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Abstract 

Biofilters are used for the conversion of odorous hydrogen sulphide to odourless sulphate in 

wastewater treatment plants under the right conditions of moisture and pH. One of the consequences 

of maintaining the suitable pH and moisture content is the production of large volumes of weakly 

acidic leachate. This paper presents a biofilter with a maximum H2S elimination capacity of 

16.3 g m−3 h−1 and removal efficiency greater than 95 % which produces small volumes (1 mL of 

solution L−1 of reactor day−1) of sulphuric acid with a concentration greater than 5.5 M after 150 days 

of continuous operation. The concentrated sulphuric acid was produced by intermittently trickling a 

minimum amount of nutrient solution down the upflow biofilter which created a moisture and pH 

gradient within the biofilter resulting in an environment at the top for the bacterial conversion of H2S, 

while sulphuric acid was accumulated at the base. Genetic diversity profiling of samples taken from 

different sections of the biofilter confirms that the upper sections of the biofilter had the best 

environment for the bacteria to convert H2S to sulphate. The formation of concentrated sulphuric acid 

presents an opportunity for the recovery of sulphur from the waste stream as a usable product. 

Keywords: Biofilter; Hydrogen sulphide; Wastewater; Sulphuric acid; Sulphur recovery; Zero 

leachate  

 



Introduction 

Domestic sewage contains organic sulphur, sulphonates and inorganic sulphur (as sulphates) which 

are sources of hydrogen sulphide (Carrera-Chapela et al. 2014; Gostelow et al. 2001). Hydrogen 

sulphide is a colourless and toxic gas that is considered a broad spectrum poison and affects the 

nervous system among other organs (Burgess et al. 2001; Guidotti 2010). It has a characteristic smell 

of rotten eggs which can be detected by the human nose at concentrations as low as 10 ppb 

(Shareefdeen and Singh 2005). Typical concentrations of H2S generated from wastewater treatment 

plants range from 5 to 100 ppm (Churchill and Elmer 1999; Stanley and Muller 2002). Removal of 

hydrogen sulphide is considered the most dominant odour control requirement from wastewater 

(Gostelow et al. 2001). Biofilters are becoming common as a treatment for H2S emanating from 

wastewater or sewage treatment plants since they work at ambient temperatures and have low capital 

costs (Ben Jaber et al. 2016; Dumont et al. 2008; Feng et al. 2011; Lebrero et al. 2014; McNevin and 

Barford 2000; Mudliar et al. 2010; Romero Hernandez et al. 2013). Biofilters use biofilm—

microorganisms immobilised on the surface of porous media that degrade the pollutants to oxidised 

and less harmful compounds. In biofilters, polluted air flows up through the media and a continuous 

stream of water trickles down the media to keep the biofilms moist and biologically active. The 

pollutants in the air come in contact with the active biofilms and are degraded to harmless products. 

The disadvantage of biofilters is that the microorganisms require sufficient moisture, nutrients and a 

suitable pH (Mudliar et al. 2010). In the case of biofilters used to remove hydrogen sulphide in an 

aerobic environment, the overall biological reaction that occurs is given below (Oyarzun et al. 2003; 

Wang et al. 2003): H2S+2O2→SO4
2−+2H+ 

H2S can be oxidised to either elemental sulphur or SO4
2− depending on the ratio of H2S to O2in the 

treated air (Chaiprapat et al. 2011; Jensen and Webb 1995). If the oxygen is supplied in a limited 

amount, incomplete oxidation of H2S produces elemental sulphur (Chaiprapat et al. 2011; Jensen and 

Webb 1995). Microorganisms that can oxidise H2S include Thiobacillus denitrificans, Thiobacillus 

thioparus and Acidithiobacillus thiooxidans. The pH range for optimal growth of T. denitrificans is 

6.8 to 7.4, T. thioparus is 5.5–7.0 and A. thiooxidans is 1.8–2.5 (Aroca et al. 2007; Lors et al. 2009; 



Solcia et al. 2014). However, studies have shown that the production of sulphuric acid by these 

microorganisms can drop the pH in the biofilter to below 1 and A. thiooxidans has been shown to 

operate even at a pH of 0.2 (Lors et al. 2009; Solcia et al. 2014). A common strategy to control pH in 

conventional biofilters is to wash out the accumulated acidity in the biofilm with a buffered media or 

chemicals like sodium hydroxide or calcium carbonate (Jover et al. 2012; Shareefdeen et al. 2003b; 

Solcia et al. 2014). This leads to production of as much as 2000 mL L−1 day−1 of neutral or slightly 

acidic leachate (pH = 2) which is treated as waste and requires proper disposal (Abdehagh et al. 2011; 

Chaiprapat et al. 2011; Park et al. 2011; Solcia et al. 2014). Instead of considering this leachate as 

waste, the leachate can be thought of as a source of sulphur. The notion of recovering nutrients other 

than sulphur from the leachate of biofilters is not new (Dumont et al. 2012a; Jung et al. 2005; Rabbani 

et al. 2015; Rabbani et al. 2016; Zhang et al. 2013). Removal and recovery of elemental sulphur from 

coal, natural gas and high sulphur crude oils is well-recognised processes, but recovery of sulphur 

from dilute streams of acid from wastewater treatment plants has not been previously attempted 

(Babich and Moulijn 2003; Bachmann et al. 2014; Jiang et al. 2015; Meshram et al. 2015; Shu et 

al. 2014). Dilute sulphuric acid solutions produced in industry are concentrated by energy-intensive 

processes using high-temperature conversion of acid to sulphur dioxide and subsequent catalytic 

conversion of sulphur dioxide to concentrated sulphuric acid (Smith and Mantius 1978). Dilute 

sulphuric acid has also been concentrated in laboratory scale evaporators, where droplets of dilute 

sulphuric acid undergo a loss in water by evaporation to produce acid with concentrations of as much 

as 14 M (Zhou and Liu 2007). It has been estimated that the amount of sulphur that can be potentially 

recovered from polluted air in WWTP can be as high as 17.5 kg of S day −1 (Rabbani et al. 2015). 

This paper describes an aerobic biofilter that removes H2S while producing concentrated sulphuric 

acid as a product. The setup, which also minimises leachate production, encourages sulphur recovery 

rather than producing waste streams of diluted sulphuric acid. A moisture and pH gradient are 

maintained in the biofilter by adding a minimal amount of solution to the top, so that the top section 

of the biofilter is favourable for the growth of microorganisms, while the bottom section accumulates 

sulphuric acid. 



Materials and methods 

Experimental setup 

The investigation was carried out in a lab-sale upflow biofilter, and the schematic of the experimental 

setup is given in Fig. 1. H2S was supplied to the reactor using Tedlar gas sampling bags (CEL 

Scientific Corp.) made of Dupont’s 2mil Tedlar PVF film with PTFE fittings which were non-reactive 

to hydrogen sulphide. Concentrated H2S in a Tedlar bag was dosed using a peristaltic pump 

(Masterflex L/S economy variable-speed drive, Cole-Palmer Instrument Company) into the pressure-

regulated laboratory compressed air leading to the biofilter. The flow rate of the peristaltic pump was 

adjusted to obtain the desired H2S concentration. The flow rate from the peristaltic pump never 

exceeded more than 0.1 L min−1, and this was done to ensure that the oxygen to H2S ratio at the inlet 

of the biofilter was always high providing an aerobic environment during the operation of the 

biofilter. The Tedlar bags, stored at room temperature, were changed every 30 h and the H2S 

concentration and humidity of the gas entering the biofilter were monitored in real time. 

Biofilter column 

The biofilter was constructed from acid-proof PVC piping (Holman Industries) with an internal 

diameter of 5.5 cm. The biofilter had three detachable sections (the top, middle and bottom sections as 

shown in Fig. 1) and a glass flask at the bottom for the collection of acidic product. Each section was 

filled with equal amounts of acid resistant polyethylene packing material (AMB Biomedia Bioballs 

(ABB media), The Tech Den Pty. Ltd.) with dimensions of 11 mm × 7 mm and a total surface area of 

850 m2 m−3. The packing material was chosen for its large surface area and its inertness to low pH. 

The sections were filled with the ABB media to a height of 13.0 cm in each section giving a total 

working volume of 308.86 cm3 or 0.309 L for each section. The number of packing material was 

about 1200 ABB media/L of reactor resulting in free space of 20 % inside the biofilter. The packing 

material in each section was supported by sieve plates made of Plexiglas. Empty Bed Residence Time 

(EBRT) is the time that a gaseous pollutant spends in a biofilter and is defined as the bed volume of 

the reactor divided by the air flow rate (Shareefdeen and Singh 2005). In this system, the bed volume 



was 0.926 L and the flow rate was set at 0.9 L min−1 giving a gas velocity of 23 m h−1 and an EBRT of 

62 s. 

Seeding procedure 

At the start-up period, the biofilter was seeded with a mixture containing 1 L of activated sludge 

(sourced from a local wastewater treatment facility in Woodman Point, Perth) and 1 L of nutrient 

solution with the following composition modified from the Thiobacillus novellusmedium as described 

in Atlas (2005): KH2PO4 (4.0 g), K2HPO4 (1.5 g), MgCl2·6H2O (0.2 g), NH4Cl (0.1 g) and 10 mL of 

trace metal solutions (Na2EDTA 50 g L−1, NaOH 11 g L−1, CaCl2·2H2O 7.34 g L−1, FeCl2 2.3 g L−1, 

MnCl2·7H2O 2.5 g L−1, ZnCl2 1.0 g L−1, CoCl2·6H2O 0.5 g L−1, (NH4)6Mo7O24·4H2O 0.5 g L−1, 

CuCl2 0.73 g L−1). To ensure that the incoming H2S was the only source of sulphur in the biofilters, 

there was no thiosulphate or sulphate in the nutrient solution. The magnesium sulphate, ammonium 

sulphate, zinc sulphate and copper sulphate were replaced with equimolar amounts of the respective 

metal chlorides. After the initial incubation period, a peristaltic pump (Masterflex C/L Dual-Channel 

Variable-Speed Tubing Pump, Cole Palmer Instrument Company), controlled by a connected 

computer using a Labjack USB interface and National Instruments LabView 7.1 control software, was 

used to control the amount of nutrient added to the top of the column. 

Sampling and chemical analysis 

The H2S concentration was measured in real time by means of an inline sensor (GD 2529 Hydrogen 

Sulphide Sensor, GasTech Australia Pty. Ltd). Humidity and temperature of the gas mixture were 

measured using the HOBO Pro v2 external temp/RH probe and data logger (Onsetcomp). Five pieces 

of randomly chosen ABB media were added to 10 mL of distilled deionised water in a 30 mL glass 

vial and shaken for 10 min. 1 mL of solution with the extracted water soluble ions was then analysed 

for sulphate (SO4
2−), sulphide (HS−), thiosulphate (S2O3

2−), elemental sulphur (S) and hydrogen ion 

(H+) concentration. Sulphate was determined based on precipitation as BaSO4 followed by photo 

spectrometric quantitation at 420 nm with the HACH DR 2700 Portable Spectrophotometer (Rice and 

Bridgewater 2012). Sulphide (HS−) was determined based on the reaction of copper sulphate (CuSO4) 



in an acidic solution producing CuS precipitate which was measured photometrically at 480 nm 

(Cord-Ruwisch 1985). Thiosulphate (S2O3
2−) was determined based on the standard method for the 

standardisation of sodium thiosulphate with potassium iodate (Vogel and Mendham 2000). Elemental 

sulphur was determined using extraction with chloroform and HPLC analysis (Henshaw et al. 1997). 

A 0.8 mL chloroform (ChemSupply) and 0.2 mL of 10 % nitric acid were added to 1 mL sample and 

shaken for 15 min. The tube was then centrifuged at 1350 rpm for 5 min. The bottom 0.5 mL 

chloroform layer was added to 1 mL of methanol and injected into Agilent 1200 HPLC Liquid 

Chromatography System with an Eclipse DB C-18 column (4.6 × 150 mm) with a diode array and 

multiple wavelength detector set at 254 nm. The eluent was HPLC grade methanol (Honeywell 

Burdick & Jackson) at a flow rate of 1.5 mL min−1. The pH of the medium was determined by 

titration with NaOH using methyl orange as indicator. The moisture content in the different sections 

of the biofilter was expressed as the gravimetric water content (Margesin and Schinner 2005): 

 

where Mn is the moisture content, Mw is the mass of medium with water and Mo is the mass of the 

medium without water 

 

Results and discussion 

Removal of H2S from the inlet air 

The biofilter initially operated continuously for more than 24 weeks with H2S in the inlet air. Inlet 

mass load of a biofilter is defined as the product of flow rate and concentration of pollutant divided by 

the reactor volume (Shareefdeen and Singh 2005). During the first 17 weeks of the operation of the 

biofilter, the inlet mass loading of H2S varied between 8.4 to 7.2 g m−3 h−1 (102 to 87 ppm min−1) 

(Fig. 2). Removal efficiency (RE) is a measure of how effective the biofilter is at removing the 

pollutant (Shareefdeen and Singh 2005). After an initial 7 day incubation period, the removal 

efficiency of H2S was continuously greater than 95 % for the first 17 weeks, indicating that the 



biofilter was removing H2S from the contaminated air. The mass loading was increased to between 18 

and 15 g m−3 h−1 (216 to 177 ppm min−1) from week 17 to week 22 (Fig. 2). After an initial decline in 

removal efficiency to 35 %, the response of the biofilter was rapid as the removal efficiency reached 

95 % within 4 days of continued operation under the same conditions. Finally, the mass loading was 

increased to greater than 33 g m−3 h−1 (380 ppm min−1) after week 22 (Fig. 2). The removal efficiency 

at this stage reduced to less than 10 % and did not improve after more than 10 days of continued 

operation under the same conditions. This is similar to examples in the literature which show a drop in 

removal efficiency of a biofilter at higher concentrations of H2S because of sulphate accumulation 

which inhibits microbial activity (Ben Jaber et al. 2016; Chaiprapat et al. 2011; Romero Hernandez et 

al. 2013; Solcia et al. 2014; Yang and Allen 1994). 

The parameters for this biofilter are summarised in Table 1. Volumetric load (VL) is a term used to 

normalise the volume of air entering the system and is defined as the airflow rate divided by the 

volume of the reactor (Shareefdeen and Singh 2005). Elimination capacity (EC) is the mass of 

pollutant removed by the biofilter and normalised for the flow rate and the volume of the reactor 

(Shareefdeen and Singh 2005). 

There is a wide range of mass loading rates (3–162 g m−3 h−1) in the literature for biofilters that 

remove H2S based on different operating conditions and types of support medium (Table 2). The 

maximum elimination capacity of 16.3 g m−3 h−1 in this study is within the range of similar lab-scale 

biofilters (Chaiprapat et al. 2011; Converse et al. 2003; Kim et al. 2008; Park et al. 2011; Roshani et 

al. 2012; Solcia et al. 2014). 

The pressure drop in the biofilter was periodically measured during the course of the operation of the 

biofilters with an in-house water differential manometer. Pressure drop occurs in biofilters due to 

excessive growth of biomass or the compaction and breakdown of the medium (like soil or wood 

chips) leading to a reduction in the porosity of the medium (Chung et al. 2001; Elias et al. 2002; 

Kennes and Veiga 2002; Kim et al. 2008; Yang and Allen 1994). The maximum pressure drop in this 

biofilter was 4 Pa m−1 filter bed, and the value is lower than the pressure drop in conventional 

biofilters treating H2S (Chung et al. 2001; Dumont et al. 2012a; Elias et al. 2002; Kim et al. 2008; 



Yang and Allen 1994). This is due to the inert ABB media maintaining its structure during the course 

of this study and the low gas velocity in this biofilter (23 m h−1) compared to other studies in the 

literature. For example, a study conducted by Dumont et al. showed that a biofilter using expanded 

schist for the removal of H2S had a pressure drop of 10–80 Pa m−1, but the gas velocity in that study 

was considerably higher (89–229 m h−1) (Dumont et al. 2012a). The conversion of H2S to H2SO4 is 

dependent on the ratio of H2S and O2, and since the intention of this study is to harvest H2SO4, it was 

important to avoid the formation of anaerobic zones inside the biofilter (Chaiprapat et al. 2011; Jensen 

and Webb 1995). In their study of aerobic acidic biofilters for the removal of H2S, Chaiprapat et al. 

showed that the highest efficiency of conversion of H2S to sulphate or sulphuric acid was obtained 

when the H2S to O2 ratio was 1:4 (Chaiprapat et al. 2011). The aerobic environment in the biofilter in 

this study was ensured by always maintaining that H2S to O2 ratio was greater than 1:10 at all times. 

Production of leachate 

One of the objectives of the biofilter is the production of a minimum amount of leachate, and since the 

amount of leachate produced in a biofilter is dependent in the humidity of the air, both the humidity of 

the incoming waste gas and the outgoing air from the biofilter were monitored using the HOBO Prov2 

external temp/RH probe and data logger (Onset Computer Corp.). The mixture of H2S from the 

Tedlar bag and the in-house supply of air was found to have an average relative humidity of 

44 ± 3.2 % during the study period. Unlike other examples in the literature, where the incoming waste 

gas was humidified before entering the biofilter, the incoming waste gas in this biofilter was not 

humidified to allow the production of a minimum amount of concentrated leachate at the bottom 

(Dumont et al. 2012a; Gonzalez-Sanchez et al. 2008; Shareefdeen et al. 2003b; Solcia et al. 2014). As 

the gas travelled up the biofilter, it picked up moisture resulting in the outlet to have an average 

relative humidity of 100 % (23.00 g m−3 at 25 °C). The amount of moisture lost due to the difference 

in humidity between the inlet and outlet was calculated to be 0.70 g h−1 (approximately 

16.8 mL day−1), and this water loss was compensated by delivering 3 mL of nutrient solution at the 

top of the reactor every 4 h (18 mL day−1) or excess water of about 1.2 mL day−1. Experimentally 

178.59 mL of excess liquid was collected over the 172 days of operation of this biofilter. This figure 



is comparable to the excess nutrient solution added over this period considering possible inaccuracy in 

metering of the small volume of nutrient solution intermittently added and the estimation of water loss 

through calculating the difference between moisture content of air at the inlet and outlet of the 

biofilter. The acidic product produced per volume of biofilter was a 1.15 mL L−1 day−1. This is 

considerably less than similar systems which produced leachate in the range of 38 to 

2000 mL L−1 day−1 (Abdehagh et al. 2011; Chaiprapat et al. 2011; Gabriel and Deshusses 2003; 

Shareefdeen et al. 2003b; Solcia et al. 2014; Yang and Allen 1994). With careful monitoring and 

control of the moisture in the biofilter, it is possible to operate a biofilter with a little or no leachate. 

The concept of operating a biofiler with no leachate has been explored previously in a biochemical 

ammonia removal process, where the amount of water percolating through a biofilter is controlled, 

and this results in a pH and soluble ion gradient with the production of no leachate (Vitzthum von 

Eckstaedt et al. 2013). The biofilter in this study is similar in that it produces a minimal amount of 

leachate, but the biofilter removes H2S instead of ammonia. The amount of sulphur that can be 

recovered from the leachate can be considerable in industrial biofilters that remove H2S which 

currently produce large volumes of dilute waste stream (Rabbani et al. 2015). The recovery of sulphur 

was explored in a pilot scale study that was recently conducted where H2S was removed from air 

generated at a wastewater treatment plant using a biofilter similar to the one described in this study 

(Rabbani et al. 2016). The pilot scale biofilter removed H2S from air with a 92 % removal efficiency 

and produced a very small amount of acidic leachate (0.2 mL L−1 day−1), and sulphur was recovered 

as ammonium sulphate (Rabbani et al. 2016). 

Accumulation of ions in leachate 

Water soluble ions produced by the biological oxidation of H2S are washed down and accumulated at 

the bottom. The ions that accumulated in the leachate were monitored during the study period and are 

shown in Fig. 3. There was an increase in the amount of both the sulphate and hydrogen ion in the 

leachate over time, and the hydrogen ion concentration is twice that of the concentration of sulphate in 

the leachate. This is expected since the biological oxidation of H2S produces H2SO4 (Eq. 1). As 

shown in Fig. 3, the dashed line represents the H+ that is expected from the amount of SO4
2− in the 



leachate (‘expected H+’). The amount of H+ experimentally detected (‘detected H+’), which was 

determined as described in ‘Sampling and chemical analysis’ section, shows a good agreement with 

the expected H+, especially after the first 8 weeks. 

The average concentration of sulphuric acid collected in the leachate from week 17 to week 22 was 

5.5 M (Fig. 4) and is much more concentrated than the sulphate concentrations of similar biofilters in 

the literature where the concentrations in the leachate are 0.2 M or less (Chen et al. 2014; Solcia et 

al. 2014). It is important to note that in this study, the average relative humidity of the air in 

equilibrium with the acid is 44 % (10.15 g m−3 at 25 °C) and, according to the literature, the maximum 

sulphuric acid concentration that can be achieved in equilibrium at this relative humidity is 6 M (Perry 

and Chilton 1973). 

There was no sulphide (HS−) and thiosulphate (S2O3
2−) in the leachate at any time during the 

operation of the biofilter, providing further evidence that the biofilter operated in an aerobic 

environment. It should be noted that elemental sulphur was detected in the leachate after 10 weeks of 

the operation of the biofilter; however, the amount formed was less than 1 % of the total sulphur in 

the system. Biological oxidation of H2S even in an aerobic environment has been shown to produce 

small quantities of elemental sulphur (Chaiprapat et al. 2011; Jensen and Webb 1995). 

Removal of H2S by each section of the biofilter 

The biofilter was constructed so that each of the sections could be detached and the performance of 

each section in removing H2S was measured. A summary of the results of the H2S removed by each 

section is summarised in Fig. 5. Interestingly, the bottom section did not remove any significant 

amount of the incoming H2S (Fig. 5) indicating that these parts of the biofilter did not have an 

environment conducive to the formation of microorganisms for the removal of H2S. This is further 

explored in ‘Moisture and ion gradient in biofilter’ section. When the inlet concentration of H2S was 

around 100 ppm (for example week 14 in Fig. 5), the middle section removed almost all of the H2S. 

When the inlet H2S concentration was stepped up to 200 ppm (for example week 21 in Fig. 5), the 

bottom section continued to be poor in removing H2S and the middle section removed about half of 



the H2S. The addition of the top section removed H2S from the inlet gas at greater than 98 % removal 

efficiency. With the increase in the inlet concentration of H2S, the top section was almost as important 

as the middle sections in removing H2S from the inlet, whereas in previous weeks, with lower inlet 

H2S concentration, the middle section alone was sufficient to remove most of the H2S. Stepping up 

the inlet concentration once again to 400 ppm led to the failure of the whole biofilter in removing 

H2S. 

Moisture and ion gradient in biofilter 

One of the expected characteristics of this biofilter was that there would be a gradient of moisture 

content and ion concentrations in the different sections of the biofilter. 

The moisture content in each section was determined and is shown in Fig. 6. Since air with low 

humidity (44 %) entered the biofilter from the bottom, the average moisture content of the bottom 

section was lower than the top and middle sections of the biofilter. Previous studies have shown that 

operating conditions such as the mass loading rate and the amount of moisture in a biofilter have to be 

carefully controlled to avoid accumulation of sulphate in the biofilter which has an inhibitory effect 

(Ben Jaber et al. 2016; Yang and Allen 1994). Yang and his co-workers have shown that 

microorganisms that convert H2S to sulphate are inhibited when the sulphate concentration is greater 

than 0.8 M (Yang and Allen 1994). In this study, it was evident that the bottom section did not 

remove any H2S from the air (Fig. 5) and with the sulphate concentration in the bottom section being 

on average greater than 2 M; this was no surprise. The middle and top sections of the biofilter with an 

average sulphate concentration of 0.83 and 0.12 M, respectively, however, do allow the biological 

oxidation of H2S to take place. 

Samples from each section at the end of week 14 were sent to Australian Genome Research Facility 

(AGRF) at the University of Queensland for diversity profiling using the two bacterial 16 s amplicons 

of 16S:27F – 519R (V1-V3), and the results are summarised in Table 3. Organisms identified as being 

of the Acidithiobacillus family, which live in a low pH, were found in all sections of the biofilter, but 

only the top and middle sections contained organisms identified as being of the Thiobacillus family. 

https://link.springer.com/article/10.1007%2Fs11356-016-6858-z#Tab3


The bottom section did not have a pH favourable for the growth of Thiobacillus. In the middle 

section, there were four times more sequences of the Acidithiobacillus family than in the top and 

bottom section indicating that the middle section has the most number of Acidithiobacillus which 

correlated to the fact that the middle section was doing most of the work in removing H2S from the 

inlet (Fig. 5). 

Sulphur balance 

The mass balance in this system over the study period is shown in Fig. 7. The amount of sulphur 

entering the biofilter was calculated by considering the H2S (g) removed by the biofilter as the only 

source of sulphur. The mass of H2S entering the biofilter per volume of air is given as (Cin–Cout), 

where Cin and Cout are the H2S concentration (in g m−3) of the inlet and outlet, respectively. If the 

flow rate is designated as Q (in m3 min−1), then the mass of H2S entering the biofilter (in g min−1) is 

given as (Cin–Cout) X Q. Mass of sulphur entering the biofilter as H2S is indicated in Fig. 7 as ‘S 

(from H2S)’. The total amount of all forms of sulphur in the biofilter was indicated in Fig. 7 as ‘S (in 

biofilter)’ and was determined by measuring the amount of sulphate (SO4
2−) and elemental sulphur 

(S) in the accumulated leachate and on the biofilm in all the sections of the biofilter. Sulphide (HS−) 

and thiosulphate (S2O3
2−) were not detected in this biofilter. Table 4 contains representative data used 

to construct Fig. 7 which shows the distribution of sulphur as different forms in the biofilter. In this 

biofilter, the sulphur from the sulphate in the leachate accounted for more than 90 % of the mass of 

sulphur in the system after the initial acclimation period showing that almost all the sulphuric acid 

produced in the biofilter had been collected in the leachate as sulphate. Previous researchers have 

shown that almost all the H2S removed by an aerobic biofilter is converted to sulphuric acid 

(Chaiprapat et al. 2011; Moghanloo et al. 2010). 

 

Conclusion 

This study describes an aerobic biofilter that removes H2S with a maximum H2S elimination capacity 

of 16.3 g m−3 h−1 and produces sulphuric acid with a concentration of 5.5 M. The amount of leachate 



produced was very low (1 mL L−1 day−1) compared to similar biofilters in the literature, and this was 

achieved by intermittently trickling a minimum amount of nutrient solution down the upflow biofilter. 

The system created a moisture and pH gradient within the biofilter resulting in an environment at the 

top for the bacterial conversion of H2S, while sulphuric acid was accumulated at the base. 
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Table 1 Biofilter parameters during the operational period 

 

  Weeks 1–17 Weeks 17–22 

Average H2S concentration of inlet air 0.14 g m−3 0.28 g m−3 

Volume of reactor 0.00093 m3 0.00093 m3 

Inlet flow rate 0.0009 m3 min−1 0.0009 m3 min−1 

EBRT 62 s 62 s 

Volumetric load 58 m3 m−3 h−1 a 58 m3 m−3 h−1 a 

Mass loading rate 7.8 g m−3 h−1 b 16.2 g m−3 h−1 b 

Elimination capacity 7.6 g m−3 h−1 16.3 g m−3 h−1 

Removal efficiency 96 % 99 % 

 

am3 m−3 h−1 refers to m3 of air flow m−3 of reactor volume per hour 

bg m−3 h−1 refers to gram of H2S m−3 of reactor per hour 

 

 

 

 

 



 

 

 

Table 2 Summary of operating conditions and supporting material information of biofilters that 

remove H2S 

 

  Supporting material EBRT 
(s) 

Mass loading 
rate (g m−3 h−1) 

Removal 
efficiency (%) 

Ref. 

1 Lava rock 85 144 98 (Ramirez-Saenz et 

al. 2009) 

2 Coconut fibre 78 162 90 (Chaiprapat et 

al. 2011) 

3 AMB Biomedia 

Bioballs 

62 16 95 This study 

4 Mixture of compost 

and perlite 

50 3 100 (Lebrero et 

al. 2010) 

5 Proprietary synthetic 

inorganic media 

30 6 100 (Shareefdeen et 

al. 2003a) 

6 Expanded schist 16 30 100 (Dumont et 

al. 2012a) 

7 Mixture of compost, 

perlite and oyster shells 

15 8 99 (Converse et 

al. 2003) 

8 Open pore 

polyurethane foam 

1–6 30 95 (Gonzalez-Sanchez 

et al. 2008) 

 

 

 



 

 

 

Table 3 Distribution of Thiobacillus and Acidithiobacillus in the biofilter 

 

  Total 
sequences 

Sequences 
with Acidithiobacillus 

Sequences 
with Thiobacillus 

Top section 125279 15 186 

Middle 

section 

104996 61 24 

Bottom 

section 

99915 20 0 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 4 Representative data showing the distribution of sulphur as different forms in the biofilter 

 

Week S from SO42− in 
leachate 

S from elemental S in 
leachate 

S from SO42− in 
biofilter 

S from elemental S in 
biofilter 

  g mg g mg 

2 0.90 0.00 0.06 0.00 

10 11.05 1.02 0.74 0.00 

17 19.36 1.42 0.33 52.1 

21 26.74 1.62 0.87 66.7 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 1 Schematic diagram of experimental setup 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. 2 H2S concentration in the inlet and the outlet of the biofilter during the operational period 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 3 Cumulative amount of sulphate and hydrogen ion in the leachate 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 4 Concentration of sulphuric acid in the leachate 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 5 H2S in the outlet from different points of the biofilter 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 6 Average moisture content and concentration of sulphate and hydrogen ion over 17 weeks in the 

different sections of the biofilter 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 7 Mass balance of sulphur in the system 
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