to be predominant in 

the rumen following shifts from hay to grain (Tajima et al., 2001). 

9. Streptococcus bovis will increase significantly and possibly pathologically during 

introduction to grain-based diets. 



72 

 

10. If increases in Streptococcus bovis are linked with a decrease in ruminal pH, then 

Lactobacillus spp. will also increase significantly. 

11. Metabolic changes in the rumen can be related to changes in the molecular ecology 

during dietary transitions in cattle and sheep.  

2  Materials and Methods 

2.1 Introduction 

This chapter describes in detail all instruments and solutions that were common to 

the collection of rumen and faecal samples from cattle. It also describes the general 

materials and methods that were consistent between the experimental chapters including 

techniques used to quantify the bacterial standards utilised in the qRT-PCR technologies 

and development and refinement of the qRT-PCR reactions utilised during this study. 

2.1.1 Collection of rumen, urine and faecal samples during field trips  

The following equipment and items were required and assembled to ensure all 

samples were collected consistently on each field trip. 

2.1.1.1 Equipment  

The equipment used included the following 

 Engel ® fridge/freezer for storage and transport at controlled low temperature for 

rumen and faecal samples 

 2 x metal pumps initially designed for collection of gastrointestinal samples from 

horses (plus spare seals) (Plate 1 (A)) were adapted for rumen collection 

 2 x metal mouth gags (40mm width x 400mm length) (Plate 1(B)) 
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 2 x 1.5m length x 20mm diameter rumen sampling tubes with each of the ends 

sanded to produce smooth surfaces, to reduce the chance of oesophageal damage 

(Plate1(D))  

 Brass attachment assisted sampling tubing for sampling drops into rumen contents 

at a representative location (Plate 1(C)) 

 2 x 10L buckets to wash sampling equipment between collections from each animal 

 2 x Gilson auto pipettes; 1000µl and 5000µl for dispensing rumen samples 

  Transportable aluminium table [1.2 m x 0.8 m] for use in cattle yards 

 Arlec top-pan electronic scales to weigh faecal samples (1kg, 5g increments)  

 Portable Orion pH meter – Model 250A with TPS pH ORP and reference electrode 

(Brisbane, Australia) to measure rumen pH. 

Consumables 

 Pipette tips for pipetting rumen fluid into protozoa vials (1000µl tip ends had been 

cut off 1 to 2 mm from the end, allowing for excess fibrous material to be 

dispensed) 

 20L of fresh tap water 

 Latex gloves and long sleeve, pregnancy examination gloves 

 10mL centrifuge tubes labelled for samples collected from each animal 

 5mL screw top storage vials for collection and storage of protozoa 

 M
c
Cartney tubes labelled for faecal samples 

 Permanent marker pens (black) for vials 

 Sterile, deionised water (sterilised each field trip) ensuring no additional bacterial 

growth not related to the faeces in the M
c
Cartney tubes 

 0.1M sulphuric acid (sterilised for each trip) to stop metabolic activity in faecal 

samples 
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 Standard buffer solutions (pH 4, 7 and 10) used to standardise the pH meter prior to 

use on each field trip. These were tested prior to each field trip and replaced as 

necessary. 

All vials were pre-weighed and spare vials were taken.  

2.1.1.2 Labelling of vials 

Collection identification included location, date and sample type and animal tag 

number and sample number. These were printed onto self-adhesive labels and placed onto 

the vials. If the vials were to be placed in a -80
o
C freezer for any length of time, then sticky 

tape was placed around the label to ensure they remained secure. 

All samples collected on field trips were dispensed into 10mL clip-top, plastic 

centrifuge tubes, then centrifuged at 2000 rpm for 3 minutes in a bench-top centrifuge, 

after which the supernatant was then dispensed into 5mL polypropylene vials using Pasteur 

pipettes. All vials were labelled with: 

 The property name (e.g. Manton) 

 The date the samples were taken 

 The day this was from the first day of sampling e.g. 0,3,7,14 or 21  

 The samples for analysis that was to be carried out  

o DNA extraction 

o D-lactate 

o L-lactate 

o Volatile fatty acids 

o Ammonia assays 

o Spare sample. 
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Protozoal vials were labelled with an A or B both on the vial body and the lids 

(using black permanent marker pen); this was important as they were weighed prior to the 

field trip to calculate the correct dilution factors using the final weight was taken. 

2.1.1.3 Rumen sampling of cattle  

 Rumen samples were taken from cattle via stomach tubes. A metal gag was placed 

in the mouth of the cattle and then a 1.5 m tube with a brass attachment on the sampling 

end to strain excess fibrous material from the sample and drop to the lower point in the 

rumen to reduce saliva contamination. This was inserted through the gag, down the 

oesophagus and into the rumen slowly while waiting for the swallowing reflex to assist 

passage and thus to protect against forcing the tube.  A metal pump (Plate 2.1(A)) was then 

used to draw rumen fluid through the tube.  The tubing was pinched off to ensure that the 

rumen sample did not run back into the rumen or lungs.  The tube and gag were removed 

slowly to ensure that the oesophageal lining was not damaged. The rumen fluid was then 

dispensed into a plastic 100mL beaker. 

 

A 

B 

C 

D 
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Plate 2.1: horse pump (A), metal gag (B) and brass attachment (C) on plastic sampling 

tubing (D) [20 mm diameter x 1.5 m length] 

2.1.1.4 Rumen pH 

The rumen samples were placed into   plastic beakers and the pH measured 

immediately in the field using an Orion portable pH meter model 250 A (Thermo Electro 

Corporation, Ohio USA) with a TPS pH ORP and reference electrode probe.  

2.1.1.5 Handling of rumen samples 

 The rumen samples from each animal were dispensed into two or three, 10 mL 

centrifuge tubes and then placed in an Engel® freezer at -10
o
C for transport in the car. 

These samples were transported back to the Murdoch University laboratory and 

centrifuged on a cool spin centrifuge for 3 min at 800 x g.  They were then dispensed into 

5 mL polypropylene tubes that would be used for analysis of D (-) - and L (+)-lactate, 

bacterial DNA extraction, ammonia and volatile fatty acid (VFA) analysis and stored at -

80 
o
C. 

2.1.1.6 Depigmentation of rumen fluid for lactate assays 

Rumen fluid was depigmented for use in L (+) - lactate and D (-)-lactate assays. This 

is achieved by placing 0.5 mL of 0.15 M barium hydroxide into a 2 mL microcentrifuge 

tube. One millilitre of the spun down rumen fluid and 0.5 mL of 5 % zinc sulphate was 

added, and the mixture mixed thoroughly. The tube was allowed to stand for 5 min and 

then spun down in a microcentrifuge (Sigma 113, Germany) for 7 min at 5 000 x g. The 

supernatant was then removed using a Pasteur pipette and placed into a 2 mL 

microcentrifuge tube for assay analysis. 
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2.2 Phenotypic measurements 

2.2.1 Faecal samples 

2.2.1.1 Scoring faeces 

Faeces were scored using the 5-point scoring system developed by Bramley, (2004): 

1. Firm cowpat, well formed, no evidence of excessive liquid component. 

2. Less formed than above but still holding shape, may contain some whole grain. 

3. Softer less formed and evidence of more liquid may contain grain. 

4. Minimal formation of cowpat on ground may contain grain. 

5. No formation of cowpat on ground, scouring on ground as cow walks, may contain 

grain. 

2.2.1.2 Collection of faecal samples  

 Samples of faeces were taken directly from the rectum using long examination 

gloves and placed into a clean, plastic beaker. Samples were into two 30 mL M
c
Cartney 

tubes, 5 g of faecal matter dispensed with 8 mL of sterile deionised water into each tube.  

The pH was then measured using a portable pH meter (Orion portable meter model 250) 

calibrated using pH 4.0, 7.0 and 10 standards.  One millilitre of a 5% glucose solution was 

added to one faecal sample and this was then incubated at room temperature for 2 hrs.  

Then a 26.5-gauge needle was used to puncture the lid of the McCartney tube to release 

any accumulating pressure due to gas production. The contents were then incubated for a 

further 20 hrs at 37 
o
C and pH was remeasured.  One millilitre of 0.1M sulphuric acid was 

added to the second McCartney tube which was then frozen for later analysis of D-lactate. 
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2.2.1.3 Depigmentation of faecal samples 

Faecal samples were defrosted and mixed. The McCartney vials were then emptied 

into 10 mL clip top centrifuge tubes. These were then spun down at 500 x g for five 

minutes, 5 mL of the supernatant was removed and placed into another 10 mL centrifuge 

tube with1mL of 0.15 M barium hydroxide and left to stand for 5 min. Then 1 mL of 5 % 

zinc sulphate was added, and mixed thoroughly. These samples were then spun down again 

at 500 x g for 5 min. The supernatant was removed immediately and placed into 5 mL 

polypropylene vials for use in the assay. 

2.2.2 Rumen and Faecal L-lactate and D-lactate 

 Both L- and D-lactate concentrations were measured in the spectrophotometer 

Shimadzu UV 1201 using end-point assay at 340 nm.  Both lactate assays were adapted 

from (Brandt et al., 1980).  The rumen fluid was depigmented as outlined in 4.2.1 prior to 

assay.   

 The quantities are outlined in appendix 8.1. The standards were set up in duplicate 

and samples were set up in triplicate. The samples were set up in disposable cuvettes 

Sarstedt curvettes (cat no D 51588, Nümbrecht, Germany). The assay was set up in the 

quantities as outlined with the addition of lactate dehydrogenase (Roche cat no 127876) for 

L (+) lactate analysis or D (-) lactate dehydrogenase (Roche, cat no 11585436001) for D (-

) lactate analysis. The cuvette was then covered with Para film and mixed; reading was 

then taken in the spectrophotometer at 340nm. Then 5l of the required the specific form 

of lactate dehydrogenase depending on whether D or L lactate was being analysed, was 

added and mixed again and left for 2 hrs. The cuvettes were placed in the 

spectrophotometer for a second reading at 340 nm.  
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2.2.3 Rumen ammonia 

Samples for ammonia analysis were dispensed as in 2.3.2 and stored at -80 
o
C. They 

were then analysed as outlined in appendix 8.2 using Boehringer Mannheim ammonia kit 

(cat. No. 125857 (19 x 2.0mL). 

2.2.4 Volatile fatty acid analysis 

 The samples were defrosted and 1mL of the rumen fluid was then placed into a 

2mL microcentrifuge tube. The pH was adjusted to less than pH 3 using a drop of 

concentrated sulphuric acid to maintain the protonated form of the volatile fatty acid. 

These samples were then frozen in a -20
o
C freezer and taken on ice to The Western 

Australian Department of Agriculture and Food animal health laboratory and submitted for 

analysis. They used the procedure of Analysing Fatty Acids by Packed Column Gas 

Chromatography (Appendix 8.3). 

2.2.5 Protozoa counts 

2.2.5.1 Preparation of rumen samples 

Five mL polypropylene vials were weighed and then 1 mL of formal saline was 

added and then each vial was re-weighed.  When the rumen samples were collected, 1 mL 

was placed into its corresponding vial and the vials re-weighed. This enabled the weight of 

the rumen sample to determine the dilution factor. 

2.2.5.2 Counting protozoal samples 

 The rumen samples were counted using an Olympus microscope CX31, (Tokyo, 

Japan) on 40x magnification under a counting chamber 1/400mm
2
 and a depth of 0.1mm, a 

counter was used to quantify the numbers protozoa in the sample. 
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2.2.5.3 Running gels from PCR product (2% agarose) 

 Agarose gels were run at 2% agarose using Sigma Agrose (A9539-10G) 1 g of 

agarose to 50 mL of 1x TAE buffer.  The machine BioRad Powerpac 300 (California, 

USA) was run at 80 V for 60 minutes. 

2.3 Development and validation of molecular techniques 

Quantitative real time PCR (qRT-PCR) can be used as a method to quantify bacterial 

cell numbers in complex environmental samples (Stevenson and Weimer, 2007b). This 

methodology assumes copies of the targeted gene are present in every bacterial cell, and 

part of that gene can be copied through appropriately designed primers.  The total number 

of copies of amplified product produced within a fixed number of cycles is directly 

proportional to the number of copies present in the starting sample.  The total copy 

numbers are then compared to a dilution series of standards for that bacterial species.   

Verification of the qRT-PCR process therefore requires another standard that can be 

compared on a cells/mL basis. One methodology for absolute counts of bacterial cells 

(cells/mL) in a sample is the Coulter counter method which works on the principle that as a 

particle passes through a fixed aperture, it changes the resistance of the two electrodes 

located on either side of the aperture. This resulting voltage pulse is proportion to the size 

of the particle and is counted (Swanton et al., 1962).  This requires that a standard 

suspension of bacterial cells is diluted in series. This standard will then allow the 

extrapolation of a cells/mL value in the qRT-PCR methodology. This methodology was 

utilised to determine the relationship between readings of cells/mL on a Coulter counter 

and the absorbance reading assayed using 600nm wavelength on a spectrophotometer.  

These relationships will then be used as reference points for the enumeration of cells 

during qRT-PCR on a cells/mL basis.  
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The next step requires a consistent extraction of DNA, the main difficulty in 

extracting DNA from mixed ruminal contents  was the high concentration of organic 

matter in the form of plant material and by-product feeds, making extraction and 

purification of DNA from whole rumen contents difficult (Stevenson and Weimer, 2007b).  

Validation of a standard methodology required consistent extraction of DNA from both 

standard bacterial cultures and bacteria in rumen samples.  
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2.3.1.1 Cultivation of pure cultures of rumen bacteria 

Pure cultures of each bacterial species were established in carbohydrate medium (M 10) 

based on rumen fluid as outlined in Appendix 8.4. The bacteria were cultured by 

inoculating 0.5 mL of the pure culture, using a 1 mL syringe and 16.5 G needle, into 10 

mL of M 10 rumen fluid medium, stored overnight at 39.7 
o
C inside the anaerobic chamber 

and then cultured for at least 1.5 days to 2 days depending on growth rate of each bacterial 

species e.g. F. succinogenes grew at a slower rate than S. bovis.  Samples (2.5 mL) from 

each primary culture of each species were maintained and stored in 2.5 mL of rumen fluid 

medium, glycerol mix cryoprotectant (Appendix 8.5) at –20 
o
C and also –80 

o
C. 

Subsamples were removed and used as needed.  All subsequent samples for establishing 

pure cultures were sourced from these stored cultures to ensure that each strain was always 

obtained from the same source and not grown in a continuous culture, reducing the chance 

of cross contamination. Lactobacillus spp. was sourced from The University of Western 

Australia and grown in their carbohydrate-based media (M 10) made from the same 

protocol as used at Murdoch University laboratories. However, all of these cultures were 

grown in the laboratories at UWA using the same equipment rather than at Murdoch 

University to comply with the Australian Quarantine Inspection Services (AQIS) 

regulations.  

Table 2.1 Pure bacterial cultures used in this study and used for enumeration outlined in 

the following table.   

Bacteria Strain Source 

Fibrobacter succinogenes ssp. succinogenes S 85 CSIRO, Livestock Industries, Brisbane 

Streptococcus bovis S 5 University of Queensland, Gatton campus 

Selenomonas ruminantium JW 13 CSIRO, Livestock Industries, Brisbane 

Lactobacillus spp. YE 07 University of Western Australia 
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Prevotella ruminicola 23 CSIRO, Livestock Industries, Brisbane 

 

 The inoculation of each bacterial species was undertaken in an anaerobic chamber 

[198cm x 81cm x 102cm] equipped with two pairs of gloves, and one airlock (Coy Lab 

product number 12430 and Coy incubator model number 77, Michigan, USA) (Plate 3.1).  

The atmosphere inside the anaerobic chamber was kept anaerobic at approximately 96% 

carbon dioxide and 4% hydrogen (Hamdorf, 1998).  However, no gas meter was available 

to measure exact gas concentrations within the chamber, so proportions of carbon dioxide 

and hydrogen could not be confirmed.  

 

Plate 3.1 Coy anaerobic chamber in operation, Murdoch University Laboratory. 

2.3.1.2 Quantification of rumen bacteria 

 The pure cultures were the source of standards for quantification on a cells/mL 

basis by qRT-PCR. There were three steps in this process: firstly, calculating cells/mL of 

bacteria present in both pure cultures through the Coulter counter and the possible 
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relationship to the turbidity measurement. Secondly extracting the DNA from pure cultures 

for use as standards and from the bacteria mixture in the rumen samples in qRT-PCR then 

thirdly comparing the results from the qRT-PCR from standard curve of pure cultures and 

the mixed populations in the rumen samples with the corresponding Coulter counter results 

to determine the cells/mL of that particular bacterial species in the rumen samples taken 

from cattle or sheep. 

2.3.1.3 Enumeration of bacteria  

 After rumen bacteria were cultured for a period of up to 48 hours, the concentration 

in cells/mL of bacteria present in the culture was determined using the Beckman 

Multisizer
TM

 Coulter Counter® (California USA). This cell concentration was then 

correlated with a turbidity reading in a spectrophotometer at 600 nm.  These two 

determinations of cells/mL were both undertaken prior to DNA extraction. The remainder 

of the sample of pure culture that had been put through the Coulter counter was frozen and 

used later for DNA extraction and subsequent used as a standard in qRT-PCR. 

2.3.1.4 Turbidity of rumen bacteria measured spectrophotometrically 

 Rumen bacteria were cultured in Hungate tubes (Bellco Biotechnology, New 

Jersey, USA. Hungate tubes catalogue number 2047-16125), kept in anaerobic chambers at 

Murdoch University laboratories or in the case of Lactobacillus spp. after the appropriate 

incubation period at UWA was transported to CSIRO Centre for Mediterranean 

Agriculture at Floreat, Western Australia.  

 Absorbance was measured in a visible range spectrophotometer (Jenway 6300, 

Staffordshire, UK) set at wavelength 600 nm, zeroed against water.  The reading of a 

culture medium blank from the same batch of medium in which the bacteria had been 

cultured was taken in each set of assays and then subtracted from each sample reading of 
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the pure cultures to account for any variation in the turbidity of the culture medium. The 

pure cultures and uncultured media were used in a series dilution to 1 mL total volume, 

starting with 1 mL of pure culture, then 0.9 mL of pure culture reducing by 0.1 mL 

increments and topped up to 1 mL with distilled, carbon filtered water in 2mL disposable 

cuvettes. Paraffin wax paper was placed over the cuvettes after which they were inverted 

three times prior to being placed in the spectrophotometer (600 nm).  Additional serial 

dilutions of the pure culture were undertaken in an attempt to generate readings at 

increments of 0.1 absorbance unit, this was necessary for all pure cultures. The absorption 

values of the series dilution of the culture medium were subtracted from the corresponding 

pure culture series dilution to ensure an accurate net absorption value. After each reading 

was taken on the spectrophotometer, the same samples were then passed through the 

Coulter counter to determine the cells/mL.  

2.3.1.5 Enumeration of rumen bacteria in the Coulter counter 

 The enumeration involved the calibration of the Beckman Coulter counter machine 

using 2m beads (Beckman part number 6602792, California, USA). 

The bacterial enumeration in the Coulter Counter was performed on 200 µl samples of 

bacterial culture diluted to 50 ml in 0.5% ultrafiltered formyl-saline run in triplicate for 

each bacterial culture until the readings were within 1% of each other.  Formyl-saline and 

culture medium were used as assay blanks.  

 The dilution factors for samples placed in the spectrophotometer and the counter 

(diluted with ultra-pure formal saline) were calculated and the measurements were 

averaged and multiplied by these dilution factors. This then resulted in a cell per mL value 

for the rumen bacteria cultured in the Hungate tubes. 
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2.3.1.6 Extraction of DNA 

Consistency and repeatability was achieved through empirical testing and refinement of 

DNA extraction techniques used on rumen samples from cattle and sheep. DNA extraction 

using bead beater method S. Denman, CSIRO Brisbane (pers comm.) 

There were no modifications made to the protocol developed by Dr S. Denman.  This 

protocol was utilised throughout the thesis as it resulted in the most consistent and 

complete extraction of pure cultures and mixed rumen population samples. 

1. Using a 1mL pipette transfer 1.5mL rumen fluid into a 2mL flat bottom tube 

(put in details screw top flat bottom with seal) containing a mix of 0.1mm (Cat 

# 11079101Z) and 1mm (Cat # 11079110Z) diameter sterile zirconium beads 

(Daintree Industries Pty Ltd, Tasmania, Australia). Spin for 5 minutes at 14,000 

x g (approx. 14800 rpm). 

2. Discard the supernatant. Resuspend the pellet in 1000µl cell lysis buffer, 100µl 

potassium acetate solution, 100µl ultrapure water. 

3. Placed into a Mini-bead beater (Biospec Products, Bartlesville, OK, USA) and 

shaken vigorously for 2 minutes on level 4.5. 

4. Place at 70
o
C for 2 minutes. 

5. Spin at 20
o
C for 15 minutes at 14 000 x g (approx 14800 rpm) 

6. Transfer 300µl of supernatant to a new tube and add 300 µl of glass milk. Mix 

on a rotating table for 5 minutes. 

7. Spin at 10 000 x g for 1 minute, discard supernatant. 

8. Add 500µl of cold ethanol wash. Vortex and spin at 10 000 x g (10 600 rpm) 

for 1 minute and discard supernatant. 

9. Final spin for 20s to remove residual ethanol. 
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10. Add 110µl deionised water. Vortex and spin 10 000 x g (approx. 10 600 rpm) 

for 1 minute and transfer 100µl of supernatant to new tube. 

Reagents and materials required 

Cell lysis buffer 

0.2% SDS (Sodium Dodecyl Sulphate) 

100mM Tris-HCl 

5mM EDTA (Ethylenediaminetetra acetic acid disodium salt) 

200mM NaCl 

 

Potassium acetate solution 

29.44g potassium acetate 

11.5mL glacial acetic acid 

Preparation 

Dissolve 29.44g potassium acetate in 70mL double distilled (dd) water. Add 11.5mL 

glacial acetic acid and make up to 100mL with dd water. pH should be ~ 5.5-6.0. 

Cold ethanol wash 

70% ethanol (keep at -20
o
C) 

Binding matrix (glassmilk) 

5g silicon dioxide (0.5-1.0µm diameter; sigma cat # S5631) 

50mL 3M Guanidine isothiocyanate 

Preparation 

Suspend 5g silica in 50mL water. Centrifuge at 2000 x g (approx. 2120 rpm) for 5 

minutes. Discard supernatant. Resuspend in water to a volume of 50mL. Adjust pH below 

7 using 2µl concentrated HCl (Silica should start to precipitate). Leave to sediment for 2 

days and discard supernatant. Repeat sedimentation process twice. Centrifuge at 3000 x g 
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(approx. 3180 rpm) for 5 minutes and remove residual water with pipette. Resuspend silica 

pellet in 30mL of 3M guanidine isothiocyanate. Check pH is approximately 6-6.5. 

2.3.1.7 Quantification of DNA 

DNA was quantified by measuring absorbance at three wavelengths (260nm, 280 

nm and 320 nm) using a UV-visible spectrophotometer (Shimadzu UV mini 1240, Kyoto 

Japan). Ideally, absorbance readings at 260nm ranged between 0.15 and 1.0.  After 

measuring absorbance at wavelength 280 nm, the ratio (Absorbance260 

nm/Absorbance280 nm) should fall between 1.6 and 2.0 for purity.  Values outside this 

range were an indication of contaminates and high concentrations of protein in the 

extracted sample, both of which can influence the qRT-PCR outputs.  Any contamination 

of particulate matter in the sample can be confirmed by the absorbance at 320nm. 

 For quantification, 40 µl of the extracted DNA and 160 µl of 10 mM Tris HCl, pH 

8.5 was pipetted into a semi-micro quartz cuvette. The solutions were gently mixed 

through the pipette tip and then gently tapped on the bench top to ensure that no air 

bubbles were present in the sample which can influence absorbance readings. 

2.3.1.8 Statistics 

 For each bacterial species cultured, a linear regression between the Coulter counts 

and turbidity (spectrophotometer reading at 600 nm) values for each dilution sample was 

fitted using the data analysis toolpak in Excel. If there was a strong relationship signified 

by a significance level less than 0.05 and an R
2
 value close to 1, then this linear equation 

was used to determine the cells/mL for each bacterium in future cultures for DNA 

extraction. 

Table 2.2 Linear regression relationship between Beckman Coulter counts for each 

bacterium, significance values (P value) and coefficients of determination (R
2
) 
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Bacteria P-value R
2
 

Selenomonas ruminantium JW13 0.260 0.95 

Prevotella ruminicola 23 0.103 0.99 

Fibrobacter succinogenes S85 0.087 0.94 

Streptococcus bovis Sb5 0.059 0.96 

Lactobacillus acidophilus YE07 0.087 0.98 

 

It was noted in the culturing of the bacteria F.succinogenes, a cocci shaped 

bacteria, that prolonged culture of the bacteria resulted in clumping which tended to block 

the aperture of the Coulter counter. Also the pure bacterial culture of S. bovis clumped 

during time of culture and therefore, culturing time was decreased as this seemed to reduce 

the incidence of clumping decreasing the potential for miscounting of the bacteria due to 

blocking of the aperture of the Coulter counter.  

2.4 0ptimisation of Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) 

Assays 

This section of the materials and methods outlines the importance of two stages in 

the development of the qRT-PCR reaction to quantify bacteria in the rumen samples taken 

from cattle and sheep under various feeding regimes.  Firstly, the enumeration of bacterial 

populations was assessed and standards for bacterial quantification developed to be used in 

a qRT-PCR reaction.  Secondly methods for the extraction of DNA were developed for 

these standards and rumen samples so that there was confidence that DNA extraction was 

optimised from these standards. This then allowed for quantification of rumen samples for 

this study. The qRT-PCR methodology was chosen for this study as it can be used to 

sensitively quantify absolute abundance of rumen microbes (Deng et al., 2008) with 

reproducible results (Mackay, 2004; Reilly et al., 2002). The 16S ribosomal gene is a 
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widely used targeted gene to quantify bacteria in the area of rumen microbiology (Denman 

and McSweeney, 2005) therefore primer design was based on this for the research project. 

 This chapter outlines the optimisation of qRT-PCR assay conditions to extrapolate 

known cells/mL from the standard to unknown bacterial populations in the rumen samples.  

In addition, this chapter outlines the procedures for evaluating some published primers 

published in the literature by Tajima et al. (2001) and new primers designed for this study 

to quantify targeted bacterial species in terms of cells/mL. Subsequently, these primers 

formed the basis for the optimisation of qRT-PCR assay conditions for temperature cycles, 

and primer concentrations and DNA concentrations, using a Corbett Rotorgene 3000. The 

development of standards was important to ensure that the bacteria cultured in this study 

were truly representative.  Previous work by (Nadkarni et al., 2002) showed that a DNA 

standard was important to ensure a more accurate determination of the total bacterial load 

due to variations in the 16S rDNA copy number with the ability to allow calculation of the 

amount of template present in the sample (Mackay, 2004).  

Quantitative analysis was performed using a Corbett Rotorgene 3000 (now owned 

by Qiagen), Concorde NSW, Australia to quantify the relative abundance of the 16S rRNA 

genes of Prevotella ruminicola, Fibrobacter succinogenes, Selenomonas ruminantium, 

Streptococcus bovis and Lactobacillus spp. (not analysed in all studies) and the total 

bacterial populations using primers outlined in Table 4.1.  The quantification of DNA from 

each sample was performed using the Qiagen Quantitect™ SYBR® Green PCR kit (Cat no 

1018379).  The standards and samples were assayed in 25 µl reactions with 12.5µl of 

master mix and the remainder ultrapure water and primers and 1µl of DNA template. 

Equipment  

 Eppendorff Multicycler, Hamburg Germany 
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 Corbett Rotorgene 3000 – 72 well system, Corbett Rotorgene (now owned by 

Qiagen), Concorde NSW 

 Eppendorff Automated pipette, Hamburg Germany. 

Consumables 

 Qiagen HotStarTaq master mix kit (cat no 1017657) 

 Qiagen Quantitect™ SYBR® Green PCR kit (Cat no 1018379)  

 Proligo primers desalted from Sigma (all diluted to 200 pica mole concentration) 

 200l tubes PCR flat cap thin walled fisher biotech (Part # 321-02-051) 

 200l tubes dome capped PCR tubes (Part # 3211-00) 

 100l tubes Corbett research 0.1mL tubes and caps (Part # 3001-002) 

 0.5-10 µl filter pipette tips maxymum recovery™ axygen (Part # 302-06-151) 

 300l filtered PCR clean pipette tips (Eppendorf TIPS Filter 20-300l Part 

#0030077083) 

 Promega 100bp ladder (Part #G210A), Madison USA 

 Promega 6x loading dye (blue/orange), (Cat # G1881), Madison USA. 

2.4.1.1 Primer design 

Primers were designed using public domain software programs to target specific 

bacterial species.  All primer sequences were based on the 16S rRNA gene region of the 

rumen bacterial DNA as they had the largest number of sequences for the rumen 

populations.  These 16s regions were searched through the GenBank 

(www.ncbi.nlm.nih.gov/genbank), to determine what sequences that were available for the 

16S rRNA gene regions of the specific bacteria being quantified. These sequences are then 

placed into a text file for further primer design.  Different strains were aligned and 

assessed using the Clustal program (Clustal W (1.4) big’n’Fat copy 1) [which is available 
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only on Mac computer systems] to determine the potential for cross reaction with the 

bacteria under investigation and any other spurious cross-reactions.  This process allowed 

resolution of the regions which were similar between the different bacterial 16S rRNA 

gene regions and consequently where a primer alignment may occur. Therefore, to select a 

region that was unique to a particular bacterium, the BLAST 

(www.ncbi.nlm.nih.gov/blast/Blast.cgi) program was searched to determine if alignment 

related to other bacteria or if it was specific to that bacterial species based on the sequences 

in the database. To test the bacterial primers the program, Amplify 3 version 3.1.4 

(http://engel.genetics.wisc.edu/amplify) was used.  Amplify 3 simulated the PCR reaction 

and tested the bacterial primer and determined if the chosen primer regions would anneal 

to the desired 16s rRNA genes region. In addition, Amplify 3 assessed the extent of any 

cross reacting between any of the bacteria as well as primer dimmers that may have 

occurred in the reaction of the bacterial DNA being quantified. Using this sequence of 

software assessment, primers were tested on all pure cultures to ensure that there was no 

cross reactivity when quantifying a particular bacterium. 

Three published primers (Denman and McSweeney, 2006; Tajima et al., 2001) 

were used as outlined in the results section (Table 4.1).  The primers in Table 4.1 were the 

final primers used as part of this study, but numerous other primers were extensively tested 

but not utilised for the final analysis of the samples in this study. 

2.4.1.2 Standards for qRT-PCR reaction 

Standard cultures for DNA extraction and primers were set up for each bacterium, 

with S. ruminantium also used as a standard for the total bacterial primer. Each bacterial 

culture was quantified on a cells/mL basis and the DNA extracted as outlined in chapter 3.  

The standard DNA solutions for each culture were diluted as follows (1:10; 1:100; 1:1000; 

1:10000; 1:100000; 1:1000000) for incorporation into the qRT-PCR reaction. 
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2.4.1.3 Development and validation of qRT-PCR reaction 

Contamination from spurious DNA was the main concern in establishing valid PCR 

analysis.  The primary requirement for setting up a qRT-PCR reaction was a Polymerase 

Chain Reaction (PCR) clean area in the laboratory, used only for PCR analysis.  The 

surrounding workbench area was cleaned with 80% ethanol and disposable laboratory 

matting was placed on the bench.  This matting was removed and disposed of after each 

PCR reaction setup. A seventy-two well holder for 0.1µl tubes was placed under UV light 

in the laminar flow for five minutes prior to setting up the PCR reactions to reduce the 

chance of cross-contamination. New latex gloves were used for each reaction setup.  

The master mix was made up of all solutions as outlined in table 4.3, minus the DNA 

content of the reaction. Twenty-four µl of the master mix was placed into each of the 

seventy-two, 100µl tubes. DNA was stored at -20
o
C, thawed and added to the reaction. 

Since the quantity of DNA added was only small (1 µl), the pipette tip was placed in the 

master mix and the mix was taken up and down through the pipette tube. The pipette tip 

was then touched on the side of the 100µl tube to ensure that all reaction reagents are left 

in the tube. All solutions are also mixed by the spinning motion of the Corbett Rotorgene 

3000.Each analysis consisted of a negative control, 6 standards also used as positive 

controls and triplicates of each experimental sample.  

2.4.1.4  Optimisation of reaction conditions 

The optimisation of qRT-PCR reaction conditions included the determination of the 

temperatures for dissociation, annealing and product extension and primer concentration. 

The aim was to optimise conditions for qRT-PCR to obtain a reaction efficiency as close to 

a value of 1 as possible (Corbett-Research, 2004). A value of one indicated that the 

reaction was working efficiently and that the conditions including temperatures, primer 
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concentration and DNA concentration were at optimum for the reaction. Reactions with 

efficiency of less than 0.98 were excluded and reanalysed. 

2.4.1.4.1 Annealing temperatures 

Primers were tested firstly using an Eppendorff multicycler looking at annealing 

temperatures that ranged 10
o
C either side of the Tm (melting point) for the respective 

primers. The PCR products were then run on 2% agrose, using the Qiagen HotStarTaq 

master mix kit (cat no. 1017657), as outlined in the chapter 2.10, general materials and 

methods. The agarose gels were then photographed under ultra violet to determine which 

of the regions was producing the highest fluorescence, indicative of  the region with the 

greatest amount of amplified DNA being present in that well. Each specific region 

corresponded to a temperature on the multicycler.  These amplifying temperatures were 

then used in starting to optimise the RT-PCR reactions. 

2.4.1.4.2 Melt curves/Dissociation curves 

Melt curves or dissociation curves were generated at 0.1 
o 
C increments to 95 

o 
C  to 

determine if there were any cross-reactions or different-sized PCR products (Corbett-

Research, 2004) being produced using the targeted primers. 

2.4.1.4.3 Primer concentration 

Various primer concentrations were tested in optimisation reactions evaluated 

through the reaction efficiency (i.e. close to one and greater than 0.98) on the Corbett 

Rotor gene 3000.  All of the primers were diluted in a laminar flow to 200 pica moles 

concentration before being put in the reactions at the appropriate concentrations. 
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2.4.1.5 Determination of cells/mL in experimental samples 

A set of standard dilutions, quantified as cells/mL were programmed into the settings 

on the Corbett Rotorgene 3000 (Corbett-Research, 2004). From this a standard curve was 

generated requirement of an R
2
 value close to one and reaction efficiency of great than 

0.98.  The standard curve allowed the Corbett Rotorgene program to extrapolate the 

concentrations in cells/mL in the rumen samples during the qRT-PCR reaction.  

 

Table 2.2 Forward and reverse primers developed and utilised during qRT-PCR for 

analysis of rumen samples. 

Bacteria 

targeted 

primer 

Forward Reverse Ampl

icon 

Size 

Source 

Prevotella 

ruminicola 

GGTTATCTTGAGTGAGTT* GGCCGCTCACAGTATATCG 211 *(Tajima et 

al., 2001) 

Lactobacillus 

spp. 

CGTTCCCTTCGGGGAC CACCTTCCTCCGGTTTGTCA 162 This study 

Fibrobacter 

succinogenes 

GTTCGGAATTACTGGGCGTAAA CGCCTGCCCCTGAACTATC 121 This study 

Streptococcus 

bovis 

CTAGCGGGGGATAACTATTGG GTGCACTTTCCACTCTCTCACAC 345 This study 

Selenomonas 

ruminantium 

CGTGATGGGATTGAAACTGTC CTCCGGCACAGAAGGGGTCG 236 This study 

Total Bacterial 

primer 

CGGCAACGAGCGCAACCC# CCATTGTAGCACGTGTGTAGCC# Approx 

145 
#(Denman 

and 

McSweeney, 

2006) 

(*# indicates published primers) 

 

The reaction conditions that allowed for improved reaction optimisation, when 

analysed using a Corbett Rotorgene 3000, are shown in Table 4.2. 

 

Table 2.3 Optimised reaction conditions for primers developed (Table 4.1) using a Corbett 

Rotorgene 3000. 

Bacteria Initial Number Annealing and product Final End of 
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targeted 

primer 

denaturation of cycles elongation reaction 

Prevotella 

Ruminicola 

95
o
C 15 min 45 95

o
C 15 

sec 

53
o
C 30 

sec 

72
o
C 30 

sec 

72
o
C for 

10 min 

14
o
C α 

Lactobacillus 

spp. 

95
o
C 15 min 45 95

o
C 15 

sec 

62
o
C 15 

sec 

72
o
C 15 

sec 

72
o
C for 

10 min 

14
 o
C α 

Fibrobacter 

succinogenes 

95
o
C 15 min 45 95

o
C 15 

sec 

62
o
C 60 

sec 

n/a 72
o
C for 

10 min 

14
 o
C α 

Streptococcus 

bovis 

95
o
C 15 min 45 94

o
C 15 

sec 

54
o
C 60 

sec 

n/a 72
o
C for 

10 min 

14
 o
C α 

Selenomonas 

ruminantium 

95
o
C 15 min 40 94

o
C 15 

sec 

52
o
C 30 

sec 

72
o
C 30 

sec 

72
o
C for 

10 min 

14
 o
C α 

Total 

Bacterial 

primer 

95
o
C 15 min 45 95

o
C 15 

sec 

60
o
C 60 

sec 

n/a 72
o
C for 

10 min 

14
 o
C α 

 

The concentrations of primer that consistently resulted in reaction efficiencies 

nearest to one are shown in Table 2.3. 

 

Table 2.4 Optimised concentrations of SYBR® Green PCR solution, primers, ultrapure 

water and DNA for RT-PCR reactions outlined in table 2.2 and 2.3 using a Corbett 

Rotorgene 3000. 

 Prevotella 

ruminicola 

Lactobacillus 

spp. 

Fibrobacter 

succinogenes 

Streptococcus 

bovis 

Total 

Bacterial 

Selenomonas 

ruminantium 

Quantitec™ 

SYBR® 

Green PCR 

solution (µl) 

12.5 12.5 12.5 12.5 12.5 12.5 

Forward 

primer (µl) 

1.0 1.3 0.75 0.8 0.4 0.75 

Reverse 

primer(µl) 

1.0 1.3 0.75 0.8 0.4 0.75 

Ultrapure 

water(µl) 

9.5 8.9 10.0 9.9 10.7 10 

DNA(µl) 1 1 1 1 1 1 

Total 25 25 25 25 25 25 

3 
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Changes in rumen parameters of cattle under commercial feedlot conditions 

during introduction to grain based diets. 

3.1 Introduction 

Introduction of grain-based diets during the first phase of dietary transition in 

feedlots can be problematic for cattle producers due to the incidence of ruminal acidosis 

and subclinical acidosis, usually associated with the unadapted consumption of a large 

amount of readily fermentable carbohydrates in the grain component of the ration.  Most of 

the previous research on the introduction of grain-based diets to cattle and sheep focused 

on the induction of ruminal acidosis under experimental conditions (Elam, 1976; Godfrey 

et al., 1994; Godfrey et al., 1995; Rowe et al., 1999; Al Jassim and Rowe, 1999; Horn et 

al., 1979; Slyter, 1976).  Nevertheless, extension materials developed by veterinarians, 

consultants, feed companies and government agriculture departments have used this 

experimental approach as the basis to provide practical information for producers about the 

likely incidence and progression of acidosis and possible feeding management to prevent 

or reduce the incidence of acidosis (Knee, 2006; Walker, 2006; Schwartzkopf-Genswein et 

al., 2003). Another consequence of the experimental approach was the recommendation of 

inclusion of antibiotic feed additives such as the virginiamycin and ionophores such as 

monensin, lasalocid, and narasin in grain-based diets for feedlot cattle.  Moreover, Lean et 

al (2007), using a combination of these studies of experimentally-induced acidosis and 

observations of cattle in feedlots, recommended the following feeding and management 

strategies for prevention or reduction of acidosis under commercial conditions:  

 Cattle should have access to hay on arrival to feedlot before induction 

 Inclusion of ionophores or virginiamycin at the recommended dose 

 The starter rations should not include more than 50% grain 
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 Cattle should be adapted to the diet slowly with changes grain concentration 

implemented gradually 

 Avoid fluctuating feed intake  

 Ensure rations are consistently mixed 

 Monitor the level of fines in the diet 

 Ensure there is enough roughage of sufficient chop length (mean 5-10cm long). 

More recently, Nagaraja and Nagamine (2007) have contrasted the amount of research 

concentrating mainly on experimentally-induced acidosis with the lack of corresponding 

studies to evaluate the strategies and consequences of grain-feeding under commercial 

feedlot conditions. 

Consequently, this study examined rumen function and physiology in cattle during the 

introduction of grain-based diets at two commercial feedlots that used two quite different 

feeding management strategies.  The first feedlot was located in a mixed farming region 

near Donnybrook in the South West of WA.  This feedlot fed grain and roughage 

separately and did not use antibiotics such as virginiamycin.  The second feedlot, located 

in the wheatbelt of WA, fed grain and roughage as a total mixed ration with incorporation 

of virginiamycin from introduction until day eleven of feeding.  While the feedlots had 

distinct differences in feeding strategies, we also aimed to monitor any incidence of 

ruminal acidosis, and other rumen and faecal parameters such as rumen pH, D- and L-

lactic acid, volatile fatty acids, and faecal scoring under these commercial conditions.  

Another point of difference with previous studies was the use of RT-PCR to monitor 

changes in the molecular ecology of the rumen bacterial populations during introduction to 

grain diets under commercial conditions.   

The following parameters and observations assessed during this study were: 
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1. Monitor changes in rumen ecology and metabolism in cattle fed under commercial 

feedlot conditions were hay and grain were fed separately in one feedlot and 

another fed as a TMR in another feedlot. 

2. The addition of any feed additive such antibiotics or ionophores will reduce the 

incidence of acidosis through the bacterial ecology established in the rumen during 

any grain introduction. 

3. Fibre utilising rumen bacteria (Fibrobacter succinogenes) populations will 

decrease during grain feeding or any associated reduction in rumen pH. 

4. Lactic acid utilising rumen bacteria (Selenomonas ruminantium) populations will 

increase with an increase in the dietary grain component. 

5. Prevotella ruminicola will be the most prevalent bacteria in the rumen during 

dietary adaptation. 

6. Streptococcus bovis will increase significantly and possibly pathologically, during 

introduction to grain-based diets. 

7.  If increases in S bovis are linked with a decrease in ruminal pH. 

8. Metabolic changes in the rumen can be related to changes in the molecular ecology 

during dietary transitions in cattle and sheep. 

3.2 Materials and Methods 

3.2.1 Feedlot one  

Feedlot one was a property operated by Mr John Fry in the Donnybrook region of 

Western Australia (389111.06E; 6275931.14N). Cattle were monitored in the feedlot from 

early December, which utilised a feed management regime of grain and roughage fed 

separately. The first group of cattle were purchased at saleyards, so no previous 

background information on dietary history was available. Another group of cattle were also 
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introduced into the feedlot herd throughout the sampling period from other properties 

commissioned to ‘background’ the cattle i.e. establish a consistent, low rate of growth, 

usually about 0.6 kg LW per day.  Therefore the randomly sampled cattle being monitored 

were at different stages of introduction right from the first sampling. No virginiamycin or 

other feed additives was incorporated into the dietary regime in this feedlot. 

3.2.1.1 Sampling of cattle  

Eight animals were initially selected at random for continuous monitoring within 

the herd. Another eight animals were randomly selected sampling day to assess any impact 

on the rumen population of the rumen sampling technique itself.  Rumen and faecal 

samples were collected from each of these sixteen animals on days 0, 2, 7, 14, 21 and 50 

from day of introduction to their diets by methods outlined in chapter 2.3. Cattle were not 

kept off food or water prior to sampling. 

3.2.1.2 Feeding regime  

Cattle on the Fry property were fed once daily on a diet consisting of pasture hay 

(fed as hay bales in a bunker) and a grain mixture fed separately in self-feeders. The diet 

aimed to supply 32% roughage throughout the feeding period with a variation in the grain 

mixture as outlined in table 3.1 with a reduction of oats over time and increasing barley, 

while lupins were kept constant at 10% of the ration (Table 3.1). 
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Table 3.1 Changes in the grain component of a mixed grain (68%) and pasture hay (32%) 

ration fed separately but ad libitum without incorporation of virginiamycin near 

Donnybrook. 

Day from introduction Grain Type Percentage of ration 

0-4 Lupins 

Barley 

Oats 

10 

20 

70 

4-7 Lupins 

Barley 

Oats  

10 

40 

50 

7 onwards Lupins  

Barley  

Oats 

10 

75 

15 

  

The pasture hay was 61.8% dry matter digestibility with 8.9 MJ ME/kg DM and 

7.8% crude protein while the final grain component of the ration was 80.8% dry matter 

digestibility with 11.7 MJ ME/kg DM and 16.0 % crude protein. 

3.2.2 Feedlot Two 

 Feedlot two was a property near Yealering (559613.84 E; 6405783.83 N), operated 

by Alan and Kelly Manton.  The cattle were placed into the feedlot in March after being 

backgrounded on tagasaste (Chamaecytisus palmensis) and stubbles. Wheaten straw 

(chopped to approximately 10 cm in length) and grain was milled in a Renn roller and 

mixed in a Supreme 400 tub grinder with the inclusion of virginiamycin as Eskalin
TM

 

marketed by Pfizer animal health at the recommended dose of 0.1% of the total mixed 

ration for eleven days from introduction.  The resultant total mixed ration was then offered 

in feed troughs.  
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3.2.3  Sampling of cattle 

 Samples of rumen fluid and faecal matter were collected from two groups of eight 

animals each. One group was sampled for the duration of the study while another set of 

samples was taken from eight steers randomly selected from the herd at each sampling. 

Sampling of cattle selected randomly at each collection was undertaken to determine if 

sampling itself impacted on the rumen microbial population. 

 Cattle were sampled after feeding from approximately 8 am on the sampling days. 

Cattle were brought straight into the yards with no time off feed or water. Sampling 

methodology is outlined in the general materials and methods section (2.4.2) 

3.2.3.1 Feeding regime 

Cattle were fed a total mixed ration made daily on farm, based on the rations below 

at approximately 6-7am each morning (Table 3.2). 

 

Table 3.2 Composition of a total mixed grain based ration fed ad libitum with 

virginiamycin in Yealering feedlot. 

Day Lupins 

(%) 

Barley 

(%) 

Wheat 

Straw 

(%) 

Lime 

(%) 

Minerals (%) Virginiamycin 

included 

1-14 12.3 30 56.6 1 0.1 Yes# 

14-28 15 37.6 46.3 1 0.1 No 

28-32 15 45 39 1 0.1 No 

52-54 16 51 32 1 0.1 No 

# Virginiamycin was fed until day 11. 

 The dietary components feed quality are hay at 47.3% dry matter digestibility and 

6.5 MJ ME/kg DM and 3.3% crude protein, lupins were 91.4% dry matter digestibility, 

13.4 MJ ME/kg DM and 35.1% crude protein. While the barley grain component of the 
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ration was 80.7% dry matter digestibility (DMD) with 11.7 MJ ME/kg DM and 10.8% 

crude protein. 

3.2.4 Statistics 

All data from this study, except pH values and faecal scores, displayed log-normal 

distributions and were log-transformed (log10) prior to statistical analysis, with total 

bacterial population log-transformed to log100.  A linear mixed model which included a 

fixed effect comparing the randomly and continuously sampled groups, a fixed effect for 

sample date and an interaction between sample type and date was fitted to each variate 

using the REML procedure in GenStat (edition 14).  The model also included an 

autoregressive covariance structure between sample dates.  All fixed effects were tested 

using F-statistics or Wald statistics. If there was no significant difference between sample 

types (P<0.05) all samples were used to calculate averages at each sample date which were 

compared using 5% least significant differences (5% LSD). 

 Correlations between variates were compared to zero using a two-sided test. The 

matrix of correlations between logarithms of the counts of individual bacteria was used to 

construct a biplot which showed the relationships between bacterial counts and how 

sample counts varied across sample dates. 

3.3 Results 

The results are separated into rumen parameters including measurements that were 

traditionally used for estimates of rumen acidosis: rumen pH, rumen D- and L-lactate and 

volatile fatty acid concentrations, faecal measurements and then bacterial population 

changes using qRT-PCR. 
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3.3.1 Feedlot One 

 Feedlot one which fed the two component of the diet separately had no growth 

rates available during the sampling period. 

3.3.1.1 Rumen parameters 

 Rumen pH (Table 3.3) decreased from 7.1 to 6.7 (LSD 5%) from day 0 to day 3 for 

the continuously sampled group, returning to levels similar to day 0 on day 21 (Table 3.3). 

Only one steer had a rumen pH below six for two sampling periods (days 14 and 21). 

There were significant correlations between rumen pH and the rumen concentrations of L-

lactate (R=-0.49) (Figure 3.1) and acetic acid (R=-0.54) (Figure 3.1) (P<0.05) during the 

sampling period. 

 

  

 

 

Table 3.3 Rumen pH (±SEM) of steers (n=8) in feedlot 1 with hay and grain fed 

separately. Means (±SEM) with the same superscript are not significantly different 

(P<0.05) whereas values with different super scripts are significantly different (P>0.05). 

Day of 

sampling 

0 3 8 14 21 50 

rumen pH 7.08
a 

(0.13) 

6.70
b 

(0.15) 

6.69
b 

(0.11) 

6.61
b 

(0.18) 

6.84
ab 

(0.16) 

6.73
ab 

(0.10) 

field 

faecal pH 

6.00
a 

(0.00) 

6.77
b 

(0.11) 

6.85
b 

(0.10) 

6.78
b 

(0.12) 

6.81
b 

(0.13) 

5.88
a 

(0.17) 

post ferm 

faecal  pH 

4.98
a 

(0.14) 

4.81
ab 

(0.17) 

4.52
bc 

(0.11) 

4.77
abc

 

(0.13) 

4.93
abc 

(0.10) 

4.65
bc 

(0.11) 
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The faecal pH taken in the field increased from pH 6.0 to 6.8 with a steady decline 

until day 54, decreasing to pH 5.9. There was a significant correlation between the field 

faecal pH and total bacterial counts, P. ruminicola populations and acetic acid 

concentrations. The faeces were further fermented (Table 3.3) with glucose as outlined in 

chapter 2.2.4 to determine the ability of the food source to cause acidosis.  There was a 

significant decrease in faceal pH post-fermentation from a mean pH of 4.9 at day 0 to 4.5 

on day 8 (LSD 5%). There was then a significant increase to post-fermentative faecal pH 

4.9 by day 21 (similar to day 0). There was no significant correlation between post 

fermentative pH and any of their other rumen parameters measured. 

 

 Rumen L-lactate concentrations (Figure 3.1) remained low throughout the 

introduction period while steers were sampled. However, there was a significant difference 

in L-lactate concentration between days 3 and 7 over the sampling period (LSD 5%). The 

L-lactate concentrations were variable as shown by the large SEM for concentrations on 

day 14 and 21. There were correlations between rumen L-lactate concentrations (Figure 

3.1) and valeric acid (R=-0.34) (Figure 3.5) concentrations and rumen pH (R=-0.48) 

(P<0.05). 

 Rumen D-lactate concentrations decreased from day 0 (LSD 5%) to 7 of sampling. 

There was a correlation between D-lactate and propionic acid concentrations (R=0.42) 

(P<0.05) and S. bovis populations (R=0.30) (P<0.05) during the sampling period. 
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Figure 3.1 Rumen D and L-lactate concentrations (mean mM ± SEM) of steers (n=8) in 

cattle in feedlot 1with hay and grain fed separately with hay and grain fed separately.  

 Rumen total volatile fatty acid (VFA) concentrations increased from 76 mM to 109 

mM by day 3 (LSD 5%), then remained significantly high over the remainder of the 

sampling period (Figure 3.3). Total VFA concentrations were correlated to the F. 

succinogenes (R=37) (P<0.05) populations over the introduction period. 
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Figure 3.2 Rumen volatile fatty acid concentrations (mean ±SEM) in rumen of steers (n=8) 

on feedlot 1 with hay and grain fed separately hay and grain fed separately. Means ±SEM 

with the same superscript are not significantly different (P<0.05) whereas values with 

different superscripts are significantly different (P>0.05). 

Acetic acid concentrations in the rumen also followed a similar trend to total VFA 

concentrations (Figure 3.4), increasing significantly from 46 mM to 66 mM over the three 

sampling days (LSD 5%). There was a correlation between acetic acid concentrations and 

the rumen populations of F. succinogenes (R= 0.41), P. ruminicola (R=0.37), the total 

bacterial populations (R=0.36) and rumen pH (R=-0.54) (P<0.05) over the sampling 

period.  

Propionic acid concentrations in the rumen also increased from 18 mM (day 0) to 

22 mM (day 3) (Figure 3.3). Propionic acid concentrations were correlated with acetic acid 

concentrations (R=0.66) and F. succinogenes populations (R=0.36) over the sampling 

period (P<0.05). 
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 Butyric acid concentrations in the rumen increased significantly (LSD 5%) from 

days 0 to 3 (9 mM to 15.5 mM) (Figure 3.3). Butyric acid concentrations were correlated 

with acetic acid (R=0.64), caproic acids (R=0.47), iso-butyric acid (R=0.48) and valeric 

acid concentrations (R=0.73) over the sampling period. 

 

Figure 3.3 Rumen acetic, propionic and butyric acid (mM mean±SEM) concentration 

(n=8) in steers from feedlot 1 with hay and grain fed separately.  

Iso-butyric acid concentrations decreased from day 0 to 3 (LSD 5%), increasing 

from day 3-8 and returning to concentrations similar to day 0 at days 21. (Figure 3.5).  Iso-

butyric concentrations were correlated with acetic acid (R=0.51), butyric acid (R=0.48) 

and total volatile acid concentrations (R=0.48) over the sampling period (P<0.05). 

 Iso-valeric acid concentrations at day 0 were different from day 3 over the 

sampling period (Figure 3.5). Iso-valeric acid concentrations at day 3 were higher than 

those taken at day 21 and 50 (LSD 5%). Iso-valeric acid concentrations were not 
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significant correlated to other rumen parameters during the period of sampling in this 

commercial feedlot (P>0.05). 

 Valeric acid concentrations were greater than day 0 (LSD 5%) for the remainder of 

the sampling period with day 50 being higher than day 0, 3 and 21 (Figure 3.4). Valeric 

acid concentrations were correlated with acetic (R=0.53), butyric (R=0.73) and caproic 

acids (R=0.80) concentrations as well as the populations of the lactic acid utiliser S. 

ruminantium (R=-0.36) during the grain feeding period (P<0.05). 

 Caproic acid concentrations (Figure 3.4) at day 0 were lower than day 8, 21 and 50.  

Caproic acid concentrations on day 50 were higher than on all other sampling days (LSD 

5%) (Figure 3.4). Caproic acid was correlated with butyric (R=0.47), valeric (R=0.80) and 

L-lactate concentrations (R=0.46) during the grain introduction period (P<0.05). 

 

 

 

 



110 

 

Figure 3.4 Iso-butyric, iso-valeric, valeric and caproic acids (mean±SEM) of steers (n=8)  

taken at approximately 8am, 1-2 hours post feeding during dietary transition over 54 days 

on feedlot 1 with hay and grain fed separately.  

 The rumen ammonia concentrations (Figure 3.5) were constant from day 0 to 3 

then declined to their lowest level on day 21 (0.8mM) (P<0.05) There was a correlation 

between rumen ammonia concentrations and S. ruminantium (R=0.50) and P. ruminicola 

(R=0.46) numbers (P<0.05) during the sampling period. 

 

Figure 3.5 Rumen ammonia (mean±SEM) of steers (n=8) from feedlot 1 with hay and 

grain fed separately. Means ± (SEM) with the same superscript are not significantly 

different (P<0.05) whereas values with different super scripts are significantly different 

(P>0.05). 

3.3.1.2 Faecal parameters 

 The faecal scores (Figure 3.6) for the continuously sampled group showed that on 

entry the steers had soft faeces that were holding shape, with a slight increase in faecal 
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score by day 3. However, by day 8 and 14 faeces were firmer and taking shape with lower 

faecal scores than previous samplings (P<0.05) The faeces continued to have reasonable 

cowpat formation on the ground with some indication of grain in the faeces at day 21 but 

by day 54 there was more indication of firm cowpat formation. There were correlations 

between faecal scores and S. ruminantium concentrations (R=0.36) (P<0.05). 

 

Figure 3.6 Faecal scores (mean±SEM) of steers (n=8) from feedlot 1. Means (±SEM) with 

the same superscript are not significantly different (P<0.05) whereas values with different 

super scripts are significantly different (P>0.05). 

3.3.1.3 Rumen bacterial parameters 

 

Total bacterial population 

The average total bacterial population for the continuously sampled group 

increased 14.5 fold from days 0 (1.17 x 10
9
 cells/mL) to 3 (2.89 x 10

10
 cells/mL), then 

decreased to the same level on day 8. There was a significant correlation between acetic 
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acid concentration (R=0.31) and P. ruminicola (R=0.67) (P<0.05) during the sampling 

period. 

 

 

Figure 3.7 Total bacterial cells (cells/mL (log100) (mean±SEM) for steers (n=8) from 

feedlot 1 with hay and grain fed separately with hay and grain fed separately. Means 

(±SEM) with the same superscript are not significantly different (P<0.05) whereas values 

with different super scripts are significantly different (P>0.05). 

The average population of F. succinogenes (Figure 3.8) for the continuously 

sampled group decreased for days 0 (2.67 x 10 
7
cells/mL) to day 3 (9.84 x 10

5
 cells/mL 

log10) with a 16-fold increase at day 8 (2.38 x 10
6 

cells/mL log10), then a 23-fold increase 

by day 14. The population then decreased to near the same concentrations as day 3 and 

again for the last sampling at day 50. There were significant correlations between F. 

succinogenes and the measurements of total VFA (R=0.37) and acetic acid (R=0.41) 

(P<0.05) during the sampling period. 



113 

 

The P. ruminicola population (Figure 3.8) increased (P<0.05) fluctuated until (LSD 

5%) by nearly 100 fold on days 0 (5.08 x 10 
8
cells/mL) to 3 (5.49 x 10

10 
cells/mL), and 

then decreased seven fold by day 8 back to day 0 values. The population then increased 67 

fold from day 8 (7.03 x 10
9
 cells/mL) to 14 (4.76 x 10

11
 cells/mL) and equated to the same 

level as day 3, on day 21, remaining constant until day 50. There were significant 

correlations between P. ruminicola and total bacterial populations (R=0.74) as well as 

acetic acid (R=0.37) concentrations (P<0.05) during the sampling period. 

The average population of S. ruminantium (Figure 3.8) lowered (P<0.05) (LSD 

5%) from days 0 (7.01 x 10
9
 cells/mL) and 3 to day 8 eleven fold then increased to day 14. 

The population then decreased steadily over day 21 and 54 to the same level as day 8. 

There were significant correlations between S. ruminantium and valeric acid (R=-0.37) 

concentration (P<0.05) during the sampling period. 

The average S. bovis population (Figure 3.8) increased steadily until day 14 (36.32 

x 10
6
 cells/mL log10) which then decreased until day 54. There were significant 

correlations between S. bovis (R=-0.39) and rumen pH as well as D- lactate (R= 0.44) 

concentration (P<0.05). 
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Figure 3.8 Changes in rumen populations of F.succinogenes, P. ruminicola, S. 

ruminantium and S.bovis cells/mL log10 (mean±SEM) of steers (n=8) from feedlot 1.  

Protozoal counts were fairly constant (Figure 3.9) with a significant decrease at day 

8 (LSD 5%), there were large SEM in the samples on day 21 and 50, there was no 

significant correlation between protozoa or other rumen parameters during sampling 

(P>0.05). 
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Figure 3.9 Protozoa populations (mean±SEM) of steers (n=8) from feedlot 1 with hay 

and grain fed separately. Means ±SEM with the same superscript are not significantly 

different (P<0.05) whereas values with different super scripts are significantly different 

(P>0.05). 

Figure 3.10 is a bivariate plot that gives a graphical indication of the relationships 

between the bacterial populations over the sampling period, indicating that P. ruminicola 

and S. bovis were closely related to any changes in population numbers that occurred over 

the period of monitoring rumen microbial ecology while F. succinogenes and S. 

ruminantium were independent of other bacteria during the sampling period. 
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Figure 3.10 Bivariate plot based on the correlations between log bacterial counts for steers 

(n=8) from feedlot 1 with hay and grain fed separately. Day 0 (white), day 3 (pale pink), 

day 7 (pink), day 14 (medium pink), day 21 (deep pink) and day 54 (black). 

3.3.2 Feedlot Two 

 There was no significant difference (P>0.05) between the continuously sampled 

and randomly sampled cattle being introduced onto the same feedlot diet, when analysed to 

determine the impact of the constantly sampled and randomly sampled group with regards 

to rumen parameters. Therefore, both the randomly sampled and continuously sampled 

values were combined as one group for analysis. Feedlot two had a growth rate of 2.14 

kg/hd/day for cattle sampled throughout the 60-day period.  
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3.3.2.1 Rumen parameters  

  The rumen pH decreased between day 0 to 3 (LSD 5%) then decreased 

slightly (P<0.05) over the remaining 60 days (Table 3.4). Nevertheless, the mean rumen 

pH remained within the normal range over the period of the feedlot, with only one steer 

indicating a low pH of 5.3 on day 46. There were significant correlations between rumen 

pH and the following parameters: faecal field pH (R=0.72), ruminal ammonia (R=-0.6), 

ruminal L-lactate concentration (R=-0.56), rumen protozoa populations (R=0.38), total 

volatile fatty acid concentration (R=-0.57), concentration of the following VFAs; propionic 

(R=-0.64), butyric (R=-0.51), iso-butyric (R=-0.39) and iso-valeric (R=-0.37) and the 

ruminal populations of F. succinogenes (R=0.54) (P>0.05) during the grain introduction 

period. 

 

 

 

Table 3.4 Rumen pH, field faecal pH and post fermentative faecal pH(mean±SEM) of 

steers (n=16) from feedlot 2, fed a total mixed ration with virginiamycin included in the 

ration until day 11. Means (±SEM) with the same superscript are not significantly different 

(P<0.05) whereas values with different super scripts are significantly different (P>0.05). 

 

Day of 

sampling 

0 3 8 14 21 32 46 60 

rumen 

pH 

6.95 
(0.07) 

6.75 
(0.06) 

6.62(0.1

2) 

6.66 
(0.05) 

6.53 
(0.07) 

6.44 

(0.07) 

6.50 
(0.12) 

6.38 
(0.09) 

field 

faecal pH 

6.94 
(0.05) 

 

6.97 
(0.08) 

6.58 
(0.05) 

6.79 
(0.06) 

6.56 
(0.07) 

6.60 
(0.08) 

6.59 
(0.06) 

6.56 
(0.05) 
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post ferm 

faceal pH 

4.89 
(0.09) 

 

5.59 
(0.10) 

5.14 
(0.07) 

5.21 
(0.08) 

5.20 
(0.07) 

4.93 
(0.05) 

5.21 
(0.04) 

5.35 
(0.04) 

 

The faecal pH taken did not change from day 0 to 3 (7.1) with a significant (LSD 

5%) decrease in faecal pH at day 8 (6.5), increasing to 6.8 at day 14, then remaining 

relatively constant until day 60 with a very slow decline in pH. Faecal samples that were 

incubated with glucose as outlined in chapter 2.5.2 for 24 days showed a lower pH than the 

field pH (5.0) with a slight increase at day 3 (5.8) followed by a decrease (LSD 5%) to 5.3 

at day 8 with a steady decline to 4.9 at day 32. The incubated faecal pH then increased 

from day 32, returning to 5.3 at day 60. There were correlations between post fermentative 

faecal pH and acetic acid (R=-0.53) (P<0.05) during the sampling period. 

 

 Rumen L-lactate concentrations increased from day 0 to 3 (LSD 5%) but then 

remained constant until the end of the feedlot period (Figure 3.11). importantly, all of the 

L-lactate concentrations were all within safe range during this time. There were 

correlations between L- lactate (R=0.73) and total VFA concentration, rumen pH (R=-

0.56), valeric acid (R=0.80), propionic acid (R=0.70) as well as the populations of F. 

succinogenes (R=-0.45) and S. ruminantium (R=0.46) (P<0.05) during dietary transition of 

60 days. 

 Rumen D-lactate concentrations remained constant through sampling (Figure 5.11).  

Measurements on day 32 and 60 were not available due to a laboratory error. 
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Figure 3.11 Rumen D and L-lactate concentrations (mean±SEM) of steers (n=16) from 

feedlot 2, fed a total mixed ration with virginiamycin included in the diet until day 11.  

 Total volatile fatty acid concentrations increased from day 0, peaking at day 21 and 

were significantly higher at day 8 and 60 (LSD 5%) (Figure 3.12). There was significant 

correlations between total VFA concentrations and field faecal pH (R=-0.55), rumen 

ammonia (R=0.65), L-lactate (R=0.65), protozoa (R=-0.53) and rumen pH (R=-0.57) 

(P<0.05). 
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Figure 3.12 Total volatile fatty acid concentrations in the rumen (mean±SEM) of steers 

(n=16) from feedlot 2, fed a total mixed ration with virginiamycin included in the diet until 

day 11. Means (±SEM) with the same superscript are not significantly different (P<0.05) 

whereas values with different super scripts are significantly different (P>0.05). 

 Acetic acid concentration in the rumen decreased from day 0 (55.02 mM) to day 3 

(51.24mM) then increased over the 60-day period by 12mM. There were significant 

correlations between acetic acid and the total VFAs (R=0.86), propionic acid (R=0.61) and 

butyric acid (R=0.56) as well as the S. bovis (P<0.05) populations (R=0.52) during grain 

introduction. 

 Propionic acid increased significantly from 9 mM to 25 mM (LSD 5%) and 

remained close to that level for the remainder of the sampling period. There were 

significant correlations between propionic acid and several rumen parameters measured 

including, total VFA (R=0.89), valeric (R=0.79), acetic (R=0.54), butyric (R=0.77), iso-

butyric (R=0.66) and iso-valeric (R=0.69) as well as rumen pH (R=-0.64), field faecal pH 
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(R=-0.62), ammonia (R=0.75) and l- lactate (R=0.70) as well as S. ruminantium (R=0.5) 

populations. 

 Butyric acid concentration increased significantly (LSD 5%) from day 0 (6.7 mM) 

to day 3 (10 mM) peaking at day 21. There were significant correlations between butyric 

acid and field faecal pH (R=-0.52), rumen ammonia (R=0.56), L-lactate (R=0.67), rumen 

pH (R=-0.51) and the S. bovis (R=0.66) populations (P<0.05). 

 

Figure 3.13 Changes in the rumen concentrations of acetic propionic and butyric acids 

(mean±SEM) of steers (n=16) from feedlot 2, fed a total mixed ration with virginiamycin 

included in the diet until day 11.  

 Iso-butyric acid concentrations increased (P<0.05) (LSD 5%) from days 0 and 3 to 

day 8, then continued to increase until day 21. There was significant correlations between 

iso-butyric and field faecal pH (R=-0.59), rumen ammonia (R=0.66), L-lactate (R=0.65) 

and S. ruminantium (R=0.59) populations (P<0.05) during the sampling period. 
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Figure 3.14 Concentrations of iso-butyric, iso-valeric, valeric and caproic acids (mean ± 

SEM) in the rumen of steers (n=16) from feedlot 2, fed a total mixed ration with 

virginiamycin included in the diet until day 11.  

 Caproic acid concentrations increased significantly (LSD 5%) at day 8 (5.4 mM) 

(Figure 3.14)). There were strong negative correlations between caproic acid and D-lactate 

(R=-0.45) as well as F. succinogenes (R=-0.58) populations (P<0.05) during the sampling 

period. 

 Valeric acid concentrations increased from day 0 to 3 (0.4mM to 1.4mM), then 

remained similar for the rest of the sampling period. There were significant correlations 

between valeric acid and rumen pH (R=-0.59), field faecal pH (R=-0.65), rumen ammonia 

(R=0.70), D-lactate (R=-0.32), L-lactate (R=0.80) and F. succinogenes (R=-0.47) (P<0.05) 

over the sampling period. 
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 Iso-valeric acid concentrations increased significantly (LSD 5%) from day 0 to day 

21. There were significant correlations between iso-valeric acid and the parameters of field 

faecal pH (R=-0.59), ammonia (R=0.67), rumen pH (R=-0.59), L-lactate (R=0.71) and S. 

ruminantium (R=0.58) populations as well as VFA’s butyric (R=0.73), iso-butyric 

(R=0.72), valeric (R=0.64) and propionic (R=0.63) (P<0.05) during the sampling period. 

3.3.2.2 Faecal parameters 

The faecal scores indicated faecal matter was firm on day 0 and 3 (Figure 3.15) 

with some poorly formed faecal matter by day 8 (chapter 2.4.1). The steers had high 

concentrations of grain and watery faeces until day 21 with some incidence of loose faecal 

matter by day 32. The faeces then started to firm up more by day 60. There were 

significant correlations between faecal score and field faecal pH (R=-0.59) (P<0.05). 

 

Figure 3.15 Changes in faecal scores (mean±SEM) of steers (n=16) from feedlot 2, fed a 

total mixed ration with virginiamycin included in the diet until day 11. Means ±SEM with 

the same superscript are not significantly different (P<0.05) whereas values with different 

super scripts are significantly different (P>0.05). 



124 

 

 

Rumen ammonia increased significantly from day 0 to 3 (LSD 5%) then 

concentrations remained constant until day 46 (Figure 3.16). There were significant 

correlations between rumen ammonia concentrations and field faecal pH (R=-0.76), rumen 

pH (R=-0.59), L-lactate (R=0.76), D-lactate (R=-0.41) and the populations of S. 

ruminantium (R=0.54) (P<0.05). There were also significant correlations with total VFA 

concentrations, butyric, valeric acid, propionic, iso-valeric and iso-butyric (P<0.05). 

 

Figure 3.16 Changes in rumen ammonia concentration (mean±SEM) of steers (n=16) from 

feedlot 2, fed a total mixed ration with virginiamycin included in the diet until day 11. 

Means ±SEM with the same superscript are not significantly different (P<0.05) whereas 

values with different super scripts are significantly different (P>0.05). 

3.3.2.3 Rumen bacterial parameters 

The total bacterial population (Figure 3.17) increased (P<0.05) by day 14 (2.64 x 

10
10 

cells/mL) with a fivefold increase in the total bacterial population from day 0 

(3.03x10
9 

cells/mL). The population decreased significantly by day 21 (9.15x10
9 

cells/mL) 
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remaining reasonably constant by day 60 there was a significant decrease to concentrations 

of less than day 0. The total bacterial populations were significantly correlated with F. 

succinogenes (R=0.55) populations during the sampling period (P<0.05). 

 

Figure 3.17 Changes in total bacterial populations (mean±SEM) in the rumen of steers 

(n=16) from feedlot 2, fed a total mixed ration with virginiamycin included in the diet until 

day 11. Means ±SEM with the same superscript are not significantly different (P<0.05) 

whereas values with different super scripts are significantly different (P>0.05). 

The populations of F. succinogenes decreased significantly (LSD 5%) from days 0 

to 3 (figure 3.18). There was a significant increase in the populations of F. succinogenes 

from days 3 to 8. The populations then decreased at day 60 (LSD 5%). F. succinogenes 

populations were significantly correlated with the field faecal pH (R=0.49), rumen pH 

(R=0.54), concentrations of L-lactate (R=-0.47), caproic acid (R=-0.53), and valeric acid 

(R=-0.47), and the total bacterial counts (R=0.55) (P<0.05) during the sampling period. 

The populations of P. ruminicola (Figure 3.18) showed significant variation (LSD 

5%) on alternating weeks, dropping to their lowest level at day 60. There were no 
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significant correlations between the populations of P. ruminicola and any other rumen 

parameters during the measurement period (P>0.05). 

The population of S. ruminantium increased from days 0 then decreased slowly 

until day 21 (Figure 3.18).  The population of S. ruminantium increased fourfold on day 32 

(P<0.05) followed by a steady decline to day 46, returning to concentrations similar to 

feedlot entry (day 0) by day 60. The S. ruminantium populations were significantly 

correlated to the following parameters, field faecal pH (R=-0.55), D-lactate (R=-0.52), L-

lactate (R=0.46), ammonia (R=0.54) and the VFAs; propionic (R=0.50), iso-butyric 

(R=0.64) and iso-valeric (R=0.64) (P<0.05). 

The populations of S. bovis population increased (P<0.05) from day 0 (3.06x10
4
 

cells/mL) to 3 (4.23x10
7
 cells/mL). Then the populations of S. bovis population decreased 

at day 8, remaining constant until day 21 with a higher degree of variation in the samples 

quantified. There was a significant correlation between the populations of S. bovis and the 

VFAs acetic (R=0.55) and butyric (R=0.56) (P<0.05) and the addition of virginiamycin to 

the diet (R=0.54) 
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Figure 3.18 Changes in the populations of F.succinogenes, P. ruminicola, S. ruminantium 

and S. bovis (mean±SEM) of steers (n=16) from feedlot 2, fed a total mixed ration with 

virginiamycin included in the diet until day 11.  

The interaction of the different rumen microbial populations monitored here 

(Figure 3.18) over the introduction period indicate that populations of S. ruminantium and 

S. bovis were very similar. While the populations of F. succinogenes were independent of 

the other quantified rumen populations. The changes in populations of P. ruminicola were 

closer to the changes that occurred over the sampling period with the populations of S. 

bovis and S. ruminantium. 
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Figure 3.19 Biplot representing the correlations of log transformed bacterial populations 

during grain introduction in feedlot 2, fed a total mixed ration with virginiamycin included 

in the diet until day 11.. Day 0 (pale yellow), day 3 (yellow), day 8 (light green), day 14 

(green), day 21 (dark green), day 28 (light blue), day 32 (medium blue), day 46 (blue) and 

day 60 (dark blue). 

Protozoal numbers showed a slight decrease at day 3 followed by a constant 

increase in protozoa number until day 60 (Figure 3.20). Day one was only different 

(P<0.05) to the other sampling days at day 46 and 60 (LSD 5%), days 3 and 14 were 

significantly different to days 32, 46 and 60 (LSD 5%). Protozoal numbers were 

significantly correlated to the P. ruminicola population (R=-0.34) (P<0.05)  
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Figure 3.20 Changes in the population of rumen protozoa (mean±SEM) of steers (n=16) 

from feedlot 2, fed a total mixed ration with virginiamycin included in the diet until day 

11. Means ±SEM with the same superscript are not significantly different (P<0.05) 

whereas values with different super scripts are significantly different (P>0.05). 

3.4 Discussion 

This study represents one of the first investigations into the changes in rumen 

microbial ecology in cattle fed grain under commercial feedlot conditions rather than under 

fully controlled experimental conditions.  Cattle fed in commercial feedlots are usually 

introduced to large amounts of grain over a longer period compared to that of 

experimentally-induced acidosis where often there was a single large bolus challenge.  

This experimental approach diminishes the option for intake regulation by the ruminant to 

reduce rumen disturbance or commence adaptation. However, under commercial 

conditions such as in these two feedlots, there were no control groups since all of the 

animals receive the same treatment ration for commercial gain.  As a consequence, this 
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study of cattle under commercial conditions provided descriptions of the ecological and 

metabolic changes in the rumen and host ruminant, but without controls.  Therefore, 

analysis of, or consideration of the underlying mechanisms was difficult and possibly over-

reliant on speculation.  Just as importantly, this study was the first to monitor the changes 

in rumen microbial ecology under commercial conditions using molecular tools based on 

16S rRNA gene sequences to assess the changes in populations of key species of bacteria.  

Previously studies using phenotypic subculture techniques to assess rumen ecological 

changes were tedious, and difficult to interpret in terms of a changing ecology.   

This chapter explored the effect of grain feeding regimes on two commercial feedlots 

using two quite distinct approaches to feeding grain.  In the first feedlot, cattle were 

introduced to grain over a 7-day period with grain and hay fed separately thereby allowing 

the cattle to self-select the proportions of hay and grain.  On the other hand, in the second 

feedlot cattle were fed a total mixed ration incorporating the antibiotic, virginiamycin, until 

day 11 then the composition of the total mixed ration changed with gradual increases in 

grain and no virginiamycin until the end of feeding on day 54. Importantly each feedlot 

allowed the monitoring of changes in the rumen parameters over the introduction period.  

Although these two commercial feedlots were not directly comparable due to their 

different feedlot feeding regimes, nevertheless they provided clear indications of how 

different management practices impact on rumen microbial ecology and metabolism 

during the introduction period under realistic commercial feedlot systems rather than high 

grain induced acidosis under experimental conditions.  The other important finding was 

that none of the cattle monitored in either feedlot or under the two feeding regimes 

developed clinical acidosis.  In fact, the average daily gain (2.14 kg/day) of cattle in 

feedlot two was at near the best performance for commercial enterprises. 
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3.4.1 Feedlot One 

In this feedlot cattle were fed the starting diet of roughage and grain provided in 

separate feeding bunks on day 1 of introduction transitioning to the full grain diet by day 7 

(Table 3.1).  However, cattle were bought in as feedlot stores and introduced to the diet on 

a continuous basis in this feedlot. Therefore, only those cattle in the feedlot from the first 

day of the initial introduction were sampled throughout the feedlot period.  Moreover, 

these cattle that were continuously sampled from day 1 were significantly different to 

cattle sampled randomly (and therefore had potentially been at different stages of 

introduction given the continual introduction of stores) in terms of total bacterial 

populations, populations of S. bovis, P. ruminicola, faecal score and faecal pH (P<0.05). 

This difference could not be attributed directly to sampling or to the fact that they were 

cattle bought into the feedlot after the initial introduction period and therefore were at 

different stages of introduction. Hence the randomly sampled steers were removed from 

the analysis. 

The decrease in rumen pH by day 3 in feedlot one is indicative of most feedlot 

introductions of grain (Slyter, 1976; Nagaraja and Nagamine, 2007; Krause and Oetzel, 

2006; Owens et al., 1998).  In this case oats made up 70% of the diet until day 4 mainly 

because it was considered a “safer” grain (Walker, 2006) and consistent with this view was 

the finding that feeding oats did not lower the rumen pH to values outside the normal 

functioning range of rumen i.e. pH 6.0 to 7.0.  In fact, the rumen pH remained within this 

normal range throughout the sampling period.  Obtaining rumen samples via stomach 

tubing can impact pH values due to salivary contamination, and Duffield et al. (2003) 

showed that there can be as much as 0.44 units lower pH when samples are collected 

directly by rumencentesis compared to oral stomach tubes.  This finding raises the 

possibility that the rumen pH measured here may be lower than actually measured. 
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Notwithstanding this, sampling by rumen tubing was the only alternative for continuous 

sampling of cattle being finished on a commercial property.  The most important finding in 

feedlot one was the successful management of introduction of cattle onto the feedlot 

dietary regime. Thus the pattern of changes in rumen pH, rumen microbial ecology and 

rumen metabolism must be considered in the context of this successful management.    

 The concentration of the volatile fatty acids (VFAs), acetic, propionic acid and 

butyric acids all increased significantly between day 0 to 3 of this type of dietary 

introduction in feedlot one.  The concentration of total VFA was greater than 100mM for 

the period of feed lotting, which was indicative of sufficient energy supply to support high 

growth rates in these cattle.  This is also reflected in the high, commercially viable growth 

rate observed during the feedlot period (live weight gain was only measured in feedlot 2).  

During the introductory period when cattle could self-select between hay and grain, and 

even later when higher grain concentrations were fed through the feedlot, acetic acid 

production increased and remained the volatile fatty acid in greatest molar proportion 

indicative of fermentation of high concentrations of structural carbohydrates. While the 

propionic acid production also increased over these same periods, indicative of greater 

fermentation of soluble carbohydrates from grain, the molar proportion was never as great 

as that for acetic acid. Nevertheless, the concentration of propionic acid was always high 

enough to support high growth rates. This may indicate that the cattle self-selected 

sufficient amounts of hay to balance grain intake during the introduction period consistent 

with the findings of Dijkstra (1994); however this was not quantifiable without actual 

intake values. The high proportion of acetate in the VFAs was also indicative of successful 

cellulose fermentation which was not generally apparent from experimental challenges of 

high grain diets. Moreover, acetic acid concentrations and molar proportion were 

significantly correlated with populations of F. succinogenes, a cellulose utiliser, as well as 
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the values of rumen pH remaining in the normal range over the sampling period. This 

relationship with acetic acid is linked to the sensitivity of F. succinogenes to decreases in 

rumen pH.  Each of these findings indicates that feedlot 1 had instigated a successful and 

safe feeding management for cattle during introduction to the feedlot which continued 

through to the period of feeding the higher grain ration.  

 The valeric acid concentration increased significantly during the first 8 days of 

dietary introduction.  Valeric acid is an important metabolite for cellulytic bacteria (Cline 

et al., 1958).  Moreover, during starch digestion by amylolytic bacteria the amount of 

valeric acid formed increased.  Iso-butyric acid is also a growth factor for cellulytic 

bacteria.  Early work by (Bryant and Doetsch, 1955) showed that valeric, iso-valeric, iso-

butyric and caproic acids or their amino acid precursors stimulated cellulose digestion and 

the conversion of urea nitrogen into protein by rumen microorganisms. The trend of higher 

VFAs and their branch-chain equivalents highlighted how successful the adaptation to 

consistent cellulytic digestion was in this feedlot. 

Total VFA concentrations in the rumen increased with the increased dietary energy 

particularly from day 0 to 3; this is commonly found in cattle going onto grain diets. The 

total VFA concentrations were significantly linked to acetic acid concentrations over the 

sampling period, which was both the major VFA and exhibited the greatest increase in 

concentration over the sampling period. 

 Concentrations of L- lactate during the introduction period were low but variable, 

indicative that some animals adapted to a self-selection system for hay and grain better 

than others.   

 In feedlot one there were significant correlations between the populations of S. 

bovis and rumen concentrations of D-lactate as well as concentrations of propionic acid 

which all related to the increase in grain content.  This type of relationship between S. 
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bovis populations, rumen pH and D- lactate has been shown previously by (Rowe, 1999; 

Hook et al., 2011; Owens et al., 1997; Al Jassim and Rowe, 1999) but these workers used 

experimentally induced acidosis rather than commercial feedlots with slower introduction. 

Therefore, benchmark concentrations of L and D-lactate were much higher in induced 

acidosis, indicating the trends of increasing concentrations of lactate and reducing pH was 

linked to increasing populations of S. Bovis. However, the extent to which this occurred 

and the ability to readjust the rumen may have been the reason for the difference. 

Faecal scores were lowest (indicating good pat formation) at day 8, the day after the 

second increase in grain. However, a dramatic drop in post fermented faeces pH indicated 

that on day 7 the increase in grain content had potential to cause acidosis (Al Jassim, 2006) 

resulting from the amount of grain passing on to the caecum and lower gut.  However, the 

values of field faecal pH were not particularly low and showed an increase rather than a 

decrease, indicating that there was little post rumen fermentation.  

There was an increase in the total bacterial population during days 0-3, due to the 

readily available carbohydrate and showed a successful adaption of the total microflora in 

these cattle to the transition to the feedlot. There was a significant relationship between 

total bacterial populations and acetic acid as well as populations of P. ruminicola, which is 

one of the more predominant rumen bacteria (Stevenson and Weimer, 2007a) in the rumen. 

Prevotella was shown in the work by (Tajima et al., 2001) to be in high proportions in the 

rumen as had been postulated by Hungate as the most commonly occurring rumen bacterial 

species.  So the pattern of total bacterial populations and P. ruminicola quantified during 

the dietary transition in feedlot one was in accord with all previous studies. Prevotella 

ruminicola followed the same significant changes as seen in the total bacterial population, 

indicating that they did indeed constitute a high proportion of the bacterial population. 

However, since the number of copies the 16S rRNA gene in P. ruminicola is not certain, 
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then this did not permit absolute quantification of the relationship as a ratio to the total 

bacterial population.  

During the dietary introduction, the population of F. succinogenes decreased initially 

then increased to a peak at day 8 and maintained a consistent proportion over the feedlot 

period.  The consistent population of F. succinogenes indicated that cattle were selecting 

roughage from the hay bunk and not consuming as much of the grain initially. Therefore, a 

higher consumption of roughage leaves a lag time to increase the fibre utilising bacteria. 

The population then decreased at day 21 and stayed constant for the remainder of the 

feedlot period. However work done by (Fernando et al., 2010) indicate that the F. 

succinogenes population gradually decreased to a 45 fold decrease in cannulated steers as 

they adapted to high concentrate diets. 

Selenomonas ruminantium populations followed the same trend as those of P. 

ruminicola and S. bovis i.e. decreasing at day 8. Each of these species is characterised by 

their capacity to ferment starches, and soluble sugars and in the case of P. ruminicola, 

hemicelluloses as well.  On the other hand, they have no cellulolytic capacity.  As a 

consequence, this trend may indicate that the cattle were eating more roughage especially 

as the decrease in the populations of these species corresponded to the increase in 

populations of F. succinogenes, the fibre digesting bacteria. Also with S. ruminantium 

being a lactate utilising bacteria, there is an increase from day 8-14 which corresponds to 

an increase in the lactate producing S. bovis population. 

Streptococcus bovis populations were significantly correlated with rumen pH and D-

lactate concentrations which was consistent with reports from induced experimental 

acidosis (Asanuma and Hino, 2002; Russell and Hino, 1985; Coe et al., 1999; Commun et 

al., 2009; Goad et al., 1998).  It was interesting to note this relationship between S. bovis, 

D-lactate and rumen pH still held even at these relatively low concentrations of D-lactate 
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and relatively neutral rumen pH (>6.0). However it highlighted the potential for 

unproblematic self-correction under commercial feedlot introduction compared to 

experimentally induced acidosis. 

There was an indication that P. ruminicola and S. bovis were similar in their trends for 

population shifts over time (Figure 3.7) with P. ruminicola role in the rumen being the 

degradation of protein, as well as the degradation and utilisation of starch while S. bovis is 

primarily a starch degrader (Stewart et al., 1997).  Over the introduction period, the 

populations of S. ruminantium and F. succinogenes were independent of the other rumen 

bacterial species monitored. 

3.4.2 Feedlot Two 

Feedlot two was different to feedlot one as the diet was fed as a total mixed ration with 

smaller increments in the grain content that were also slowly introduced over a 52-day 

period.  Just as importantly, this feedlot also incorporated virginiamycin into the ration 

until day 11 to guard against acidosis.  However, since there was no acidosis even or a total 

mixed ration control it is difficult to assert definitely whether the virginiamycin prevented 

acidosis or there was no acidosis under this feeding regime.  

Coe, Nagaraja et al (1999) did not report any impact of virginiamycin on the molar 

proportions of volatile fatty acids. However, populations of S. bovis decreased in animals 

fed diets containing virginiamycin (Al Jassim and Rowe, 1999). The changes in molar 

proportions of the volatile fatty acids observed here is more likely to be the result of 

increasing the grain content of the diet and not directly related to the virginiamycin 

inclusion in the diet. 

The rumen pH declined steadily over the 54-day period consistent with an early 

establishment of substrate fermentation capable of supporting higher production 

concentrations in the feedlot cattle.  Interestingly, there were no severe changes or 
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decreases in rumen pH after removal of virginiamycin.  On the other hand, L-lactate 

concentrations increased after the removal of virginiamycin significantly from day 14 to 

21, indicating a slightly unstable period of carbohydrate fermentation before returning to 

an adaptive range. The significant correlation between increasing VFA concentrations and 

relatively stable normal rumen pH was indicative of adapted and productive rumen 

microbial ecology  

The rumen ammonia concentrations increased significantly upon introduction of cattle 

to the feedlot peaking at day 21 which is the time of peak adaptation of nitrogen 

metabolism in most feedlots utilising high grain diets and aiming at optimal ruminal 

breakdown of the protein content of the diet.  In fact, the pattern of carbohydrate 

fermentation indicated through the concentrations of the VFAs and acetic and propionic 

acids and the ammonia concentration all peaking and stabilising at that peak at day 21 

accorded with the anecdotal notion that cattle take about three weeks to fully adapt to 

feedlot rations.   

The faecal score on day 32 was indicative of the loosest faecal matter and also had 

visible grain in faeces indicating incomplete grain breakdown. This day and faecal scores 

also coincided with peak in populations of S. bovis and S. ruminantium populations. The 

lowest post fermentative faeces pH also occurred on day 32, indicating a higher potential 

for acidosis from the diet, possibly due to post-ruminal fermentation of increasing grain 

content. 

The faecal field pH decreased significantly between days 3-8 when virginiamycin was 

being fed, and again after the removal of virginiamycin at day 11, decreasing significantly 

to day 21 but remaining relatively constant from day 21 until the end of feedlot.  These 

changes in faecal pH may indicate that the virginiamycin may have been impacting on post 

rumen fermentation for a short period of time. 
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The populations of the fibre digesting bacteria F. succinogenes decreased from day 0 

to 3 but increased and remained constant for the remainder of the feedlot period. This 

consistency of populations of F. succinogenes suggests that the cellulose fibre component 

of the diet was being digested even as the grain component of the diet was increasing and 

pH was remaining at a level at or above 6.0 which did not impact on the growth of this 

cellulolytic bacterium.  In other words, the fibre and grain fermentation were fully adapted 

within the 21-day period even after removal of the virginiamycin at day 11.  

The populations of Prevotella ruminicola were not significantly correlated with any 

other rumen parameters even though P. ruminicola was the predominant bacterial species 

in the rumen bacterial population in this and other studies (Griswold and Mackie, 1997; 

Avgustin et al., 1997; Tajima et al., 1999; Tajima et al., 2001). 

Selenomonas ruminantium which is linked to starch digestion increased significantly 

from day 0-3 showing an early adaptation to the TMR.  Other parameters such as field 

faecal pH, D and L lactate, rumen ammonia and propionic acid were significantly 

correlated with increases in starch digestion. 

 Importantly, the population of S. bovis increased on day 14 after the removal of 

virginiamycin as well as increasing barley content of the diet.  S. bovis populations peaked 

at day 32 when low concentrations of acidosis appeared to be present. Interestingly, S. 

bovis and S. ruminantium (Figure 3.18) were strongly linked indicating that the lactate 

utilisers (S. ruminantium) and lactate producers (S. bovis) were associated in this ecology 

under feedlot conditions just as they have been found to be associated under experimental 

conditions.  

The protozoa populations in feedlot two showed a general increasing trend over period 

of feedlot.  These increases in protozoa populations were correlated with propionic acid 

concentrations, total VFA and rumen pH all of which increased with higher carbohydrate 
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content in TMR diets. The inclusion of virginiamycin has been shown to inhibit the 

protozoal populations (Nagaraja et al., 1995) so its removal may have led to the increase 

over time of the protozoal populations which was not evident in feedlot one with no 

additional virginiamycin in the ration. 

Overall feedlot one which fed the hay and grain separately and introduced grain as 

oats relatively rapidly over seven days never showed any indication of acidosis and neither 

did cattle in feedlot two which were a total mixed ration with virginiamycin until day 14.  

In fact, the lactate concentrations in cattle from feedlot two were always lower than those 

in cattle from feedlot one.  The incorporation of virginiamycin in the TMR diet in feedlot 

two did reduce S. bovis populations.  However, when virginiamycin was removed from the 

ration, the rumen still was able to adapt to the TMR, with showing no decreases in 

productivity.  If rumen samples could have been taken at day 16 or 18, these samples may 

have given a better indication of when S. bovis peaked after the removal of virginiamycin. 

Overall in feedlot 2 only one animal with a rumen pH of 5.3 and all others remained at 

or above a rumen pH of >6.0. The growth rates of the cattle in feedlot 2 sustained a growth 

rate great then 2kg/hd/day which itself refutes a supposition of subclinical acidosis.  

The differences in feeding practices between the two feedlots were confirmed in that 

feedlot one showed higher concentrations of total volatile fatty acids and acetate indicating 

very efficient fibre digestion. On the other hand, feedlot two had a higher level of 

propionate prevalent indicative of the higher grain diet.  Notwithstanding the quite 

different dietary regimes, cattle in the two feedlots successfully negotiated the period of 

dietary introduction. 

The use of virginiamycin was effective in keeping the rumen pH within the normal 

range, although the increase in S. bovis after virginiamycin removal was indicative of its 

effect on the microbial population. However it is also interesting that when virginiamycin 
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was withdrawn from the dietary regime it did not appear to be long acting in terms of 

carryover effect. This is contrary to what is advised in terms of its short term use under 

grain feeding scenarios. 

When you look at the whole picture of how commercial feedlots are introduced slowly 

over a longer period in which hypothesis one states that cattle introduced gradually under 

commercial feedlot conditions will have a reduced incidence of ruminal acidosis compared 

to previous work done on grain loading under experimental conditions. Both feedlots 

showed no signs of clinical acidosis over the sampling period indicating a successful 

transition under both feeding regimes. 

The hypothesis that cattle fed a feeding a total mixed ration containing virginiamycin 

will have a reduced incidence of ruminal acidosis compared to those fed grain and hay 

separately was not supported in this case.  Thus both feeding regimes may have their 

merits and that leaving cattle to select dietary components between hay and grain to adjust 

the rumen environment can be as successful as feeding a total mixed ration. 

The hypothesis that feeding virginiamycin in the ration under feedlot conditions 

reduces the indicators of ruminal acidosis under a commercial grain feeding regime was 

supported.  However it should also be noted that neither feedlot showed any indications of 

acidosis. The virginiamycin did not appear to have any long term effect on rumen 

physiology and metabolism. 

It was also hypothesised that the presence of cellulytic bacteria, F. succinogenes 

was sustained during a successful dietary transition under commercial feedlot conditions. 

This hypothesis was supported in both feedlots, which is very different to the findings 

under induced experimental conditions. 
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3.5 Conclusions 

The two different feeding management regimes for these feedlots were both successful 

with evidence that they adapted over a 14 to 21-day period after grain introduction.  

Feedlot one fed the hay and grain separately over a reasonably rapid period of seven days 

using oats as a safe ‘buffer’ grain. Feedlot two incorporated virginiamycin in a total mixed 

ration until day 14 and then fed the TMR until the end of the feedlot. This feedlot’s 

effective introduction of grain from the outset and feeding of high grain rations was 

reflected in high liveweight gain during the feedlot period. Unfortunately, feedlot one did 

not record weights over the feedlot period, with cattle showing no physical signs of 

acidosis. Therefore hypothesis one that cattle introduced under commercial feedlot 

conditions would have a higher incidence of acidosis could not be evaluated from these 

observations with the bacterial populations monitored remaining steady without cattle 

developing acidosis. This highlighted that the crucial role of management practices by the 

feedlotters in reducing the impact of acidosis under commercial feedlot conditions. Feedlot 

management therefore should be considered one of the main factors impacting the 

incidence of clinical and subclinical acidosis. 

The feeding of total mixed ration incorporating virginiamycin for the first 11 days in 

feedlot two was successful in keeping the rumen pH within a normal range.  The increase 

in the populations of S. bovis after virginiamycin removal on day 11 suggests that it was 

having an effect on the microbial population ecology.  Nevertheless the microbial ecology 

in the rumen was still able to adapt with no decrease in productivity.  Therefore, hypothesis 

2 testing if the addition of a feed additive such as virginiamycin reduced the incidence of 

acidosis through changes in bacterial ecology changes could not be supported or refuted as 

no incidence of acidosis was evident nor was the effect of virginiamycin controlled in the 

design of this experiment. The work done by Rowe et al in which they looked at a gradual 
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and fast adaption to high grain based diets found that with faster introduction there was 

higher levels of rumen pH variation and therefore a greater opportunity for acidosis to 

occur in these animals. 

The hypothesis that a feeding a total mixed ration to cattle will have a reduced 

incidence of ruminal acidosis compared to those fed grain and hay separately could not be 

evaluated since neither feeding regime resulted in acidosis.  Both feeding regimes had their 

merits and that the ability to select dietary components to adjust the rumen environment 

can be as successful as feeding a total mixed ration. This again highlighted the importance 

of animal husbandry during dietary transitions. 

Hypothesis four tested whether cellulytic bacteria F. succinogenes will decrease 

during grain introduction.  This hypothesis was supported in both feedlots during the initial 

introductory period of three days to, but the cellulytic species within the microbial 

population recovered throughout both commercial feedlots by day 21, which was very 

different the findings under induced experimental conditions. 

Hypothesis five that lactic acid utilising bacteria such as S. ruminantium would 

increase with an increase in the starch component of the diet was supported under both 

feeding regimes.  However, by the end of the sampling period the populations of 

Selenomonas ruminantium had returned to concentrations similar to or lower than on 

introduction to the feedlot. 

The hypothesis six that Prevotella ruminicola was the most prevalent bacteria in 

the rumen during dietary transition was supported in both feedlot 1 and 2.  However more 

recent metagenomic and molecular studies (Petri et al., 2013a; Stevenson and Weimer, 

2007a) report vast projected numbers of rumen bacteria which were not represented in this 

study.  So this hypothesis was only supported in comparison of the monitored rumen 
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bacterial species and by earlier phenotypic studies of (Hungate, 1966; Bryant, 1970; 

Hungate, 1950). 

Hypothesis seven that the populations of Streptococcus bovis will increase 

significantly and possibly pathogenically during introduction to grain based diets was 

supported in the sense that these populations increased significantly but did not correspond 

to any decrease in ruminal pH or indicators of lactic acidosis. Therefore, the correlations 

that were found under induced acidosis may in fact be normal population changes with the 

substrates that are made available to the rumen microbial population.  

 In summary, this study of rumen microbial ecology and metabolism in cattle 

managed under commercial feedlot conditions was the first to monitor changes in rumen 

microbial ecology using molecular technologies.  Moreover, the changes in rumen 

microbial ecology were significantly correlated to metabolic changes in the rumen (e.g. 

concentration of VFAs and BCVFAs) that underpinned the production measures such as 

liveweight gain in these feedlots. The concentrations of volatile fatty acids in the rumen for 

both feedlots were all above 100mM which is indicative of good growth levels under a 

grain feeding scenario. From the perspective of this study, it was disappointing that the 

incidence of clinical or subclinical acidosis was not evident.  However, this study was 

undertaken under commercial constraints and confirmed the effective management and 

husbandry practices of both feedlot programs through positive indicators in the metabolic 

and microbial changes quantified.  
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4 How variation in calving time impacts on rumen parameters during introduction 

to grain based diets. 

4.1 Introduction 

In the studies on commercial feedlots, the origin of birth or other factors were 

unknown, whereas the aim of this chapter was to sample cattle from the same known 

birthplace but of different season (or time) of calving i.e. autumn vs winter and then grazed 

on the same property before entering feedlots. The cattle for this study were obtained 

through another project that provided the reproductive and nutritional background 

information and known genetics of cattle that were placed into a feedlot at the same time 

but with the major difference of varied time of calving. The main aim here was to 

determine if the time of calving onto pastures of different quality had long term impacts on 

the development and retention of the rumen microbial population. 

The Beef CRC II regional combinations project assessed the long-term impact and 

growth path of cattle calved into different seasons, i.e. they were either calved in March 

during autumn (early calvers) and needing supplementary feeding which is traditional in 

south west of Western Australia or June during winter (later calvers) to match feed supply 

with animal nutritional demand. This project was outlined in McIntyre et al. (2009), the 

calves were all weaned in January 2004 (2003 drop calves), making them approximately 

10 months for early calved (EC) and 7 months for late calved (LC) and placed onto a fast 

growth diet (>1kg/hd/day). During this trial the cattle were placed onto various feeding 

regimes, but the study reported here analysed bacterial changes only in those cattle 

maintained on the fast growth path (>1kg/hd/day) which meant that all of these animals 

were placed onto a feedlot ration. 

Since the growth path on the feedlot ration was similar for all calves, this study 

focused on the impact that calving onto an actively growing green pasture or a dry pasture 
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may have had on the rumen microbial population, if any. Work done by Al Jassim et al. 

(2003) indicated that when sheep were backgrounded on hay or pasture, the sheep that 

were adapted to green pasture initially had higher ruminal pH than those adapted to hay 

alone. Those adapted to green pasture did not develop lactic acidosis when challenged with 

grain. Their work suggested that previous nutritional history influenced the onset of 

acidosis. 

The aim of this experiment was to determine if cattle of varying age not born onto 

the same pastures (i.e. dry autumn pasture or fresh growing winter/spring pasture) but 

raised under the same conditions (i.e. location and feeding regime prior to weaning) had 

any variation in their rumen metabolism and rumen microbial populations. It was 

hypothesised that calves born onto green pastures (LC) would have lower incidence of 

ruminal acidosis compared to those calves born onto dry pasture (EC) when both groups of 

calves are provided with the same grain-based diet. 

1. The time of calving has a long-term influence on rumen microbial ecology 

subsequently established in the new born cattle.   

2. Fibre utilising rumen bacteria (Fibrobacter succinogenes) populations will 

decrease during grain feeding or any associated reduction in rumen pH. 

3. Lactic acid utilising rumen bacteria (Selenomonas ruminantium) populations will 

increase with an increase in the grain component of the diet. 

4. Prevotella ruminicola will be the most prevalent bacteria in the rumen during 

dietary transition. 

5. Streptococcus bovis will increase significantly and possibly pathologically, during 

introduction to grain-based diets. 

6. If increases in Streptococcus bovis are linked with a decrease in ruminal pH, then 

Lactobacillus spp. will also increase significantly. 
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7. Metabolic changes in the rumen can be related to changes in the molecular ecology 

during dietary transitions in cattle and sheep. 

4.2 Materials and methods 

Cattle were weaned at Alcoa Farmlands, Pinjarra in January 2004 and bought to 

Vasse Research Centre, Busselton where they were designated on stratified weights to the 

fast growth ration group (>1.0kg/hd/day). When these weaners came through for their first 

weighing, rumen samples were also collected (as per chapter 2) randomly from 8 animals 

in both the EC and LC group.  Since the cattle were quite young and small, no brass 

attachment used [as shown in the photograph (chapter 2.3)] when these weaners were 

sampled; they were only sampled with the tubing containing a smoothed ending. The final 

diet consisted of 38% hay, 45% barley, 15% lupins and 2% mineral mix with no rumen 

modifiers incorporated into the diet. The cattle were on a full access (ad libitum) ration by 

day 8. 

Rumen samples were collected from these cattle on day 0 (just prior to feedlot 

entry), days 3, 7, 14, 21, 28 and 64. Live weights were also measured over at these times of 

sampling. Samples were analysed for rumen pH, rumen key bacterial species, rumen 

lactate (L and D), and protozoal counts. 

4.2.1 Statistics 

All data from this trial, except pH values and live weight, displayed lognormal 

distributions and were log transformed (log10) prior to statistical analysis, with total 

bacterial counts log transformed to base 100 (log100).  A linear mixed model which 

included a fixed effect comparing the two times of calving, a fixed effect for sample date 

and an interaction between sample type and date was fitted to each variate using the REML 

procedure in GenStat (edition 14).  The model also included an autoregressive covariance 



147 

 

structure between sample dates.  All fixed effects were tested using F-statistics or Wald 

statistics. If there was no significant difference between sample types (P<0.05) all samples 

were used to calculate averages at each sample date which were compared using 5% least 

significant differences (5% LSD). 

 Correlations between variates were compared to zero using a two-sided test. The 

matrix of correlations between logarithms of the counts of individual bacteria was used to 

construct a biplot which showed the relationships between protozoa and bacterial counts 

and how sample counts varied across sample dates 

4.3 Results 

 

Figure 4.1 Rumen pH (mean ±SEM) in late and early calved cattle introduction to grain 

during feedlot at Vasse Research Centre. 

 The rumen pH (Figure 4.1) for both the EC weaners (6.7-7.2) and the LC weaners 

(>6.6) were within a normal range throughout the introduction period, although rumen pH 

decreased in all cattle on day 3. It should be noted that these pH values are on the higher 
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side and possibly may in fact have resulted from saliva contamination. The brass 

attachment as outlined in chapter 2.4 was not used for this project. There were no 

significant differences between the two calving groups, date of sampling or the interaction 

of group and date sampled (P>0.05). The rumen pH in the early calving animals was 

significantly correlated with P. ruminicola populations (P<0.05), during the introduction 

period.  Rumen pH in the late calved weaners was not significantly correlated to any of the 

other rumen parameters. However, the rumen pH on days 0 and 7 during the introduction 

period was significantly higher that the final measured pH on day 64 (LSD 5%) but all pH 

values were within the normal range. 

 

Figure 4.2 D-lactate concentrations (mean ±SEM) in the rumen of late and early calved 

cattle after introduction to grain during feedlot at Vasse Research Centre. 

 The rumen D-lactate concentrations (Figure 4.2) followed a similar trend over time 

to rumen pH.  There were no significance differences between the calving groups 

(P>0.05). However, there is a significant difference in D-lactate concentrations between 

the dates sampled (P<0.05). Overall there was not a significant difference between the 



149 

 

interaction of group or date sampled (P>0.05). However, the D-lactate concentrations 

increased on day 3 and had returned to day 0 concentrations when sampled at day 14. 

The early calved weaners D-lactate concentrations were significantly correlated to 

total lactate (R=0.87) and S. ruminantium populations (R=0.33) (P<0.05). In the late 

calved weaners, ruminal D-lactate concentrations were significantly correlated to the 

populations of P. ruminicola (R=-0.36) (P<0.05).  

 

Figure 4.3 L-lactate concentrations (mean ±SEM) in the rumen of late and early calved 

cattle after introduction to grain during feedlot at Vasse Research Centre. 

 The L-lactate concentrations (Figure 4.3) in the rumen of late calved weaners were 

relatively constant throughout the sampling period while the early calved cattle had large 

fluctuations in the L-lactate concentrations. There was a significant difference between the 

groups with cattle from the late calving group always higher in L-lactate concentrations, 

and on the date sampled and the interaction between the calving groups and date sampled 

(P<0.05). 
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L-lactate concentrations were significantly correlated to protozoa numbers 

(R=0.21) (Figure 4.10) and D-lactate concentrations (R=0.22) (Figure 4.2) (P<0.05) in the 

cattle from the early calving group. During the sampling period there was significant 

differences in the sampling days (P<0.05). The LC cattle L-lactate concentrations (Figure 

4.3) were significantly correlated to D-lactate concentration (R=0.36) (P<0.05), with no 

significant differences between sampling days. 

 

Figure 4.4 Rumen ammonia concentrations (mean ± SEM) in the rumen of late and early 

calved cattle after introduction to grain during feedlot at Vasse Research Centre. 

 The rumen ammonia concentrations (Figure 4.4) increased sharply until day 8, after 

which there were significant differences between the groups in rumen ammonia 

concentrations as well as differences in the dates the samples were collected (P<0.05). 

However, there were no significant differences between the interaction of the group and 

date sampled (P>0.05) 

The rumen ammonia concentrations during the grain introduction for the EC 

weaners showed that day 0 was significantly lower than the remainder of the sampling 



151 

 

period (LSD 5%).There was a significantly correlation between the rumen ammonia 

concentrations and protozoa populations(P<0.05). In the late calved weaners, rumen 

ammonia concentrations on day 0 were significantly lower than the remainder of the 

sampling period (LSD 5%). The rumen ammonia (Figure 4.4) concentrations were 

significantly correlated to rumen protozoa with the EC weaners. 

 

Figure 4.5 Total bacterial cells/mL (mean ±SEM) in the rumen of late and early calved 

cattle after introduction to grain during feedlot at Vasse Research Centre. 

 There are no significant differences in total bacterial cell numbers (Figure 4.5) 

between the 2 calving groups (P>0.05).  The total bacterial populations in the EC weaners 

increased from day 0 to 4 (P<0.05) then remained constant. 

 The total rumen bacterial populations in the LC weaners showed that day 0 was 

lower than day 7 and 14 (LSD 5%) while day 3 was lower (P<0.05) than day 7.  
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Figure 4.6 The populations of Fibrobacter succinogenes, Selenomonas ruminantium, 

Streptococcus bovis, Prevotella ruminantium cells/mL (mean ±SEM) in the rumen of late 

and early calved cattle after introduction to grain during feedlot at Vasse Research Centre. 

 The F. succinogenes population cells/mL (Figure 4.6) showed a steady decline over 

time, with a difference between the two calving groups and the dates samples were 

collected (P<0.05).  However, there were no significance differences between the 

interaction of the group and the date sampled (P>0.05). 

The populations of F. succinogenes (Figure 4.6) taken during the sampling on the 

grain based diet showed the LC steers were different and greater in population than the EC 

steers on days 14 and 28 (P<0.05). During the sampling period, the F. succinogenes rumen 

populations in the early weaned group were lower at day 0 to 3.  In the EC weaners group, 

F. succinogenes cells/mL (Figure 4.6) populations were correlated to the P. ruminicola 

cells/mL (R=0.32) (Figure 4.6), S. bovis cells/mL (R=0.46) (Figure 4.6) and S. 

ruminantium cells/mL (R=0.73) (Figure4.6) populations (P<0.05). 
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 The LC weaners samples indicated that F. succinogenes populations (Figure 4.6) 

were on day 0 lower to the population at day 14 (LSD 5%), while days 3, 7, 14, 21 and 28 

were higher to day 64 (LSD 5%). In cattle from the late calved group, the F. succinogenes 

population was significantly correlated to S. bovis cells/mL (R=0.60) (Figure 4.6) and S. 

ruminantium cells/mL (R=0.76) (Figure 4.6) (P<0.05). 

 The S. ruminantium population (Figure 4.6) remained constant over the sampling 

period, with no significant differences between the two calving groups (P>0.05). However, 

there is a significant difference between the dates samples were taken (P<0.05). The 

interaction of calving group and date sampled was also not different (P>0.05). 

The S. ruminantium population was higher (LSD 5%) for the LC weaners on day 

64. The LC weaners on day 0 had y lower S. ruminantium populations than on day 14 

(LSD 5%). In the LC weaners S. ruminantium population was significantly correlated to 

other bacterial populations F. succinogenes (R=0.76), S. bovis (R=0.53) (P<0.05). 

 The EC weaners S. ruminantium population indicated that day 0 was significantly 

lower to days 28 and 64.  The S. ruminantium population was significantly correlated to F. 

succinogenes (R=0.77) (P<0.05). 

 The P. ruminicola populations (Figure 4.6) were not different between the calving 

groups and there was no significant the interaction of the groups and the date sampled 

(P>0.05).  The P. ruminicola bacterial populations were similar for the two calving 

periods, with only a small significant difference at day 14 of sampling (LSD 5%).  

In the EC weaners P. ruminicola populations on day 0 were lower than days 7, 14, 

28 and 64 (P<0.05).  

The LC weaners showed that during the introduction P. ruminicola population 

increased then decreased at day 28 then remained constant. The LC P. ruminicola 

population was correlated to rumen ammonia S. bovis (R=0.51) (Figure 4.6) (P<0.05). 
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The S. bovis population (Figure 4.6) was not significantly different between the two 

calving groups, the date sampled, nor was there any the interaction of the calving group 

(P>0.05).  The only significantly difference between the two times of calving was S. bovis 

population cells/mL at day 7 (LSD 5%).  

The EC weaners S. bovis at day 0, 14 and 21 were lower than day 28 (LSD 5%) 

while days 3, 7 and 28 were significantly different to day 64 (LSD 5%) the EC weaners S. 

bovis population was significantly different to the total bacterial population, F. 

succinogenes, S. ruminantium and P. ruminicola (P<0.05). 

 The LC weaners S. bovis population at day 0 was lower than (P<0.05) day 7 and 

28, while day 3 was significantly higher than day 64 (LSD 5%). Day 7 was significantly 

different to days 14, 21, 28 and 64 (LSD 5%) while days 14 and 28 were both significantly 

different to day 64 (LSD 5%). The LC weaners S. bovis population was also correlated to 

the F. succinogenes cells/mL (R=0.60)

 

Figure 4.7 Protozoa populations in cells/mL (mean ± SEM) during grain introduction for 

late and EC cattle after introduction to grain during feedlot at Vasse Research Centre. 
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 The protozoa concentrations (Figure 6.7) increased over the sampling period and 

were significantly different between the two calving groups as well as the dates they were 

sampled (P<0.05), however there was no significant difference between the calving group 

and the sampling date (P>0.05). 

The protozoa counts from the rumen samples taken from the weaners of the two 

different times of calving that all days apart from days 7 and 14 were different between the 

two groups (LSD 5%). The EC weaners’ protozoa samples from days 0 and 3 were 

significantly different to all other samples taken during the adaptation period (LSD 5%). 

The EC protozoa populations also had a significant correlation to the rumen ammonia 

(P<0.05). 

 The LC weaners protozoa populations at days 0 and 3 was lower than days 14, 21, 

28 and 64 (LSD 5%) while day 7 was lower to day 64 (LSD 5%). The LC weaners 

protozoa numbers over the adaptation period were correlated to the rumen ammonia 

concentrations (R=0.41) (P<0.05). 
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Figure 4.8 Biplot representing the 70% of correlations of log transformed bacterial 

populations in cattle after introduction to grain during feedlot at Vasse Research Centre. 

Red – samples day 0 to dark green samples at day 64. 

 The biplot (Figure 4.8) indicates that the S. ruminantium and F. succinogenes 

populations were associated.  S. bovis populations were more closely associated to S. 

ruminantium and F. succinogenes populations than the P. ruminicola populations.  

Protozoa populations were independent of the bacterial populations assessed. 

4.4 Discussion 

The interesting features from this study were the sustained differences observed 

between cattle in the late weaned group as distinct from the early weaned group in rumen 
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microbial ecology of Fibrobacter succinogenes and the protozoa populations and rumen 

parameters of. L-lactate and ammonia.    On the other hand, there were no differences in 

rumen pH, D-lactate, and total rumen bacterial populations.  Thus the pre-weaning dietary 

environment where the early weaned group was supplemented with hay and the later 

weaned group was weaned onto green pastures had a lingering effect on rumen microbial 

ecology and physiology in the weaned animals fed grain diets.  

The work done by Li et al. (2012) indicates that in pre-ruminant calves of varied age 

their microbiota was of considerable heterogeneity during early development with all 

functional classes of bacteria between the two groups being markedly similar. This lays a 

solid foundation for the transition of pre-ruminant to ruminant. The development of the 

rumen of newborn calves is influenced by the consumption of dry feed (Anderson et al., 

1987), therefore the impact of what may have only been a few months of difference in 

available roughage only of varied quality was not enough to have a long term impact on 

the rumen populations of these two times of calving.  The diets may slightly impact on this 

but the bacterial populations in essence are set and just change with the introduction of 

different dietary components. Therefore, it indicates here that although the cattle were 

calving onto different diets there appears to be no long term effect on the ability for these 

weaners to go onto a grain based diet. This may however be different if the early weaners 

had stayed on a dry lower plane of nutrition and the late on a higher plane of nutrition prior 

to the introduction of a grain based diet. This trial importantly highlighted that an 

introduction onto a grain based diets does not require feed additives provided care is taken 

with the ration formulation and the roughage content is kept high in the ration. 

The rumen pH values were all at the upper end of the normal range (> pH 6.7) 

throughout the sampling, possibly because there was no brass attachment used on the end 

of the sampling tube to ensure that the end of the tube dropped to the bottom of the rumen. 
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Thus there may well have been higher concentrations of saliva than in the other trials, 

although saliva contamination was checked.  Since this technique was consistent over the 

sampling period, all samples would still be analysed to assess the linkages between rumen 

pH and other rumen parameters. 

The D-lactate concentrations decreased in both groups on day 8 and returned to the 

original concentrations for the remainder of the sampling period.  Overall the D-lactate 

concentrations were low and not indicative of acidosis. The L-lactate concentrations were 

constant for the late-calved weaners.  On the other hand, L-lactate concentrations in EC 

weaners although lower showed large variation in concentrations with fluctuations 

throughout the sampling. 

The rumen ammonia (Figure 4.4) concentrations increased as the grain content in the 

diet increased; although the groups were different in absolute concentrations the trends 

were the same for the two groups. Rumen ammonia concentrations were correlated to an 

increase in the P. ruminicola and S. bovis populations and importantly the more frequently 

observed correlation of an increase in protozoa populations concentrations (Dehority, 

2003) when ruminants have increased protein availability in the diet. Throughout the grain 

feeding period that samples were taken, there was no significant difference for the total 

bacterial population for the two calving times with some differences between the days 

sampled. This observation did not support the hypothesis that time of calving in this 

instance impacted on the rumen microbial ecology. In fact, good management practices 

during grain introduction led to no major increases or decreases in the rumen bacterial 

population. The F. succinogenes populations decreased during the feeding period for both 

groups with the early calvers decreasing at a faster rate after day 3. The decrease in the 

fibre degrading bacteria supported the hypothesis that F. succinogenes decreases with 

increases in grain content but in this case was not associated with a reduction in rumen pH. 
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The S. ruminantium populations were not significantly different between the two 

groups but the biplot (Figure 4.11) data indicated a strong relationship with the F. 

succinogenes populations.  There is some evidence to suggest that some isolates of S. 

ruminantium can cooperate with F. succinogenes in fibre digestion (Sawanon et al., 2011) 

which may be evident in these samples. 

The P. ruminicola populations were not significantly different between the two times 

of calving groups.  Populations in both groups increased until day 8 then returned to the 

same concentrations as the first day of grain feeding. The Prevotella populations were the 

most abundant in the rumen and were significantly correlated to the rumen populations of 

the other bacteria and rumen parameters.  This was suggestive of consistent changes with 

minimal deleterious changes in the rumen. Moreover, in the case of these two groups of 

cattle, the slow introduction of grain without any rumen modifiers was indicative of a very 

successful introduction of grain in the high energy diets. 

 The S. bovis populations increased for the late time of calving group at day 8 but 

there were no significant differences between the calving groups.  Again this finding 

indicated that there was not excessive growth of this lactic acid producer.  Moreover, these 

population changes in S. bovis were linked to low lactate concentrations and maintenance 

of the rumen pH in a normal range. 

 The protozoal numbers in these samples indicated that LC animals that were born 

onto high quality pastures had a higher level of protozoal populations during grain feeding. 

Overall it has been noted in other studies that protozoal populations increased with an 

increase in the proportion of concentrate within a ration (Leng et al., 1980; Dehority, 

2003). Work done by Belanche et al. (2011) indicated that as in this study protozoal 

increases are associated with increase in rumen ammonia concentrations. In accord with 

this finding, the later calved cattle demonstrated a higher protozoa cells/mL and a 
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significantly higher rumen ammonia concentration. Studies  (Purser and Moir, 1966) have 

proposed that calves born on to readily fermentable high quality pastures also had higher 

protozoal densities. It is interesting to note that even when on the same diet in feedlot 

protozoal numbers in the EC cattle never reached those of the later calved cattle 

throughout the feedlot period It is documented that calves acquire rumen protozoa from 

adults during grazing (Coleman, 1980) therefore impacting on the abundance of rumen 

protozoa at early stages of production prior to these weaners being placed onto a high 

concentrate feedlot ration. Monitoring of the bacterial and protozoal populations under the 

pasture grazing system would have given a better overall picture of how the rumen 

microbial population was set up over time. 

Overall cattle from the two calving times showed very successful adaptation to 

grain introduction without any obvious signs of rumen dysfunction. The measured 

metabolic indicators show that the total energy values of volatile fatty acids and rumen 

ammonia were ideal for cattle in this growth phase. The other important finding from this 

data showed that even when there is a decrease in cellulytic bacteria such as the decreasing 

populations of F.succinogenes or an increase in lactate producing bacteria such as 

population of S. bovis, this is not always indicative of subclinical or clinical acidosis. The 

rumen pH remained at what could be classified as safe normal concentrations throughout 

the introduction and transition to grain diets for both calving groups and D- and L-lactate 

concentrations remained low throughout the grain feeding period.  In particular the data 

here does not support the time of lambing study of Al Jassim et al. (2003) in sheep on dry 

versus green pastures.  Therefore, from this study, the time of calving onto either dry 

pasture or green pasture did not have sustained or deleterious impacts on rumen microbial 

ecology or metabolism when the cattle were subsequently introduced to high grain diets in 

feedlots, if reasonable care was taken during that introductory period.   
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5 Changes in the rumen microbial population of dairy cattle sampled in Australian 

herds. 

5.1 Introduction  

 Previous chapters have used quantitative RT-PCR to show the relationships 

between parameters of rumen physiology and metabolism and changes in rumen microbial 

ecology during dietary transition in commercial beef feedlots, the feeding of lupins and 

soybeans to sheep and the effect of time of calving.  In this chapter, rumen samples were 

obtained from a study by (Bramley et al., 2008) which monitored commercial dairy herds 

under various nutritional regimes and tested the relationships between various indicators of 

acidosis such as low rumen pH, elevated D and L - lactate concentrations and other 

parameters of rumen metabolism such as the concentration and profile of volatile fatty 

acids.  However changes in rumen microbial ecology had not been assessed in these dairy 

cattle. Therefore, these samples were analysed using molecular techniques to determine if 

these traditional metabolic indicators of acidosis were associated with impacts on the 

rumen bacterial populations of S. bovis and Lactobacillus spp. S. ruminantium, P. 

ruminicola or F. succinogenes. 

 The aims of this chapter were to use qRT-PCR to assess these rumen samples and 

determine changes in the ecology or populations of key indicator bacterial populations 

represented in a dairy herd. Ecological changes were then linked to various indicators of 

physiological and biochemical (e.g. D-lactate) acidosis.  

It is hypothesised that: 

1. The addition of any feed additive such as antibiotics or ionophores will reduce the 

incidence of acidosis through changes in the bacterial ecology established in the 

rumen. 
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2. Fibre utilising cellulolytic rumen bacteria (Fibrobacter succinogenes) populations 

are lower during grain feeding or low rumen pH. 

3. Lactic acid utilising rumen bacteria (Selenomonas ruminantium) populations 

increase in herds with a higher grain component of the diet. 

4. Prevotella ruminicola will be the most prevalent bacteria in the rumen samples of 

those screened. 

5. Streptococcus bovis will be higher (cells/mL) in cattle with subclinical or clinical 

acidosis in dairy cattle fed grain-based diets. 

6. Higher levels of S. bovis are linked with low ruminal pH, and high Lactobacillus 

spp.  

7. Metabolic changes in the rumen can be related to changes in rumen molecular 

ecology in cattle. 

5.2 Materials and Methods 

 Full sampling procedures of the dairy herds are outlined in (Bramley et al., 2008).  

A brief outline is listed below: One hundred commercial herds were selected from 5 areas 

in NSW and Victoria, from these herds a subsample of herds (n=12) were selected for 

analysis of the rumen microbial populations. Eight animals were randomly sampled from 

each of these twelve herds using a random number chart according to these two criteria:  

They were lactating cows, in the first 100 days of lactation the total sample consisted of 

three primiparus and five multiparus animals. 

 Animals were sampled 2-4 days after milking, if they were fed on concentrate in 

bail or 4-6 days after feeding a total mixed ration outlines in table 7.1.  They were given 

access to water if possible during this time. (Bramley et al., 2008).  
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5.2.1 Rumen parameters 

 All parameters and dietary analysis information are outlined in (Bramley et al., 

2008) including volatile fatty acid analysis, D and L-lactate and rumen ammonia 

concentrations analysed in the collected rumen samples. 

5.2.2 DNA extraction and quantitative Real Time PCR (qRT- PCR) 

 Extraction of DNA was undertaken as outlined in chapter three and the qRT-PCR 

was undertaken as outlined in chapter four.  

5.2.3 Statistical analysis 

 It must be noted and acknowledged that all biochemical and physiological data 

except bacterial populations were sourced from the Bramley et al. (2008) data set.  

Residual plots were examined to ensure that statistical tests complied with 

assumptions of normality and homogeneity of variance.  Where necessary data was 

transformed to ensure that this was the case. The bacterial populations for each species 

quantified were log-transformed (log10) prior to statistical analysis, with total bacterial 

population also log-transformed (log100). 

 Firstly, the data was analysed in herd categories (n=12) to determine what were the 

main factors that differentiated these herds (Table 5.1). 

 Secondly the data was analysed as one full data set (n=95) irrespective of herds to 

determine if there were any linkages between measurements and also the impact of 

addition of feed additives. 

 Thirdly the data was analysed based on a cluster analysis as undertaken by (Bramley et 

al., 2008) for the sub samples to determine if the selection based on the physiological 

measures was linked to variations in bacterial populations. Please note that the results 

in this Masters are only a subsample of those represented in Bramley’s paper. 
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 Finally, the data was then analysed based on rumen pH categories to determine if the 

linkage of pH was related to variations in rumen bacterial populations. 

   

 Correlations between variates were compared to zero using a two-sided test. The 

matrix of correlations between logarithms of the counts of individual bacteria was used to 

construct a biplot which showed the variation in the relationships between bacterial counts 

in samples collected. 

 Herd and pH category means were compared using ANOVA for all comparisons 

apart from the cluster analysis which due to its uneven sample numbers was analysed using 

a REML analysis with herd as the random effect. Samples were used to calculate averages 

at each sample date which were compared using 5% least significant differences (5% 

LSD). 
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5.2.4 Herd feed rations 

Table 5.1 Outline of feed rations for each of the 12 herds sampled subsample (Bramley et al., 2008) ranking from increasing forage and decreasing 

concentrate in rations. Shading indicates no ionophores or antibiotics in the ration. 

Herd 
Forage 

% 

Conc  

% 

 Total diet 

energy 

MJ 

ME/kg 

DM 

Total 

diet 

CP% 

Pasture 

CP% 

Total 

diet 

NDF% 

Pasture 

diet 

NDF% 

% 

sugar 

in 

pasture 

Ration Components Ration Additives 

74 30.5 69.5  11.4 18.3 20.8 23.5 46.3 10.2 
5.2kg DM pasture, 9.08kg wheat and 

1.75kg of cotton seed meal  

Monensin (315mg), bicarbonate 

(126mg) and limestone (378g) 

83 46.6 53.4  10.8 18.1 N/A 42.7 N/A N/A 
9.29kg DM silage, 5.05kg triticale, 

0.08 urea, 2.74kg brewers grain  

illrun(1.71), monensin (250mg), tylon 

(150mg) and limestone (200g)  

9 48.5 51.5  11.7 19.1 25.2 26.6 31.5 23.6 
0.92kg straw, 7.71kg DM pasture and 

1.62kg DM silage, 9.35kg wheat 
0.03% oil/fat and monensin (200mg) 

61 53.9 46.1  10.4 18.2 18 38.8 52.7 9.1 

5.93kg DM pasture, 1.33kg DM 

silage, 3.54kg hay, 5.22kg triticale, 

0.04kg wheat and 0.02kg cotton seed, 

0.08kg safflower, 3.29kg barley 

 Illrun (0.46) and 0.01% of molasses 

and oil/fat 

8 58.0 42.0  9.2 12.5 26.2 38.9 33.7 32 

3kg DM pasture, 1.9kg straw and 

2.4kg hay, 1.73kg barley, 0.53kg 

corn, 0.63kg triticale and 1.75kg 

wheat 

oil and fat (0.04%) and addition of 

monensin (156mg), limestone (38.4g), 

Agox (14.4g) and bentonite (120g) 
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89 58.7 41.3  10.7 19.2 23.7 35.9 43.1 14.4 

4.55kg DM pasture, 3kg DM silage, 

4kg DM hay, 6.75kg triticale, 0.63kg 

canola meal, 0.71kg faba bean 

Monensin (163mg), limestone (40g) 

and Agox (15mg) 

16 58.8 41.2  10.4 15.2 16.7 28.5 36 30.6 
10.99kg DM pasture, 6.64kg barley 

and 0.63kg canola 

 Monensin (240mg), virginiamycin 

(200mg), limestone (59.5g), acid 

buffer (28g) and Agox (22g) 

5 62.3 37.7  11.3 20.6 29.4 28.1 40.7 14.9 
9.28kg pasture, 5.02kg DM hay, 

0.46kg DM straw and 8.6kg wheat 

Monensin (450mg), virginiamycin 

(250mg) and bicarbonate (70)  

38 73.8 26.2   10.3 22.5 24.2 36.7 44.6 11 
15.7kg DM pasture, 4.27kg wheat, 

0.54kg canola and 0.56kg of lupins 

 Monensin (200mg), virginiamycin 

(250mg) and bicarbonate (27g) 

6 76.7 23.3  10.8 19.5 32.2 34 32.1 14.2 
8.15kg DM pasture, 3.17 kg barley, 

1.07 kg wheat  

Bicarbonate (70g), limestone (285g) 

and Agox (19.3g) 

98 77.0 23.0 

 10.7 21.2 24 36.2 42.3 16.6 10.23kg DM pasture 0.45kg barley, 

0.6kg corn, 0.15kg rice, 0.45kg 

sorghum, 0.43 triticale, 0.15 faba 

bean, 0.24kg safflower and 0.16kg 

corn-starch  

molasses, monensin (170mg), 

limestone (57.8g), acid buffer (17g) 

and Agox (17g) 

12 90.3 9.7 
 10.7 23.8 26.2 29.2 29.3 8.5 14.28kg pasture, 2.37kg hay and 

1.78kgWheat  No additives 
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5.3 Results 

 All samples were analysed originally as herds (n=12) then as a single data 

collection irrespective of herd and dietary intake (n=95).  This was undertaken to increase 

the size of the database as samples were only taken at one point in time rather than over a 

period of time.  Pooling the data should enable a better indication of relationships that may 

be linked to the rumen bacterial population and to determine if rumen pH or other 

physiological parameters impacted on the rumen bacterial population.  Thirdly all samples 

were analysed as categories 1, 2 or 3, based on the cluster analysis from Bramley et al. 

(2008) (Table 7.5), then finally they were analysed based on 3 pH categories (low, medium 

and high; Table 7.6). 

5.3.1 Herd analysis  

 A subsample of 12 herds as outlined in (Bramley et al., 2008) were analysed, herds 

outlined below are listed from  lowest to highest forage percentage in the ration. 

5.3.1.1 Herd 74 

Cattle in Herd 74 were fed the lowest forage component in their diet consisting of 30.5% 

forage consisting of 5.2kg of pasture of the following analysis: 18.3% crude protein, 11.4 

MJ ME/kg DM and 23.5% NDF and 69.5% concentrate consisting of 9.08kg wheat and 

1.75 of cotton seed meal with the addition of monensin (315mg), bicarbonate (126mg) and 

limestone (378g) the highest of any herd. Herd 74 had the highest P. ruminicola population 

and second highest populations of F. succinogenes (even though it was one of the lowest 

forage contacting rations) and S. ruminicola of the herds analysed at this one point in time. 

The S. bovis population was significantly correlated to the butyric acid concentration (R 

=0.96) (Table.  P. ruminicola was correlated to the iso-butyric acid (R=0.96) and S. 
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ruminantium to the D- lactate concentration in the rumen (R = -0.97). There were no 

correlations between the key bacterial populations monitored in this herd.  

5.3.1.2 Herd 83 

 Herd 83 was fed a diet consisting of 46.5% forage which constituted 9.29kg DM of 

silage; 18.1% crude protein, 10.8 MJ ME/kg DM and 42.7% NDF with 53% concentrate 

including 5.05kg triticale, 0.08 urea, 2.74kg brewers grain and 1.71 illrun, monensin 

(250mg), tylon (150mg) and limestone (200g) added into the diet (P<0.05).  

 The rumen pH was significantly correlated to the bacterial populations of S. bovis 

(R=0.76) (P<0.05) and S. ruminantium (R=0.73). 

 The F. succinogenes population was significantly correlated to the acetic (R=0.86), 

propionic (R=0.85) and valeric acid (R=0.84) and also the S. ruminantium population 

(R=0.89) (P<0.05).  

 The S. bovis population was significantly correlated to the iso-butyric (R=0.78), 

butyric concentrations (R=0.85), rumen pH (R=0.76) and D-lactate concentrations 

(R=0.77) (P<0.05). The S. ruminantium population was significantly correlated to the 

acetic (R=0.93), iso-butyric (R=0.86), butyric (R=0.83), valeric (R=0.87) and total volatile 

fatty acid concentrations (R=0.95) (P<0.05) as well as the F. succinogenes population 

(R=0.89) (P<0.05). 

  The P. ruminicola population was significantly correlated to the rumen acetic 

(R=0.80), propionic (R=0.79), iso-valeric (R=0.73), valeric (R=0.84) while the 

Lactobacillus spp. were correlated to the rumen ammonia concentration (R=0.72) 

(P<0.05). 

 Overall this herd had bacterial populations which were average for all bacterial 

populations analysed. 
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5.3.1.3 Herd 9 

 Herd nine was fed a diet of 48.5% forage (0.92kg straw, 7.71kg DM pasture: 19.1% 

crude protein, 11.7 MJ ME/kg DM and 25.65% NDF and 1.62kg DM of silage) and 51.5% 

concentrate, consisting of 9.35kg wheat, 1.35kg canola meal and 0.03 oil/fat and monensin 

(200mg/cow/day) 

 The bacterial populations of F. succinogenes in cows on this ration were 

significantly correlated to the total bacterial population (R=0.98) (P<0.05). The S. bovis 

bacterial populations were not correlated to the other rumen bacterial populations. The P. 

ruminicola populations were significantly correlated to iso-valeric acid (R=-0.82) 

concentrations and total bacterial population (R=0.96) (P<0.05).  The Lactobacillus spp. 

were significantly correlated to the S. ruminantium (R
=
-0.99) and total bacterial population 

(R=-0.95). 

 This herd had a low rumen pH of 5.48 one of the lowest total rumen bacterial 

populations as well as the lowest F. succinogenes, P. ruminicola and S. bovis population 

levels. 

5.3.1.4 Herd 61 

 Herd 61 was consuming a diet of 54% roughage (5.93kg DM of pasture: 18.2% 

crude protein, 38.8% NDF 1.33kgDM silage and 3.54kg DM of hay) with 46% concentrate 

consisting of 5.22kg triticale, 0.04kg wheat and 0.02kg cotton seed, 0.08kg safflower, 

3.29kg barley and 0.46 illrun and 0.01 of molasses and oil/fat per cow. 

 The F. succinogenes population was significantly correlated to the total bacterial 

population (R=0.88) as well as the S. ruminantium population (R=0.97) (P<0.05). The P. 

ruminicola population was significantly correlated to the D- lactate concentration (R=0.88) 

while the Lactobacillus spp. population was significantly correlated to the S. ruminantium 

population (R=0.90) (P<0.05). 
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 Herd 61 had the lowest total bacterial population levels of all the herds analysed 

and one of the lowest P. ruminicola populations. 

5.3.1.5 Herd 8 

 Herd eight was consuming 52% forage (3kg DM pasture: 12.5% crude protein, 9.3 

MJ ME /kg DM and 8.9% NDF 1.9kg DM straw and 2.4kg DM hay. The 48% concentrate 

consisted of barley (1.73 kg), corn (0.53 kg), triticale (0.64 kg) and wheat (1.75 kg) with 

the addition of some oil and fat and addition of monensin (156mg/cow/day), limestone 

(38.4g), Agox (14.4g) and bentonite (120g) to the ration. 

 The P. ruminicola bacterial populations were significantly correlated to butyric 

acid (R= -0.85), acetic acid (R= -0.85) and D-lactate concentrations (R= -0.88), while S. 

ruminantium populations were correlated to the S. bovis populations (R=0.95) (P<0.05). 

The Lactobacillus spp. population was correlated to the iso-butyric acid concentrations 

(R=-0.82) 

 This herd had the lowest pH value of all herds in this analysis with the highest S. 

bovis population and S. ruminantium population of all herds with a high F. succinogenes 

and average Lactobacillus spp. population levels. 

5.3.1.6 Herd 89 

 Herd 89 consumed a diet of 58.8% forage (4.55kg DM pasture: 19.2% crude 

protein, 10.7 MJ ME /kg DM and 35.9% NDF 3kg DM silage and 4kg DM day) and 

41.2% concentrate which consisted of 6.75kg triticale, 0.63kg canola meal, 0.71kg faba 

bean and the additives of monensin (163mg), limestone (40g) and Agox (15g). 

 The D and L-lactate concentrations were significantly correlated (R=0.98) 

(P<0.05), while the rumen pH was significantly correlated to the acidosis status (R=0.95) 
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and the bacterial populations of F. succinogenes (R=0.75) and P. ruminicola (R=0.81) 

(P<0.05). 

 The F. succinogenes population was significantly correlated to propionic acid 

concentrations (R=0.91) and the bacterial populations of P. ruminicola, S. ruminantium 

and the total bacterial population (P<0.05). The total bacterial population was significantly 

correlated to the acetic (R=-0.75), propionic (R=-0.92), caproic (R= -0.85) acid 

concentrations (P<0.05). The total bacterial population was also correlated to the bacterial 

populations of F. succinogenes (R=0.77), Lactobacillus spp. (R=0.74), P. ruminicola 

(R=0.96) and S. ruminantium (R=0.84). 

 The S. ruminantium population in herd 89 was correlated to the total bacterial 

population, F. succinogenes (R=0.87), P. ruminicola (R=0.91) and the concentrations of 

caproic (R
=
0.89), propionic (R=0.86) and valeric acids (R=-0.77). 

 Herd 89 had one of the lowest rumen pH (5.74) the highest S. bovis and lowest 

Lactobacillus spp. populations with average population levels of other rumen bacterial 

species monitored. 

5.3.1.7 Herd 16 

 Herd sixteen was fed a ration consisting of 59% forage (10.99kg DM pasture: 

15.2% crude protein, 10.4 MJ ME/kg DM and 28.5% NDF) and 41% concentrate 

consisting of 6.64kg barley and 0.63kg canola with the addition of monensin (240 mg), 

virginiamycin (200mg), limestone (59.5g), acid buffer (28g) and Agox (22g). 

 The F. succinogenes populations in this herd were significantly correlated to the 

rumen pH (R=0.82), butyric acid concentration (R=0.81) and bacterial populations of S. 

ruminantium (R=0.92) and P. ruminicola. (R=0.94) (P<0.05). The S. bovis populations 

were not correlated to any other parameters. The S. ruminantium populations were 
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significantly correlated to butyric acid (R=0.87) as well as the bacterial populations of F. 

succinogenes (R=0.92) (P<0.05). The P. ruminicola populations were significantly 

correlated to the rumen pH (R=0.82) while the Lactobacillus spp. populations were 

significantly correlated to the rumen pH (R=0.78) and iso-butyric acid (R=0.75 

 Herd 16 had one of the lowest F. succinogenes populations and average P. 

ruminicola and S. ruminantium and an average S. bovis population in comparison to the 

other herds analysed. 

5.3.1.8 Herd 5 

 Herd five was consuming a diet of 62% forage (9.28kg DM pasture; 20.6% crude 

protein, 11.3 MJ ME/kg DM and 28.1% NDF5.02kg DM hay and 0.46kg DM straw) and 

38% wheat with the incorporation of monensin (450mg/cow/day), virginiamycin 

(50mg/cow/day) and bicarbonate (70g/cow/day) into the diet. The rumen samples analysed 

for this herd indicate that the bacterial populations of F. succinogenes were significantly 

correlated to rumen acetic acid (R=0.89), butyric acid (R=0.82), iso-butyric acid (R=0.80), 

iso-valeric (R=0.94) and the bacterial populations of P.ruminicola (R=0.95), S. ruminicola 

(R=0.92), Lactobacillus spp. (R=0.84) and total bacterial population (R=0.97) (P<0.05).  

 The P. ruminicola population was correlated to acetic acid (R=0.77), iso-butyric 

(R=0.75), total bacterial populations (R=0.97) and the other bacterial populations of F. 

succinogenes (R=0.96), S. ruminantium (R=0.92) and Lactobacillus spp. (R=0.84) 

(P<0.05).  

 The S. ruminantium population was significantly correlated to acetic (R=0.87), 

butyric (R=0.92), iso-butyric (R=0.86), iso-valeric (R=0.76), F. succinogenes (R=0.92) 

and total bacterial populations (R=0.89) (P<0.05).  

 The S. bovis population was significantly correlation the Lactobacillus spp. 

(R=0.79) (P<0.05) population. The Lactobacillus spp. was correlated to acetic acid 
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(R=076), butyric (R=0.83), iso-butyric acid (R=0.83), iso-valeric (R=0.72), F. 

succinogenes (R=0.86), S. bovis (R=0.80), S. ruminantium (R=0.85), P. ruminicola 

(R=0.84) and the total bacterial population (R=0.76). 

 The total bacterial population was significantly correlated to the acetic acid, butyric 

and iso-valeric acid concentrations and the bacterial populations of F.succinogenes, 

Lactobacillus spp., P. ruminicola and S. ruminantium. 

 Herd 5 had one of the lowest rumen pH values (5.4) and highest average total 

volatile fatty acids of all the herds, their bacterial population levels were however average 

in comparison to the other herds. 

5.3.1.9 Herd 38 

 Herd 38 was fed a diet consisting of 73% forage (15.7kg DM pasture: 22.5% crude 

protein, 10.3 MJ ME /kg DM and 36.7% NDF) and 20% concentrate which consisted of 

4.27kg wheat, 0.54kg canola and 0.56kg of lupins with the addition of monensin (200mg), 

virginiamycin (250mg) and bicarbonate (27g). 

 The F. succinogenes populations were significantly correlated to the bacterial 

populations of S. bovis (R=0.94), P. ruminicola (R=0.81) and Lactobacillus spp. 

populations (R=0.91) (P<0.05). The total bacterial population was significantly correlated 

with S. ruminantium (R= 0.82) The S. ruminantium bacterial population was significantly 

correlated to the total bacteria population (R=0.82), iso-butyric acid (R=0.85) and P. 

ruminicola (R=0.82) (P<0.05).  The P. ruminicola population was significantly correlated 

to iso-butyric acid (R= 0.83) and valeric acid concentrations (R=0.82), the populations of 

F. succinogenes (R=0.78) and total bacterial population (R=0.66) (P<0.05) while the 

Lactobacillus spp. was significantly correlated to rumen pH (R=0.901 (P<0.05). 
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 Herd 38 had the lowest S. bovis population and lowest total volatile fatty acid 

concentrations with one of the lowest F. succinogenes and P. ruminicola populations of all 

herds analysed. 

5.3.1.10 Herd 6 

 Herd six was a diet consisting of 77% forage (8.15kg DM pasture; 19.5% crude 

protein, 10.8 MJ ME/kg DM and 34% NDF and 6.54kg DM silage) with 23% concentrate 

consisting of barley (3.17kg), wheat (1.07kg) and diet additives of bicarbonate 

(60g/cow/day), limestone (29mg/cow/day) and Agox (19.3g/cow/day). The bacterial 

populations of P. ruminicola were significantly correlated to the S. ruminantium 

populations (R=0.78) while the S. bovis populations were significantly correlated to the 

Lactobacillus spp. populations (R=0.81) (P<0.05).  

 Herd six had the highest rumen pH and also highest F. succinogenes population of 

all herds. 

5.3.1.11 Herd 98 

 Herd 98 was consuming a diet consisting of 77% forage (10.23kg DM pasture: 

21.6% crude protein, 10.7 MJ ME/kg DM and 36.25% NDF) with 23% concentrate.  The 

concentrate component consisted of 0.45kg barley, 0.6kg corn, 0.15kg rice, 0.45kg 

sorghum, 0.43 triticale, 0.15 faba bean, 0.24kg safflower and 0.16kg corn-starch with the 

additives of molasses (0.08%), monensin (170mg), limestone (57.8g), acid buffer (17g) 

and Agox (17g). 

 The F. succinogenes population was significantly correlated to the S. ruminantium 

population (R=0.90) (P<0.05). The S. bovis population was significantly correlated to 

butyric (R=0.81), valeric (R=0.81) and concentrations and L-lactate (R=0.84) (P<0.05) 
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while the total bacterial population is significantly correlated to the P. ruminicola (R=0.94) 

and S. ruminantium populations (R=0.83) (P<0.05). 

 Herd 98 had one of the highest S. bovis and lowest Lactobacillus spp. populations 

at a pH of 6.34 and average populations of the other key bacterial species monitored.  

5.3.1.12 Herd 12 

 Herd 12 was consuming the diet that consisting of the highest roughage component 

at 90.4% (14.23kg DM of pasture: 23.8% crude protein, 10.7 MJ ME/kg DM and 29.2% 

NDF and 2.37kg DM hay).  The concentrate component comprising 9.6% of the diet 

consisted of 1.78kg of wheat with no other additives in the diet. Herd 12 had the lowest 

S.ruminantium populations, one of the highest P. ruminicola populations and the highest 

Lactobacillus spp. populations of the herds analysed. 
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Table 5.2 Average values for rumen parameters of dairy herds for samples taken at one point in time and 5% least significant differences (5%LSD). 

Retransformed means are shown in brackets. Averages with the same subscript are not significantly different (Fisher’s protected 5%LSD). 

 

Herd ID 

%Forage  

74 

30.5 

83 

46.6 

9 

48.5 

61 

53.9 

8 

58.0 

89 

58.7 

16 

58.8 

5 

62.3 

38 

73.8 

6 

76.7 

98 

77.0 

12 

90.3 5%LSD 
Rumen pH * 

 

6.11   

cd 

6.67   

f 

5.53   

ab 

6.14   

de 

5.07   

a 

5.74   

bc 

6.47   

def 

5.43   

Ab 

6.34  

 def 

6.62   

f 

6.36   

def 

6.53   

ef 

0.39 

F. 

succinogenes 

(log10)   

8.28 

(1.89E+08)  

fg 

7.62 

(4.14E+07)  

def 

5.80 

(6.36E+05)  

a 

6.34 

(2.20E+06)  

ab 

8.01 

(1.02E+08)  

efg 

7.93 

(8.60E+07)  

efg 

6.87 

(7.47E+06)  

bcd 

7.32 

(2.08E+07)  

cde 

6.69 

(4.95E+06)  

abc 

7.83 

(6.74E+07)  

efg 

7.44 

(2.73E+07)  

cdef 

8.70 

(5.05E+08)  

g 

0.89 

P. 

ruminicola 

(log10)   

7.89 

(7.80E+07)  

d 

7.34 

(2.17E+07)  

bcd 

6.09 

(1.24E+06)  

a 

6.19 

(1.54E+06)  

a 

7.46 

(2.90E+07)  

cd 

6.76 

(5.76E+06)  

abc 

7.15 

(1.41E+07)  

bcd 

7.22 

(1.66E+07)  

bcd 

6.63 

(4.25E+06)  

ab 

7.21 

(1.64E+07)  

bcd 

7.31 

(2.03E+07)  

bcd 

7.52 

(3.28E+07)  

cd 

0.78 

 S. 

ruminantium 

(log10)   

8.10 

(1.25E+08)  

ef 

7.53 

(3.42E+07)  

cde 

6.31 

(2.03E+06)  

a 

6.92 

(8.35E+06)  

abc 

8.37 

(2.33E+08)  

f 

6.96 

(9.03E+06)  

abc 

7.22 

(1.65E+07)  

bcd 

7.54 

(3.46E+07)  

cde 

6.52 

(3.29E+06)  

ab 

7.75 

(5.63E+07)  

def 

7.71 

(5.11E+07)  

def 

8.33 

(2.15E+08)  

f 

0.76 

S. bovis 

(log10)  

 

4.07 

(1.19E+04)  

bcd 

4.02 

(1.06E+04)  

bcd 

3.34 

(2.18E+03)  

a 

3.65 

(4.43E+03)  

abc 

4.76 

(5.75E+04)  

f 

4.60 

(4.02E+04)  

ef 

4.20 

(1.59E+04)  

de 

3.59 

(3.88E+03)  

ab 

3.33 

(2.15E+03)  

a 

3.95 

(8.90E+03)  

bcd 

4.62 

(4.13E+04)  

ef 

4.11 

(1.29E+04)  

cd 

0.49 

Lactobacillus 

spp  

(log10)   

4.79 

(6.15E+04)  

cdefg 

4.72 

(5.22E+04)  

cdefg 

4.48 

(2.99E+04)  

bcde 

4.96 

(9.22E+04)  

defg 

4.79 

(6.10E+04)  

cdefg 

3.88 

(7.67E+03)  

ab 

4.81 

(6.47E+04)  

cdefg 

4.24 

(1.73E+04)  

bc 

4.49 

(3.12E+04)  

bcdef 

4.28 

(1.90E+04)  

bcd 

3.34 

(2.17E+03)  

a 

5.17 

(1.49E+05)  

eg 

0.70 

Total 

Bacterial 

(log100) 

9.42 

(2.60E+09)  

cde 

8.91 

(8.20E+08)  

ab 

8.95 

(8.97E+08)  

abc 

8.64 

(4.41E+08)  

a 

9.52 

(3.32E+09)  

de 

9.08 

(1.21E+09)  

abcd 

9.47 

(2.95E+09)  

de 

9.23 

(1.70E+09)  

bcd 

9.25 

(1.77E+09)  

bcd 

9.13 

(1.34E+09)  

bcd 

8.96 

(9.07E+08)  

abc 

9.74 

(5.44E+09)  

e 

0.47 

Rumen 

ammonia * 

7.18   

e 

4.98   

bcde 

1.27   

A 

4.78   

bcde 

6.71   

de 

6.10   

cde 

2.96   

ab 

4.11   

bcd 

2.82   

ab 

2.94   

ab 

3.97   

abc 

3.31   

ab 

2.71 

Acetic acid* 

 

50.9   

cde 

34.1   

a 

33.6   

a 

46.8   

bcd 

61.9   

e 

51.7   

de 

39.7   

abc 

56.2   

de 

29.9   

a 

35.6   

a 

37.9   

ab 

40.2   

abc 

11.2 

Butyric 

Acid* 

 

10.25   

ef 

7.12   

bcd 

4.57   

ab 

9.62   

de 

13.07   

f 

9.82   

de 

7.08   

bcd 

9.46   

de 

4.05   

a 

7.84   

cde 

6.42   

abc 

8.72   

cde 

2.97 

Propionic 

acid* 

18.7   

bc 

9.1   

a 

25.8   

de 

14.0   

abc 

19.4   

cd 

32.2   

e 

18.8   

bcd 

31.6   

e 

15.4   

abc 

9.7   

a 

13.7   

abc 

12.2   

ab 

6.8 
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N/A indicates not enough measurements of this parameter for statistical analysis within that herd. 

*Data sourced from (Bramley et al., 2008) 

Total VFA* 

 

83.0   

cd 

52.7   

a 

67.1   

abc 

73.0   

bc 

97.7   

d 

97.9   

d 

68.5   

abc 

101.1   

d 

51.5   

a 

55.3   

ab 

60.2   

ab 

63.7   

abc 

19.6 

Valeric acid* 

 

1.16   

cd 

0.62   

a 

1.42   

d 

0.91   

abc 

1.17   

cd 

2.29   

e 

1.14   

bcd 

1.56   

d 

0.86   

abc 

0.63   

a 

0.65   

ab 

0.81   

abc 

0.49 

Iso-butyric 

acid* 

0.70   

cde 

0.56   

abcd 

0.53   

abc 

0.63   

abcde 

0.73   

de 

0.53   

ab 

0.58   

abcd 

0.76   

e 

0.47   

a 

0.61   

abcde 

0.54   

abc 

0.66   

bcde 

0.17 

Iso-valeric 

acid* 

1.29 

 

1.09   

 

0.91   

 

0.96   

 

1.16   

 

0.97   

 

0.90   

 

1.16   

 

0.78   

 

0.86   

 

0.96   

 

0.92   
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 The rumen pH of the herds over sampling period (Table 5.2) indicated that four of the 

twelve herds had an average a pH of less than 6 which was the threshold set for what was classed 

as acidosis in previous chapters. There were four herds with a rumen pH in the medium low 

range of 6.01-6.45 and four in the high rumen pH range >6.46. 

5.3.2 Analysis of all samples irrespective of herds 

 The analysis of all data points was undertaken to determine if irrespective of herds, that 

specific changes in the bacterial populations could be associated with changes in the rumen 

parameters. It can be noted that in the various bacterial populations that there is a large variation 

of the key bacterial populations monitored (Figure 5.1) over the 95 samples analysed. 

 

Figure 5.1 Box and whisker plot of bacterial populations (cells/mL log10) (n=95) analysed using 

qRT-PCR in the rumen of dairy cattle on various diets, total bacterial log100 all other bacterial 

populations log10. 
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Table 5.3  Significant correlations (P<0.05) between bacterial populations and rumen parameters 

over all animals. All bacterial counts were log transformed prior to calculation of correlations. 

Shaded areas are redundant. 
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F_succinogenes 0.658 0.536 0.767 0.620 

 

0.315 0.412 

  

0.301 

  

0.293 

  Lactobacillus 

spp. 

   

0.322 

        

 

  

P_ruminicola   0.326 0.779 0.714 0.23 

  

-0.319 

 

0.263 0.323 

 

 

 

-

0.274 

S_bovis     0.432 0.253 

 

0.251 0.345 

     

0.334 

  

S_ruminantium       0.596 

 

0.305 0.460 

  

0.405 0.323 

 

0.227 

-

0.234 

-

0.293 

Total_bacterial         

 

0.271 0.229 

  

0.300 

  

 

     

The analysis of the data set irrespective of their herd indicates that there is a minimal 

relationship between the other key bacterial populations and the Lactobacillus spp. This is 

visually evident in figure 5.2 with the only correlation being with the total bacterial populations. 

The relationship of all other monitored bacterial populations was evident with the strongest 

being that of P. ruminicola and S. ruminantium. 
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Figure 5.2 Correlations between the key rumen bacterial populations when analysed on a 

collective basis (n=95). 

5.3.2.1 Rumen pH 

 From analysis of the subsample pooled data irrespective of herd, rumen pH was 

significantly correlated to the volatile fatty acids concentrations of acetic (R=-0.50), butyric (R=-

0.33) and valeric acids (R=-0.51) (P<0.05). Rumen pH was also significantly correlated to the D-

lactate concentrations (R=-0.39), acidosis status (R=0.64) and the P. ruminicola population 

(R=0.23)  analysed by qRT-PCR. 
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5.3.2.2 General trends for bacterial species  

 All bacterial populations were significantly correlated to the total bacterial populations 

with the populations of P. ruminicola, F. succinogenes and S. ruminantium having the strongest 

relationship (P<0.05). (Table 5.4) 

5.3.2.3 Fibrobacter succinogenes population  

 From analysis of the pooled data, the populations of the cellulolytic bacteria, F. 

succinogenes was significantly correlated to the volatile fatty acid concentrations of acetic 

(R=0.32), butyric (R=0.41) and iso-butyric acids (R=0.30) and rumen ammonia (R=0.29) 

(P<0.05).  There was also a strong correlation between the populations of F. succinogenes and 

those of S. bovis (R=0.54), P. ruminicola (R=0.66) and S. ruminantium (R=0.76) and total 

bacterial populations (R=0.62) (P<0.05). 

5.3.2.4 Streptococcus bovis populations 

 The S. bovis populations were significantly correlated to the volatile fatty concentrations, 

acetic acid (R=0.25) and butyric acid (R=0.34) and the rumen ammonia concentrations (R=0.33) 

(P<0.05). The populations of Streptococcus bovis were also significantly correlated to the 

populations of F. succinogenes (R=0.54), S. ruminantium (R=0.43), P. ruminicola (R=0.32) and 

the total bacterial population (R=0.25), (P<0.05) 

5.3.2.5 Total bacterial populations  

 The total bacterial populations were correlated to several factors including the volatile 

fatty acid concentrations of acetic (R=0.27), butyric (R=0.23) and iso-butyric (R=0.30) (P<0.05). 

The total bacterial populations also showed a strong correlation to the bacterial populations of 

Lactobacillus spp. (R=0.32), P. ruminicola (R=0.71), S. bovis (R=0.26), F. succinogenes 

(R=0.62) and S. ruminantium (R=0.59) (P<0.05). 
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5.3.2.6 Prevotella ruminicola populations 

 The P. ruminicola populations were significantly correlated to rumen pH (R=0.23), 

butyric acid (R=0.22), valeric acid (R=-0.27), iso-butyric (R=0.26) and iso-valeric acid 

(R=0.32). The populations of P. ruminicola were also significantly correlated to the populations 

of F. succinogenes (R=0.66), S. bovis (R=0.33), S. ruminantium (R=0.78) and the total bacterial 

populations (R=0.71) (P<0.05).   

5.3.2.7 Selenomonas ruminantium population  

 The S. ruminantium populations were strongly correlated to the concentrations of acetic 

acid (R=0.35), butyric acid (R=0.46), iso-butyric (R=0.41) and iso-valeric acids (R=0.32) 

(P<0.05). There was a strong correlation between the populations of S. ruminantium and 

ammonia concentrations (R=0.23) (P<0.05) as well as the other bacterial populations of F. 

succinogenes (R=0.76), P. ruminicola (R=0.78), S. bovis (R=0.43) and the total bacterial 

population (R=0.60) (P<0.05).   
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Figure 5.3 Biplot representing 78% of correlations of log transformed bacterial populations of 

dairy cows under various feeding regimes and indicators of ruminal acidosis.  

 The rumen bacterial populations as represented in the biplot (Figure 5.3) showed that the 

Lactobacillus spp. populations of the samples analysed collectively were not strongly correlated 

to any of the other bacterial populations in the samples. On the other hand, the P. ruminicola, S. 

ruminantium and the F. succinogenes population concentrations were all correlated to each other 

in the samples analysed.  Moreover, the S. bovis populations were strongly correlated to the S. 

ruminantium (R=0.43) and the F. succinogenes populations (R=0.54) (P<0.05). 

5.3.3 Impact of ionophores or antibiotics on rumen parameters 

 Cattle fed monensin and/or virginiamycin had significantly (<0.05) higher concentrations 

of propionic, valeric and total volatile fatty acid as well as L and D-lactate concentrations and 
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rumen ammonia concentrations.  There were no significant differences in the bacterial 

populations monitored. 

 

Table 5.4 The rumen parameters (means ± SEM) for cattle that had not been supplemented with 

monensin or virginiamycin in their ration (n=24) in comparison to those that had (n=71). All 

data sourced from (Bramley et al., 2008). 

 No feed additives 

(n=24) 

Feed additives 

(n=71) 

Rumen pH 6.42 ± 0.09 5.99 ± 0.076 

Acidosis status 2.87 ± 0.091 2.42 ± 0.99 

Propionic acid 11.98 ± 0.94 20.40 ± 1.22 

Butyric acid 8.73 ±0.74 8.03 ± 0.44 

Acetic acid 40.86 ± 2.30 44.15 ±1.80 

Valeric acid 0.78 ± 0.06 1.21 ± 0.084 

Caproic acid 0.15 ± 0.03 0.165 ± 0.25 

   

Total Volatile fatty acid 64.0 ± 3.70 75.6 ± 3.19 

L-lactate concentration 76.0 ± 7.20 111.0  ± 12.0 

D-lactate concentration 59.0 ± 5.80 111.0 ± 13.0 

Rumen ammonia 3.67 ± 0.39 4.50 ± 0.39 

 

  

On the other hand, cattle that were not fed feed additives showed no correlation to any of 

these rumen metabolites (P>0.05).   

The F. succinogenes populations were significantly correlated with the populations of P. 

ruminicola (R=0.66), S. bovis (R=0.54), S. ruminantium (R=0.77) and total bacterial populations 

(R=0.62) (P<0.05).  In cows where feed additives were fed, the F. succinogenes populations 

were significantly correlated to the concentrations of the volatile fatty acids: acetic (R=0.32), 

butyric (R=0.45), iso-butyric (R=0.32), iso-valeric acids (R=0.31) as well as rumen ammonia 

(R=0.38) concentrations (P<0.05). 
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 The populations of Lactobacillus spp. are not correlated to any other rumen metabolic 

and physiological parameters in cows where feed additives were not included in the ration.  

However, with the addition of feed additives the populations of Lactobacillus spp. were 

significant correlated to the total bacterial population (R=0.37) as well as the iso-butyric 

concentration (R=0.38) in the rumen (P<0.05). 

 The P. ruminicola populations in cows without additives were significantly correlated to 

the populations of S. ruminantium (R=0.78), total bacterial populations (R=0.71), and rumen pH 

(R=0.33) (P<0.05).  Cows with additives included in the diet, the P. ruminicola populations were 

significantly correlated to the populations of S. bovis (R=0.33), S. ruminantium (R=0.78), and 

total bacterial populations (R=0.71) as well as butyric (R=0.27), caproic (R=-0.61), iso-butyric 

(R=0.29) and iso-valeric acid (R=0.34) concentrations (P<0.05). 

 The S. bovis populations were significantly correlated to the populations of F. 

succinogenes (R=0.54), the total bacterial population (R=0.25) as well as S. ruminantium 

populations (R=0.78) in cows not fed feed additives (P<0.05).  In cows with additives included 

in the diet, the S. bovis populations were correlated to the populations of F. succinogenes 

(R=0.54), P. ruminicola (R=0.33), S. ruminantium (R=0.43) as well as acetic acid (R=0.25), and 

butyric acid concentrations (R=0.35) and rumen ammonia concentration (R=0.37) (P<0.05). 

 The S. ruminantium populations were significantly correlated to the populations of F. 

succinogenes (R=0.76), P. ruminicola (R=0.76), S. bovis (R=0.78), the total bacterial population 

(R=0.59) (P<0.05) in all cows irrespective of feed additives in the ration. The S. ruminantium 

populations were significantly correlated to the rumen parameter of D-lactate concentration (R=-

0.31) (P<0.05) in cows not fed additives. In contrast in cows fed feed additives the S. 

ruminantium populations were significantly correlated to the acetic (R=0.32), butyric (R=0.51), 

iso-butyric (R=0.43), iso-valeric concentrations (R=0.33) and rumen ammonia concentrations 

(R=0.25) (P<0.05). 
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 The total bacterial population in cows without feed additives were significantly 

correlated to the populations of F. succinogenes (R=0.70), P. ruminicola (R=0.71), S. bovis 

(R=0.25), S. ruminantium (R=0.59) and the D-lactate concentrations (R=0.29) in the rumen 

(P<0.05).  In samples from cows with the addition of rumen additives the total bacterial 

populations were significantly correlated to the populations of F. succinogenes (R=0.62), P. 

ruminicola (R=0.70), Lactobacillus spp. (R=0.32), S. ruminantium (R=0.59) and rumen acetic 

(R=0.30), butyric (R=0.25) and iso-butyric acid concentrations (R=0.32) (P<0.05). 

 The rumen pH in cows not fed feed additives was significantly correlated to the bacterial 

populations of P. ruminicola (R=0.51) and rumen parameters of acetic (R=-0.54), propionic acid 

(R=-0.53) and total volatile fatty acid concentrations (R=-0.56) (P<0.05).  In cows fed feed 

additives the rumen pH was significantly correlated to the acidosis status (R=0.64), negatively 

correlated with propionic (R=-0.61), acetic (R=-0.43), butyric (R=-023) and L-lactate 

concentrations (R=-0.33) (P<0.05). 

5.3.4 Bacterial changes based on cluster analysis by (Bramley et al., 2008) 

 The data was re-analysed based on the same cluster analysis of the data outlined in 

(Bramley et al., 2008) for a selected 12 herds and quantified for key bacterial species. A REML 

analysis with herd as random effect and cluster categories as fixed effect was used to compare 

the three clusters.  Cluster one was consistent with an acidosis model with high rates of 

carbohydrate fermentation resulting in high volatile fatty acid concentrations with high valerate 

and propionate. The cluster had cows with normal to high levels of D-lactate and normal rumen 

ammonia concentrations. Cluster two include cows that had possible mismatched energy and 

protein concentration rates in their rations and rumen parameters which indicated slow rumen 

fermentation and lower milk production and were classified as having suboptimal rumen 

function. Cluster three had a similar diet to cluster one but lower volatile fatty acid 
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concentrations and better milk production and were classed as normal rumen function  (Bramley 

et al., 2008). 

 

Table 5.5 Rumen metabolic indicators (mean  ± SEM) categorised into the cluster analysis 

as undertaken by (Bramley et al., 2008) different subscripts indicate values are significantly 

different. 

Rumen parameter 1 
(n=12) 

2 
(n= 21) 

3 
(n=63) 

Rumen pH * 

 

5.37 ± 0.06a 

 

5.72 ± 0.13b 6.39 ± 0.06c 

F. succinogenes (log10)   6.95 ± 0.44a 8.00 ± 0.14b 

 
7.3 ± 0.14ab 

P. ruminicola (log10)   6.45 ± 0.36a 

 

7. 65 ± 0.092b 7.03 ± 0.10a 

 S. ruminantium (log10)   6.81 ± 0.37a 

 

8.10 ± 0.12b 7.37 ± 0.11ab 

S. bovis (log10)  

 

3.90 ± 0.23a 

 

4.38 ± 0.12b 3.96 ± 0.08a 

Lactobacillus spp.  

(log10)   

4.25 ± 0.25a 

 

4.55 ± 0.19a 4.51 ± 0.10a 

Total Bacterial (log100) 

 

9.01 ± 0.18a 

 

9.35 ± 0.12b 9.18 ± 0.064c 

Rumen ammonia * 
 

3.86 ± 1.10a 

 
7.21 ± 0.85b 3.39 ± 0.22a 

Acetic acid* 

 

53.66 ± 3.29a 59.81 ± 2.54a 35.73 ± 1.10b 

Butyric Acid* 

 

8.95 ± 0.83a 13.16 ± 0.63b 6.39 ± 0.28c 

Propionic acid* 

 

36.35 ± 2.20a 

 

20.65 ± 1.91b 14.04 ± 0.70c 

Total VFA* 

 

103.25 ± 5.36a 

 

97.21 ± 4.56a 58.51 ± 1.76b 

Valeric acid* 

 

2.21 ± 0.27a 1.28 ± 0.09b 0.82 ± 0.043c 

Iso-butyric acid* 

 

0.61 ± 0.043a 

 

0.80 ± 0.039b 0.54 ± 0.018c 

Iso-valeric acid* 

 

1.04 ± 0.064a 1.31 ± 0.071b 0.88 ± 0.033a 

Caproic Acid* 

 

0.19 ± 0.05a 0.092 ± 0.03ab 0.082 ±0.006b 

L-lactate* 

 

0.19 ± 0.045a 0.12 ± 0.027b 0.085 ± 0.0046c 

D-lactate* 

 

0.19 ± 0.048a 0.10 ± 0.029b 0.08 ± 0.0065b 

Acidosis Status* 
 

1.0 ± 0.0a 1.97 ± 0.048b 3.05 ± 0.39c 

*Data sourced a subsample of data from (Bramley et al., 2008) 
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5.3.4.1 Correlations within cluster one 

 Within cluster one the F. succinogenes populations were significantly correlated to the 

concentrations of butyric acid and the bacterial populations of S. ruminantium, P. ruminicola and 

total bacterial population (P<0.05). 

 The Lactobacillus spp. populations were significantly correlated to the caproic acid 

concentration (P<0.05).  The P. ruminicola populations were significantly correlated to the 

valeric acid concentrations and the rumen bacterial populations of F. succinogenes and S. 

ruminantium (P<0.05). The S. bovis populations were significantly correlated to the 

concentrations of D and L-lactate, butyric acid and rumen ammonia concentrations (P<0.05). 

Finally, the total bacterial populations in this cluster one category were significantly correlated to 

the S. ruminantium populations (P<0.05). The rumen pH in this category was significantly 

correlated to the propionic acid concentration within these rumen samples (P<0.05). 

5.3.4.2 Correlations within cluster two 

 The F. succinogenes populations were not correlated to any other rumen bacterial 

populations.  The Lactobacillus spp. populations were significantly correlated to the S. bovis 

(P<0.05) populations.  The P. ruminicola populations were correlated to the rumen parameters of 

butyric acid and rumen pH (P<0.05). The S. bovis populations were significantly correlated to 

the rumen pH of the samples tested (P<0.05). The S. ruminantium populations were significantly 

correlated to the total bacterial populations (P<0.05) while the total bacterial populations were 

significantly correlated to the Lactobacillus spp. populations (P<0.05). 

5.3.4.3 Correlations within cluster three 

 The F. succinogenes populations were significantly correlated to the concentrations of 

butyric acid, and iso-butyric and rumen pH as well as the bacterial populations of P. ruminicola, 

S. bovis, S. ruminicola and the total bacterial populations (P<0.05). 
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 The Lactobacillus spp. populations within the rumen samples collected were significantly 

correlated to the rumen pH and total bacterial populations (P<0.05).  The S. bovis populations 

were significantly correlated to rumen pH and bacterial populations of F. succinogenes, P. 

ruminicola and S. ruminantium (P<0.05). 

 The P. ruminicola populations were significantly correlated to the rumen concentrations 

of acetic, butyric, and iso-butyric acids and the rumen pH (P<0.05) as well as the bacterial 

populations of F. succinogenes, S. bovis and S. ruminantium (P<0.05). 

 The S. ruminantium populations were significantly correlated to the rumen 

concentrations of acetic, butyric, and iso-butyric acids, rumen pH and feed additives (P<0.05).  

The S. ruminantium populations were also significantly correlated to the bacterial populations of 

F. succinogenes, P. ruminicola, S. bovis and the total bacterial populations (P<0.05). 

 The total bacterial populations were significantly correlated to the rumen concentrations 

of acetic, iso-butyric, propionic, and valeric acids and total volatile fatty acid concentrations 

(P<0.05) and the rumen bacterial populations of F. succinogenes, Lactobacillus spp. and P. 

ruminicola (P<0.05). 
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Figure 5.4 Boxplot for rumen bacterial populations in cluster 1, 2 or 3 for dairy cows sampled by 

rumen centesis on twelve properties and varied diets. Data sourced a subsample of data from 

(Bramley et al., 2008). 

 

When analysing the key bacterial populations’ variations in figure 7.4, the transitional 

group (category 2) had the lowest variation in the bacterial population numbers particularly for 

the most prevalent bacterial populations of P. ruminicola and S. ruminantium. 

5.3.5 Analysis of data categorised into pH categories. 

 The data was categorised into three rumen pH variable as outlines in Table 7.6 
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Table 5.6 Ranking of rumen pH of all samples based on a high, medium or low pH used to 

classify and compare bacterial populations.  

 

 

 

 

 

 

 

On analysis of the pH categories as outlined in table 8.6 the pH categories were 

significantly correlated to the concentrations of caproic acid, D- & L-lactate, propionic acid, 

valeric acid and acidosis status (P<0.05).  The pH categories were also significantly correlated to 

the bacterial populations of Lactobacillus spp., F. succinogenes, P. ruminicola and S. 

ruminantium (P<0.05).  The pH categories were almost correlated to the use of feed additives 

(P=0.0561). 

 

Table 5.7 Rumen parameters (mean ± SEM) in cattle from Bramley pH categories.  

Category Low 
(pH 4.2-5.8) 

(n= 35) 

Medium 
(pH 6.01-6.45) 

(n= 23) 

High 
(pH 6.48-7.15) 

(n=33) 

Rumen pH*  
 

5.44 ± 0.058a 6.25 ± 0.034b 6.71 ± 0.034c 

F. succinogenes (log10)   7.22 ± 0.21a 7.37 ± 0.27ab 7.72 ± 0.16b 

P. ruminicola (log10)   6.89 ± 0.17a 7.15 ± 0.18b 7.29 ± 0.11b 

 S. ruminantium (log10)   7.29 ± 0.19a 7.31 + 0.19a 7.77 ± 0.89b 

S. bovis (log10)  

 

4.06 ± 0.13a 3.97 ± 0.13a 4.10 ± 0.11a 

Lactobacillus spp.  

(log10)   

4.21 ± 0.15a 4.63 ± 0.15b 4.67 ± 0.13b 

Total Bacterial (log100) 
 

9.11 ± 0.098 9.11 ± 0.11 9.30 ± 0.072 

Rumen ammonia * 

 

4.75 ± 0.68a 4.77 ± 0.62a 3.85 ± 0.27b 

Category Rumen pH range 

(rumen centesis) 

 

High 

 

6.48-7.15 

 

Medium 

 

6.01-6.45 

 

Low 

 

4.82-5.98 
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Acetic acid* 
 

51.08 ± 2.73a 42.24 ± 2.79b 37.28 ± 1.52c 

Butyric Acid* 

 

9.34 ± 0.68a 8.40 ± 0.85b 7.31 ± 0.47b 

Propionic acid* 
 

25.35 ± 1.95a 15.55 ± 1.13b 12.47 ± 0.92b 

Total VFA* 

 

89.22 ± 4.7a 68.9 ± 4.38b 59.42 ± 2.67c 

Valeric acid* 

 

1.51 ± 0.14a 0.95 ± 0.07b 0.75 ± 0.059b 

Iso-butyric acid* 

 

0.64 ± 0.34a 0.61 ± 0.043a 0.58 ± 0.25a 

Iso-valeric acid* 

 

1.07 ± 0.054a 1.05 ± 0.05a 0.90 ± 0.041a 

Caproic Acid* 

 

0.23 ± 0.043a 0.10 ± 0.032b 0.13 ± 0.025b 

L-lactate* 

 

0.14 ± 0.023a 0.082 ± 0.0063a 0.084 ± 0.0072a 

D-lactate* 

 

0.13 ± 0.025a 0.065 ± 0.007a 0.091 ± 0.012a 

Acidosis Status* 

 

1.94 ± 0.14a 2.65 ± 0.10b 2.91 ± 0.051b 

*Data sourced from (Bramley et al., 2008) 

5.3.5.1 Rumen pH 

 The key bacterial populations of F. succinogenes, P. ruminicola, S. ruminantium and 

Lactobacillus spp. were significantly correlated to the rumen pH. It allowed some explanation of 

magnitude of changes indicating that for every one unit of increase in the rumen pH, there was a 

4.51-fold increase in F. succinogenes, 3.1 fold increase in P. ruminicola and a 3.8 fold increase 

in S. ruminantium but what was unexpected was that the Lactobacillus spp. populations showed 

a 2.87 fold increase with each one unit of increase in rumen pH. 

5.3.5.2 Within low rumen pH category 

 Within the low rumen pH category (i.e. category one), rumen pH was significantly 

(P<0.05) correlated to the concentrations of acetic acid, and butyric acid and acidosis status 

(P=0.056) in the cattle sampled in this category. 

 The F. succinogenes populations were significantly correlated to the populations of P. 

ruminicola (R=0.62), S. ruminantium (R=0.76), S. bovis (R=0.63) and the total bacterial 

populations (R=0.78) (P<0.05). The F. succinogenes populations were also correlated to the 

rumen concentrations of ammonia (R=0.46), butyric acid (R=0.66), iso-butyric acid (R=0.37) 
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and total volatile fatty acids (R=0.42) concentrations.  The P. ruminicola populations were 

significantly correlated to the populations of S. ruminantium (R=0.78) and total bacterial 

(R=0.84) populations as well as valeric (R=-0.32) and iso-valeric (R=0.38) acid concentrations 

and the addition or rumen modifiers in the diet (R=0.36) (P<0.05). 

 The S. ruminantium populations were significantly correlated to the acetic (R=0.44), 

butyric (R=0.53), valeric (R=0.32), iso-butyric (R=0.38), iso-valeric (R=0.39) and caproic acid 

concentrations (R=0.31) (P<0.05) and the rumen bacterial populations of S. bovis (R=0.46) and 

the total bacterial populations (R=0.81) (P<0.05). The S. bovis populations were significantly 

correlated to the rumen ammonia (R=0.46) and acetic (R=0.47) and butyric (R=0.66) acid 

concentrations (P<0.05). The Lactobacillus spp. populations were correlated to iso-butyric 

concentration (R=0.38) (P<0.05) and iso-valeric acid (R=0.35) (P=0.054).  The total bacterial 

populations were significantly correlated to acetic (R=0.42), butyric (R=0.40) and iso-butyric 

(R=0.40) and iso-valeric (R=0.43) concentrations (P<0.05). 

5.3.5.3 Within medium rumen pH category 

 Rumen pH in this category was correlated to the concentrations of propionic (R=-0.24) 

and valeric acid (R=-0.34) (P<0.05). The acidosis status was significantly correlated to the P. 

ruminicola (R=0.73) and S. ruminantium (R=0.98) bacterial populations (P<0.05). 

 The F. succinogenes populations were significantly correlated to the rumen bacterial 

populations of P. ruminicola (R=0.81), S. ruminantium (R=0.79) and the total bacterial 

populations (R=0.33) (P<0.05) as well as the rumen concentrations of ammonia (R=0.55), 

butyric acid (R=0.58), iso-butyric acid (R=0.65) and total volatile fatty acids (R=0.61) 

concentrations and acidosis status (R=-0.51) (P<0.05).  

 The P. ruminicola populations were significantly correlated to the S. ruminantium 

(R=0.86) and S. bovis populations (R=0.49) (P<0.05) and the rumen concentrations of ammonia 

(R=0.56), acetic acid (R=0.72), propionic acid (R=0.34), valeric acid (R=0.81), iso-butyric acid 
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(R=0.67), iso-valeric acid (R=0.60) and total volatile fatty acid (R=0.71) concentration (P<0.05) 

as well as the acidosis status of the cows in the category (R=-0.51) (P<0.05). 

 The S. ruminantium populations were significantly correlated to the S. bovis (R=0.47) 

bacterial populations (P<0.05) and rumen concentrations of ammonia (R=0.67), acetic (R=0.75), 

butyric (R=0.74), valeric (R=0.33), iso-butyric (R=0.80) and iso-valeric acids (R=0.59) as well 

as the acidosis status (R=-0.54) (P<0.05). 

 The S. bovis populations were significantly correlated to the rumen ammonia (R=0.32), 

butyric (R=0.29) and acetic acid (R=0.41) concentrations (P<0.05).  

5.3.5.4  The high rumen pH category 

 The rumen pH of high pH category cows was significantly correlated to the total bacterial 

populations (R=-0.49) and rumen concentrations of ammonia (R=0.57) and acetic acid (R=-0.37) 

(P<0.05). The total bacterial populations were significantly correlated to the rumen pH (R=-

0.49), F. succinogenes (R=0.59), P. ruminicola (R=0.68) and S. ruminantium (R=0.53) 

populations (P<0.05). The F. succinogenes populations were significantly correlated to the 

populations of P. ruminicola (R=0.52), S. bovis (R=0.45) and S. ruminantium (R=0.71) 

(P<0.05).  The P. ruminicola populations were significantly correlated to the S. ruminantium 

(R=0.60) and S. bovis populations (R=0.50) (P<0.05). The S. bovis populations were 

significantly correlated to the concentrations of iso-butyric (R=-0.38), and D-lactate (R=0.53) 

(P<0.05). The Lactobacillus spp. populations were not correlated to any of the measured rumen 

parameters. 

5.4 Discussion 

 This chapter presents the first integrated findings relating the molecular ecology of the 

rumen to metabolism in the rumen of dairy cows under practical farming environments where 

the risk and prevalence of acidosis was being monitored and categorised.  There are some 
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general observations that can be made from the results.  Using rumen pH as the benchmark, the 

populations of the key main cellulytic bacteria, Fibrobacter succinogenes were linked to the pH 

of the rumen since this bacterial species is known to be sensitive to pH, with population 

decreasing when rumen pH decreased below 6.0.  Whether dairy cattle were classified according 

to herd or pH category, the populations of F. succinogenes were in fact highest in those cattle 

with the highest pH values in the rumen as expected and confirmed in this study.  However, the 

populations of Streptococcus bovis which were expected to show the opposite trend to F. 

succinogenes, given its presumed association with rumen acidosis, did not show the clear 

relationship either with pH category or in herds with a relatively high incidence of acidosis.   On 

the other hand, the populations of Prevotella ruminicola were present in the greatest relative 

abundance as expected from phenotypic observations of rumen populations and observed in 

previous chapters with some exceptions where the populations of S. ruminantium were in 

greatest abundance.  Moreover, populations of P. ruminicola were correlated to concentrations 

of the volatile fatty acids, and to rumen ammonia which again accorded with expectations given 

the significant role of this species not only in carbohydrate fermentation but also in proteolysis 

and deamination. The Selenomonas ruminantium populations as expected increased in 

concentrate diets and were in greater abundance than the populations of P. ruminicola in some 

cases   

Moreover, the populations of F. succinogenes were correlated to ruminal iso-butyric acid and 

iso-valeric concentrations as well as ruminal ammonia concentrations.  Each of these metabolites 

is an essential growth factor for F. succinogenes and therefore these associations are not 

unexpected and in fact reassuring.  Thus the metabolism in the rumen of these dairy cows is 

closely linked to the rumen microbial ecology of F. succinogenes, the major cellulolytic species 

monitored in this study.  
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5.4.1 Herd analysis 

 The herds analysed were correlated to rumen pH, rumen ammonia, total bacterial and 

Lactobacillus spp. populations. When data was analysed on a herd basis, this allowed assessment 

of the potential of the diets and therefore management practices in place, to impact on the rumen 

parameters and microbial populations.  The quality of roughage that was fed to the cows was a 

key to some of the metabolic and bacterial indicators.  Also herds which were fed a more 

balanced quality of crude protein (%) and NDF between the forage and the concentrate 

components showed lower indicators of acidosis based on these one-off samples. 

Cows in herd 8 that had the lowest rumen pH were fed straw (low quality roughage 

source indicated by the high NDF and lowest energy compared to the other herd diets) as 

roughage within the ration. This herd had highest rumen ammonia levels and nearly the highest 

Fibrobacter succinogenes populations. Thus the populations of F. succinogenes were more 

strongly associated with the substrate availability in this herd than the presence of lower rumen 

pH (i.e. < pH 6.0).  Fibrobacter succinogenes requires rumen ammonia for growth and ammonia 

is essentially the sole source of nitrogen for most strains (Dehority et al., 1967). Herds within 

this analysis with elevated rumen ammonia concentrations also had quantified higher F. 

succinogenes populations (herds 12, 74 and 89).  

The very high ruminal ammonia concentrations in the cows from Herd 8 may have been 

related to the low overall dietary energy component of the diet (9.34 MJ ME/kg DM).  In 

addition, the overall dietary crude protein in the shed ration was the lowest at 12.5% in these 

cows and compared to the other monitored herds, the pasture component of the ration for cows 

in herd 8 was one of the highest at 26.2% CP which may have impacted on the ability to utilise 

the available dietary protein. The most interesting component is the pasture in the diet had the 

highest percentage sugar in which may have contributed to the drop in ruminal pH.  These 

variables indicate that the pasture component of the ration was having the largest impact on the 
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acidotic rumen parameters contributing to the low ruminal pH and high valeric and caproic acid. 

Herd 8 also had the highest S. ruminantium populations (which are lactic acid utilisers) and 

interestingly they had some of the lowest lactate levels indicating that lactate may have been 

successfully removed from the rumen even with the highest S. bovis population (lactate 

producer) rumen ammonia, butyric and total VFA concentrations compared to the other herds. 

A study by Bhat et al. (1990) showed that F. succinogenes had maximum adhesion at 

rumen pH 6 during the mid to late growth phase and with the collection of rumen samples from 

non-attached rumen fluid there may have been more free bacteria for the herds with lower 

ruminal pH but higher F. succinogenes populations. The attachment of F. succinogenes is 

imperative for their ability to digest cellulose as the cellulose enzymes of F. succinogenes are 

cell bound requiring an intimate association between the cell envelope and substrate for cellulose 

digestion to occur (Groleau and Forsberg, 1981).   

 Herds 5 and 9 which had a lower ruminal pH (pH; 5.43 and 5.53 respectively) were 

interesting in that their concentrate component was solely wheat which is documented to rapidly 

ferment due to readily available carbohydrates. Herd 9 also had a diet in which the pasture 

component constituted a high % sugar content (23.6%) and a lower F. succinogenes population 

compared to that of herd 5 with a lower overall dietary NDF. In combination the overall low 

dietary NDF indicates a more highly digestible ration (lower dietary fibre) potentially impacting 

a lower ruminal pH, although there was the inclusion of straw in the ration feeding. This low 

quality straw component may not be enough to balance the diet. Both these diets had higher 

lactate levels than most rations (Herd 5 the highest); indicating that the cereal grain component 

was a major contributor to the acidotic state. It is interesting to note that herd 5 had both 

monensin and virginiamycin at the recommended rate while herd 9 had monensin at the 

recommended dose. Noteworthy is the fact that herds with higher lactate levels are also in fact 

the ones that incorporate both virginiamycin and monesin into their dietary regime. 
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Cows in Herd 16 showed a good pH range (6.47) but had one of the highest percentage 

sugar content in the pasture component of the diet and lower NDF. The concentrate component 

of the ration supplying some of the protein contained a reasonable percentage of bypass protein 

in the form of canola meal. This herd exhibits one of the lower F. succinogenes populations of 

all herds with higher corresponding ruminal D- and L lactate concentrations compared to other 

herds. Possibly the pasture component fed to cows in Herd 16 was having a greater impact on the 

rumen metabolites than the in-shed ration.  Cows in Herd 89 had one of the lower mean ruminal 

pH (5.47) and higher rumen ammonia concentrations at 6.10mM with a high component of 

roughage added in the form of silage and hay. The timing of the rumen sampling may have 

impacted the rumen pH in this herd that was fed a triticale diet with additional canola meal and 

faba beans.  Interestingly, cows in this herd had one of the highest valeric acid concentrations 

which has been shown by Bramley et al. (2008) to be a major predictor  of acidosis with a 

corresponding high ruminal lactate level in this case and a lower than recommended dosage of 

monensin. 

 Cows in Herd 12 had the highest forage component of all of the herds with an associated 

normal pH range possibly since the pasture component with a lower percentage of soluble sugars 

(8.5%), and highest crude protein (23.77%). This diet also contained only wheat as the 

concentrate and no added rumen modifiers yet the rumen parameters were indicative of good 

rumen function as shown by the highest total bacterial populations and F. succinogenes 

populations as well as populations of Lactobacillus spp... The additional crude protein in the 

pasture was not associated with excessively high ruminal ammonia concentrations.  

 Other herds monitored were within the normal ranges of ruminal pH and the pasture 

components contained lower soluble sugar percentages and higher NDF percentages in the 

pasture components of the rations. The pasture or forage component did not seem to contributing 

to the indicators of acidosis. In fact, the quality variations between the forage and the concentrate 



199 

 

balance in the ration seem to be a major determining factor in the incidence of acidosis in the 

herd. 

Overall the ruminal acidosis metabolic indicators were not always aligned with the 

expected bacterial population differences, for instance cows in the herds with the highest 

concentrate proportions in the diet did not necessarily have the lowest rumen pH, or the highest 

populations of S. ruminantium or the lowest F. succinogenes populations.  

Consequently, feeding management type may have been a major contributing factor to 

the measures of rumen metabolism related to acidosis or general rumen function. To examine 

this further the herd data for all cows was collated irrespective of the herds and their rumen pH 

was related to their lactate concentrations in the rumen. Using this grouping, the S. bovis 

populations were strongly correlated positively to acetic, butyric and high rumen ammonia 

concentrations. The populations of S. ruminantium were also strongly correlated to high rumen 

ammonia concentrations. T On the other hand, the Lactobacillus spp. populations did not show 

any relationship with the populations of other rumen bacterial species monitored.  One possible 

explanation for the fact that there was no correlation between Lactobacillus spp. and the other 

bacterial species may be that the management practices in place in each herd were the key factor 

in bacterial population relationships.  In fact, from the biplot data the weakest bacterial 

relationship was with S. bovis populations. Tajima et al. (2001) postulated that populations of S. 

bovis may possess other fundamentally important characteristics for rumen fermentation of plant 

polysaccharides than fermentation of starch and moreover in this study the populations of S. 

bovis increased during periods of high fibre availability in diets.   

 In the analysis using the collated data, the populations of P. ruminicola were correlated to 

rumen pH and also to the concentrations of the volatile fatty acids; acetic, valeric and butyric 

acid.   The strongest relationships were between the populations of the most predominant 
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bacterial species, P. ruminicola and all of other bacterial species but Lactobacillus with the 

strongest relationships between P. ruminicola and S. ruminantium populations.  

 The cellulytic bacterial populations of F. succinogenes were correlated to all other rumen 

bacterial populations as well as rumen concentrations of ammonia and the volatile fatty acids; 

acetic, butyric and iso-butyric acids. Again this finding is consistent with the growth 

requirements for F. succinogenes.  

  Prevotella ruminicola was the only bacterial population that was correlated negatively to 

caproic acid concentrations (-0.32).  The populations of P. ruminicola along with S. ruminantium 

were also correlated to the branched chain fatty acid iso-valeric acid and also to valeric acid. 

 Fibrobacter succinogenes, S. bovis and S. ruminantium were all significantly correlated 

to the rumen ammonia concentrations in the samples analysed.  All monitored key bacterial 

populations besides S. bovis and Lactobacillus spp. were correlated to the concentrations of iso-

butyric acid. 

5.4.2 Cluster analysis based data from (Bramley et al., 2008)  

 The herd analysis used by Bramley had three clusters (Bramley et al., 2008) with cluster 

1 indicative of acidosis , cluster 2 indicative of  suboptimal performance in cows that may have 

been transitioning to or from an acidotic state as stage of nutrition was difficult to verify and 

cluster 3 classified as normal . Based on previous studies of acidosis, specific bacterial 

populations such as S. bovis would be expected to be in the highest numbers in cluster 1.  

However, populations of S. bovis were highest in cluster 2 although this was not the most 

“acidotic” group.  On the other hand, the two clusters (1 and 2) with the lower rumen pH did 

have the lowest cellulytic bacterial populations (F. succinogenes) as expected.  What was 

unexpected based on the literature was that the Lactobacillus spp. populations were not 

significantly different between the clusters so these populations were not related to the acidosis 
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category.  Cluster 2 thought to be indicative of the transition from or to rumen acidosis had the 

highest rumen total bacterial populations.  This raises the possibility that that bacterial species 

not monitored here in the rumen samples may be contributing to the D and L- lactate 

concentrations. To assist with further interpretation of these results it would be useful to fully 

type and quantify the Lactobacillus spp. present which would more effectively classify their role 

in the rumen. 

5.4.3 Feed additives and the effects on rumen microbial ecology and metabolism in these 

dairy cows 

 As seen in the previous section of this discussion, cows with the highest rumen pH had 

the highest F.succinogenes populations and vice versa for cows in the low pH category which 

supports by the findings of Tajima et al. (2001). However, the populations of Lactobacillus spp. 

quantified were highest in cows with the higher rumen pH which does not support by previous 

literature.  Specifically this finding does not support those of Wells et al. (1997) in which cows 

introduced to an 80% cereal diet showed a modest decline in rumen pH but a dramatic increase 

in populations of Lactobacillus spp.. Importantly, this study of Wells et al. (1997) was 

undertaken under in vitro conditions. 

 The addition of feed additive such antibiotics or ionophores are thought to reduce the 

incidence of acidosis through changes in the bacterial ecology. However, this study did not show 

that the addition of antibiotics or ionophores had any significant effects on the bacterial 

populations even though the effects of monensin on the rumen metabolites such as increased 

concentrations and proportions of propionic acid were clearly demonstrated.  Most of the 

previous studies have been undertaken using induced acidosis conditions.  

 The herd analysis highlighted cows with a feed additive, which is designed to reduce 

acidosis and maximise production showed the lowest rumen pH as well as the highest volatile 

fatty acid concentrations and lowest acidosis status (most acidotic). The addition of antibiotics or 
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ionophores did not show any indication of significant effects on the bacterial populations.  The 

samples taken from these herds had used feeding or dose rates of additives that were not always 

set at rates recommended for control of rumen pH or rumen function Bramley, Lean et al. 

(2012). , Of the nine herds where feed additives were used, three herds fed at doses that were 

below the recommended for monensin i.e. 250-300mg/cow/day and two of the three were in 

excess of the suggested dose (200mg/cow/day) for virginiamycin (Lean et al., 2007). For 

instance, Bramley, Lean et al. (2012) found that 60% of farms in some regions were feeding 

ionophores at rates lower than those recommended to meet nutritional requirements for 

efficiency. The bacterial populations may have adapted to exposure to these feed additives such 

as monensin. Henderson et al. (1981) showed that growth of F. succinogenes was inhibited by 

monensin but after prolonged exposure i.e. more than 21 days, F. succinogenes did in fact grow 

in its presence. While Hook et al. (2009) showed that when methanogens were exposed to 

monensin long term, monensin did not affect their population concentrations. On the other hand, 

Guo et al. (2010) showed that addition of virginiamycin had a selective influence on the rumen 

fermentation by changing the  bacterial populations including a reduction in populations of S. 

bovis  and  Lactobacillus spp. with a demonstrated increase in the populations of  S. 

ruminantium.  

 It was hypothesised that fibre utilising cellulolytic rumen bacteria (Fibrobacter 

succinogenes) populations will decrease during grain feeding or any associated reduction in 

rumen pH. The populations of F. succinogenes were not correlated to the herd category or to the 

pH clusters but cows in herd 12 fed only 9% grain and the remainder roughage had the highest 

populations of F. succinogenes. In general, the populations of F. succinogenes were highest 

when the diets contained the highest forage concentrations but this finding was not always 

correlated to a low rumen pH.  All interpretation should be taken with a note of caution since all 
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samples were collected at a single time point and it was unclear at what stage of transition cows 

were with regards to the feeding of the grain based diets. 

 The hypothesis that lactic acid utilising rumen bacteria (Selenomonas ruminantium) 

populations will increase with an increase in the grain component of the diet was not supported 

by these results. This  findings is supported by Tajima et al. (2001) whose work showed that the  

S. ruminantium populations increased initially but by day 28 of grain feeding had returned to 

their original level.  Nevertheless, the populations of S. ruminantium were the most predominant 

bacteria in these cows rather than the traditionally dominant, P. ruminicola.  The population of 

S. ruminantium population was significantly correlated to high concentrations of rumen 

ammonia which supports its role in the deamination of true protein in the diet. The highest 

populations of P. ruminicola (cells/mL) were present in herds 12 and 38 which were the herds 

consuming the highest forage proportions suggesting a more significant relationship to cellulose 

digestion.    

  The hypothesis that Streptococcus bovis will increase significantly and possibly 

pathologically, during the development of subclinical or clinical acidosis in dairy cattle fed 

grain-based diets was not supported by these results. Previous studies were conducted 

predominantly through in vitro studies often supplying wheat as the grain.  For instance, the 

work by (Min et al., 2006) showed that S. bovis exhibited greatest specific growth when grown 

with wheat as the major substrate source. However, under the dynamics of an in vivo rumen 

environment as used in this study, this growth in S. bovis was not the case. Although Tajima et 

al. (2001) showed a 67 fold increase in S. bovis populations by day 3 in cattle fed a concentrate 

diet, by day 28 the S. bovis populations were actually lower in these animals than in cattle fed a 

hay diet.  Onime et al. (2013) also found that there was no difference between S. bovis 

populations in cattle fed a diet containing either forage or concentrate. Kleive et al. (2003) also 

found that unless there was an acidotic animal, increases in grain diets did not lead to an increase 
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in the populations of S. bovis.  The confounding factor in this study was the extent and 

composition of the pasture intake in these herds.  Bramley et al. (2008) reported high 

concentrations of soluble sugars in fresh pasture in these dairy cattle.  These sugars may have 

influenced the growth and pathogenesis of S. bovis independent of the grain intake in the milking 

sheds.  

. 

 It was hypothesised that an increase in the populations of S. bovis was linked with a 

decrease in ruminal pH, and an increase in the populations of Lactobacillus spp.. There was an 

indication that S. bovis were related to the rumen pH in cluster 2, however there is no indication 

that this was linked with a significant increase in the Lactobacillus spp. populations. In fact, the 

populations of Lactobacillus spp. showed minimal relationships to either ruminal pH or S. bovis 

in most cases.   

 This study attempted to relate the metabolic changes in the rumen to changes in rumen 

molecular ecology in cattle. The results presented here did in fact show that metabolic changes in 

rumen pH such increased ammonia concentrations or changes in the proportions of VFAs and 

growth factors such branched chain VFA could be related directly to specific species such F. 

succinogenes and S. ruminantium.  Thus this study is one of the first to successfully link 

molecular assessment of rumen bacterial populations with rumen metabolism in dairy cows 

maintained under true production conditions on farm. Possibly the biggest influencing factor in 

these dairy cows was rumen imbalance.  When the rumen was not functioning optimally, the 

relationships between rumen microbial populations seemed to breakdown leading to an 

imbalance.  Hook et al. (2011) in their studies of the impact of sub-acute ruminal acidosis on the 

microbial population showed that adaptation significantly altered the bacterial density, diversity, 

and community structure, warranting further investigation into the role bacteria play in the 

adaption to ruminal acidosis. (Hook et al., 2011) did show that the Selenomonas ruminantium 
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populations became the most dominant species during subacute ruminal acidosis adaption as 

found in this study. However by limiting the scope of this study to the key species monitored 

then these species may not be representing a complete or even useful representation of the 

changes in the overall rumen microbial populations.  Further studies should utilise more 

powerful and representative molecular techniques such as those employed by Golder et al (2014) 

to more fully characterise the changes occurring during the time of grain introduction and the 

subsequent feeding of grain to dairy cows.  
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6 The impact of lupins, soya bean or lucerne fed individually to rumen-fistulated sheep. 

6.1 Introduction 

 Thus far this study has focussed on the role of feeding cereal grains (containing α-linked 

polysaccharides as starch) in the aetiology of acidosis and the associated molecular ecology of 

the rumen. This chapter will present information on the molecular ecology of rumen in sheep fed 

high protein diets containing either fibre (lucerne), β-linked polysaccharides (lupins) or high fat 

(soya beans).   The latter two diets i.e. lupins and soya beans, are fed as diets containing 

comparable metabolisable energy with cereal grain diets and high protein-N.  However, there 

have been very few published reports on the ecology of the rumen under these feeding regimes.   

 Feeding lupins is a common practice in Western Australian beef and sheep production 

systems.  Lupins are regarded as a good protein source in feedlot rations, with the added benefit 

that lupins are promoted as a safe source of energy since they contain no readily fermentable 

carbohydrate in the form of starch in the grain (Van Barneveld, 1999).  Starch in cereal grains is 

still viewed as the main cause of ruminal acidosis in ruminants fed grain-based diet (Owens et 

al., 1998). 

 The main lupin species in livestock diets are Lupinus albus, L. agustifolius and L. luteus. 

Each of these species of lupin are unique grains as they contain low levels of starch but high 

concentrations of soluble and insoluble non-starch polysaccharides, low levels of sulphur amino 

acids and variable lipid concentrations (Petterson et al., 1997). Lupinus angustifolius is the 

variety most widely used as a supplementary feed for ruminants in Australia.  In addition to their 

use in feedlot and finishing rations, lupins are also fed to sheep prior to joining to improve body 

condition and reproduction rates or during periods of shortage of quality roughage, where lupins 

have improved feed intake and subsequent animal performance depending on the quality of 



207 

 

roughage supplied (Van Barneveld, 1999). Therefore, it is hypothesised that feeding of non-α- 

linked polysaccharides as that contained in lupins will not decrease rumen pH or increase the S. 

bovis or Lactobacillus spp. populations. It is also hypothesised that with the low fibre content of 

the diets (lupin and soya bean) the F. succinogenes population will decrease over the sampling 

periods. 

 Soybeans are also high in protein and low in starch polysaccharides but in contrast to 

lupins, soybeans have high and consistent concentrations of fat rather than non-starch 

polysaccharides (Table 8.2).  Lupins and soybeans are equivalent to, or often higher in 

metabolisable energy (ME) when compared with starch based cereal grains.  In addition to their 

benefits as sources of protein, soybeans and lupins are viewed as reducing the risk of ruminal 

acidosis without reducing the energy content of feedlot diets for ruminants.  Since energy and 

not protein is the first limiting factor for growth in ruminants, this criterion would be judged as a 

great advantage for lupins and soybeans.  However fat inclusion at concentrations greater than 

9% in high concentrate diets is considered to have a negative effect on efficient rumen 

fermentation, especially cellulose fermentation, when fed to lambs (Kucuk et al., 2004).   

 Polyunsaturated fats occur in soybeans and these can act as alternative electron sinks 

through hydrogenation of their double bonds.   However, electron disposal into double bonds of 

polyunsaturated fatty acids detracts from the deposition of those electrons in more useful end 

products of rumen fermentation such as propionate in particular (and other organic acids) that 

can be used for energy and glucose homeostasis by the host ruminant. It is hypothesised that 

sheep fed soya bean diets will not show increased S. bovis populations in the rumen but the 

populations of F. succinogenes population will decrease with increased dietary fat. 

 The aims of this study as presented here was to determine the impact that feeding grain 

legumes that contain high ME and high protein but low α linked polysaccharides have on the 

rumen microbial environment. It was hypothesised that: 
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1. Feeding grain legumes with low starch content e.g. lupins will not predispose ruminants 

(sheep in this instance) to acidosis.  

2. Fibre utilising rumen bacteria (Fibrobacter succinogenes) populations will decrease 

during high fat feeding i.e. soybeans or any associated reduction in rumen pH. 

3. Lactic acid utilising rumen bacteria (Selenomonas ruminantium) populations will 

increase with an increase in the grain legume component of the diet. 

4. Prevotella ruminicola will be the most prevalent bacteria in the rumen during the feeding 

of grain legumes and lucerne. 

5. Streptococcus bovis will not increase significantly during feeding of grain legume-based 

diets. 

6. If increases in the populations of Streptococcus bovis are observed with decreasing 

ruminal pH, then the populations of Lactobacillus spp. will also increase significantly. 

7. Changes in the rumen D- lactate concentrations will be related to changes in the 

molecular ecology during the feeding of grain legumes in sheep. 

6.2 Materials and Methods  

 The materials and methods in this chapter are based on the experimental design, sampling 

procedures, and rumen and metabolite analyses conducted as part of  an honours project and the 

complete experiment is outlined in Ms Kelly Guest’s Honours thesis (Guest, 2005).  However 

sections relating to the samples specifically analysed for this study are outlined below. It must be 

acknowledged that all results apart from rumen bacterial populations were supplied by Ms Kelly 

Guest. 
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6.2.1 Feeding allocation 

 Rumen fistulated merino wethers were fed on a diet of lucerne chaff (718g/hd/day) for 10 

days then they were randomly allocated on ranked live weight to (Table6.1) three treatments 

with four sheep in each treatment and fed either,  

 Lucerne hay (Medicago sativa) at maintenance 

 Soy beans (Glycine hispida) at maintenance or 

 White lupins (Lupinus angustifolius) at 3 x maintenance. 

 

Table 6.1 Feed sources offered for daily treatment (adapted from (Guest, 2005)). 

Feed type Quantity fed 

(g/hd/day) 

Crude protein 

g/hd/day 

Fat 

g/hd/day 

Lucerne 718 139 N/A 

White Lupins at 3 x maintenance 1550 530 126 

Soyabean 440 187 99 

 

Table 6.2 Feed analysis of diets consumed by fistulated merino wethers (adapted from Guest 

(2005). 

Attribute Lucerne Chaff White Lupins Soyabean grain 

Dry matter (DM, % ) 87.7 91.9 90.3 

Crude Protein (CP, % DM) 19.3 34.2 42.5 

Acid Detergent Fibre (ADF, % DM) 31.7 21.4 n/a 

Digestible Dry Matter (DDM, %) 66.9 91.7 n/a 

Metabolisable Energy (ME,MJ/kg) 9.9 13.6 n/a 

Crude Fat (Fat, % DM) n/a 8.1 22.6 
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6.2.2 Rumen sampling 

 Rumen samples were collected from sheep via their rumen fistula. The rumen fistula 

stopper was removed and rigid perspex tubing was placed into the rumen. Samples were 

collected by moving the tube in and out of the fistula hole forcing rumen fluid into the sampling 

tube and then clamping a thumb over the end of the tube to remove the contents which were then 

strained through muslin cloth into a 250ml plastic beaker.   

 Rumen fluid was placed into a plastic beaker and pH measured using an Orion portable 

pH meter with TPS; pH and ORP reference electrode immediately after the samples were 

collected, the pH meter was calibrated daily. 

 Rumen samples were collected with samples analysis in this study for days 0, 0.2, 1, 2, 

2.2, 3, 6, 6.2, 7, 8, 8.5., 9.5, 13.5, 13.7 and 14 for all diets.  However, after this period, sheep fed 

the soya bean and lupin diets were removed from the treatments and placed onto lucerne due to 

rumen dysfunction.  Consequently, samples were collected at 14.7, 20.7, 20.9, 21.7, 28.9 and 

29.7 days only from those sheep on the lucerne diet. 

6.2.3 Feeding regimes (Guest, 2005) 

 Once the treatment regimes were in place, then the amount of food in each feed bin was 

weighed daily, an hour prior to collection of the rumen sample to estimate daily voluntary feed 

intake. Sheep were removed from the experiment if rumen pH decreased below 5.5 or if they did 

not eat the entire allocated treatment amount for more than three consecutive days. As a 

consequence, two sheep were removed from the experiment: one sheep from the lupins fed 3 x 

maintenance was removed prior to the sampling at 13.5 days and one sheep fed soy beans at 1 x 

maintenance prior to 14 days of feeding. The sheep were then placed onto the lucerne 

maintenance diet and monitored. No sheep died during this feeding trial.   
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6.2.4 Buffering capacity (Guest 2005) 

 Frozen rumen samples were defrosted overnight at 2
o
C, centrifuged for 15 minutes at 

3000rpm, with the supernatant removed and stored at 2
o
C. A sample of supernatant (10mL) was 

then poured into a 20mL beaker, placed on a Corning hotplate stirrer and the initial pH recorded. 

Following this 0.1mL of 1M HCl was added and pH recorded allowing 1 minute to stabilise. 

This procedure of adding 0.1 mL of 0.1M HCl was repeated serially until the pH decreased 

below 6 and then pH 5. 

6.2.5 Analysis of bacterial populations 

 Rumen samples were extracted for DNA as outlined in chapter 4 and were analysed for 

bacterial populations using qRT PCR as outlined in chapter five (Table 5.1) for collections up to 

13.5 days after commencing feeding soy beans, 14 days for white lupins at 3 times maintenance 

and 29.7 days for lucerne. 

6.2.6 Statistics 

  Residual plots were examined to ensure that statistical tests complied with assumptions 

of normality and homogeneity of variance, where necessary data was transformed to ensure that 

this was the case. Therefore, all of the data from this trial, except pH values and liveweight, 

displayed lognormal distributions and were log transformed (log10) prior to statistical analysis, 

while total bacterial were transformed to log100.  A linear mixed model which included a fixed 

effect comparing diet and progressive sampling days and an interaction between diet consumed 

and progressive sampling days was fitted to each variate using the REML procedure in GenStat 

(edition 14).  The model also included an autoregressive covariance structure between sample 

dates.  All fixed effects were tested using F-statistics or Wald statistics.  

 Correlations between variates were compared to zero using a two sided test. The matrix 

of correlations between logarithms of the counts of individual bacteria was used to construct a 
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biplot which showed the relationships between the different bacterial counts and how sample 

counts varied across sample dates 

 

6.3 Results 

 

 

Figure 6.1 Changes in rumen pH (mean ± SEM) for fistulated sheep being fed white lupins at 3x 

maintenance (3WM), lucerne (L) or soya beans (S) in individual pens at Murdoch University 

animal house.  

Rumen pH in sheep fed the lupin (3 x maintenance lupin) diet decreased to pH of 5.99 at 

end of day 1, followed by a slow decline to a pH of 5.81 at day 8 after which some of the sheep 

were removed from the lupin diet and placed on a maintenance diet of lucerne with an associated 

increase in rumen pH of 7.12 at day 14 (Figure 6.1). 

Rumen pH in sheep fed the lucerne (L) diet fluctuated over the sampling period with the 

lowest pH recorded at 5.88 at 20.9 days, followed by an increase to pH 7.3 for the sample taken 

at 21.7 days. 
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The rumen pH in sheep fed soya beans (S) increased to 7.4 with the lowest pH of 6.65 

observed at day 8.  When removed from the diet after 13.5 days, the rumen pH was 7.3 in one 

sheep. 

The changes in rumen pH in sheep fed the three diets over the sampling period had a 

significant diet effect as well as a progressive day sampling effect (P<0.05).  All pH were similar 

at day 0 (P>0.05) after the introductory period on lucerne. The rumen pH in sheep fed the lupin 

(3 x maintenance lupin) diet was significantly lower than either lucerne (L) or soybean (S) diets 

at days 0.2, 1, 3, 6 and 8 (LSD 5%). The rumen pH in sheep fed the lucerne (L) diet was 

significantly lower than in sheep on the soybean (S) diet at 2.2 and 6.2 days (LSD 5%).  

 The rumen pH in sheep fed the lupin (3 x maintenance lupin) diet during the sampling 

period was significantly (P<0.05) correlated to the bacterial populations of F. succinogenes 

(R=0.39), S. bovis (R=-0.46) and the total bacterial populations (R=-0.54). On the other hand, the 

rumen pH in sheep fed the lucerne (L) diet was not significantly related to any other rumen 

parameters (rumen pH, buffering capacity or bacterial population) during the feeding period. 

However rumen pH in sheep fed the soya beans (S) was significantly correlated to the 

populations of F. succinogenes (R=0.49) (P<0.05). 

 The rumen pH for the 3 x maintenance lupin diet had the lowest rumen pH at day 8 

(5.81±SE), when the sheep were then put back onto a lucerne diet to alleviate the acidosis.
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Figure 6.2 Changes in the populations of S. ruminantium (cells/mL; mean±SEM) in the rumen of 

sheep being fed either white lupins at 3x maintenance (3WM), lucerne (L) or soya beans (S) in 

individual pens at the Murdoch University animal house. 

 The populations of S. ruminantium all initially increased rapidly and significantly to day 

1 (Figure 6.2).  The S. ruminantium populations were dynamic and variable during the period of 

intense sampling on all three diets.  Nevertheless, sheep fed soya bean diets had the highest S. 

ruminantium populations, followed by sheep on the lupin diets and finally sheep on the lucerne 

diets. The type of diet and duration of feeding each diet had a significant effect on the S. 

ruminantium populations (P<0.05). 

 

The S. ruminantium populations in the sheep in the 3 x maintenance lupin group were 

significantly correlated to the populations of the rumen bacteria: F. succinogenes (R=0.39), P. 

ruminicola (R=0.61), S. bovis (R=0.41) and Lactobacillus spp. (R=0.40) (P<0.05).  
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The initial S. ruminantium populations (day 0) in the rumen of sheep fed the lucerne diet 

were significantly lower than the populations at later sampling days. The S. ruminantium 

populations in the sheep fed the lucerne diet showed a significant relationship to the populations 

of P. ruminicola (R=0.48), Lactobacillus spp. (R=0.31) and the total bacterial populations 

(R=0.40) (P<0.05).  

In the sheep consuming the soya bean diet, the populations of S. ruminantium were 

significantly correlated to the populations of P. ruminicola (R=0.40), S. bovis (R=0.38) and the 

total bacterial populations (R=0.49) (P<0.05). 

 

 

Figure 6.3 Changes in the populations of P. ruminicola (cells/mL; mean±SEM) in the rumen of 

sheep being fed either white lupins at 3x maintenance (3WM), lucerne (L) or soya beans (S) in 

individual pens at the Murdoch University animal house. 

 In sheep fed the 3 x maintenance lupin diet, the P. ruminicola populations were 

extremely variable for the first 8 days of feeding (Figure 6.3).  The P. ruminicola populations 

decreased at hour 5 (1.56 x 10
8
 cells/mL) from hour 0 (9.23 x 10

8
cells/mL) with the population 
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then peaking at hour 24 or day 1 (8.5 x 10
9 

cells/mL), and decreasing again to its lowest density 

at hour 72 or day 3 (8.1 x 10
7
 cells/mL).  By 179 hours of feeding (or day 6.2) the P. ruminicola 

populations had established at a density of 6.09 x 10
8
 cells/mL after which the populations 

remained reasonably constant. 

 The populations of P. ruminicola in sheep on the lucerne diet decreased from (4.26 x 10
8
 

cells/mL) at hour 0 to (1.35 x 10
7
 cells/mL) at 0.2 days. The population then increased again at 

hour 24 to 1.24 x 10
9
cells/mL remaining reasonably constant after that. 

 The populations of P. ruminicola in sheep fed the soybean diet at day 0 (1.96 x 10
9
 

cells/mL) continued to fluctuate during the monitoring period. 

The P. ruminicola population mean showed significant differences between the diets 

(P<0.05). There was though on average no significant effect of progressive days on P. 

ruminicola populations in sheep between the diets (P>0.05). The P. ruminicola populations for 

sheep on a 3 x maintenance lupin diet showed a significant relationship to the rumen populations 

of Lactobacillus spp. (R=0.44), S. bovis (R=0.53), S. ruminantium (R=0.61) and total bacterial 

populations (R=0.53) (P<0.05) during the feeding period.  

P. ruminicola populations in sheep consuming the lucerne diet showed significant 

fluctuation until day 2 (LSD 5%), after which the population then remained reasonably constant.  

P. ruminicola populations sheep on the lucerne diet showed a significant relationship to 

populations of F. succinogenes (R=0.32), S. ruminantium (R=0.48), Lactobacillus spp. (R=043.) 

and the total bacterial (R=0.71) populations (P<0.05).  

Populations of P. ruminicola in sheep consuming the soya bean diet significantly 

increased during the initially sampling (LSD 5%). The populations then remained reasonably 

constant. Populations of P. ruminicola in sheep consuming the soya bean diet showed a 

significant relationship of Lactobacillus spp., total bacterial population and S. ruminantium 

(R=0.27) to the P. ruminicola (R=0.39) population (P<0.05). 
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Figure 6.4 Changes in populations of F. succinogenes (cells/mL; mean ±SEM) in the rumen of 

sheep being fed either white lupins at 3x maintenance (3 x maintenance lupin), lucerne (L) or 

soya beans (S) in individual pens at the Murdoch University animal house. 

 The F. succinogenes populations in sheep consuming the lupin diet increased from 10.5 x 

10
7
 cells/mL at day 0 to 7.3 x 10

7
 cells/mL at day 1. The populations then decreased consistently 

to the lowest F. succinogenes populations at 8 days (4.1 x 10
5
 cells/mL). The final population 

means for F. succinogenes in sheep on the lupin diet was 6.23 x 10
7
 cells/mL at day 14 after 

which the sheep had been removed from the diet due to low ruminal pH (Figure 6.4). 

The sheep fed the lucerne diet showed a slight decrease from 2.97 x 10
7
 cells/mL at day 0 

to 3.39 x 10
6
 cells/mL at day 0.2 with slight fluctuations throughout the sampling period. 

The F. succinogenes populations for sheep on the soya bean diet showed a continual 

decline over the sampling period starting at 3.32 x 10
7
 cells/mL at day 0 and 1.39 x 10

6
 cells/mL 
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at day 2, decreasing to the lowest population values of 4.33 x 10
3
 cells/mL at day 8, i.e. less than 

half of the starting population. 

The F. succinogenes populations were significantly different between the three diets 

(P<0.05) over the sampling period.  The F. succinogenes populations were lowest in sheep fed 

the soybean diets.   

The F. succinogenes populations for sheep on a 3WM diet were significantly associated 

with rumen pH (R=0.39) and populations of S. ruminantium (R=39) (P<0.05). F. succinogenes 

populations in sheep fed the lucerne diet had a significant relationship over the sampling period 

with populations of Lactobacillus spp. (R=0.44) and the P. ruminicola population (R=0.32) 

(P<0.05). F. succinogenes populations in sheep that were consuming the soya bean diet over the 

sampling period showed a significant relationship between the rumen pH (R=0.49) and a 

negative relationship with the S. bovis populations (R=-0.29) (P<0.05). 
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Figure 6.5 Changes in the populations of Streptococcus bovis (cells/mL;mean ±SEM) in the 

rumen of sheep being fed either white lupins at 3x maintenance (3WM), lucerne (L) or soya 

beans (S) in individual pens at the Murdoch University animal house. 

 S. bovis populations in sheep fed the lupin diets showed a rapid and significant increase 

from 1.8 x 10
3
 log10 cells/mL at day 0 to a peak of 1.57 x 10

7
 cells/mL at day 1, deceasing to 

7.21 x 10
6
 cells/mL at day 2.2 and remaining reasonably constant after this period (Figure 6.5). 

 S. bovis populations in sheep fed the lucerne diet increased slightly from hour 0 (2.47 x 

10
3
 cells/mL) to 3.03 x 10

4
 cells/mL at day 3 then remained fairly constant for the remainder of 

the sampling period. 

 S. bovis populations in sheep fed soybean diet significantly increased from 4.68 x 10
4
 

cells/mL at day 0.   

The S. bovis populations were significantly affected by diet (P<0.05) and the duration of 

feeding, with a significant interaction between the diet and days of feeding the diets (P<0.05).  

The S. bovis populations in sheep fed the lupin diet were significantly higher than in 

sheep fed the lucerne diet from days 0.2 until day 6 inclusive (LSD 5%). The S. bovis 

populations in sheep fed the soybean diet were significantly higher than in sheep fed the lucerne 

diet at most sampling times (LSD 5%). 

  

The S. bovis populations in sheep fed the lupin diet showed significant correlation to the 

populations of P. ruminicola (R=0.53), S. ruminantium(R=0.41), and total bacterial populations 

(R=0.40) and negative correlation to rumen pH (R=-0.46) (P<0.05).  
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Figure 6.6 Changes in the populations of Lactobacillus spp. (cells/mL; mean ±SEM) in the 

rumen of sheep being fed white lupins at 3x maintenance (3WM), lucerne (L) or soya beans (S) 

in individual pens at the Murdoch University animal house. 

 The Lactobacillus spp. populations in sheep fed the lupin diet were 1.86 x 10
4
 cells/mL at 

hour 0, increasing to 3.02 x 10
6
 cells/mL at day 8 (Figure 6.6). The Lactobacillus spp. 

populations for sheep fed the lupin diet showed significant correlation to the populations of P. 

ruminicola and S. ruminantium (P<0.05). 

 The Lactobacillus spp. populations in sheep fed the lucerne diet were at day 0 (1.49 x 10
4
 

cells/mL) decreasing to the lowest population at day 2.2 (2.21 x 10
3
 cells/mL) before returning to 

1.51 x 10
4
 cells/mL at day 3, and then remained fairly constant for the remainder of the feeding 

period. The sheep fed the lucerne diet showed a significant correlation between the populations 

of Lactobacillus spp. and the populations F. succinogenes, S. ruminantium and P. ruminicola 

(P<0.05). 
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 The Lactobacillus spp. populations in sheep fed the soybean diet were 1.49 x 10
4
 

cells/mL at day 0, and decreased to their lowest population level sampled at day 2, 1.2 x 10
3
 

cells/mL, before increasing to 3.02 x 10
4
 cells/mL at day 3 then remaining fairly constant. By the 

final sampling at day 14, seven of the sheep fed the soybean diet had been removed from that 

diet and placed onto lucerne. The sheep fed the soya bean diet showed a significant correlation 

between the populations of Lactobacillus spp. and both the total bacterial (R=46) and P. 

ruminicola populations (R=39) during the sampling period (P<0.05). 

The mean of the Lactobacillus spp. populations over the sampling period were not 

significantly different (P>0.05).  

   

 

 

Figure 6.7 Changes in total bacterial populations (cells/mL mean±SEM) in the rumen of sheep 

being fed white lupins at 3x maintenance (3WM), lucerne (L) or soya beans (S) in individual 

pens at the Murdoch University animal house. 



222 

 

 The total bacterial populations in sheep fed the lupin diet increased from 1.50 x 10
9
 

cells/mL at day 0 to 6.27 x 10
10

 cells/mL at day 1 before decreasing to their lowest at day 3 (3.02 

x 10
8
 cells/mL) then the total bacterial population returned to 4.3 x 10

10
 cells/mL at day 6 and 

remained constant after this period (Figure 6.7). The total bacterial populations in sheep fed the 

lupin diet showed a significant correlation to the populations of P. ruminicola and S. bovis 

(P<0.05). 

 The total bacterial population in sheep fed the lucerne diet decreased slightly from day 0 

(6.25 x 10
8
 cells/mL) to day 0.2 (4.07 x 10

8
 cells/mL) and gradually increased to 1.46 x 10

10
 

cells/mL at day 6 with variations and peaks and troughs with the highest population level at 20.7 

days (1.46 x 10
11

 cells/mL). 

 The total bacterial population in sheep fed the soybean diet decreased from day 0 (9.09 x 

10
9
 cells/mL) to day 0.2 (6.21 x 10

8
 cells/mL) before increasing to the original total bacterial 

population level at day 1 and remaining fairly constant with a gradual increase until day 6 (1.43 

x 10
11

 cells/mL) which was the final sample before the sheep were returned to the lucerne diet 

due to low rumen pH. The total bacterial populations in sheep fed the soya bean diet were 

significant correlated to the duration of feeding, and the populations of Lactobacillus spp., P. 

ruminicola and S. ruminantium (P<0.05). 

There was no significant relationship between the diets and the total bacterial population 

(P>0.05).  However there was a significant relationship between the duration of feeding of the 

diets and the total bacterial populations (P<0.05). The sheep fed the lupin diet showed 

significantly lower total bacterial populations at day 3 than the sheep fed either the lucerne and 

soybean diets (LSD 5%).  

 

The total bacterial changes for the lucerne diet showed that day 0 had a significant 

increase to day 3 (LSD 5%), there was also significant declining fluctuations during the 



223 

 

sampling period at days 13.5, 20.7 and 28.9 (LSD 5%).The lucerne diet total bacterial population 

had a significant correlation to the progressive days of feeding, P. ruminicola, S. bovis and S. 

ruminantium (P<0.05).  

 

 

Figure 6.8 Changes in rumen D – lactate concentrations (mean±SEM) at day 8 at hours 0, 5, 10 

and 24 post feeding for sheep being fed white lupins at 3x maintenance (3WM), lucerne (L) or 

soya beans (S) in individual pens at the Murdoch University animal house (Guest, 2005). 

 The D-lactate concentrations in rumen from sheep fed the lupin (3WM) diet at day 8 

taken an hour after feeding was already 92.7 mM and gradually increased over the next 24 hours 

to peak at 160.5 mM (Figure 8.8).  However, D-lactate concentrations, although increasing over 

the sampling period, were very variable in sheep on the lupin diet.  D-lactate concentrations were 

significantly lower in sheep fed either the soybean and lucerne diets.  D-lactate concentrations 

nevertheless were 18.6 mM at one hour after feeding in sheep fed soybean diet and increased to 

26.3 mM 10 hours post feeding.  D-lactate concentrations were low in sheep fed the lucerne diet 

rising to a peak of 6.37 mM, 10 hours post feeding.  
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Figure 6.9 Changes in average rumen buffering capacity (mean±SEM) at day 1 and 8 of 

sampling to pH values 5 and 6 for sheep being fed white lupins at 3x maintenance (3WM), 

lucerne (L) or soya beans (S) in individual pens at Murdoch University animal house (Guest, 

2005). 

 The buffering capacity calculated by Guest (2005) indicated that the rumen pH adjusted 

to pH 6 at day one as an indicator of buffering capacity showed no difference between diets 

(Figure 8.9). The buffering capacity of all diets dropped from day 1 to day 8 after adjustments to 

both pH 5 and pH 6. When the sheep had been consuming the diet for 8 days the rumen pH in 

sheep fed the lupin diet was already less than 6, therefore indicating a low buffering capacity 

compared to sheep on the lucerne diet (0.225 (mL 0.1M HCl) and soybean diets 0.192 (mL 0.1M 

HCl). When adjusted to pH 5 at day 1, the buffering capacity of sheep fed the lupin diet was 0.5 

(mL 0.1M HCl) and at day 8 it was significantly lower than either the lucerne and soybean diets 

at 0.233 (mL 0.1M HCl). Day 1 buffering capacity at pH 5 was highest in the sheep fed the 

lucerne diet at 0.77 (mL 0.1M HCl) and soybean diet 0.71 (mL 0.1M HCl).  Moreover, at day 8 
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the buffering capacity at pH 5 was still lower in sheep fed the lupin diet with sheep fed the 

lucerne diet having the highest buffering capacity 0.48 (mL 0.1M HCl). 

 

 

 

Figure 6.10 Biplot of bacterial populations (cells/mL) for fistulated sheep being fed white lupins 

at 3x maintenance (Red), lucerne (Yellow) or soya beans (Green) in individual pens at Murdoch 

University animal house.  

 The data present in the biplot representing 70% of the total data (Figure 6.10), showed 

that irrespective of the diets being fed there was no relationship between the populations of S. 

bovis and F. succinogenes. The lucerne diet had a higher proportion of cellulytic bacteria than 

sheep consuming the soya bean diet which had a higher populations of S. bovis.   
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Figure 6.11 Biplot of bacterial populations (cells/mL) in progressive days for fistulated sheep 

being fed white lupins at 3x maintenance in individual pens at Murdoch University animal 

house. Numbers indicate days of sampling. 

 The biplot has 72% of the data from sheep fed the lupin diet showed that the populations 

of F. succinogenes were independent of the populations of S. bovis and Lactobacillus spp. 

populations (Figure 6.11).  On the other hand, the populations of Lactobacillus spp, S. 

ruminantium and P. ruminicola were related over the period of sampling (Figure 6.11). 
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Figure 6.12 Biplot of bacterial populations (cells/mL) in progressive days for fistulated sheep 

being fed soya beans (S) in individual pens at Murdoch University animal house. Numbers 

indicate days of sampling. 

The biplot data in Figure 6.12 accounted for 74% of the total data in sheep fed the 

soybean diet and indicated that again the F. succinogenes population and the S. bovis population 

were independent of each other over the sampling period (Figure 6.12).  
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Figure 6.13 Biplot of bacterial populations (cells/mL) in progressive days for fistulated sheep 

being fed lucerne (L) in individual pens at Murdoch University animal house. Numbers indicate 

days of sampling. 

The biplot data in Figure 6.13 accounted for 64% of the total data from sheep fed the 

lucerne diet and again showed that the F. succinogenes populations and the S. bovis populations 

were independent of each other over the sampling period (Figure 6.13).  The populations of S. 

ruminantium were not related to the populations of other bacteria in these sheep (Figure 6.13). 

On the other hand, the changes in the Lactobacillus spp. and P. ruminicola populations trended 

similarly over the sampling period compared to other bacterial changes for sheep consuming a 

lucerne diet (figure 6.13). 
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6.4 Discussion 

The proposition that lupins are a safe feed for ruminants since they contain no fermentable 

α-linked polysaccharides such as amylose and amylopectin must be questioned given the 

deceases in rumen pH and increases in D-lactate concentrations observed in this study.   

Lupins must contain carbohydrates that are fermented at a rapid rate associated with a 

lowering of pH, a D-lactic-acidosis and a loss of buffering capacity. Analysis of feedstuff by 

Knudsen (1997) indicates that lupins were one of the lowest starch-containing grains at 12 g/kg 

but contained the highest non starch polysaccharide content at 451g/kg.  The breakdown of non-

starch polysaccharides by a bacterial population was not directly monitored given the species 

used during this study. The β-glucans in lupins can be fermented rapidly in the rumen to produce 

organic acids at a rate in excess of the buffering capacity of the saliva. Moreover, the rate of 

anaerobic glycolysis in the rumen can give rise to carbon being diverted from the succinate 

pathway into the acrylate pathway and hence a rapid and excessive production of both L- and D-

lactic acids. Such an alignment of these three indicators should indicate caution when including 

ad libitum feeding of lupins as a transition energy feed in feedlot rations certainly for sheep and 

possibly cattle.  For sheep at least, diets high in lupins may not be suitable without a roughage 

component in the diet.  Moreover, lupin feeding can lead to the extent of rumen dysfunction as 

observed here.  

 These results are similar to those reported by (Allen et al., 1998) in which they fed milled 

lupins to sheep and recorded a decrease in rumen pH and increase in ruminal and plasma D-

lactate levels.  This study had levels of ruminal D-lactate approximately double compared to that 

of the work done by Allen et al. (1998) but decreases in ruminal pH over the  time period were 

similar to this study. The ruminal ammonia and urea increased significantly in the work by Allen 

et al. (1998) without the corresponding increases in plasma urea and ammonia indicating that 

ammonia toxicity may not have been an issue with the excess feeding of lupins. The sheep in the 
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study by (Allen et al., 1998) were fed on a falling plane of nutrition prior to introduction of 

milled lupins and these sheep showed indications of acidosis, rumenitis and reticulitus compared 

to other sheep on a rising plane of nutrition who did not exhibit these symptoms.  Milling the 

lupins can increase the rate of consumption and the surface area for fermentation in the rumen, 

both of which are factors that can lead to an increase in severity of acidosis, allied to the hunger 

associated with the lower plane of nutrition in the affected sheep.  Although the low plane of 

nutrition and milling were not part of this trial, it is interesting to note that the sheep in this 

experiment were fed whole lupins, in which you would expect a lower rate of intake and 

fermentation. Therefore sheep were in fact able to readily masticate these whole lupins to expose 

a greater surface area for microbial fermentation leading to a significant decrease in rumen pH 

and increase in ruminal lactate levels. 

There was a significant increase in the populations of Streptococcus bovis in the rumen of 

the sheep fed the lupins ad libitum.   Increases in the populations of S. bovis have been usually 

associated with rapid fermentation of α-linked carbohydrates normally under conditions of high 

starch availability (Owens et al., 1997; Owens et al., 1998; Russell and Rychlik, 2001), and 

significantly correlated with low rumen pH,.  This study could have been strengthened by 

monitoring the total amount and molar ratios of volatile fatty acids in the rumen during lupin 

feeding.  The fermentation of protein of the type and quantities in lupins can give rise to the 

branched-chain VFAs: iso-butyric, iso-valeric and iso-caproic acids all of which are the β-keto 

acid breakdown products of their corresponding branch-chain amino acids.  Valeric and iso-

valeric acids have been implicated as indicators of acidosis and possible rumen dysfunction in 

dairy cattle (Bramley, 2004).  Thus the fermentation of protein in the lupins could also be 

contributing to the lower pH and loss of buffering in the rumen of these sheep.   

Although there are at least two distinct differences i.e. milling of the lupins and the two 

planes of nutrition, between the study by Allen et al. (1998) and this study, the fact remains that 
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in both studies, feeding the putatively safe feed, lupins led to rumen dysfunction and lactic-

acidosis. Thus the advice to farmers and feedlotters should carry the caveat that care must be 

taken when either introducing lupins or feeding large quantities (e.g. 3 x maintenance) of lupins 

to ruminants.  

The high oil content in the soy bean diet also resulted in rumen dysfunction although not in the 

traditional sense of reduced rumen pH and buffering but inhibition of cellulytic rumen bacteria. 

The increase in rumen D-lactate concentrations in sheep fed soy beans is novel and of concern.  

The important thing to note in these sheep is that the rumen pH did not decrease yet the 

populations of S. bovis did increase as did the D-lactate concentrations.  The study by Yang et al. 

(2009) found supplementation with soy bean oils (4% of ration) increased the amyolytic and 

proteolytic bacteria (which includes S. bovis and P. ruminicola) in the rumen while decreasing 

cellulolytics including B. fibriosolvens, F. succinogenes and R. flavifacienes similar to the 

findings in this study.  It was also interesting that Broudiscou et al. (1990) found soya oil added 

to the diet did not lower the total VFA concentration but shifted fermentation to increased 

proportions of propionate and decreased butyrate and acetate proportions.  These changes in 

molar proportions may have resulted in the higher levels of lactate in the rumen of sheep fed soy 

bean. The source of the carbon for D-lactate in the rumen of these sheep fed soy bean diets has 

not been established from this study, but it may have been produced mainly from the 

proteins.Soy beans contain about 30% carbohydrate which is divided between soluble carbohydrate 

including sucrose (5%), stachyose (4%) and raffinose (1%), while the insoluble fibre fraction makes 

up 20%.  Moreover, microbial lipase is high in activity and oils are digested to release fatty acids. 

Unsaturated fatty acids get hydrogenated (saturated) in the rumen acting as a sink for H2, competing 

with CO2. This action qualifies vegetable oils that are rich in unsaturated fatty acids for use as a 

potential strategy to reduce methane emission in ruminants.  
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The fact that soybean contains 22.6% oil; it makes it unsuitable sole dietary ingredients for 

ruminants. Ruminant animals evolved as herbivores with a digestive system most suited for the 

digestion of fibre. Diets rich in starch and fat are not suitable for the ruminant animals. The soy bean 

diet (S) had very high oil content of 22.6% which as expected lowered the function of celluloytic 

bacteria in the rumen (Moss et al., 1997; Yang et al., 2009). The most unusual aspect of this diet 

in comparison to others is the high rumen pH which did not begin to decrease below 7 until hour 

144 (6 days).  Moreover, the buffering capacity was reduced in sheep fed the soybean diet 

compared with those fed the lucerne diet, even when the rumen pH was 6.65 (its lowest sampled 

rumen pH) in the sheep fed soybeans.  The lactate concentrations in sheep fed the soy bean diet 

were higher than those observed in sheep fed lucerne but significantly lower than in sheep fed 

the lupin diet.  In conjunction with the increased lactate, the population of the S. bovis increasing 

rapidly in sheep fed soybean over the sampling period and in fact the population of S. bovis 

doubled after 6days (Figure 8.3.5). The decrease in F. succinogenes populations concentrations 

over the sampling period was similar to that observed in sheep fed the lupin diet. The high fat 

content may have inhibited fibre digestion, which in combination with poor substrate availability 

of fermentable fibre in the soy bean did not support growth of Fibrobacter succinogenes.  

.  It is tempting to speculate that the unsaturated fats in soy beans acted as an alternative 

electron sink in the reducing conditions in the rumen such that the more usual link between F. 

succinogenes and the methanogenic archaeal species was not operating to support the growth of 

the cellulolytic F. succinogenes.  Soy beans are commonly included in feedlot rations for cattle 

but they have not been included in the aetiology of acidosis under these feeding regimes.  Given 

these findings in sheep, it may be timely to revisit the possible role of soy beans in the acidosis 

during dietary transitions.  

Each of these diets contained protein concentrations higher than the requirement for sheep 

at this life stage.  Thus the consistent presence of high populations of P. ruminicola is not 
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surprising since this species is considered one of the key contributors to the breakdown of 

dietary proteins to peptides and amino acids in the rumen (Stewart et al., 1997; Yang et al., 

2009).  The other major proteolytic and peptidolytic species is Selenomonas ruminantium.  

These two species were closely aligned in each of the diets as can be seen in Figure 6.3.10.  Thus 

the functional role of these two species in N metabolism in the rumen may override the effect of 

pH and to a lesser extent concentrations of D-lactate in the rumen.   

 The lowered rumen pH was associated with a significant increase in the S. bovis 

populations, with it doubling in the first one to two days in sheep fed the diets consisting of 

lupins or soy beans (Figure 6.3.5).   These increases in S. bovis populations have been 

demonstrated in studies where carbohydrate substrates were available for S. bovis which resulted 

in dramatic increases in the population size over short periods of time (Al Jassim and Rowe, 

1999; Rowe, 1999; Krause and Russell, 1996; Russell and Baldwin, 1979). The rumen pH was 

significantly negatively correlated to the F. succinogenes population in sheep fed lupins (P<0.05) 

but not in the sheep fed soy beans.   In this study as rumen pH decreased so did the populations 

of F. succinogenes.  On the other hand, increases in the F. succinogenes population in sheep fed 

the higher fibre lucerne diet showed a lag period before increasing their population numbers 

(Bryant and Doetsch, 1955; Stewart et al., 1981). The F. succinogenes populations were 

significantly correlated to the S. ruminantium populations during this study. (Caldwell and 

Bryant, 1966) showed that S. ruminantium was highest in the rumen of animal  fed cracked corn 

and urea where they constituted 22-51% of the viable count. The decrease in the populations of 

F. succinogenes may be related to the high lactate content resulting from the growth of the S. 

bovis populations in sheep fed the lupin diet. The rumen pH in these sheep was correlated with 

the total bacterial populations.  This may be related to the ability of bacteria such as S. bovis to 

replicate rapidly as shown by (Russell et al., 1981; Rowe, 1999)where S. bovis populations 

doubled at a rate comparable to Escherichia coli.  work by (Russell and Baldwin, 1979) showed 
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the ability to grow in very short generation time of less than 15 minutes.  Moreover, sheep fed 

the soybean diets showed the potential for populations of S. bovis to double without a decrease 

in the rumen pH but with an associated decrease in fibre degrading bacteria represented in the 

form of F. succinogenes populations. It would have been ideal to have additional species of 

ceulluytic bacteria quantified or employ the use of additional genetic technology to more 

extensively identify other interactions in the rumen biome. 

 This work also indicated that there is potential for acidosis with β-linked polysaccharides 

in the form of the lupins and that a decreasing ruminal pH is not always an absolute indicator of 

acidosis.  In fact, sheep fed the soybean diet had a neutral to high pH but also had a very large 

increase in the S. bovis population. Even with large increases in the S. bovis populations, this did 

not necessarily signify acidosis as shown in the soybean diets. Work done by (Golder et al., 

2014) showed that the role of Lactobacillus and S. bovis  populations  in ruminal acidosis was 

unclear. It is also interesting to note that although the lupin diet had a decrease in rumen pH 

there was no significant changes observed here in the rumen Lactobacillus spp. 

 

  Notwithstanding these observations of the links between rumen parameters such as pH, 

buffering and D-lactate and some rumen bacterial species, the understanding of how these rumen 

bacteria change and adapt to the different substrates contained in these diets is still relatively 

unexplored.  Most of the previous studies have relied on culture-based techniques Goad et al. 

(1998).   Over the last decade or so, qRT PCR has been developed by Tajima and co-workers on 

a few indicator bacteria in the rumen (Tajima et al., 2001; Tajima et al., 1999; Tajima et al., 

2000) to monitor the changes in bacterial populations under dietary transitions.  These latter 

studies have not linked the molecular studies with the physiology and metabolism of the rumen 

as has been the case here.  Furthermore, metagenomic analysis allied to clonal library collections 

has shown there to be many more potential open transcription units (OTUs) and possibly a much 
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greater number of bacterial and archaeal species in the rumen than previously reported through 

culture-based techniques.  Metagenomics is a rapidly growing field of research that aims at 

studying uncultured organisms to understand the true diversity of microbes, their functions, 

cooperation and evolution, in environments such as the rumen (Huson et al., 2009).  Thus a 

metagenomic approach allied to the qRT-PCR methods applied here, and having both of the 

molecular approaches aligned with the rumen digestive physiology should yield rich and novel 

insights into the population changes occurring during the feeding of these diets in sheep.  

 

 

 

 

 

 

 

7 Conclusions and Future Directions 

 

 Livestock production, specifically the production of red meat and dairy products, is 

projected to increase to meet the demand of both an increasing world population and a higher 

proportion of middle income earners. Nevertheless this increase in red meat production may be 

constrained by concerns about the environmental impact and sustainability of ruminant 

production systems ((Alexandratos and Bruinsma, 2012; Revell, 2015)).  To this end, there is 

increasing pressure for more efficient production systems for meat, fibre and dairy products.  

Consequently, there is likely to be an increased dependence on grain feeding to achieve these 

higher animal production demands with reduced ecological impacts. Grain feeding will continue 
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to supply the energy and protein required for growth for finishing cattle and sheep and increased 

milk production in dairy cows. In addition, grain feeding is widely used for supplementation of 

livestock during periods of low pasture availability. One of the major problems associated with 

supplementary feeding of concentrate diets based on cereal grain is the associated potential 

incidence of clinical and subclinical acidosis. Moreover, the economic impact of acidosis, 

especially subclinical acidosis, is difficult to quantify as the losses can range from unidentifiable 

production losses to subsequent death of a ruminant. 

 Acidosis has been extensively studied under conditions where acidosis has been 

experimentally- induced (Goad et al., 1998; Godfrey et al., 1994; Hook et al., 2011; Horn et al., 

1979; Nagaraja et al., 1978; Sauvant et al., 1999) usually by feeding large loads of cereal grain 

and then monitoring the effects on rumen metabolism and the rumen microbial populations. The 

decrease in ruminal pH from the normal range of pH 6.4 – 7.2 to below 6.0 and even to pH 5.0 

upon introduction to grain based diets has been the consistent observation in these experimental 

studies.  This study was unique in that it monitored cattle in commercial feedlots rather than 

following experimentally- induced acidosis. The key to this study was monitoring the dietary 

transition of cattle onto grain based diets rather than understanding the incidence of induced 

short term acidosis. Therefore, basing the study on commercial feedlots highlighted how 

differing management techniques impacted not only phenotypic indicators of rumen pH and 

metabolism but also quantified the genetic changes of key species of carbohydrate and protein 

fermentation in the rumen.  

Two commercial feedlots were studied where cattle were introduced onto either a total 

mixed ration or hay and grain supplied separately.  These commercial cattle managed under 

commercial conditions showed no signs of acidosis either through changes in rumen bacterial 

ecology or rumen metabolism. This finding demonstrated that feeding good quality roughage to 

support cellulolytic fermenters such as Fibrobacter succinogenes irrespective of the introductory 
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method if managed effectively may be a prime determinant in sustaining the rumen in a normal, 

non-acidotic state. Moreover, the hypothesis that cattle introduced to grain based diets under 

commercial feedlot conditions will have higher incidence of acidosis when grain and hay was 

fed separately was not supported. The hay fed separately in this feedlot was of high quality, so it 

would be valuable to assess whether low quality hay would lead to a higher incidence of 

acidosis.  

Decreases in rumen pH under experimental conditions have been associated with 

isolation and phenotypic characterisation and quantification of increased lactic acid producing 

bacteria such as S. bovis and Lactobacillus spp. as well as lactic acid utilisers such as S. 

ruminantium and a reduction in cellulolytic bacteria such as F. succinogenes.   Moreover, 

previous quantification of bacterial changes during acidosis has been carried using phenotypic 

sub-culture techniques performed on rumen samples collected under experimental conditions 

rather than commercial feedlot conditions.  In contrast this project has focussed on developing 

genotypic molecular techniques such as qRT- PCR of 16SRNA genes to quantify changes in 

rumen microbial ecology under commercial conditions, and has aimed to link these genotypic 

changes to changes in rumen physiology and metabolism.  

 Several fundamental procedures such as standardisation of enumeration, extraction of 

DNA and primer design for bacterial quantification using 16S RNA genes needed to be validated 

and shown to be reliable and repeatable before analysis of field samples could begin.  The main 

task was to establish confidence in the validity of bacterial numbers in cells/mL values that were 

produced during the qRT- PCR process to reliably enumerate the bacterial species. These relied 

on quantification of the standards from bacterial culture on a cells/mL basis, complete and 

consistent extraction of DNA from the rumen samples, both pure cultures and rumen samples 

and finally the development of effective primers for the 16S RNA genes and quantification of 

the RT PCR process itself. 
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 To correlate a cells/mL value for a targeted bacterial species that was being monitored, 

the standard need to be translated into a cells/mL value in the mixed ruminal population samples 

while utilising the qRT- PCR technology. A Coulter counter was used to quantify the pure 

cultures on a cells/mL basis and this was compared to a turbidity reading using a 

spectrophotometer. The turbidity reading showed high R values for the cells/mL but the 

repeatability was tested further by using the turbidity to determine cells/mL where clumping of 

bacteria cultured for long periods can result in the blocking of the aperture and of the Coulter 

counter itself. Once these procedures were performed and validated, any surplus from the pure 

cultures from the quantified samples was frozen for later DNA extraction rather than relying 

solely on a turbidity reading to estimate the cells/mL in the sample quantified.  

 In addition to the quantification of bacterial culture in cells/mL, the DNA extraction 

process had to be consistent and repeatable for both pure cultures and rumen samples.  

Consistent extraction of DNA from rumen bacteria proved problematic for some time during this 

study, with some of gram-positive and gram-negative bacterial species being extracted in a non-

consistent manner using various published techniques and commercial kits.  Finally, a 

methodology was obtained from Dr S. Denman of CSIRO (pers comm.) that proved effective 

and consistent for all extractions which highlighted that consistency and repeatability of DNA 

extraction was crucial to the success of any molecular study of rumen bacteria or the rumen 

biome.  

 The instrumental final step was the development of the primers to reliably detect and 

quantify the targeted key bacterial species of F. succinogenes, P. ruminicola, S. ruminantium, 

Lactobacillus spp., S. bovis and the total bacterial population. Given the technology and software 

support that was available during 2003-2006, there was no guarantee that the verification tests 

available at that time were only picking up the targeted bacteria. Verification tests to determine if 

only the desired regions were being amplified included using melting curve analysis during the 
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qRT-PCR reaction, which tested the amplicon length and hence the combination of nucleotides 

giving a unique melt curve. Moreover, keeping the amplicon length as reasonably short as 

possible through primer design, testing those primers against the pure cultures available or 

against online sequences still did not guarantee that there was no cross reactivity. However, these 

results from these techniques were consistent across all samples tested during this study.  

Molecular techniques that underpin metagenomics have progressed dramatically since the 

experimental work for this project was completed in 2006 but this study still provides a very 

good base to the understanding of the rumen microbial populations particularly as these key 

species have been the focus of microbial studies until mid-2009 when new techniques were 

being employed.  Therefore, the hypothesis that the molecular technique of quantitative real-time 

polymerase chain reaction (qRT-PCR) of 16S RNA genes can be developed using pure cultures 

of rumen bacteria as references to then monitor the changes in population ecology of rumen 

bacteria in mixed rumen samples collected under practical commercial feeding regimes was 

supported.  

   Differences in the rumen microbial populations were thought to exist when cattle 

were raised on varied pastures (dry low quality autumn pasture vs fast growing high quality 

spring pasture) and then fed subsequently a high grain diet in feedlot.  However, this research 

showed that time of calving did not have a long-term influence on the rumen microbial ecology 

established post-weaning.  In fact, there was a greater influence of the management practices that 

were put in place when cattle were transitioned onto grain-based diets. Overall cattle from the 

two calving times showed very successful adaptation to grain introduction without any obvious 

signs of rumen dysfunction. The other important finding from this data showed that even when 

there was a decrease in cellulytic bacteria such as the indicator population of F. succinogenes or 

an increase in lactate producing bacteria such as S. bovis, this ecological change was not always 

indicative of acidosis. The interesting outcome is that the rumen protozoal populations remained 
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significantly different in cattle from the two times of calving over the dietary introduction period 

in feedlot highlighting that the protozoal ecology was independent of the monitored key bacterial 

populations. The rumen pH remained at what could be classified as safe hydrogen ion 

concentrations throughout the introduction and transition to grain diets for both calving groups 

as indicated by the D- and L-lactate concentrations remaining low throughout the grain feeding 

period. It would be interesting to be able to monitor the full development of the bacterial ecology 

from an earlier stage rather than just at weaning time and continue with the cattle that were born 

onto high quality pasture on an irrigated pivot or associated high quality pasture diet for longer 

periods prior to grain feeding. In this study, there was only 3 months of feed quality difference 

between the cattle in the two time-of-calving groups.  Moreover, calves in the early calving 

group were not eating a large amount of roughage as part of their early diet and as such, time of 

calving may not have been as much of a factor as it could potentially be. 

 The use of feed additives has become common practice within ruminant feeding systems.  

However, with legislative restrictions in their incorporation into animal feeding systems, the 

study also determined if the addition of any feed additive such as antibiotics or ionophores 

would reduce the incidence of acidosis through changes in the bacterial ecology established in 

the rumen during any grain introduction. This was not supported in this thesis.  However, it 

should also be noted that introductions were very successful through well implemented 

management practices. In rumen samples from dairy cattle that received the addition of feed 

additives were associated not only with increased production indicators such as propionate 

concentrations and proportions but also with increased acidotic indicators such as reduction in 

rumen pH, increased populations of S. bovis and concentrations of D-lactate.  In dairy cattle, 

addition of good quality hay rather than lower quality straw as a forage source was associated 

with rumen parameters more indicative of an overall rumen environment representative of a 

successful transition. This outlines the potential importance of education not just about the use of 
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feed additives but the importance of using the correct dose, since Bramley et al. (2012) reported 

that 60% of these dairy cattle were fed lower than the recommended dosage of feed additives. 

 The central dogma in ruminant feeding systems is that cereal grains impact the rumen 

bacterial populations due to their readily available carbohydrates being fermented rapidly by the 

rumen microbial population leading to acidosis.  Feeding grains with low starch content e.g. 

lupins or soybeans should not predispose ruminants (sheep in this instance) to acidosis. In fact, 

these studies feeding lupins ad libitum to sheep showed that acidosis occurred in sheep fed with 

β-linked polysaccharides in the form of a 3x maintenance lupin diet.  Moreover, sheep fed high 

fat diets based on soybeans did develop acidosis as indicated by very large increases in the S. 

bovis population without any associated decrease in ruminal pH and development of clinical 

signs of diarrhoea and depression.   Overall this soybean diet did indicate that there was potential 

to have populations of S. bovis doubling in sheep without rumen pH decreasing below pH 5.5. 

The monitored cellulytic bacteria F. succinogenes decreased dramatically when consuming the 

soya bean diet. It would have been ideal to have a broader range of cellulytic bacteria quantified, 

or utilisation of newer technology to more easily quantify the total rumen biome without the 

need for a large throughput of samples. This study showed that bacterial population dynamics 

were strongly influenced by feed source and moreover the changes in S. bovis and Lactobacillus 

spp. populations did not fit with previous proposals about onset of acidosis mainly from feeds 

containing rapidly fermented soluble carbohydrates. 

 This study monitored the key bacterial populations and it was hypothesised that the fibre 

utilising rumen bacteria (Fibrobacter succinogenes) populations will decrease during grain 

feeding or any associated reduction in rumen pH. This was supported in this thesis under both 

commercial feedlots, in dairy cattle, and in sheep fed diets that were high in fat, the cellulytic 

bacteria did decrease. A decrease in the populations of cellulytic bacteria was not always 

indicative of acidosis as reflected by the rumen pH.  This finding should be explored further 
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using a greater variety of cellulytic bacterial species such as Ruminoccocus albus and 

flavefaciens.  In addition the latest molecular technologies focusing on genome sequencing, 

pyrosequencing, proteomics and transcriptomics (Krause et al., 2013) with techniques such as 

terminal restriction fragment length polymorphism (T-RFLP).  T-RFLP is a DNA fingerprinting 

technique used for comparisons of complex microbial communities and next generation  

sequencing (NGS) (de la Fuente et al., 2014).  T-RFLP will permit monitoring of a much greater 

variety of bacterial species e.g. the studies by Kim et al. (2011) and provide better profiles of the 

bacteria that are present within the mixed population rumen samples. . 

 Prevotella ruminicola was the most prevalent bacterial species in the rumen during 

dietary transition which was supportive of previous work in this area (Griswold and Mackie; 

Fondevila and Dehority, 1996; Tepsic and Avgustin, 2001; Stevenson and Weimer, 2007a).  

Prevotella ruminicola plays a broad and important role in both carbohydrate fermentation and 

protein degradation in the rumen.  The dominance of P. ruminicola in rumen samples may relate 

to its low sensitivity to rumen pH allowing it to maintain its density during grain introduction. 

The populations of Prevotella ruminicola were often linked closely with other rumen bacterial 

populations.  The bacteria species with which the relationship was strongest was with either S. 

ruminantium or the S. bovis populations. The P. ruminicola populations also generally increased 

slightly during the initial period of grain introduction and then remained at a consistent level 

through introduction while some of the other bacterial populations were more variable during 

grain introduction.   This finding is supportive of the role that Prevotella ruminicola plays in 

primary protein degradation in the rumen during introduction to higher true protein diets.  

The hypothesis that lactic acid utilising rumen bacteria (Selenomonas ruminantium) 

populations will increase with an increase in the grain component of the diet was also supported. 

The S. ruminantium populations did increase until approximately day 7 then the populations 

remained reasonably constant. The relationship with other rumen bacterial populations showed 
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that the populations of S. ruminantium were closely related to the Prevotella ruminicola 

populations but also at times with populations of S. bovis but had little relationship to the 

populations of the cellulytic bacteria, F. succinogenes.   

The hypothesis that populations of Streptococcus bovis should increase significantly and 

possibly pathologically during introduction to grain-based diets in cattle or due to poor 

introduction practices was not supported in this study. However, the hypothesis that 

Streptococcus bovis was linked with a decrease in ruminal pH, and an increase in the populations 

of Lactobacillus spp. was supported and demonstrated that Lactobacillus spp. populations was in 

fact independent of the other bacterial populations that were quantified. 

 The proposal that metabolic changes in the rumen could be related to changes in the 

molecular ecology during dietary transitions in cattle and sheep was supported in some cases.  

For instance, the increases in D- and L-lactate concentrations were associated with increased 

populations of Streptococcus bovis in sheep fed ad libitum lupin diets and soybean diets.  

Moreover, in cattle managed under commercial feedlot conditions, the total VFA concentrations 

were consistent with high production potential and adapted populations of P. ruminicola and S. 

ruminantium. Therefore, in these instances the bacterial populations were follow particular 

trends consistent with the metabolic indicators.  The restriction in the number of bacterial species 

monitored due to the availability of suitable molecular techniques at the time of the study and the 

different population dynamics and rates of metabolic pathways in the rumen may have 

constrained observations of closer and more consistent relationships between the ecology and 

metabolism of the rumen.  

 The hypotheses that were posed as part of this Masters study could be further explored 

with the progression of metagenomics.  Since the completion of laboratory work in 2006 more 

recent studies or rumen microbial populations by (de la Fuente et al., 2014; Petri et al., 2012; 

Petri et al., 2013b) have profiled a higher proportion of the rumen genome rather than 
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specifically targeted key bacterial species as undertaken in this study. For instance,  profiling of 

rumen microbial ecology in samples collected under commercial conditions as done by 

Kittelmann et al. (2013) and also in the human stomach as reported by Morgan and Huttenhower 

(2014b) are readily transferable to ruminant.  The techniques of shotgun metagenomics and 

metatranscriptome sequencing eliminate the possibility of missing whole kingdoms or bacterial 

clades as a result of PCR bias.  Further progression of molecular technologies PhyloChip and 

GeoChip techniques as outlined by Nikolaki and Tsiamis (2013) will allow investigation of the 

composition and function of microbial communities and single cell genomics to map genomes 

from uncultured phyla in environmental samples such as the rumen.  The possibilities of 

molecular techniques have expanded dramatically due to the reduced costs of basic aspects such 

as sequencing of bacteria that would also have assisted with the development of more 

appropriate primers.  Notwithstanding the limitations of the use of 16SRNA DNA sequences in 

RT-qPCR as measures of populations of bacterial species in a rumen microbial ecology, RT-

qPCR did permit some of the first observations of the dynamics of rumen bacterial ecology in 

cattle under commercial feedlot conditions and in sheep fed what were previously reported to be 

‘safe feeds’ under experimental conditions.  In addition, this thesis was the first molecular study 

to report on the composition of bacterial populations in rumen samples collected from 

commercial dairy herds where the feed base, commercial production and rumen metabolism 

were also being monitored.  

 Overall this Masters has outlined that acidosis is much more complex in its bacterial 

changes than previous described.   On a practical level, this thesis has demonstrated that 

management practices and livestock husbandry are crucial in commercial feedlots where 

livestock can be successfully introduced onto grain based diets without necessarily using feed 

additives.   Moreover, careful management will be required during introduction of supposedly 

safe feed sources such as lupins and soybeans.  Following on from this work, previously utilised 



245 

 

indicators of rumen function such as metabolic indicators and rumen bacteria assumed to result 

in acidosis were not always straight forward as indicators of rumen dysfunction. For instance, 

increased populations of S. bovis and Lactobacillus during a grain challenge were not always 

apparent even with decreases in rumen pH. This work highlights and supports that the notion that 

management and husbandry is the key to successful dietary transaction.  Moreover, the 

concentrations of total volatile fatty acids and rumen ammonia concentrations at appropriate 

levels (i.e. < 3.0mM) were both good metabolic indicators of potential commercial production in 

cattle and sheep.  
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8  Appendix  

8.1 L (+) or D (-) lactate assay adapted from (Brandt et al, 1980) 

 

Standards S (0) S (10)  S (25)  S (50)  S (75)       S (100) 

Buffer  500 500  500  500  500  500 

NAD  50 50  50  50  50  50 

L or D lactate  

std. (1mM) 0 10  25  50  75  100 

Water 445 435 420  395  370  345 

L (+) or D (-) lactate  

Dehydrogenase 5 5 5  5  5  5 

 

 

Samples     Blank    Samples  

 

Buffer      500    500   

NAD      50    50   

L or D-lactate std. (1mM)   0    0   

Water      445    145  

Sample     ----    300   

L (+) of D (-) lactate dehydrogenase 5    5 

 

NAD solution (made up freshly immediately before use) 

20mg/mL water  

Hydrazine Glycine buffer (500mL) pH 9.50 

13.0mL Hydrazine 

Glycine 18.78grams 

Make up with water and adjust pH to 9.5 

8.2 Ammonia Assay 

Use Boehringer Mannheim Ammonia kit, catalogue number 125 857 (19 x 2.0mL). 

1. Reagent solution – Dissolve contents of one bottle by adding 2.5mL of buffer from bottle 

1a. 
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2. Enzyme solution- Add 0.5mL buffer from bottle 1a to one bottle 2. Dissolve contents by 

allowing to stand at room temperature and swirling gently from time to time over a 

period of 10 minutes. 

Always close the bottle after use. Stable for 6 weeks at +2 to 8 
o
C or five days at +15 to 

25
o
C. 

Sample preparation 

Rumen fluid – dilute sample 1: 100 (Take 0.05mL of rumen fluid and add 4.95mL of boiled 

water). 

Wavelength – 340nm 

 

Pipette into cuvettes 

 Blank Standard/Sample 

Rumen fluid 0.00 0.17 mL 

Reagents from bottle 1 0.83 mL 0.83 mL 

Mix well and leave to stand for 1 minute. Read initial absorbance (340nm) and record as OD1 

Enzyme solution 0.006mL 0.006mL 

Mix well and leave to stand for 8 minutes. Read second absorbance and record as OD2 

 

Calculations: 

(OD1 – OD2)/0.00622 * dilution factor required = nmoles/mL or µmoles 
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8.3 Analysing Fatty Acids by Packed Column Gas Chromatography 
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8.4 Rumen fluid medium (M10) – Instructions 

Salt Solution A 

 0.3% potassium di-hydrogen phosphate 

 0.6% sodium chloride 

 0.3% ammonium sulfate 

 0.03% calcium chloride 

 0.03% magnesium sulphate 

Salt Solution B 

 0.3% di-potassium hydrogenorthophosphate 

Rumen fluid medium (based on 100mL) 

 16.50mL of salt solution A 

 16.50mL of salt solution B 

 33.00mL of clarified rumen fluid (centrifuged at 25931 x g for 10 minutes) 

 0.1g peptone 

 0.1g yeast extract 

 0.5g NaHCO3 

 0.2g glucose 

 0.1mL resaurin (0.1%) 

 50mg cycteine-HCl 

 34mL DDI water 

 

Instructions 

1. Salt solution A and salt solution B can be made up separately and stored in the fridge. 

2. The rumen fluid medium is made up just prior to the medium being made. The rumen 

fluid is spun down at 4-8
o
C in a centrifuge at 25000g for 10 minutes, with the supernatant 
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being removed for use in the medium.  If the rumen fluid is still slightly cloudy the 

procedure is repeated.   

3. The medium is then made up in a conical flask based on the instructions above, generally 

in quantities of 500mL. 

4. Boil solution in a conical flask for 30 minutes over bunsen burner with carbon dioxide 

and condenser in place. 

5. Ensure that ice water is flowing through the condenser condenser and remove water from 

tub as required, ensuring that ice is being replaced. 

6. Add resazurin when starts to boil (try and get directing into solution) 

7. Cool solution in ice bucket (with carbon dioxide still pumping through and condenser 

still attached. 

8. Add cysteine only when completely cool and swirl until dissolved 

9. Keep CO2 in solution take of condenser and cover with aluminium foil 

10. Put calibrated pump into solution, 10mL of the rumen medium was dispensed into 20mL 

pyrex tubes with CO2  being pumped and Hungate stoppers (Bellco catalogue number 

2047-11600) were used to seal the containers with screw tops placed on the containers 

11. Then autoclave the tubes ready for use. 

8.5 Cryoprotectant Instructions 

 Before adding water to your rumen medium mixture (appendix one), pour in 100% 

glycerol so that the final concentration of glycerol 40% v/v. Then top up to desire volume with 

water. You follow the same process as making rumen fluid medium but you only aliquot 2.5 mL 

of the solution into the cryoprotectant jar. To use them after autoclaving just add equal volume 

of culture to the jar so that the final concentration of glycerol is 20 % v/v.  e.g. For 100mL of 

rumen fluid medium broth, you add 40mL of 100% glycerol to the mixture then top it up with 

water to 100mL. To use them you add 2.5 mL of culture to 2.5 mL of cryoprotectant. 
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8.6 Formal Saline solution for Coulter counter (0.9% saline solution containing 0.5% 

formaldehyde) 

Dissolve in five litres of deionised water: 

45grams of sodium chloride 

67.57mL of formalin 

Filtered through a vacuum pump at 40 pounds’ pressure six times with a series of filter papers 

the upper section had: 

8 filter paper 

1.2 filter paper 

0.8 filter paper 

The lower section had: 

0.65 filter paper 

0.2 filter paper 

0.2u filter paper 
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