
What Conceptual Graph Workbenches Need
for Natural Language Processing

Graham A. Mann

School of Computer Science & Engineering,

University of New South Wales

Sydney 2052, Australia

mann@cse.unsw.edu.au

Abstract. An important capability of the conceptual graph knowledge engineering tools now under development will
be the transformation of natural language texts into graphs (conceptual parsing) and its reverse, the production of text
from graphs (conceptual generation). Are the existing basic designs adequate for these tasks? Experience developing
the BEELINE system's natural language capabilities suggests that good entry/editing tools, a generous but not
unlimited storage capacity and efficient, bidirectional lexical access techniques are needed to support the supply of data
structures at both the linguistic and conceptual knowledge levels. An active formalism capable of supporting
declarative and procedural programs containing both linguistic and knowledge level terms is also important. If these
requirements are satisfied, future text-readers can be included as part of a conceptual knowledge workbench without
unexpected problems.

1 Introduction

From the large number of experimental software systems designed to realise the power of
conceptual graph (CG) theory, a few have emerged as contenders for the 'standard' workbench.
Three such workbenches will be discussed here: the Loughborough toolset [9], the PEIRCE project
[5] and the object-oriented UNE-CG-KEE environment [11]. These projects are serious attempts to
apply good software engineering methods to supply the reliable, efficient and expandable
knowledge engineering tools that the CG community so badly needs; with the basic CG processing
machinery in hand, future experimental work can get on with higher-level knowledge structures,
operators and applications.

Of the potential benefits the standard workbench might offer, one of the most important will be
natural language capability. The demand for direct text-to-knowledge and knowledge-to-text has
never been greater. Without a language capability, CG workbenches are as subject to the
knowledge acquisition bottleneck as other knowledge systems and so will also be 'I/O-bound' in
this way. But CG representations are especially suited to natural language, and provided some care
has been taken in design stage, the standard workbench could provide practical text-reading and
generation modules, ready to be customised for particular domains. Although only the PEIRCE
project has such capabilities as stated goals (and has begun a processes of specification [13]), the
provision of such language modules could make an important difference of whether or not a given
system would be widely adopted. Even a fairly simple text parser would be a good 'selling point'.

What special requirements do language modules have for workbench design? How can the engineer
ensure that a system will at least be able to support future language modules? Experience with
BEELINE [10], a CG-based agent capable of parsing paragraphs of real text, will be used to
identify the key points at which design might be affected. Since modern, well-written software is
fairly easy to modify, mistakes at these points would rarely be disasterous; they would more likely
result in inelegant coding and inefficient performance. But given the high standards of quality and
performance being demanded for the standard CG workbench, this would still present a problem.

The following basic model of language use will serve as a basis for the discussion. A compositional
model in which canonical graphs encoding particular word senses are joined togther into structures
representing the overall meanings of larger text units such as phrases and sentences should be

https://www.researchgate.net/publication/2303516_Beeline_-_A_Situated_Bounded_Conceptual_Knowledge_System?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/221649169_The_Birth_of_PEIRCE_A_Conceptual_Graphs_Workbench?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=

uncontroversial by now. The resources - data structures and operators - required for langauge can
be conveniently organised into four levels ranging from surface linguistic features to deep
knowledge structures (though this should not be taken as a commitment to any kind of processing
order or priority).

• A supply of lexemes and methods for composing them into words. (morphology)

• A supply of linguistic information about words (lexicon) and methods for for composing them
into phrases and sentences (syntactical grammar, semantic rules).

• A supply of canonical graphs representing word meanings (conceptual catalog) and methods for
assembling them into compound graphs (conceptual parsing using formation rules).

• A supply of higher-level knowledge structures (schemata, scripts, plans, discourses) and
methods for fitting compound graphs into them (pragmatics, schematic matching, metaphor).

Each resource consists of a supply of data objects and the methods needed to apply them. It will be
argued that a workbench capable of providing these resources will need

• the storage capacity for an adequate number of data of each kind

• easy-to-use entry/editing tools for the data

• efficient, bidirectional access to each entry

• an active formalism to implement the methods at each level, which can work between levels.

The four resources are somewhat different, and it is possible to imagine specific provisions for
each. More likely, the language-ready standard workbench will group the first two resources
(linguistic level) and the last two (knowledge level) and include toolsets, storage, access and
formalisms appropriate for each grouping. The following sections are divided up roughly along that
line.

2 Linguistic Level Provisions.

These considerations based on the model of lexical access described in Figure 1. This shows the
path from a word to a lexicon entry via a morphology component which handles plurals, tense
markers, gerunds and other modifying suffixes. The lexicon entry contains information on one or
more word senses, each associated with its linguistic features such transitive/intransitive, syntactic
constituent, or other part of speech. Each word sense must then access a canonical graph
representing the definition of the word in terms of other concept types and relations. These
definitions are stored in the system’s knowledgebase.

In English a small number of morphological transfromations captures regularities over the entire
language. For example, only 6 rules account for spelling changes required to map stems and
suffixes (e.g. try + s -> tries, strap + ing -> strapping, etc.). With such a small number of rules it is
practical the encoding of such transformations as finite state automata for maximum efficiency [2],
or as simple functions. Although some languages, such as Turkish, have many more of these rules,
the numbers do not appear to be incompatible with such succinct and efficient coding schemes, and
since many such systems have already been developed, they need not constrain the design of a CG
workbench.

What are the strorage requirements for the lexicon? Williams [17], estimates that a working human
vocabulary includes from 500 to 40,000 words, depending on the age, language aptitude, and
education of the individual. The original lexicon employed in the BEELINE system contained
approximately 32,000 entries; only a small fraction of which have since been actually defined with
conceptual graphs. A language understanding system with 30,000 fully defined words would be a

https://www.researchgate.net/publication/275739290_Style_and_Vocabulary_Numerical_Studies?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=

considerable achievement. Swappable wordbooks of 5,000 to 10,000 entries may be acceptable for
specialised applications.

Neglecting the conceptual graph definitions for the moment, data sets of this size and complexity
present no great problems for modern editing tools. Nor should availability: a number of
comprehensive lexicons, including Merriam-Webster's Concise Electronic Dictionary (80,000
entires) and the Longman Dictionary Of Contemporary English have been commercially available
in machine readable form since the eighties [18]. For the lexicon it is convenient to have search and
edit functions, and the ability to modify individual entries without re-reading the entire lexicon. The
lexicon in BEELINE can find and update single word entries by selecting tools from pull-down
menus; these have proven valuable for fast testing of the system.

It is clear that to be efficient, access from words to entries in a lexicon of reasonable size needs to
employ some kind of hashing technique, in which each word is tagged with an address which can
be used to retrieve the entry directly from memory. In LISP-based systems like Alvey and
BEELINE, this can be achieved by making word strings access a hash table of lexical entries
directly [14, 16]. What is not so clear is that the path from word to conceptual graph needs to be
easily reversible . In generating well-formed language from conceptual graphs, methods based on
the traversal of graphs have been suggested [1,4]. Such algorithms visit each node in the graph,
building up conceptual and relational information which can be expressed through an appropriate
grammatical form. In practice this works reasonably well for simple graphs, when the granularity of
the graph is such that there is roughly a one-to-one correspondence between the concepts or
relationships and words which express them. Where a cluster of concepts and relations could be
more succinctly expressed with a single word, the output produced by simple traversal algorithms
seems verbose and redundant. Such a method would express the following graph

GIVE

MONEY:@$10

PTNT

PERSON:John

AGNT

RCPT

PERSON:Mary

AGNT

RCPT

BOOK

GIVE

PTNT

as something like "John gives Mary $10 and Mary gives John a book.", whereas a person would
recognise the pattern and say simply "Mary sells a book to John for $10".

While type contraction may sometimes be able to be used to simplify the graph by collapsing
clusters, not all complex graphs would yield to this method. If a projection of some word-sense
definition could be found in the complex graph, then the associated word would be available to
account for the entire cluster [12], provided there was a path back from the definition to the word.
Effectively, another type of contraction operation becomes available. Besides better quality of
generation, such a definitional contraction might be useful for analogical reasoning, by exploiting
the conceptual relationships between different senses of a given word. Suppose a given conceptual
graph will not fit into an surrounding context or schema, but should. It needs to be modified in
some way to enable the fit. The graph is contracted into its word. The definitions of different senses
of this word are then expanded, making available related conceptual graphs to work with.

https://www.researchgate.net/publication/234826169_A_dictionary_and_morphological_analyser_for_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/221648792_A_System_that_Translates_Conceptual_Structures_into_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=

PAST

"jack" + "ed"

 MORPHOLOGY

 LEXICON

"jacked"

GENERALISATION
 HIERARCHY

("jack" (verb • •)
 (noun • •))

Fig. 1. A canonical graph representing the meaning of a word is accessed via
a morphological analyser and a lexicon. Note the two-way pointers between all
data structures.

Such operations require that the entire set of word definitions be efficiently searchable and that the
word corresponding to each be reconstructable given the definition. In the Loughborough toolset,
canonical graphs which would form word definitions are part of a complex set of interdependencies
between other components of the knowledge base. [9] does not give details of how canonical
graphs are represented or searched, so no indication of how to add a lexicon can be given.
Presumably, pairs of pointers could bidirectionally link lexicon entries and particular graphs at
some point within the complex. In PEIRCE, conceptual graphs can be associated with unique bit
codes, which makes search very efficient. Words could be hashed into such bit codes, but the
hashing method would need to be reversible. Note that the scheme described in [13], in which
words are defined by packets of procedural information designed to create new structures and
modify existing ones, is not simply or efficiently reversible for generation. In the UNE-CG-KEE
system, lexical access could be accomplished by means of pointers from the lexicon entries to
definition graphs, in the manner like that described in section 3.3 of [11] for schemas, prototypes
and composite individuals. This access would be efficiently reversible if a second pointer from the
graph back to the lexicon were added.

The software development language (C++ for all three workbenches under consideration here)
could at a minimum be used as a basic active formalism. However, it would be an awkward and
expensive way to deal with higher level abstractions, separate rules from interpreting mechanisms,
and provide code for morphological and syntactical analysis. More practically, some of these
linguistic level provisions could be supplied by an off-the-shelf NLP toolset, which could be
adapted to the standard CG workbench. Good NLP toolsets come equipped with their own
dictionaries, parsers and morphologies as well as formalisms for specifying lexical entries,
morphological transformations, grammars and other types of information.

Sowa & Way [15] developed a conceptual graph parser using the PNLP system [7], which provided
a dictionary of over 70,000 words, an English syntactical parser using a comprehensive augmented
phrase structure grammar, frame-like record structures suitable for representing conceptual graphs
and a high-level language capable of interpreting production rules or procedural programs. Another
example is the Alvey Natural Language Tools project [3], which provides a standard, wide-
coverage morphological and syntactical analyser for English. It includes a development

https://www.researchgate.net/publication/234800571_The_fitted_parse_100_parsing_capability_in_a_syntactic_grammar_of_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/224103881_Implementing_a_semantic_interpreter_using_conceptual_graphs?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/220815112_A_Formalism_and_Environment_for_the_Development_of_a_Large_Grammar_of_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=

environment which can be used to build generalised phrase structure grammars (GPSGs), but with a
782-rule broad coverage grammar provided; a morphological analyser; a chart parser, an LALR
parser, and a 63,000 entry lexicon. The system generates highly readable structures which could be
easily be imported into a CG workbench. However, both these systems run in LISP, which is
incompatible with the workbenches in question. For up-to-date details of existing tools, consult [8].

3 Knowledge Level Provisions

All practical CG systems need some way of entering and altering the graphs that constitute their
knowledge bases. To enter graphs into the Loughborough toolset, for example, one types
conceptual graphs in linear form into the terminal. The graphs are then extensively checked against
the existing graphs in the knowledge base, ensuring consistency. According to Munday, Sobora &
Lukose [11], this process is a thorough, but very slow way of building the knowledge base. This
would present an obstacle to the entry of large numbers of word definitions. These authors have
elaborate plans for their own editor, called CGE, for the UNE-CG-KEE system, which also
includes integrity checking across the type, relation and generalisation hierarchies. It is not yet clear
whether their design will overcome the performance problems identified in the Loughborough
interface, since the it is not fully implemented. The CGE's specification also calls for "the
capabilities to build the type hierarchy, build the relation hierarchy, define conformity relations,
build graphs, define abstractions like type definitions, relation definitions, prototypes, schemata and
composite individuals", which may take some time to deliver, but would appear adequate to support
the natural language component. The PEIRCE interface seems a reasonable compromise between
simplicity and integrity checking; it accepts graphs in the standard linear form, does less checking,
and is consequently much faster. PEIRCE is also adopting GRIT, a sophisticated graphical I/O tool
[6], which could solve many problems of finding, modifying and displaying complex graphs.

How many graphs will be needed for word definitions? As indicated in Figure 1, there is a one-to-
many relationship between each lexicon entry and the conceptual graphs that represent the
meanings of its word senses. The average fan-out - the number of meanings per word - is the
crucial measure here. In BEELINE's lexicon there are an average of 1.19 linguistic categories/word;
since there must be at least one word sense per linguistic category, this sets a minimum bound.
However, there could be many different senses within a single linguistic category. For example, the
word "jack" has at least 6 clearly distinct noun senses. But as a noun, "jack" is unusually
ambiguous. As a verb it has 2 senses, which is probably more typical. If so, the average number of
senses per word should be doubled to 2.38.

The mean senses per word overestimates the true number of graphs required because there is some
redundancy in word meaning; some senses will use share their meaning-graphs with other senses.
The number of graphs per word should therefore be less than 2.38. Allowing a conservative reuse
level of 5%, the final estimated mean number of graphs per word is 2.26. For a vocabulary of
30,000 words, a storage for 67,800 graphs would therefore be required for their definitions. To
estimate the size of these graphs, the largest example of a word sense definition in each of 16
papers from the CG natural language literature was examined. These graphs contained an average
of 11.6 nodes (6.3 concepts plus 5.3 relation nodes; contexts were rare, numbering only one or two
when they appeared). Because authors probably use unusually simple graphs for explanatory
purposes, the true maximum size for meaning-graphs may be somewhat larger. Nevertheless, the
figures hint at the size of definitions that developers are expecting to use.

In practical systems, still more conceptual graphs representing other forms of knowledge than word
definitions, such as schema, prototypes, plans, etc. will need to be created, input and stored. It is
difficult to generalise about the required number and sizes of such graphs across systems intended
for different purposes, and using knowledge in different ways. Some kinds of schematic or
prototypical knowledge might be organised alongside the word definitions to try to capture
regularities in events, situations or plans in an economical way in graphs that are larger in extent
but fewer in number. Just how many such graphs are needed for commonsense reasoning, or even

for reasoning within a specific domain, remains unknown. Strictly speaking, however, such graphs
are outside the realm of language requirements, so such questions can be put aside here.

The basic operations common to all conceptual graph systems are the four canonical formation
rules: copy, restrict, simplify and join, along with their associated service functions like conforms
and subtype. These, along with I/O functions for entering and displaying graphs, are basic to any
standard workbench and need not be discussed further here. One suggested additional function, not
always considered, is a provision for destroying graphs (making the memory they occupy available
for other uses). In language systems, large numbers of partial graphs, useful for only a short time,
will be created. In order to minimise memory wastage, such graphs should be able to be destroyed
once they have served their purpose. This feature is easy to implement in systems which
dynamically assign memory to new instances of abstract data types.

The higher order functions maximal join and projection play a pivotal role in natural language. The
join and maximal join serve as unification operators, enabling partial graphs to be merged into
larger aggregations. The projection function can find partial matches between graphs, enabling a
"smart join" when the starting concepts of two partial graphs are unknown. Most workbenches
support (or plan to support) these operators. Consideration should also given to support for actors.
Not only are actors part of traditional conceptual graph theory, but they provide a genuinely useful
way of linking procedural processes to the otherwise passive declarative structures. In the
BEELINE system, for instance, actors embodied as LISP functions are used to test hypotheses
about possible joins betweens partial graphs collected during phrase processing, as well as to
actualise the transition semantics of verbs.

All these operators need to be at the service of a control language which, like PNLP, should ideally
allow the processing of both procedural code and production rules. In keeping with the cross-level
policy, such a language must allow convenient reference to both entire graphs and their constituent
nodes. It should also allow access to words, and phrasal groupings after syntactic parsing, with their
associated linguistic features. The Loughborough toolset already meets these requirements to some
degree. Its script language allows sequences of commands, IF-THEN and IF-ELSEIF rule
structures and macros to be executed, but would require some modification to admit linguistic level
terms. In PEIRCE, a Prolog-like “graphical object” language is being developed; such a language
could use conceptual graphs as terms, but would again need extension to accord with the cross-level
policy. The ability to refer to objects at both levels could occur naturally as the UNE-CG-KEE
project unfolds. In Phase II, executable conceptual structures are promised to enable both
declarative and procedural programming with graphs. In Phase III, customisable knowledge-based
system shells would be added, encouraging knowledge engineers to develop specialised
applications. A natural language system using the executable conceptual structures would no doubt
be constructed at this level, once the necessary high level object-oriented data types were
established.

4 Conclusions

One may wonder about the feasibility of hand-engineering comprehensive NL systems. It would be
a difficult task to create, enter and maintain over 67,800 graphs by hand. Yet even by today's
standards a manual entry of this number of entries would not be impossible, if the will was there. It
is because of the cost and organisational difficulty of large projects that alternatives to simple
manual knowledge entry must be developed. One advantage of a standard CG workbench could be
the possibility of sharing this task out among developers. If the workbench's editing system made
entering new word definitions easy, and enforced a generally acceptable semantics, word
knowledge would naturally accumulate as ever-expanding versions of the workbench's knowledge
bases were shared around the community. Similarity based search-copy-and-edit methods could
form the basis of useful semi-automatic definition graph editors. The standards efforts could be
expanded to encompass guidelines for the representation of basic patterns in language, beginning
with a popular domain such as diagnostic medicine.

Ultimately, we could be forced to depend on automatic language acquisition, which would enable
word definitions to be automatically generated or modified in the course of natural language
dialogues with a teacher. Such learning would require both parsing and generating subsystems. The
first step would be the manual development of a set of word definitions needed for expertise in the
task of language learning by example dialogue. The second step would be the construction of a
generator which could build a new definition up by arranging fragmentary components provided by
the teacher around a newly-created unique stem linked to its appropriate entry in the lexicon.
Finally, a method of altering faulty or exceptional graphs detected by the teacher during test
dialogues would enable the quality of word meanings to be maintained.

5 References

1. Bell, J.R. & Joyce, R.C. (1989) Mapping conceptual graphs onto natural language. Technical Report #89/6, Dept.
of Computer Science, James Cook University of North Queensland.

2. Berwick, R.C. (1987) Intelligent natural language processing: current trends and future prospects. In W.E.L.
Grimson & Patil, R.S. (Ed.s) AI in the 1980s and Beyond. Cambridge, Mass, MIT Press.

3. Briscoe, E., Grover, C., Boguraev, B. & Carroll, J. (1987) A formalism and environment for the development of a
large grammar of English, Proceedings of the 10th International Joint Conference on Artificial Intelligence. Milan,
Italy, 1987, 703-708.

4. Dogru, S. & Slagle, J.R. (1992) A system that translates conceptual structures into English. Proceedings 7th Annual
Workshop on Conceptual Graphs, Las Cruces, New Mexico State University, 167-176.

5. Ellis G. & Levinson, R. (1992) The birth of PEIRCE: A conceptual graphs workbench, Proceedings 1st
International Workshop on PEIRCE. Las Cruces, New Mexico State University, July, 149-156.

6. Eklund, P.W., Leane, J. & Nowak, C. (1994) GRIT: An implementation of a graphical user interface for conceptual
structures. Technical Report TR94-03, Dept. of Computer Science, University of Adelaide, February, 1994.

7. Jensen, K. & Heidorn, G.E. (1983) The fitted parse: 100% parsing capability in a syntactic grammar of English.
Proceedings of the Conference on Applied Natural Language Processing, Santa Monica, California, ACL, 93-98.

8. Jung, C. (1994) The Natural Language Software Registry, WWW database. URL = http://www.dfki.uni-
sb.de/cl/registry/draft.html, DFKI GmBH.

9. Kocura, P., Ho, K.K., Moorehouse, D. & Sharpe, G. (1991) Aspects of conceptual graphs processor design.
Proceedings 6th Annual Workshop on Conceptual Graphs. Binghamton, New York, July, 1991, 317-329.

10. Mann, G.A. (1995) BEELINE - A Situated, Bounded Conceptual Knowledge System. Systems Research and
Information Science , forthcoming issue.

11. Munday, C., Sobora, F. & Lukose, D. (1994) UNE-CG-KEE: next generation knowledge engineering environment.
Proceedings 1st Australian Conceptual Structures Workshop. Armidale, Australia, November, 1994, 103-117.

12. Nogier, J-F. & Zock, M. (1990) Lexical choice as a process of matching word definitions on an utterance graph.
Proceedings 5th Annual Workshop on Conceptual Graphs. Stockholm, Sweden, August, E.03.

13. Oh, J.C. et. al. (1992) NLP: Natural language parsers and generators. Proceedings 1st International Workshop on
PEIRCE. Las Cruces, New Mexico State University, July, 41-49.

14. Russell, G., Pulman, S., Ritchie, G. and Black, A. (1986) A dictionary and morphological analyser for English,
Proceedings of the 11th International Conference on Computational Linguistics. Bonn, Germany, 277-279.

15. Sowa, J.F. & Way, E.C. (1986) Implementing a semantic interpreter using conceptual graphs. IBM Journal of
Research & Development , 30, 1, 57-96.

16. Steel, G.C. (1990) Common LISP: The language. 2nd Edition. Reading, Mass: Digital Press, p. 435.

https://www.researchgate.net/publication/234800571_The_fitted_parse_100_parsing_capability_in_a_syntactic_grammar_of_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/234800571_The_fitted_parse_100_parsing_capability_in_a_syntactic_grammar_of_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/224103881_Implementing_a_semantic_interpreter_using_conceptual_graphs?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/224103881_Implementing_a_semantic_interpreter_using_conceptual_graphs?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/220815112_A_Formalism_and_Environment_for_the_Development_of_a_Large_Grammar_of_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/220815112_A_Formalism_and_Environment_for_the_Development_of_a_Large_Grammar_of_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/220815112_A_Formalism_and_Environment_for_the_Development_of_a_Large_Grammar_of_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/2303516_Beeline_-_A_Situated_Bounded_Conceptual_Knowledge_System?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/2303516_Beeline_-_A_Situated_Bounded_Conceptual_Knowledge_System?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/234826169_A_dictionary_and_morphological_analyser_for_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/234826169_A_dictionary_and_morphological_analyser_for_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/221648792_A_System_that_Translates_Conceptual_Structures_into_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/221648792_A_System_that_Translates_Conceptual_Structures_into_English?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/221649169_The_Birth_of_PEIRCE_A_Conceptual_Graphs_Workbench?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=
https://www.researchgate.net/publication/221649169_The_Birth_of_PEIRCE_A_Conceptual_Graphs_Workbench?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=

17. Williams, C.B. (1970) Style and Vocabulary: Numerical Studies. Bristol, Griffin & Co., pp. 66-67.

18. Wilks, Y., et. al. (1988) Machine tractable dictionaries as tools and resources for natural language processing.
Proceedings of the 12th International Conference on Computational Linguistics. Budapest, Hungary, August,
1988, 750-755.

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

https://www.researchgate.net/publication/275739290_Style_and_Vocabulary_Numerical_Studies?el=1_x_8&enrichId=rgreq-63d20a1e0b09db4b9dce9729ba7b48e7-XXX&enrichSource=Y292ZXJQYWdlOzIzMDM0ODM7QVM6MTA3NDUzNTM4NjM5ODcyQDE0MDI2MzAzMjg0MDE=

