

MURDOCH RESEARCH REPOSITORY

Authors Version

Ong, K., Murray, D. and McGill, T. (2016) Large-Sample
comparison of TCP congestion control mechanisms over

wireless networks. In: 30th IEEE International Conference on
Advanced Information Networking and Applications (AINA)

2016, 23 - 25 March 2016, Le Régent Congress Centre, Crans-
Montana, Switzerland

http://researchrepository.murdoch.edu.au/31358/

Copyright: © 2016 IEEE

It is posted here for your personal use. No further distribution is permitted.

http://researchrepository.murdoch.edu.au/31358/

Large-Sample Comparison of TCP Congestion
Control Mechanisms over Wireless Networks

Kevin Ong, David Murray, Tanya McGill
School of Engineering and Information Technology

Murdoch University
Perth, Australia

{k.ong, d.murray, t.mcgill}@murdoch.edu.au

Abstract—As new congestion control mechanisms are devel-
oped, their performance relative to existing mechanisms needs to
be understood; in particular over wireless networks. This study
aimed to evaluate existing TCP congestion control mechanisms
using a comprehensive and reproducible methodology designed
to be representative of real world usage of wireless networks.
The study sought to investigate whether any existing mechanism
could provide significant performance benefits over CUBIC and
be recommended for adoption.

The findings of this study showed that YeAH demonstrated an
increase in throughput of 3%–5% over CUBIC, with no penalty
to latency. While this small improvement may assist applications
requiring the highest available performance, it is unlikely that it
will provide a significant improvement over existing congestion
control mechanisms. As such, it is the conclusion of this study that
use of alternate congestion control mechanisms would not provide
noticeable improvements in performance in most applications.

I. INTRODUCTION

TCP congestion control is intended to prevent TCP senders
from introducing congestion to the path being used for trans-
mission, as well as alleviating the need to drop packets
in response to congestion [1]. New congestion management
algorithms have been proposed and developed with the aim of
improving TCP performance in specific scenarios, including
over wireless networks where the suboptimal performance of
TCP has been recognised for some time [2].

Traffic originating from a wireless device surpassed 50%
of Internet traffic in 2014, and is expected to reach 81% by
2019 [3]. As such, the performance of TCP over wireless
networks needs to be better understood and improved upon.
Numerous studies evaluating the effectiveness of TCP con-
gestion control mechanisms have been undertaken since the
development of TCP Tahoe in 1988 [1]. These include both
preliminary evaluations carried out by the developers propos-
ing new mechanisms [4], [5], as well as studies comparing
existing mechanisms [6], [7], [8].

Prior studies evaluating the performance of TCP congestion
control mechanisms have utilised simulation or production
networks for data collection. Of these approaches, simulated
networks modelled using software tools such as ns-2 are
commonly employed as they allow researchers to evaluate
modifications to TCP congestion control relatively quickly
and under a wide range of scenarios that are not feasible to
reproduce [9]. This approach is typically favoured as a means

for quickly evaluating newly proposed congestion control
mechanisms.

Internet-based testing allows researchers to remove the pos-
sibility that assumptions made in the network model will bias
the results [9]. However, results produced using this approach
are often difficult to reproduce, due to constant changes to the
topology of the Internet [10]. It is also impossible to analyse
how traffic generated by a new congestion control mechanism
impacts other traffic traversing a specific link [9].

This study aimed to evaluate existing TCP congestion
control mechanisms — specifically, Westwood, Hybla, Illinois,
YeAH, and LP — using a comprehensive and reproducible
methodology designed to be representative of real world usage
of wireless networks. In doing so, it sought to investigate
whether any existing mechanism can provide noticeable per-
formance benefits over CUBIC.

II. RELATED WORK

Research into TCP congestion control mechanisms aims to
improve the performance of existing congestion control mech-
anisms. In relation to congestion control, performance can be
quantified using a variety of metrics including throughput,
latency, and fairness. The development of congestion control
mechanisms, however, involves a process of refinement to
balance these characteristics.

For example, CUBIC [11] was designed to address the
aggressiveness its predecessor, BIC-TCP, would employ in
utilising available bandwidth. However, this change resulted
in CUBIC being slower to utilise available bandwidth.

Similarly, delay-based mechanisms such as Westwood [4]
attempt to detect network congestion before packets are
dropped. While this approach allows such mechanisms to
avoid packet loss events, prior studies have typically shown
delay-based mechanisms to have poor performance relative to
conventional loss-based congestion control [7].

Recent mechanisms such as Low Priority (LP) [12] and
LEDBAT [13] aim to utilise excess bandwidth with minimal
impact on other traffic. Such mechanisms are most useful in
situations where increased transaction time would be least
noticeable. However, a study by Callegari et al. [7] has found
that LP performs comparably to other mechanisms.

To assess the merit of different approaches to congestion
control, the performance of these mechanisms must be quan-

tified. The metrics commonly used in the evaluation of TCP
congestion control are discussed below.

A. Performance Metrics

Research into TCP congestion control mechanisms aims
to improve the performance of existing congestion control
mechanisms, usually measured based on throughput [7], [14],
goodput [15], [8], or link utilisation [16]. As different through-
put metrics have been utilised across these studies, direct com-
parisons between the results of studies utilising throughput,
goodput and link utilisation are infeasible, the performance of
congestion control mechanisms is examined, relative to others
evaluated by the same study.

Despite studies demonstrating the potential for significant
differences in performance between congestion control mecha-
nisms, prior studies have found little difference in the through-
put, goodput or link utilisation achievable by CUBIC, West-
wood+, and Hybla over 802.11g, 3G and satellite links [17],
[6], [7], [8].

While maximising the rate of data transmission is a signif-
icant measure of the effectiveness of TCP congestion control
mechanisms, increasing the delay experienced by individual
data segments can impact the usability of interactive ap-
plications [18]. Although several metrics exist to quantify
delay [18], the round trip time (RTT) experienced by data
transmitted using each congestion control mechanism is most
commonly reported metric [8], [14]. However, many studies
do not measure or report delay.

‘Flow rate fairness’ or ‘RTT fairness’ refer to the impact of a
TCP stream to the transmission capacity of other TCP streams
operating over the same communications medium [9], [11].
As with delay, many studies do not measure or report on the
ability of new congestion control mechanisms to fairly share
available bandwidth. However, of studies that do, fairness is
typically reported using either Jain’s Fairness Index [7], [8],
or as a proportion of link utilisation [11], [5].

The results of a study by Callegari et al. [7] found that,
with the exception of Westwood and Illinois, all TCP variants
integrated into the Linux kernel scored above 0.9 on Jain’s
Fairness Index for long connections. However, Hybla, and
YeAH TCP score above 0.9 for shorter connections. Westwood
consistently scored the lowest fairness index (0.74 for long
lived flows, and 0.7 for short flows).

As with intra-protocol fairness, many studies that evaluate
TCP congestion control mechanisms do not consider the
ability of new congestion control mechanisms to co-exist
with existing — and commonly used — mechanisms such as
Reno, NewReno, CUBIC and Compound TCP [19], [14]. Prior
studies that have evaluated this metric report friendliness based
on the throughput of the new congestion control mechanism,
as compared to that of the existing mechanism [11], [7], [5].

However, Callegari et al. [7] suggest that Reno is more
aggressive, and typically appropriates a greater share of avail-
able bandwidth than CUBIC for short and long-lived TCP
connections. YeAH TCP and TCP-LP are able to achieve
similar throughput to Reno on longer connections, although

Reno grabs the largest share of available bandwidth on shorter
connections.

III. METHODOLOGY

To address the lack of realism in previous studies, and the
inability to definitively identify better performing congestion
control mechanisms, the study described in this paper was
designed to operate on live networks. Fig 1 depicts the network
topology used for the experiment.

To best emulate the use of Content Delivery Networks
(CDNs), virtual servers hosted by Amazon Elastic Compute
Cloud (EC2) in Sydney, Australia were used to host files of
varying sizes to be downloaded as part of this study. The use
of EC2 allowed the experiment to measure TCP performance
over the same network infrastructure that is utilised by the
Amazon Simple Storage Service (S3) used as a CDN.

Files to be transferred as part of the experiment were hosted
on a t2.small instance in the Sydney datacentre. The image
ran Ubuntu 14.04.1 and the Apache 2.4.7 web server. An
identical instance was used for testing TCP Friendliness. Data
transfers were carried out using three commonly used wireless
networking technologies: 802.11n (WiFi), High-Speed Packet
Data Access (HSDPA, also known as ‘3G’), and Long Term
Evolution (LTE, commonly referred to as ‘4G’).

Testing over WiFi was carried out using 802.11n operating
at 2.4GHz. The wireless network was connected to the Internet
via a university network. A Cisco Meraki Z1 acted as the
wireless access point and gateway in this scenario. Use of the
Z1 allowed the scenario to emulate a typical home network,
while use of the university gigabit network ensured that the
WiFi link was the bottleneck.

Testing over HSDPA and LTE was carried out using the
Telstra mobile network using the Nexus 7’s inbuilt modem.
Telstra was previously a government-owned telecommunica-
tions provider for Australia, and provided the greatest LTE
coverage at the time this study took place.

A Google Nexus 7 LTE tablet running Android 4.4.4 was
used as the client for this experiment. The tablet was selected
due to the inclusion of integrated radios for WiFi, HSDPA,
and LTE. Use of these integrated radios allowed each wireless
technology to be tested in isolation. Firefox for Android
(version 34.0.1) was used for file transfers.

A. Congestion Control Mechanisms

In order to maintain a manageable scope, the study was
limited to mechanisms that aim to address the suboptimal
performance of TCP over wireless networks. In addition
to CUBIC, five such congestion control mechanisms were
identified: Westwood, Hybla, Illinois, YeAH, and LP.

B. Test Data

As of December 2014, websites had been found by HTTP
Archive [20] to transfer an average of 1958KiB of data to
the end-user. Individual non-image elements varied in size
from 59KiB to 298KiB, with a mean non-image transfer of
117.17KiB. As such, file transfers of 100KiB and 2MiB were

Nexus
7

LTEInternet

University
Network

HSDPA / LTE

Amazon EC2

t2.small

WiFi

Fig. 1: The experimental network topology.

included in this study. In addition to the smaller 100KiB
and 2MiB file transfers, larger file transfers of 10MiB were
included to allow for an examination of congestion control
mechanism performance over a longer period of time.

C. Metrics

While previous research evaluating the effectiveness of TCP
congestion control mechanisms has utilised a wide range of
performance metrics, four primary metrics were considered
for this study: throughput, latency, intra-protocol fairness, and
inter-protocol fairness. However, due to the limited differences
found in fairness during previous studies, intra-protocol and
inter-protocol fairness were not ultimately included. Values for
throughput and latency were calculated using a Python script
developed for the data analysis of this study which utilises the
Wireshark command-line interface (see Section III-E).

1) Throughput: For the purpose of this study, through-
put was calculated based on the transfer size (using the
sum of values stored in frame.len), and duration (using
frame.time relative) recorded by the packet capture based on
the formula:

throughput =
∑

(frame.len− 26)/duration

2) Latency: The Wireshark RTTs for TCP segments not
subject to TCP offload were aggregated. Any RTTs calculated
for retransmitted segments were excluded from these calcula-
tions.

D. Data Collection

To address the lack of repeatability encountered in Internet-
based testing, data collection was undertaken over a 24 hour
period for each permutation of testing. This approach ensured
that data collected would include captures during times of low
and high network usage.

Tests for transfers of 100KiB, 2MiB, and 10MiB over WiFi,
HSDPA, and LTE were included in this evaluation. Each of
these permutations constitutes a single round of testing, with

a minimum of 100 samples captured per congestion control
mechanism.

Each sample consists of a packet capture of all packets sent
and received by the EC2 instance over a two minute period.
Packet captures should contain all traffic resulting from the
file transfers initiated by the tablet. This process was mostly
automated through the use of shell scripting.

E. Data Analysis
The resulting packet captures were automatically processed

by a Python script developed to analyse packet captures, with
the results stored using a SQLite database. This Python script
utilises the Wireshark packet analysis engine via the tshark
command-line interface.

The validity of packet captures was also checked to ensure
that results were not biased by invalid tests. Packet captures
were examined based on the following criteria:

• Traffic was only captured for the number of TCP con-
nections expected for each test.

• Traffic was only captured for the two endpoints used in
each test.

• Sufficient traffic was captured to account for the file
transferred for the test.

Packet captures that failed any of these tests were discarded.
The remaining results were examined for outliers. Potential
outliers were identified based on the rule that values that are
more than three interquartile ranges above the 75th quartile, or
below the 25th percentile are probable outliers. Such outliers
are identified by the SPSS statistics package as ‘extreme out-
liers’ [21]. This test was applied to the aggregate throughput,
per-connection throughput, and median latency for all tests.
Any test for which one of these results was identified as a
probable outlier was excluded from the set of results.

F. Pilot Testing
In order to ensure the data collection methodology, as

well as automation and data analysis techniques functioned

as expected, a pilot study was undertaken. Data collection for
the pilot study was limited to one hour, capturing five samples
per congestion control mechanism.

IV. EVALUATION RESULTS

Tables I, II, and III present a summary of the results of
data transfers over a single TCP connection for each link
technology included in this study. These results are ranked
in order of throughput.

TABLE I: Mean throughput and latency for transfers over a
single TCP connection via WiFi.

Mechanism Tput Latency
YeAH 338.02 74.17
LP 337.56 74.01
Illinois 337.34 75.39
Westwood 337.21 75.44
Hybla 336.60 74.65
CUBIC 330.55 73.61

(a) For 2MiB transfers.

Mechanism Tput Latency
Hybla 1051.58 171.68
Illinois 1050.21 172.05
Westwood 1043.40 169.62
YeAH 1034.44 92.34
CUBIC 1032.23 171.17
LP 1031.03 132.18

(b) For 10MiB transfers.

TABLE II: Mean throughput and latency for transfers over a
single TCP connection via HSDPA.

Mechanism Tput Latency
YeAH 261.96 129.67
Hybla 261.95 123.44
LP 260.93 124.35
Westwood 260.61 123.81
Illinois 260.48 126.71
CUBIC 250.01 126.36

(a) For 2MiB transfers.

Mechanism Tput Latency
Hybla 1346.07 81.40
YeAH 1300.08 76.48
CUBIC 1294.23 79.20
Illinois 1280.61 78.53
LP 1277.82 76.97
Westwood 1253.56 78.91

(b) For 10MiB transfers.

TABLE III: Mean throughput and latency for transfers over a
single TCP connection via LTE.

Mechanism Tput Latency
YeAH 304.17 101.43
LP 302.00 101.38
Illinois 301.99 101.39
Westwood 296.76 101.40
Hybla 294.75 101.38
CUBIC 288.57 101.42

(a) For 2MiB transfers.

Mechanism Tput Latency
Illinois 1302.24 111.38
Westwood 1300.93 111.10
YeAH 1297.05 105.55
Hybla 1287.89 111.18
CUBIC 1106.34 104.74
LP 633.27 106.41

(b) For 10MiB transfers.

While a difference between the slowest and fastest mech-
anisms of 38.68% was noted for 10MiB transfers via LTE,
it should be noted this result includes an abnormally low
throughput for LP. For all other tests, the differences between
the slowest and fastest throughput ranged from 1.95% (for
10MiB transfers via WiFi), and 6.87% (for 10MiB transfers
via HSDPA). Due to the volume of data collected, only key
results are elaborated on below.

A. Throughput Results

The observed throughput for a small file transfer (100KiB)
via WiFi, HSDPA, and LTE showed little difference can be
observed in the throughput achieved by the mechanisms tested.

Fig. 2: Throughput for 2MiB transfers over a single TCP
connection via WiFi.

CUBIC demonstrated the lowest median throughput of the
mechanisms evaluated in transfers of 2MiB of data, as shown
in Fig 2, although the difference between the lowest (CUBIC)
and highest (YeAH) median throughputs was only 6.22KiB/s;
or 1.8%. The differences in throughput achieved by the tested
mechanisms would not be noticeable in real-world usage.

Illinois possessed the widest range of observed throughput
values for this test, although CUBIC exhibited the largest
interquartile range of all mechanisms evaluated — 22.56KiB/s,
compared to 14.33KiB/s and 14.17KiB/s for LP and Hybla,
respectively — suggesting less consistent performance overall.

The low throughput achieved by CUBIC became somewhat
more evident in larger transfers. In tests of 10MiB trans-
fers over HSDPA, CUBIC demonstrated the lowest median
throughput of the six congestion control mechanisms included
in this study. However, this result amounts to a difference in
throughput of 28.19KiB/s, or 2.1% between CUBIC and LP.

Hybla and Westwood achieved the highest median through-
puts in this set of tests. However, these results only account
for an increase of 5.8% and 5.7% over CUBIC, respectively.

Fig. 3: Throughput for 10MiB transfers over a single TCP
connection via LTE.

As depicted in Fig 3, CUBIC was outperformed by Hybla,
Westwood, YeAH, as well as Illinois in 10MiB transfers over
LTE,. In these tests, a difference of 18.6% was observed
between between CUBIC and Hybla.

LP demonstrated the lowest median throughput of
376.02KiB/s. Somewhat interestingly, the mean throughput
achieved by LP in these tests was significantly higher than the
median at 633.27KiB/s. As LP is known to be a less than best
effort congestion control mechanism, this anomaly might be
explained by additional network traffic being serviced during
the testing period. A slight difference (1.2%) was observed
in the median throughput for the remaining four mechanisms
evaluated.

B. Latency Results

As with throughput, little difference was observed in the
median latency achieved for short transfers. In testing over an
LTE network the differences in RTT ranged from 17.56ms for
LP, to 23.32ms for Hybla.

Differences in latency are more apparent in Fig 4, which
presents results from the same test carried out over the
Telstra HSDPA network. In these tests, the range of median
RTTs varied by as much as 46.61ms. Data transmitted using
Westwood experienced the greatest variation in latency, with
an interquartile range of 32.14ms. This interquartile range was
approximately 64% larger than that of the second largest:
19.57ms experienced by traffic managed by YeAH. Despite
these differences, median RTT for Westwood, Hybla, Illinois,
YeAH, and LP was relatively uniform although traffic managed
by CUBIC experienced slightly more delay.

Fig. 4: Latency for 100KiB transfers over a single TCP
connection via HSDPA.

Testing of 2MiB transfers demonstrated similar uniformity
in latency to the shorter 100KiB transfers, with data transmit-
ted over WiFi subjected to median delays of between 72.96ms
(CUBIC), and 76.93ms (Illinois). Results from the same test
with data transmitted via HSDPA, shown in Fig 5, show a
similar uniformity in median RTT. However, network traffic
managed by YeAH — and to a lesser extent, CUBIC —

experiences a much larger variation in delay than the other
mechanisms.

Fig. 5: Latency for 2MiB transfers over a single TCP connec-
tion via HSDPA.

Interestingly, median RTT experienced by traffic for all
mechanisms transmitted via an LTE network was significantly
more uniform than any other result recorded in this study.
Given the number of samples considered, as well as the
conditions for excluding data points, these results are unlikely
to be the result of some random short-term anomaly. A similar
level of uniformity was observed in two other sets of results
for tests conducted as part of this study.

Some differences in the latency achieved by different
congestion control mechanisms become more apparent over
longer transfers. In tests involving the transfer of 10MiB over
LTE, traffic managed by CUBIC experienced the least delay,
achieving a median result of 101.63ms. This delay also appears
relatively consistent, with traffic experiencing a variation in
RTTs of of 35.65ms, and an interquartile range of 4.14ms.

Traffic transferred while LP was applied experienced the
second lowest median delay. This delay was slightly less
consistent than that experienced by YeAH.

Fig. 6: Latency for 10MiB transfers over a single TCP con-
nection via WiFi.

Traffic transmitted via WiFi experienced the greatest delay
of the three wireless networking technologies considered in
this study. As shown in Fig 6, with the exception of YeAH
and LP, traffic transmitted over a WiFi network was subject to
a median delay of 199.37ms–202.66ms. YeAH also achieved
much lower variation in delay.

V. DISCUSSION

As new congestion control mechanisms are developed, their
performance relative to existing mechanisms needs to be un-
derstood. This study evaluated existing TCP congestion control
mechanisms using an approach designed to be representative
of real world usage of wireless networks in order to attempt
to identify one mechanism that would provide significant
performance benefits over CUBIC.

The key findings of this study are as follows:
• YeAH demonstrates a mean increase to throughput of

3%–5% over CUBIC across all tests, with as much as
a 17% improvement for transfers over LTE.

• Throughput for the six congestion control mechanisms
tested was found to be largely consistent.

• CUBIC often achieved slightly lower throughput than the
other mechanisms being evaluated.

• LP achieved similar throughput to the other mechanisms
evaluated, with the exception of 10MiB file transfers over
LTE.

• Latency was relatively consistent across all congestion
control mechanisms.

The findings of this study are discussed in greater detail
below.

A. Throughput

While prior studies evaluating TCP congestion control
mechanisms have shown some variation in results, these stud-
ies have found little difference in the throughput achievable
through use of different congestion control mechanisms [17],
[19], [7], [8]. The results of this study are broadly supportive
of these findings, in that the six mechanisms included in this
evaluation achieved similar throughput in each test over WiFi,
HSDPA, and LTE.

De Cicco & Mascolo [8] found a slight difference in
the goodput achievable by CUBIC and Westwood+ over 3G
networks. This difference between CUBIC and Westwood+
favoured CUBIC — CUBIC was recorded to have achieved
goodput of 1.44Mbps, compared to 1.41Mbps for Westwood+.
These findings were supported by Callegari et al. [7], who
found a 0.2Mbps difference in throughput favouring CUBIC.
A study by Adami et al. [19] also observed small differences
in the throughput achieved by both mechanisms over wireless
links, broadly supporting the findings of other studies [7], [8].
However, results collected by Adami et al. [19] found that
CUBIC achieved lower throughput than Westwood. The results
of the current study support the findings of Adami et al. [19],
with CUBIC achieving lower throughput than Westwood in
most tests.

The prior evaluation conducted by Callegari et al. [7]
also found that Illinois and YeAH achieved noticeably lower
throughput compared to the other mechanisms tested in this
study. However, this finding is inconsistent with the throughput
observed in the course of the current study. The throughput
results presented in Section IV-A depict minimal differences
between the throughput achieved by these mechanisms in tests
considering a single TCP connection.

With the notable exception of 10MiB transfers via the
Telstra LTE network, LP achieved similar or better throughput
when compared to the other six mechanisms included in
this study. The finding is consistent with that of Callegari et
al. [7], which found that LP achieved the greatest throughput
over a WiFi link of all the mechanisms included in this
study. Adami et al. [19] observed that LP achieved the fourth
highest throughput for the mechanisms included in this study,
ahead of Illinois and Hybla. LP’s competitive performance
was surprising given that LP was intended to only make use
of excess network capacity [12].

B. Latency

In addition to the limited differences observed in the
achieved throughput, this study found only small differences
in the latency achieved by the six mechanisms tested. The
notable exception to this was during tests involving the trans-
fer of 10MiB via WiFi, in which YeAH and LP exhibited
significantly lower median latency to the other mechanisms.
However, these results were not observed in other tests.

As previously noted, few studies have utilised latency as a
metric for evaluating the performance of congestion control
mechanisms. Of these studies, none examined two or more
of the mechanisms included in this study. However, studies
that examined latency found minimal differences between
the latency achieved by different mechanisms [6], [8], [14],
supporting the findings of this study.

VI. CONCLUSIONS AND FUTURE WORK

In 2014, Internet-bound traffic originating from a wireless
device exceeded 50% and is expected to continue increas-
ing [3]. Therefore, performance and efficiency improvements
for TCP over wireless networks are needed in response.
This study aimed to evaluate existing TCP congestion control
mechanisms using a comprehensive and reproducible method-
ology designed to be representative of real world usage of
wireless networks. In doing so, it sought to identify one
such mechanism that would provide noticeable performance
benefits over CUBIC.

Throughput for the six congestion control mechanisms
evaluated as part of this study was relatively uniform within
each test. A lack of differentiation in the throughput achieved
by different congestion control mechanisms has also been
observed in prior studies [17], [19], [7], [8].

In addition, the results of this study demonstrated only
small differences in the latency achieved by the mechanisms
tested. This finding was broadly supported by those of previous
evaluations of congestion control mechanisms [6], [8], [14].

The results of this study demonstrated that YeAH exhibits a
performance improvement of approximately 3% over CUBIC,
with no penalty to — and in some cases, lower — latency.
As such, applications that require or would benefit from any
performance improvement could implement YeAH as the TCP
congestion control mechanism on their servers.

However, based on the findings of this study, as well as pre-
vious studies evaluating the performance of congestion control
mechanisms, it is unlikely that significant improvements will
be achieved by the widespread adoption of existing congestion
control mechanisms. As such, it is the conclusion of this study
that use of alternate congestion control mechanisms would
not provide noticeable improvements in performance in most
applications.

Existing mechanisms are constrained by the necessity of
maintaining existing TCP semantics, making incremental mod-
ifications to the original congestion control algorithm devel-
oped by Jacobson [1]. However, the lack of performance
improvements demonstrated by existing mechanisms suggests
that more extensive changes to TCP may be required for any
significant benefits to be realised.

Recent studies into the development of new congestion
control mechanisms have proposed larger changes. One such
modification, Remy [5], has been demonstrated to significantly
improve performance over wireless networks in preliminary
evaluations. While the inclusion of Remy in the evaluation
carried out as part of this study was considered, no Linux
implementation was available at the time this study took place.
As such, future evaluations should assess the availability of
new mechanisms for testing.

ACKNOWLEDGEMENT

The authors acknowledge the support of Amazon, Inc
through the AWS Research Grant program. This grant pro-
vided the EC2 instances used in this study, allowing testing
to be carried out on infrastructure used by a wide variety of
web-based services.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” in Symposium pro-
ceedings on Communications architectures and protocols, SIGCOMM
’88, (New York, NY, USA), pp. 314–329, ACM, 1988.

[2] H. Balakrishnan, S. Srinivasan, E. Amir, and R. H. Katz, “Improving
TCP/IP performance over wireless networks,” in International Confer-
ence on Mobile Computing and Networking: Proceedings of the 1 st
annual international conference on Mobile computing and networking,
vol. 13, pp. 2–11, 1995.

[3] Cisco Systems, Inc., “The zettabyte era: Trends and analysis,” May 2015.
[4] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP

westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proceedings of the 7th annual international conference on
Mobile computing and networking, MobiCom ’01, (New York, NY,
USA), pp. 287–297, ACM, 2001.

[5] K. Winstein and H. Balakrishnan, “TCP ex machina: Computer-
generated congestion control,” in Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, (New York, NY,
USA), pp. 123–134, ACM, 2013.

[6] L. De Cicco and S. Mascolo, “TCP congestion control over 3G
communication systems: An experimental evaluation of new reno, BIC
and westwood+,” in Next Generation Teletraffic and Wired/Wireless
Advanced Networking (Y. Koucheryavy, J. Harju, and A. Sayenko, eds.),
vol. 4712, pp. 73–85, Berlin, Heidelberg: Springer Berlin Heidelberg,
2007.

[7] C. Callegari, S. Giordano, M. Pagano, and T. Pepe, “Behavior analysis
of TCP linux variants,” Computer Networks, vol. 56, pp. 462–476, Jan.
2012.

[8] L. De Cicco and S. Mascolo, “TCP congestion control over HSDPA: an
experimental evaluation,” arXiv e-print 1212.1621, Dec. 2012.

[9] M. Allman and A. Falk, “On the effective evaluation of TCP,” ACM
SIGCOMM Computer Communication Review, vol. 29, no. 5, pp. 59–
70, 1999.

[10] S. Floyd and E. Kohler, “Internet research needs better models,” ACM
SIGCOMM Computer Communication Review, vol. 33, no. 1, pp. 29–34,
2003.

[11] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 64–74, July 2008.

[12] A. Kuzmanovic and E. Knightly, “TCP-LP: low-priority service via
end-point congestion control,” IEEE/ACM Transactions on Networking,
vol. 14, no. 4, pp. 739–752, 2006.

[13] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “LEDBAT: The new
BitTorrent congestion control protocol,” in 2010 Proceedings of 19th
International Conference on Computer Communications and Networks
(ICCCN), pp. 1–6, 2010.

[14] M. Nirmala and R. Pujeri, “Performance of TCP vegas, bic and reno
congestion control algorithms on iridium satellite constellations,” Inter-
national Journal of Computer Network and Information Security, vol. 4,
pp. 40–49, Nov. 2012.

[15] S. Trivedi, S. Jaiswal, R. Kumar, and S. Rao, “Comparative performance
evaluation of TCP hybla and TCP cubic for satellite communication
under low error conditions,” in 2010 IEEE 4th International Conference
on Internet Multimedia Services Architecture and Application(IMSAA),
pp. 1–5, 2010.

[16] J. Chicco, D. Collange, and A. Blanc, “Simulation study of new TCP
variants,” in 2010 IEEE Symposium on Computers and Communications
(ISCC), pp. 50–55, 2010.

[17] C. Caini, R. Firrincieli, D. Lacamera, T. De Cola, M. Marchese,
C. Marcondes, M. Sanadidi, and M. Gerla, “TCP live experiments on
a real GEO satellite testbed,” in 12th IEEE Symposium on Computers
and Communications, 2007. ISCC 2007, pp. 523–529, 2007.

[18] S. Floyd, “Metrics for the evaluation of congestion control mechanisms,”
RFC 5166, RFC Editor, Mar. 2008.

[19] D. Adami, C. Callegari, S. Giordano, M. Pagano, and T. Pepe, “A
behavioral study of TCP linux variants over satellite networks,” in
2011 IEEE/IPSJ 11th International Symposium on Applications and the
Internet (SAINT), pp. 474–479, 2011.

[20] S. Souders, “HTTP archive,” Oct. 2010.
[21] C. S. Parke, Essential first steps to data analysis: scenario-based

examples using SPSS. Thousand Oaks, California: SAGE Publications,
Inc, 2013.

