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Predicting Vertical Acceleration of Raillway Wagons
Using Regression Algorithms

G. M. Shafiullah, A. B. M. Shawkat Ali, Adam Thompson, and Peter J. Wolfs

Abstract—The performance of rail vehicles running on railway
tracks is governed by the dynamic behaviors of railway bogies,
particularly in cases of lateral instability and track irregularities.
To ensure reliable, safe, and secure operation of railway systems,
it is desirable to adopt intelligent monitoring systems for railway
wagons. In this paper, a forecasting model is developed to investi-
gate the vertical-acceleration behavior of railway wagons that are
attached to a moving locomotive using modern machine-learning
techniques. Both front- and rear-body vertical-acceleration condi-
tions are predicted using popular regression algorithms. Different
types of models can be built using a uniform platform to evaluate
their performance. The estimation techniques’ performance has
been measured using a set of attributes’ correlation coefficient
(CC), root mean square error (RMSE), mean absolute error
(MAE), root relative squared error (RRSE), relative absolute error
(RAE), and computational complexity for each of the algorithms.
Statistical hypothesis analysis is applied to determine the most
suitable regression algorithm for this application. Finally, spectral
analysis of the front- and rear-body vertical condition is produced
from the predicted data using the fast Fourier transform (FFT)
and is used to generate precautionary signals and system status
that can be used by a locomotive driver for necessary actions.

Index Terms—Fast Fourier transform (FFT), railway wagons,
regression algorithm, vertical acceleration.

I. INTRODUCTION

DVANCES in information and communication technol-
ogy have enabled the adoption of machine-learning tech-
niques in all sectors to solve real-world problems in business,
engineering, and science. With the increased demand for rail-
way services, railway condition-monitoring systems continue to
advance at a remarkable pace to maintain reliable, safe, and se-
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cure operations. A system that is designed for railways to limit
the risk of injury to persons or damage to property and to ensure
safe and reliable operations is called a “rail-safety-management
system.” If a security-related incident has occurred, this system
may support the operator in taking the appropriate action,
communicating to the right authorities, checking the availabil-
ity of rescue teams, and providing all necessary information
[11-[3].

To monitor lateral instability and track irregularities in this
paper, train-wagon body-acceleration signals, i.e., six degrees
of freedom (DOF) or six modes of vehicle body motion, i.e.,
roll, pitch, yaw, lateral, vertical, and longitudinal, are investi-
gated using machine-learning techniques. In an earlier work [4],
vertical acceleration at the front and rear location of the wagon
body has been predicted using modern machine-learning tech-
niques. In this paper, ten popular regression algorithms are used
to predict vehicle vertical-acceleration motion of the wagon
body. The performance of different models was assessed, and
the most suitable algorithm for forecasting the vertical displace-
ment behavior of railway wagons has been proposed based
on statistical hypothesis analysis. Finally, instead of sending
predicted data, only necessary events that cross the safety limits
are transmitted to the driver in advance for necessary actions
such as train-speed reductions.

II. PROBLEM DESCRIPTION

Typical dynamic behaviors of railway wagons are responsi-
ble for the safe and reliable operation of freight railways. The
dynamic performance is determined by the characteristics of the
wagon and the irregularities in the track. Wagon characteristics
involve wheels, bogie suspensions, load, etc. However, as an
initial study, we only focus on railway track irregularities in
this article. Railway track irregularities need to be kept within
safe operating margins by undertaking appropriate maintenance
programs [3], [5]. Examples of these include dips in track,
battered joints, and kinks in alignment.

It is identified that the performance of rail vehicles running
on a track is limited by 1) the lateral instability that is in-
herent to the design of the steering of a railway wagon and
2) the response of the railway wagon to individual or combined
irregularities. The current ride monitoring systems detect inci-
dents using peak-to-peak (PK-PK) or root mean squared (RMS)
vibration magnitude levels. Monitoring of vertical accelerations
to measure track irregularities and lateral instability is a current
research topic. Collection of acceleration signals from the track
and sending meaningful signals to the locomotive is a challeng-
ing research area. Time—frequency analysis has been used to
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efficiently transmit the signals to the locomotive. There is only
limited research in terms of data throughput, data-collection
procedure, and data-storing capacity. However, these systems
clearly have some drawbacks in terms of energy consumption
and computational cost.

III. LITERATURE REVIEW

The railway industry is working on developing advanced
condition-monitoring systems in a progressive manner that
ensures safe and appropriate operation of the railway systems.
Currently, a variety of condition-monitoring systems are used to
monitor track irregularities and lateral instability [6]. Generally,
specialized track geometry measurement vehicles are used to
determine track conditions. However, this alone is not a good
predictor of railway vehicle response [3], [5]. Track geometry
inspection and maintenance provide train-operating safety and
reduced vehicle and track dynamic interaction. Predicting ve-
hicle characteristics in real time from track measurement data
has been addressed by various research organizations [7]-[13].
Freight wagon instrumentation studies have shown that severe
dynamic forces occur when irregular defects’ wavelengths
and train speeds combine to excite a resonant mode in the
vehicle [8].

Bonaventura ef al. [9] introduced the ZETA-TECH Lumped
Mass Model system for predicting the response of rail vehicles
to measure track geometry in real time. Car-body vertical
displacement (bounce), car-body roll and pitch angles, verti-
cal wheel/rail forces, and vertical car-body accelerations are
predicted with this system. These characteristics are used to
assess the safe behavior of the vehicle [9]. An autonomous
ride monitoring system (ARMS) developed by Amtrak [10]
monitors peak and RMS acceleration on the 10-Hz low-pass
filtered signal in accordance with standard requirements out-
lined by the Federal Railroad Association (FRA) [14]. This sys-
tem measures wagon body and bogie motions, detects various
acceleration events, and tags them with GPS time and loca-
tion information. This information is then delivered to central
processing stations via a wireless communication system. To
ensure reliability and availability, there are multiple levels of
protection and redundancy in this system [10]. However, the
established wireless communication techniques for the ARMS
are not energy efficient, and the features of its GPS have
made the application difficult. There are great possibilities of
malfunctioning due to the absence of satellite signals.

Rete Ferroviaria Italiana (RFI) [15] plays a key role in
developing a modern, safe, reliable, and interoperable rail net-
work for Italy. RFI is undergoing a technological evolution for
the building of tracks and for train circulation. The Integraph
Italia developed a technology to support RFI and is working
to develop a real-time video system, record the impact of
natural phenomena, and manage railway line faults. They have
used forecast indicators to identify the characteristics of rail
overheating due to high temperature, train-operating difficulties
due to snow and intense wind, and landslide alert because of
great rainfall. By using modern machine-learning techniques, it
is possible to identify the above characteristics more efficiently
with less cost than the existing system.

Popular machine-learning techniques are a new research area
for railway monitoring. Some work has already been done
using machine-learning techniques to monitor railway wagons.
Nefti and Oussalah [16] used artificial neural network (NN)
architecture to predict malfunctioning of railway systems due to
track irregularities. Different NN structures are created to find
out the best structure for predicting railway safety. Experimen-
tal analysis showed that the model satisfactorily performed and
can predict the desired output with a very low error factor.

Li et al. [17] investigated a machine-learning approach to
automate the identification process of railroad wheel defects us-
ing collected data from wheel inspections. A decision tree and
a support-vector-machine (SVM)-based classification scheme
were used to analyze the railroad wheel inspection data. The
experimental results indicate that the classifiers learned are
able to identify failing wheels with an accuracy of 76% [18].
However, typical applications like railroad wheel inspection
demanded higher prediction accuracy.

Linear regression (LR) analysis was used to predict the
dynamic characteristics of worn rail pads. The curve fitting ap-
proach showed the maximum correlation of dynamic stiffness
and damping of worn rail pads under preloads while achieving
less than 4% error for all pads. LR analysis was used to predict
the deterioration rate with the age of dynamic stiffness and
damping coefficients [19].

The Centre for Railway Engineering (CRE), Central Queens-
land University (CQU), has been investigating a health-card
system [13] to monitor the dynamic behavior of a fleet of
wagons throughout their service life. This is an autonomous
device mounted on the body of each wagon for onboard analysis
of car-body motion signals to monitor track conditions and
prevent derailment. The health card is capable of resolving
car body motions into six DOF. To do this, the health card
uses accelerometers and angular rate sensors with a coordinate
transform. The health-card system uses fast Fourier transform
(FFT) to efficiently convert the signal into a time—frequency
spectrograph so that events can be detected according to their
short-term spectral content. An algorithm was developed to
analyze signals from accelerometers that are mounted on the
wagon body to identify the dynamic interaction of the track and
the rail vehicle. From spectral analysis, it has been found that
small residual responses exist in the pitch and yaw DOF and
that the wagon was not laterally constrained [5], [13]. However,
absence of energy-efficient features for data collection and
communication between wagons to the locomotive make this
system inefficient.

This paper is an extension of the existing health card sys-
tem, which improves its drawbacks and makes an energy-
efficient railway health-condition-monitoring system. Based
on the problem description and literature review, an energy-
efficient condition-monitoring system to monitor the vertical
acceleration behavior of railway wagons has been investigated
using machine-learning techniques. This paper is organized as
follows: Section IV presents the regression algorithms that are
considered in this paper; experimental setup is discussed in
Section V; experimental outcomes are presented in Section VI;
results and analysis are discussed in Section VII; Section VIII
discusses statistical analysis; test results are discussed in
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Section IX; spectral analysis takes place in Section X; and
Section XI concludes this paper with future directions.

IV. REGRESSION ALGORITHMS

Regression analysis is the most significant and popular
machine-learning area for future decision-making or forecast-
ing of data or any incidents. Currently, various statistical fore-
casting and regression approaches are used to monitor railway
wagons to ensure safety and security. Here, the popular regres-
sion algorithms that are used to develop a condition-monitoring
system to predict front- and rear-body vertical acceleration of
railway wagons are described. Rule-based learning algorithm
M5Rules [20], Tree-based learning M5Prime (MS5P) [21], [22],
RepTree [20] and decision stump [21], metabased learning
random subspace (RSS) [23], lazy-based learning instance-
based k classifier (IBK) [20], [24], regression-based learning
simple LR (SLR) and LR [25], [26], statistical-based learning
algorithm SVM regression [20], [27], and NN-based multilayer
perception (MLP) [27]-[29] are considered in this paper to
develop the model to forecast the vertical acceleration behavior
of railway wagons.

M5Rules: M5Rules create rule sets on continuous data and
produce propositional regression rules in an if-then rule
format. It dictates that an attribute is considered as a class
and then looks at the attributes and begins to construct rules
that will produce the specific continuous class value [20].

M5P: M5P is useful for numeric prediction. It is a rational re-
construction of Quinlan’s M5 model tree inducer. Decision
trees were designed for assigning nominal categories. M5P
extended the decision trees by adding numeric prediction
by modifying the leaf nodes of the tree [21], [22].

RepTree: RepTree is a fast regression tree that uses information
gain/variance reduction and prunes it using reduced-error
pruning. RepTree deals with missing values by splitting
instances into pieces. Optimized for speed, it only sorts
values for numeric attributes once [20].

Decision stump: This learning algorithm builds simple binary
decision “stumps” (one-level decision trees) for numeric
and nominal classification problems. It deals with miss-
ing values by treating “missing” as a separate attribute
value [21].

RSS: RSS is a method used to construct tree-based classifiers
whose capacity can be arbitrarily expanded for increases
in accuracy for both training and unseen data. Random
subsets are selected from the training set, and a model is
built up using each subset [23].

IBK: Instance-based learning algorithms are derived from the

nearest neighbor machine-learning philosophy. IBK is an

implementation of the k-nearest neighbor’s algorithm. The
number of nearest neighbors k& can be set manually or
determined automatically. Each unseen instance is always
compared with existing ones using a distance metric. The
default setting of the Waikato Environment for Knowledge

Analysis (WEKA) [30] is £ = 1 [20], [24].

Regression analysis [25], [26] is a statistical forecasting

model that addresses and evaluates the relationship be-

tween a given variable (dependent) and one or more inde-

LR:

pendent variables. The major goal in regression analysis is
to create a mathematical model that can be used to predict
the values of a dependent variable based on the values of
any independent variable.

It is a regression method that models the relationship
between a dependent variable Y, independent variables X,
where ¢ = 1,...,p, and a random number €. The model
can be written as

Y =00+5X1+5Xo+ -+ 3,X, +e (D

This method is called /inear because the relation of the
dependent variable Y to the independent variables X is
assumed to be a linear function of the parameters.

The regression model is used to predict the value of Y
from the known value of X and to find the line that best
predicts Y from X. LR does this by finding the line that
minimizes the sum of the squares of the vertical distances
of the points from the line. It assumes that all the data are
linear and will find the slope and the intercept that make a
straight line best fit for training data. The goodness of fit
and the statistical significance of the estimated parameters
are a matrix of regression analysis. Commonly used checks
of goodness of fit include the r-squared value. The coeffi-
cient of determination r2 is the proportion of variability in
a data set, and the value of 72 is a fraction between 0 and 1.
If 72 is equal to 1.0, all points lie exactly on a straight line
with no scatter; this is called the best-fit situation.

An SLR is an LR in which there is only one covariate
and is used to evaluate the linear relationship between two
variables [25], [26].

SVM regression: SVM is a statistical-based learning algorithm,
which has been widely used for binary classification. SVM
models can usually be expressed in terms of support
vectors and can be applied to nonlinear problems using
different kernel functions. Based on the support vectors’
information, SVM regression produces the final output
function. WEKA [30], by default, considers sequential
minimal optimization for SVM and a polynomial kernel
with degree 1 [20], [27].

MLP: MLP algorithm consists of three layers: input, hidden,
and output. After receiving an input pattern, the NN-
based architecture passes the signal through the network to
predict the output in the output layer. The output compares
with the actual value and calculated error to modify the
weights. WEKA [30] uses the back-propagation algorithm
to train the model, although it is slower than other learning
techniques [27]-[29].

In Section V, the prediction accuracy of the aforementioned
algorithms has been evaluated using WEKA [30] learning tools
with a classical data-splitting option. WEKA uses a very popu-
lar Java-based set of machine-learning tools. Prediction metrics
that are considered in this paper are given in Table I with their
mathematical notations [20].

V. EXPERIMENTAL SETUP

To investigate the vertical acceleration behavior of railway
wagons for railway operations, the necessary equations to esti-
mate the bounce and pitch modes of this behavior are presented.



SHAFIULLAH et al.: PREDICTING VERTICAL ACCELERATION OF RAILWAY WAGONS USING REGRESSION ALGORITHMS 293

TABLE 1
PERFORMANCE METRIC ATTRIBUTES WITH THEIR
MATHEMATICAL NOTATIONS [20]

Correlation Coefficient 1
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Fig. 1. Accelerometer locations and axis-naming convention [5].

A. Vertical Acceleration Measurements

The health-card system developed by a team of engineers at
CQUniversity [13] aims to monitor every wagon in the fleet
using low-cost intelligent devices. In the health card, solid-
state transducers, including accelerometers and angular rate
sensors with a coordinate transform, were used to resolve car
body motions into six DOF. The algorithm was validated using
collected field data, including accelerations that are measured
at strategic points on the wagon body and the bogies.

Wolfs et al. [13] placed dual-axis accelerometers at each
corner of the body and on each side frame to capture the
roll, pitch, yaw, vertical, and lateral accelerations of the wagon
body. Sensor locations and naming conventions are given in
Fig. 1. ADXL202/10 dual-axis acceleration sensors measured
16-channel acceleration data in g units. Data were collected
from a ballast wagon, which had conventional three-piece bo-
gies that were spaced [, = 10.97 m apart. The accelerometers
were spaced [ = 14.4 m apart. The test run was a normal

ballast-laying operation, starting with a full load of ballast,
traveling to the maintenance site, dropping the ballast on the
track, and returning empty via the same route. A PC-based data-
acquisition system was used to store data [5].

To examine the dynamic behaviors of railway wagons, verti-
cal or bounce and pitch mode characteristics of railway wagons
were investigated with both front and rear wagon body move-
ments being considered for this analysis. A 3-D coordinate
system is normally used to describe the dynamic behaviors of
railway wagons having six DOF. Linear motions along the X-,
Y-, and Z-axes are termed longitudinal, lateral, and vertical
translations, respectively. Rotary motions about the X-, Y-,
and Z-axes are termed roll, pitch, and yaw, respectively. The
purely vertical displacements of a wagon, i.e., the deflections
up and down, are called the bounce mode. The rotation around
the side-to-side axis of the wagon or tilting up and down is
called the pitch mode. Data used in this paper are from the
data collected by the CRE, CQUniversity [13], of the wagon
body motion signals to detect track conditions and provide
derailment monitoring. For this experiment, to calculate the
bounce and pitch modes of the wagon body, three channels of
data out of the 16 collected have been used, i.e., “front left body
vertical (FLBZ),” “rear left body vertical (RLBZ),” and “front
right body vertical (FRBZ).” AFLBZ, ARLBZ, and AFRBZ are
the averages of FLBZ, RLBZ, and FRBZ, respectively.

To calculate the vertical or bounce mode behavior (VERT) of
railway wagons, the following equation has been used:

VERT = [FRBZ — AFRBZ + RLBZ — ARLBZ]|/2.  (2)

In addition to Bleakley’s analysis [5], in this paper, [, (the
distance between bogies) and [ (the distance between transduc-
ers) have been considered to calculate the pitch mode acceler-
ation (PITCHACC). The calculated pitch mode acceleration is
given by

PITCHACC = [(FLBZ — AFLBZ
— RLBZ + ARLBZ)/I] x 1,/2. (3)

Therefore, the front-body vertical acceleration (FVertACC) has
been finally measured using

FVertACC = VERT + PITCHACC. “4)

The rear body vertical acceleration (RVertACC) has been finally
measured using

RVertACC = VERT — PITCHACC. (5)

B. Prediction Model With Regression Algorithms

Models are developed both for the front and rear ends of the
railway wagon body using ten popular regression algorithms.
For initial data preprocessing and formatting, MATLAB [31]
and WEKA [30] learning tools are used. After necessary pre-
processing and formatting, by adopting the regression method,
algorithms are developed to predict the front- and rear-body
vertical displacement behavior of a railway ballast wagon with
the help of WEKA learning tools.
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B Model Building Time
B Model Execution Time

Computational Complexity

Model Time

Regression Algorithm

Fig. 2. Computational complexity of different algorithms for prediction of
front-body vertical acceleration.

Initially, models are developed to predict front-body vertical
acceleration for five data sets. After that, models for forecasting
rear body vertical acceleration are developed with the same data
sets and learning algorithms. Data sets were selected consider-
ing the track condition, the number of records, and the loaded
and unloaded train conditions to provide a large experimental
variety. Considering a raw data structure, regression algorithm
analysis is chosen for this experiment, as it performs better than
using other potential algorithms for estimation purposes.

A set of attributes to measure the estimation techniques’ per-
formance rather than a single attribute is considered, including
correlation coefficient (CC), root mean square error (RMSE),
mean absolute error (MAE), root relative squared error (RRSE),
relative absolute error (RAE), and computational complexity.
The classical data splitting option was considered to evaluate
the data sets in which 70% of the data are used for training,
and the remaining 30% are used for testing. The computational
complexity includes both the model training period and the test
set evaluation time. A unified platform with WEKA release
3.5.7 [30] is used for all the experiments. The configuration of
the PC that was used in the experiments was a Pentium IV with
a 3.0-GHz processor and 1-GB of RAM. This proposed method
is very simple; initially, it prepares the input using (2)—(5) and
then feeds the input into the regression model. From the results,
the most suitable algorithm is proposed for this application.

VI. EXPERIMENTAL OUTCOMES

Experimental results for the various algorithms showed that
the overall prediction accuracy is fairly similar; however, no
algorithm performs the best for all of the estimated attributes.
For the front-body vertical acceleration of railway wagons,
the CC 1is the least for the model that is developed with
the decision stump. M5Rules, M5P, and LR predictions were
similar, and the performance of these algorithms was better
than that of the remaining algorithms. However, they differ in
terms of computational complexity, and LR requires the least
computational time. The model training period and the test set
evaluation time also differ based on algorithms and data sets.
The computational complexity, which combines the model-
training period and the model-evaluation period of different
algorithms for the front body of wagons, is highlighted in Fig. 2.

TABLE 1II
AVERAGE PREDICTION OF FRONT-BODY VERTICAL ACCELERATION
WITH TEN POPULAR REGRESSION ALGORITHMS

Performance| CC MAE RMSE RAE RRSE Time (s)
Metrics
MS5Rules 1.0 0.0 0.0 0.0 0.0 47.708
MsP 1.0 0.0 0.0 0.0 0.0 32.002
Decision 0.5652 | 0.01222 | 0.01936 | 76.87486 | 81.92208 | 2.182
Stump
RepTree 0.88158 | 0.004 0.01048 | 24.48694 | 42.96972| 2.116
RSS 0.9106 | 0.0048 | 0.01068 | 30.33382 | 45.0974 | 5.71
IBK 0.93432 | 0.00144 | 0.00708 | 9.2915 29.48776| 15.898
LR 1.0 0.0 0.0 0.0 0.0 1.562
SLR 0.79074 | 0.00872 | 0.01216 | 55.07176 | 60.06034| 1.716
SVM 1.0 0.00004 | 0.00004 | 0.24194 | 0.21656 | 3.692
MLP 0.98656 | 0.00018 | 0.0027 | 4.89084 | 8.0525 62.538
Prednctlon of Front Body Vertical Acceleration
0.04 ' — Actual Value
—— Predicted Value
0.03 B
0.02 » h J l l
0ot h ‘.||| lltl
g o ‘ \ ’ ;l \ ‘ |
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No. of data records
Fig. 3. Prediction of front-body vertical acceleration using the decision stump,

which is the worst algorithm for this application.

The CCs of M5Rules, M5P, and LR were 1, i.e., the actual and
predicted values were identical. The CC of SVM regression
is 1, although it has higher RAE, RRSE, and computational
time. Table II shows the output of performance attributes for
different algorithms. Considering performance attributes, it is
seen that the model that is developed with the decision stump is
the worst model to forecast the front-body vertical acceleration
of railway wagons, although it is a good performer in terms
of computational complexity. Fig. 3 describes the prediction
results for the model that is developed with the decision stump.

Compared with other algorithms, MLP needs the highest
computational time, although it was predicted with a better CC
of 0.9856 on average. Therefore, it is really difficult to select
the most suitable algorithms from this stated analysis. However,
considering the performance metrics and the execution time
from this preliminary analysis, it appears that the model that
is developed with the LR is the most suitable to forecast the
front-body vertical acceleration.

Models are developed with the selected regression algo-
rithms for rear-body vertical-acceleration data. Model results
are summarized in Table III. It is shown that CC is the least
for the decision stump. The CCs of SLR, IBK, and MLP are
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TABLE 1II
AVERAGE PREDICTION OF REAR-BODY VERTICAL ACCELERATION WITH
TEN POPULAR REGRESSION ALGORITHMS

Performance| CC MAE RMSE RAE RRSE Time (s)
Metrics
M5Rules 1.0 0.0 0.0 0.0 0.0 24.48
Ms5Pp 1.0 0.0 0.0 0.0 0.0 23.132
Decision 0.49878 | 0.017 0.05686 | 77.5617 | 81.89062| 1.776
Stump
RepTree 0.7079 0.00828 | 0.01684 | 38.5844 | 49.81472| 1.714
RSS 0.71468 | 0.00882 | 0.01744 | 41.84734 | 53.06156 | 5.682
IBK 0.9453 0.00256 | 0.0095 12.02534 | 28.07964 | 15.84
LR 1.0 0.0 0.0 0.0 0.0 1.366
SLR 0.8245 0.01116 | 0.01788 | 50.34626 | 55.90768 | 2.404
SVM 1.0 0.00008 | 0.00012 | 0.37232 | 0.34306 | 2.554
MLP 0.99926 | 0.00016 | 0.00012 | 0.6549 3.31986 | 61.764
Prediction of Rear Body Vertical Acceleration
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I CC
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Fig. 4. Comparisons of performance metrics with different algorithms for
prediction of rear-body vertical acceleration.

below 1.0 but above 0.8. Results show that, for M5Rules,
MS5P, and LR, the outputs of all performance metrics, except
computational complexity, are the same. However, LR requires
the least computational time. The CCs of M5Rules, M5P, LR,
and SVM are 1.0, i.e., the actual and predicted values are the
same. Fig. 4 represents the performance metrics of different
algorithms. Therefore, considering the measured metrics from
this preliminary analysis, it is concluded that the model that
is developed with LR is the most suitable to forecast rear-
body vertical-acceleration data. Fig. 5 describes the prediction
accuracy of the model that is developed with LR.

In addition to experimental analysis, data analysis was con-
ducted with the scatterplot method to investigate the possible
relationship between two variables that both relate to the same
event. From the data plot, it can be seen that the data are
correlated and mostly line fitted. Among them, in the LR,
approximately all points lie exactly on a straight line with no
scatter; this is called the best-fit situation.

VII. RESULTS AND ANALYSIS

From the initial experiments, it was observed that the error
rate of the measured performance metrics varies based on algo-

Rear Body Vertical Acceleration

Actual Value
® Predicted Value

Acceleration (g)

-0.02 |

T 11 | T oo . Y, S

-0.06 1 I L L i i i i
0 20 40 60 80 100 120 140 160 180
Number of Records (no.)

Fig. 5. Prediction results with the LR model for rear-body vertical
acceleration.

rithms, data quality, and the number of records. No algorithm
could predict the data sets with the highest performance for
all the performance metrics. However, all the models closely
performed and with negligible error. From the initial experi-
ments, it was decided that the model that is developed with LR
is the most suitable to predict both front and rear wagon body
vertical-acceleration characteristics.

However, it is really difficult to select the most suitable
algorithm for this application. The most popular no free lunch
theorem [32], which was introduced by Wolpert and Macready,
describes this situation in a convenient way: “If algorithm A
outperforms algorithm B on some cost functions, then loosely
speaking there must exist exactly as many other functions
where B outperforms A.” A more useful strategy is to gain
an understanding of the data set characteristics that enable
different learning algorithms to perform well and to use this
knowledge to assist the learning algorithm selection based on
the characteristics of the data set [27], [32].

Therefore, to find the most suitable algorithm, statistical
analysis involving hypothesis tests is applied to further evaluate
the performance of different developed models and finally pro-
pose the most suitable algorithm to forecast the front- and rear-
body vertical-acceleration characteristics of ballast wagons.

VIII. STATISTICAL ANALYSIS

From the preliminary experiments described above, it is not
possible to identify the most suitable algorithm to predict the
front- and rear-body vertical-acceleration behavior of railway
ballast wagons. Therefore, in this stage, a model is developed
using statistical hypothesis analysis to select the most suitable
algorithms based on the selected attributes. The popular t-fest
hypothesis was used in this experiment, which is a statisti-
cal hypothesis test in which the test statistic has a Student’s
t-distribution if the null hypothesis is true. The t-test assesses
whether the means of two groups are statistically different from
each other and that it is the ratio of the difference between
the two means and the measure of the variability or dispersion



296 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

TABLE IV
STATISTICAL HYPOTHESIS STATUS FOR FRONT-BODY
VERTICAL ACCELERATION

TABLE V
STATISTICAL HYPOTHESIS STATUS FOR REAR-BODY
VERTICAL ACCELERATION

Algorithms Variance Results Hypothesis Status Algorithms Variance Results Hypothesis Status
LR vs M5Rules 1.0 HO Accept LR vs M5Rules 1.0 HO Accept
LR vs M5P 1.0 HO Accept LR vs M5P 1.0 HO Accept
LR vs Decision 0.1417339 H1 Reject LR vs Decision 0.141447618 H1 Reject
Stump Stump

LR vs RepTree 0.168577904 H1 Reject LR vs RepTree 0.144993325 H1 Reject
LR vs RSS 0.156313834 H1 Reject LR vs RSS 0.144364883 H1 Reject
LR vs IBK 0.200209033 H1 Reject LR vs IBK 0.180852956 H1 Reject
LR vs SLR 0.141689165 H1 Reject LR vs SLR 0.140593171 H1 Reject
LR vs SVM 0.762652682 H1 Reject LR vs SVM 0.611621285 H1 Reject
LR vs MLP 0.277732594 H1 Reject LR vs MLP 0.252275396 H1 Reject

of groups. The t-value is calculated [33] using the following
formula:

po_Xr=Xe ©)

SE(Xr - Xc)

In the above formula, the means of two data sets are X7 and
X¢. The top part of the formula is the difference between the
means, and the bottom part is called the standard error of the
difference.

To formulate an analysis plan from the calculated ¢-value, a
level of significance needs to be considered, which is also called
the alpha level («). In most social research, the rule of thumb is
to set the alpha level at 0.05, and the confidence level is 0.95. If
the calculated value is below the threshold value for statistical
significance, then the null hypothesis, which usually states that
the two groups do not differ, is rejected in favor of an alternative
hypothesis, which typically states that the groups do differ
[33], [34].

For experiments, a t-test with 95% confidence level is se-
lected. As LR was found to be the most suitable algorithm in the
preliminary analysis, LR is selected as the standard algorithm
for this analysis and is compared with other algorithms using
the ¢-test hypothesis.

The hypothesis considered for the analysis is as follows.

e null hypothesis HO or accept: When the t-value of A1 =
t-value of A2, in which Al is the standard algorithm, in
this case LR, A2 is any other algorithm. If the ¢-value of
A2 is equal or 0.95 of the t-value of Al, then A1 = A2.
Otherwise

e alternative hypothesis HI or reject: A1 # A2.

IX. TEST RESULTS

Initially, ¢-test analyses are conducted with the output results
of different algorithms for the selected attributes stated in
Table II. For ¢-test analysis, all performance metrics are consid-
ered except computational complexity. The results of the ¢-test
analyses for front-body vertical acceleration are illustrated in
Table IV.

For front-body vertical acceleration, only M5Rules and M5P
are in the range of the required confidence level with LR. These

two algorithms may be accepted with the standard LR algo-
rithm. All other algorithms are rejected based on this hypoth-
esis analysis. However, among these algorithms, LR requires
the least computational time. Therefore, considering statistical
analysis and computational complexity, it is concluded that
LR is the most suitable algorithm for prediction of front-body
vertical acceleration.

Next, the t-test hypothesis is applied on the average results of
different performance metrics for rear-body vertical accelera-
tion. The output of hypothesis testing is summarized in Table V.
From the results, it is observed that M5Rules and M5P are
identical with LR. Therefore, LR, M5rules, and M5P are ac-
ceptable for forecasting of rear-body vertical acceleration. All
other algorithms are rejected in this hypothesis test. LR requires
the least computational time. Considering ¢-test analysis and
computational time, LR is the most suitable algorithm to predict
rear-body vertical acceleration.

Therefore, from the experimental results, it is concluded that
LR predicted with the greatest accuracy for both front and
rear wagon body condition. From the predicted front- and rear-
body vertical acceleration data, this algorithm has been devised
to generate precautionary signals if the data are beyond the
safety limit. From the predicted data, RMS values are measured
and used to generate waveforms using an FFT approximation
technique.

X. SPECTRAL ANALYSIS

Vehicle condition monitoring systems enable reduction of
maintenance and inspection requirements of railway systems
while maintaining safety and reliability. Monitoring the wagon
body for instances of vertical acceleration and lateral instability
has promising implications. The existing ride monitoring sys-
tems and associated standards apply PK-PK and RMS measures
to detect an exception. The RMS value gives a positive-valued
measure of the magnitude of cyclic variation in the signal, and
PK-PK values give a positive-valued measure of the magnitude
of the extremities of the signal [5], [35].

FRA specifies safety standards for vehicle track interaction in
North America. FRA specifies two levels for ride acceleration
limits: level 1 (safety limits) and level 2 (maintenance limits).
For body vertical acceleration, 0.40-0.59 g PK-PK is the range
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for level 2 limits, and greater than 0.60 g PK-PK is the level 1
limit [10]. The European standards are more flexible than
the North American and Australian standards considering the
frequency content. Additional operational and safety limits
are introduced in European standards, which give significant
advantages over other standards. The operational limits are
related to track fatigue and running behavior, whereas the safety
limit is related to derailment risk. The safety limits are filtered
at lower frequencies than the operational limits. For the body
vertical acceleration, limits are 0.50 g PK-PK and 0.20 g RMS.
Filtering for the operational limits is 0.4—10 Hz, and for the
safety limit, it is 0.4—4 Hz [36].

The Australian Railway Standards specify lateral and vertical
accelerations for new and modified rolling stock. In this stan-
dard, measurements were to be taken from the floor level of the
rail wagon as close as possible to the bogie center. According
to the Australian ride-performance standards, the PK-PK body
vertical acceleration limit is 0.80 g, and the average PK-PK
body vertical acceleration is 0.50 g. All acceleration signals
in the Australian railway standards are to be filtered to below
10 Hz [37], [38].

For this paper, the Australian standard RMS limits have been
used to monitor the signal condition. Waveform analysis is
performed using the FFT to extract only necessary events of
the acceleration properties of track conditions that cross the
safety limits for transmission to the driver in advance for further
actions. This feature reduces data storage and communication
cost and, hence, reduces power consumption by sending less
information to the driver or the base station.

The code has been developed in a MATLAB platform [31]
to read predicted data, preprocess the data, perform the spectral
analyses, and provide graphical representation to the locomo-
tive. In this stage, data sets were used from the predicted results
for the model building using LR since it was selected as the
most suitable algorithm during the experiment. Filtering has
been done in the frequency domain by using the FFT with
Hanning windows as used by Bleakley [5]. Experimental results
show that typical vertical displacement has been observed in
some places, and RMS limits exceed the Australian safety
standard due to train-track irregularities. In Fig. 6, the top
figure represents the front-body vertical acceleration behavior
of railway wagons. The signal has been bandpass-filtered to
remove the low-frequency content below 0.5 Hz and the high-
frequency content above 10 Hz. The bottom figure represents
measured RMS values from the filtered signal. The RMS values
are calculated over 2-s periods in steps of one sample, and
it shows that the RMS value exceeds the Australian safety
limit during one event. Fig. 7 represents the rear-body vertical
acceleration condition, and it is observed that the RMS output
goes beyond the Australian safety standard limits in several
places. It is observed that the typical vertical displacement that
is observed both for front- and rear-body vertical acceleration
and the RMS output is beyond the relevant safety limit in some
places.

Based on the measured RMS signal, a precautionary signal
must be generated to send to train drivers in advance. Signals
that are sent to the driver through wireless communications
systems for informed forward-looking decisions and initiation
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Fig. 6. (Top) Front-body vertical acceleration characteristics (0.5-10 Hz
filtered). (Bottom) Measured RMS value from the filtered signal.

of suitable actions would prevent disastrous accidents from
happening.

The track that was used to collect data collection in this
paper [5] was particularly rough and under maintenance. The
track was selected because it provided an interesting level of
vehicle—track excitation. However, it is not the general sce-
nario of the Australian Railway Network operating-line safety
condition.

XI. CONCLUSION

Machine-learning techniques play a key role in developing
monitoring systems for both freight and passenger railway
systems to ensure safety and security both inside the wagon and
on the rail track. Both front- and rear-body vertical acceleration
phenomena have been predicted using ten popular regression
algorithms. From experimental results, it has been shown that
the approach is very effective and has predicted front- and rear-
body vertical movement characteristics with negligible errors.

Initially, metrics comprising CC, RMSE, MAE, RRSE,
RAE, and computational complexity have been measured from
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Fig. 7. (Top) Rear-body vertical acceleration characteristics (0.5-10 Hz
filtered). (Bottom) Measured RMS value from the filtered signal.

the developed model. From the preliminary analyses, it has
been observed that accuracy of the models varies based on
performance metrics, the number of data records, and data
quality. It has been observed that LR performs better overall
than any other algorithms for all of the performance metrics
considered. However, some other algorithms also performed
similarly. Therefore, statistical hypothesis analysis has been
applied to select the most suitable algorithm to predict front-
and rear-body vertical acceleration characteristics. From the
performance metrics and statistical analyses, it has been proven
that LR performs more efficiently than any other algorithms for
this problem. Finally, with the predicted front- and rear-body
vertical acceleration data, waveforms have been developed for
RMS values to monitor railway wagons using the FFT approx-
imation technique.

This useful tool can be used to monitor railway systems,
particularly railway track irregularities and derailment poten-
tial, with integrity and reliability, which reduces maintenance
costs and inspection requirements of railway systems. It reduces
computational cost and power consumption of the system, as
the learning mechanism is used to forecast performance, and

the FFT is used to send only alerts regarding meaningful events.
However, in addition to track irregularities, wagon character-
istics are also involved, including intrinsic characteristics of
wheels, bogie, suspension, load, etc. More detailed analysis
should be carried out taking into consideration these aspects
to develop an energy-efficient health monitoring system for
railway use. This paper also deserves further investigation that
will focus on the following specific areas.

* Investigate lateral acceleration of rail wagons.

e Investigate the wireless communications system to
communicate individual wagons to the locomotive or
driver end.

* Integrate the model with the SQL database to send a
warning signal to locomotives.
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