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Abstract1

This study introduces statistical boosting for capture-mark-recapture (CMR) models. It is a shrinkage2

estimator that constrains the complexity of a CMR model in order to promote automatic variable-selection3

and avoid over-fitting. I discuss the philosophical similarities between boosting and AIC model-selection,4

and show through simulations that a boosted Cormack-Jolly-Seber model often out-performs AICc methods,5

in terms of estimating survival and abundance, yet yields qualitatively similar estimates. This new boosted6

CMR framework is highly extensible and could provide a rich, unified framework for addressing many topics7

in CMR, such as non-linear effects (splines and CART-like trees), individual-heterogeneity, and spatial com-8

ponents.9
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1. Introduction13

Multi-model inference (MMI) has become an integral part of the capture-mark-recapture (CMR) litera-14

ture. By CMR, I refer to the survey design and statistical modelling of abundance and survival of marked15

animals under imperfect detection, using individual time-series of recaptures. By MMI, I loosely refer to a16

variety of strategies such as model-selection, model-averaging, and regularization techniques such as shrinkage17

estimators (e.g. some random-effects models; Royle & Link, 2002) and sparse estimators. A good overview is18

by Leeb & Pötscher (2009). These strategies may be used to address research goals such as: finding ecolog-19

ically important covariates; deciding which model-cum-hypothesis has most support; incorporating “model20

uncertainty” into estimates; or seeking parsimony in estimation, such as estimating survival across sex and21

age classes, and doing so without over-fitting.22

Among these related goals, we may categorize them into two distinct objectives: estimation/prediction23

vs. selection of the “correct” model or “best approximating” model. Often, these two objectives cannot be24

achieved by the same MMI procedure (Shao, 1993; Yang, 2005; Leeb & Pötscher, 2005; Vrieze, 2012; Aho25
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et al., 2014). Estimation is generally heralded by shrinkage-estimators and the Akaike Information Criterion26

(AIC; Akaike, 1998, 1974), whereas selection is championed by sparse-estimators and the Schwarz-Bayes27

Criterion (BIC; Schwarz, 1978). This paper will introduce a new MMI technique for capture-mark-recapture28

called “boosting”, and I will show how it fits into the two domains of MMI.29

Boosting is a type of shrinkage estimator, a class of techniques that (crudely) achieve the goals of MMI30

with a single smoothing model. Crucially, model complexity can “shrink” along a continuum, in contrast31

to all-subsets model-selection where there is a discrete set of fixed-effect models with different numbers of32

parameters. Shrinkage estimators were first motivated by Royle & Link (2002) for CMR, in which case they33

advocated for a random-effects Bayesian model. In this paper, I present a new boosting algorithm, which34

could be considered as the Frequentist answer to Royle & Link.35

To understand shrinkage, consider the classic example of survival and its fixed-effects extremes: time-36

varying survival vs. time-constant survival. In CMR notation, these are known as φ(t) and φ(·), respectively.37

The former is difficult to reliably estimate, whereas the latter is often a poor reflection of reality. Shrinkage38

estimators will achieve an intermediate solution between the two extremes. In other words, φ(t) is shrunk39

towards φ(·).40

The question then becomes, how much shrinkage? To Bayesians, like Royle & Link (2002), the answer is41

to use prior distributions. To a Frequentist, the amount of shrinkage is decided by prediction error: we find a42

model that can both explain the observed data and make good predictions on new data. CMR practitioners43

may not think of themselves as seeking models with good predictive performance, but their tool of choice, the44

AIC/c, is based on a predictive error called the KL-loss (Akaike, 1974, 1998). Likewise, boosting methods are45

highly efficient at minimizing prediction error and estimation error (Bühlmann & Yu, 2003; Meir & Rätsch,46

2003). This makes boosting very philosophically similar to model-selection by AIC (Leeb & Pötscher, 2009).47

Therefore, boosting should be of great interest to CMR practitioners who are already using the AIC for48

model building.49

However, boosting can do things that AIC/c model-selection cannot. For example, it can include splines50

for non-linear effects (e.g., a non-linear change in survival with age). It can include classification and regression51

trees (CART Hothorn et al., 2006) for automatic discovery of higher order interactions (e.g., such as a three52

way interaction of sex, time, and age on capture-probability). It can include spatial effects (Kneib et al.,53

2009; Tyne et al., 2015). It can deal with “high-dimensional” covariate data, such as sorting through dozens54

or hundreds of potential environmental variables, even under small sample sizes. It also does a better job of55

handling “model uncertainty” under the scourge of multi-collinearity (Mayr et al., 2014), which troubles the56

model-averaging approach (Cade, 2015). Boosting is also related to many other types of popular techniques,57

such as being a type of Generalized Additive Model (Schmid et al., 2010; Hofner et al., 2014) and `1-58

regularization (a.k.a. the Lasso; Bühlmann & Yu, 2003; Efron et al., 2004; Tibshirani, 2011). This versatility59

has led some to call boosting the “unified framework for constrained regression” (Hofner et al., 2014). This60

paper introduces this powerful framework to CMR.61
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Many of the above benefits should interest CMR practitioners (especially believers of the AIC approach).62

Perhaps most importantly, boosting excels in one particular domain which is terribly onerous for all-subsets63

model-selection: the scourge of high-dimensionality. Every additional covariate leads to an exponential64

increase in the number of possible fixed-effect models. This is due to the multi-parameter nature of CMR65

models: we must perform model-selection on both the survival parameter as well as the capture parameter. In66

this paper, I will consider an example with just three covariates (sex, time, and an environmental covariate)67

which results in 64 fixed-effects models. With a fourth and fifth covariate, the number of fixed-effect models68

would explode to 196 and 900, respectively. This computational burden is quickly prohibitive for all-subsets69

model-selection, with even a small number of covariates. Consequentially, some recent CMR studies using70

AIC/c all-subsets selection have taken computational shortcuts, such as step-wise selection (Pérez-Jorge et al.,71

2016; Taylor et al., 2016), an out-dated procedure that is strongly discouraged for many reasons (Burnham72

et al., 2011). In contrast, boosting can sort through all covariates and their interactions in just one model,73

because covariate selection is integrated within the fitting procedure.74

I will introduce CMR boosting for the two-parameter open-population Cormack-Jolly-Seber model (CJS;75

Cormack, 1964; Jolly, 1965; Seber, 1965), for estimating survival and abundance under imperfect detection.76

The simplicity of the CJS will suffice to prove the new boosting algorithm for CMR data; such data is77

not possible to analyze using conventional boosting algorithms. Conventional boosting methods assume78

independent data-points in order to perform gradient descent (i.e., step-wise minimization of a loss function),79

whereas CMR capture-histories consist of serially-dependent observations. The key innovation of this paper is80

to garner conditionally independent observations by imputing time-series of latent states, a routine trick from81

Hidden Markov Models (HMM). In CJSboost, we alternate between boosting the parameters (conditional on82

latent states) and imputing expectations of the latent states (conditional on the parameters), and repeating83

ad infinitum. I will prove this framework on the simple and manageable CJS model, with the ultimate84

goal to refine the method on more complex models, such as POPAN and the Robust Design and spatial85

capture-recapture.86

By focusing on a simple CJS model, I will also elucidate some of the technical challenges and limitations of87

boosting. The most obvious challenge is the computational burden of multiple cross-validation steps. Another88

less obvious limitation is that boosting is generally unsuitable for making inferences about the “true model”89

or discriminating among truly influential covariates vs non-influential covariates, i.e., it is not model-selection90

consistent. This is true for all procedures that are optimized for prediction/estimation, including the AIC/c91

(Yang, 2005; Leeb & Pötscher, 2009; Vrieze, 2012; Aho et al., 2014). These loss-efficient procedures have92

a well-known tendency to prefer complicated models (Shao, 1997) and they can result in false discoveries93

when misused to find the “true model”. As a possible remedy, I suggest combining CJSboosting with a94

new regularization-resampling technique called stability selection (Meinshausen & Bühlmann, 2010) to make95

inferences about which covariates are truly influential. Therefore, CMR practitioners can use CJSboost for96

either efficient estimation or consistent model-selection/model-identification.97
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First, I will provide some background theory about model-selection and shrinkage, as well as a brief98

introduction to conventional boosting algorithms. Then, I will use simulations and a classic dataset (Lebreton99

et al., 1992) to illustrate CJSboost and benchmark it to AICc model-selection and model-averaging. Finally,100

I will end with a simulation that is computationally impossible for AICc-based inference: model-selection of101

a CJS model with 21 covariates. This is unheard of in CMR, until now.102

For R code (R Core Team, 2016) and a tutorial, see the online content at http://github.com/103

faraway1nspace/HMMboost/.104

2. Methods105

2.1. Background106

2.1.1. Capture-Recapture and the Cormack-Jolly-Seber Model107

Imagine that we wish to study the abundance and survival of an open-population of animals. At regular108

time-intervals t ∈ {1, 2, 3, . . . , T}, we randomly capture, mark, and release individual animals. In subsequent109

t≥2, we recapture some of these already-marked animals with probability pi,t, conditional on an animal being110

alive at t. Animals may die between capture periods t−1 and t, or survive with probability φi,t. Recaptures111

are scored as the binary outcome yt,i ∈ {0, 1} for {no-capture,re-capture}. yi is the time-series of captures112

for individual i, called a capture history. The ragged matrix Y(n×T ) includes the capture histories of all n113

unique individuals who were observed.114

Our goals are two-fold: i) to estimate the abundance of marked animals Nt for each capture period115

t>1; and ii) estimate survival φ, including its sources of variation, such as temporal variation or individual116

variation. The above formulation is the Cormack-Jolly-Seber open population model (Cormack, 1964; Jolly,117

1965; Seber, 1965). We can estimate the parameters p̂i,t and φ̂i,t by maximizing the CJS likelihood:118

p(yi|φi,pi, t0i ) =
( t∗i∏
t>t0i

φi,t(pi,t)
yi,t(1− pi,t)1−yi,t

)
χ

(t∗i+1)
i (1)

where t0i is the capture-period in which individual i was first captured; t∗i is the capture-period when119

individual i was last observed; and χ
(t∗i+1)
i is the probability of never being seen again after t∗i until the120

end of the study, χ
(t)
i = (1 − φi,t) + (1 − pi,t)φi,tχ(t+1)

i . Notice that χ
(t)
i is calculated recursively. Given121

p̂i,t, we can estimate the abundance of animals at time t using a Horvitz-Thompson-type estimator: Nt =122

m0
t +
∑n
i

1[yi,t=1 & t0i>t]
p̂i,t

, where m0
t is the number of animals whose first capture was at time t (McDonald &123

Amstrup, 2001).124

A key point is that the captures are serially-dependent and cannot be considered independent; in other125

words, the CJS likelihood (1) is evaluated on an entire capture history, not per capture. This is mathe-126

matically embodied by the recursive term χ
(t)
i . For gradient descent algorithms, like boosting, we require127

independent data points. If we reformulate the CMR system as a HMM, we can garner conditional indepen-128

dence through the use of latent states zi,t ∈ {0, 1} to represent {dead, alive}. When zi,t = 1, then individual i129

is alive and available for capture at time t, and the probability of a capture is simply p(yi,t=1|zi,t=1) = pi,t.130
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However, if zi,t = 0 then individual i is dead and unavailable for capture at time t; therefore the probability131

of a capture is zero.132

The use of latent states and boosting is not new (Hutchinson et al., 2011). The novelty of the CJSboost133

approach is that the latent-states obey Markovian transition rules and form a serially-dependent time-series134

(unlike Hutchinson et al., 2011). For example, a trailing sequence of no-captures yt:T = [0, . . . , 0]ᵀ has many135

possible state-sequences, but once zt = dead then also zt+1 must equal dead. Fortunately, we can utilize136

well-developed HMM tools to estimate all the permissible state-sequences z. This is a key point which will137

be developed further when I describe the CJSboost algorithm.138

2.1.2. Prediction, Estimation and Generalization Error139

There are many types of MMI techniques that share an implicit property of making optimal predictions.140

This is true for shrinkage estimators, like boosting, and the AIC and their cousins (i.e. what Aho et al.,141

2014, called “A-type” thinking). Here, prediction has a more technical meaning than, e.g., the layman idea142

of weather forecasting or predicting the next USA president. It means that if we collect a new sample of143

data y(new) from the population Y, our predictive model should be able to accurately estimate the y(new)
144

values. More formally, we wish to minimize the error in predicting y(new), for all theoretical data-sets that145

we might randomly sample from the population distribution of Y. Notice that this predictive framework is146

not explicitly about testing hypotheses nor accurate estimation of parameters, but it nonetheless serves as147

a principled means of model-building: we desire a model that is complex enough to fit to the observed data148

and make good predictions on new data, but does not over-fit the observed data. This is one way to codify149

parsimony.150

We can formalize this intuition as the following. Consider that we have a family of models G which map151

covariate information X to the response variable, i.e., G : X → Y. Our sample of data {yj ,xj}nj=1 arises152

from the unknown population distribution P . The optimal model G is that which minimizes the following153

generalization error :154

L
(
y,G(x)

)
=

∫
`
(
y,G(x)

)
dP (y,x) = EP

[
`
(
y,G (x)

)]
(2)

where ` is a loss function: it scores how badly we are estimating y from G(x). L is the expected loss, a.k.a, the155

risk (Bühlmann & Yu, 2003; Meir & Rätsch, 2003; Murphy, 2012a). Here, the integral is just a mathematical156

way of saying that we are minimizing the loss over the entire theoretical population, and any new samples157

from this population.158

There are many types of loss-functions. Akaike (1998) makes the case for using the (negative) log-159

Likelihood; in which case Eqn. 2 becomes equivalent to minimizing the Expected (negative) log-Likelihood160

(which is not to be confused with Maximum Likelihood Estimation). In fact, the Expected log-Likelihood is161

seen in Eqn 1.1 of Akaike’s seminal derivation of the AIC (Akaike, 1998). This emphasizes the fundamental162

similarity between the AIC and any estimator that minimizes (2).163
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While minimizing the expected loss is ostensibly about predicting new values of the response variable164

y, it also has desirable properties for estimation. This is crucially important because capture-recapture165

practitioners are not interested in making predictions about new capture-histories. Instead, we want to166

minimize the error of estimating abundance and survival. Fortunately, as noted by Akaike (1974), minimizing167

the Expected (negative) log-Likelihood is efficient. This means that by minimizing the expected loss (2)168

we also minimize the square-error between the estimated model parameters and their true values. This169

connection is straight-forward in multiple linear regression (Copas, 1997), but may only be approximately170

true for capture-mark-recapture. Through simulations, I will explore this estimation error for the CJS and171

the AICc (sections 2.4).172

2.1.3. Regularization and shrinkage173

One cannot measure the expected loss or generalization error (2); it requires having data for the entire174

population. Instead, we are forced to work only with our sample of data, and proceed to minimize the175

empirical risk :176

L(y, G(X)) =
1

n

n∑
j=1

`(yj , G(Xj)) (3)

The difference between (2) and (3) is that the former integrates the loss over the entire population, while177

the latter only calculates the loss on the observed data. Minimizing the empirical risk is easy. In fact, it178

is the Maximum Likelihood solution. But, at finite sample sizes, it tends to over-fit a sample, make bad179

predictions, and have higher estimation errors (Copas, 1983, 1997).180

The question then becomes: how can we minimize something we cannot see (the generalization error),181

when all we have to work with is the observed data and empirical risk? Akaike (1998, 1974) answered this182

question with the AIC, which was to approximate the Expected (negative) log-Likelihood with 2L(y, G(X))+183

2||G||o, where the second term is the number of parameters in G, a.k.a the `0 norm1. The approximation184

works well at large sample sizes for linear regression and auto-regressive models, but is less exact for CMR185

models.186

Another answer comes from Learning Theory, called regularization. The theory tells us that if we constrain187

the complexity of our function space, we can use the same procedure that minimizes the empirical risk, but188

still bound the generalization error (Bühlmann & Yu, 2003; Meir & Rätsch, 2003; Mukherjee et al., 2003).189

Practically, this implies that we penalize the complexity of G and prevent the procedure from fully minimizing190

L. Popular examples are the Lasso (Efron et al., 2004; Tibshirani, 2011) and Ridge regression, which have191

penalties on the `1- and `2-norms, respectively; hence, they are known as `1- and `2-regularizers. Boosting192

is generally equivalent to `1-regularization (under certain circumstances; Efron et al., 2004; Bühlmann &193

Hothorn, 2007).194

1In the standard AIC formula, the first term is negative. It is omitted here because I define L as the negative log-Likelihood.
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In boosting, the principal means of regularization is by functional gradient descent and early-stopping.195

Gradient descent means: i) we start with a very simple model G(0) that has a high empirical risk L(0); and196

then ii) we take tiny steps that reduce L towards its global minimum, where each mth step slightly increments197

the complexity of the model G(m). If we run the gradient descent until m → ∞, we would minimize the198

empirical risk and get a fully-saturated model G(m→∞), which is generally equivalent to Maximum Likelihood199

Estimation. But, we stop short at some mstop �∞. Figure 1 (bottom panel) shows the gradient of the200

empirical risk.201

Why would we want to stop-short and not maximize the model-fit to the data? It turns out that, at202

finite sample sizes, the best predictors which minimize the generalization error have shrinkage: the estimates203

are shrunk away from the MLEs of the fully-saturated model and are pushed towards the simple model204

G0 (Copas, 1983, 1997). Optimal predictors are never as extreme as the MLEs. This predictive principle205

generally holds true for estimation as well; it was discovered as early as the 1950’s by Stein (1956) and James206

& Stein (1961). It was incendiary at the time because shrinkage estimators are biased. For example, Figure207

2 compares true and estimated values from CJSboost, and I suspect most ecologists will find it alarming: it208

clearly shows the bias of shrinkage. A simple way to understand the optimality of shrinkage is through the209

idea of the “bias-variance trade-off”: we may be slightly biased but our estimates are likely to be closer to210

the truth (low-variance), whereas the MLEs are unbiased but may vary wildly with a new sample of data211

(high-variance). The Appendix E provides a primer about the bias-variance trade-off, and compares how212

CJSboost and AIC methods each negotiate this trade-off to minimize an expected loss.213

Of course, we cannot measure the expected loss, so we must approximate it with the average holdout-214

risk using cross-validation or bootstrap-validation. We measure the empirical risk on out-of-sample subsets215

of bootstrapped data. The goal is to tweak the complexity of the model, by varying the regularization216

parameters, such that the average holdout-risk is minimized. Figure 1 (top panel) shows an example of217

minimizing the average holdout-risk at m=mCV . For a large number of bootstraps, minimizing the average218

holdout risk will also minimize the expected loss. The wondrous utility of the AIC is that it is generally219

equivalent to model-selection by minimizing a leave-one-out cross-validation criteria (Stone, 1977; Shao, 1993,220

1997).221

2.1.4. Introduction to boosting222

The previous sections generally pertained to shrinkage estimators and MMI. I will now tie these ideas223

together with boosting before describing the CJSboost algorithm in section 2.2.1. This overview will focus224

only on the statistical view of boosting, whereas its full history and origins in machine-learning can be found225

in Meir & Rätsch (2003) and Mayr et al. (2014).226

Statistical boosting can be thought of in two ways. One, it is an iterative method for obtaining a227

statistical model, G(X), via functional gradient descent (Breiman, 1998; Friedman et al., 2000; Friedman,228

2001; Breiman, 1999; Schmid et al., 2010; Robinzonov, 2013), where G(X) = F̂ and F̂ is the fit-vector, the229

expected values of Y based on covariate data X. Although boosting has origins in classification algorithms,230
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Figure 1: Top: Visualization of the step-wise minimization of generalization error by CJSboost (a.k.a the expected loss or
risk), which is approximated by the mean holdout-risk (solid black line) from bootstrap-validation. Each m step along the
x-axis is a boosting iteration, which adds one base-learner and increases the complexity of the model. At m=mcv (red dashed
line), the mean holdout-risk is minimized; beyond mcv the model is over-fitting. Each bth gray line represents the holdout-risk
predicted from one CJSboost model trained on a bootstrapped sample of capture-histories and then evaluating the holdout-risk
on the out-of-sample data. Bottom: The empirical risk of the final statistical model using the full dataset. The model increases
in complexity until it stops early at m = mcv. The empirical risk is the negative log-Likelihood of the Cormack-Jolly-Seber
model. Running the algorithm for m → ∞ will result in the MLE solution. The difference between the MLE model and the
model at m = mcv is shrinkage.
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Figure 2: Visualization of shrinkage, by comparing the true (simulated) values of survival (φi,t; top) and capture-probability
(pi,t; bottom) vs. the CJSboost-EM estimates. Each point is an individual i at capture-period t. The CJSboost estimates
have some downward bias (evident in the difference between the 1:1 line and the estimates’ red trend-line) due to shrinkage of
coefficients to the intercept-only model. The amount of bias is our principle means of negotiating the “bias-variance trade-off”
for optimal prediction.
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we now know that it is equivalent to regularized regression, such as the Lasso (Bühlmann & Yu, 2003; Efron231

et al., 2004, under certain conditions).232

Second, boosting is the step-wise construction of an ensemble model G := {g(1), g(2), . . . , g(m)}, composed233

of many weak prediction functions g, somewhat similar to model-averaging (Hand & Vinciotti, 2003). The234

prediction functions arise from base-learners b, which are any functions that takes data (x, y) and make a235

predictor g(x) to predict y from x, i.e. bk : (x, y)⇒ gk(x)= f̂ . The fitting function b may be a Least-Squares236

estimator bOLS, or Penalized Least-Squares estimator bPLS, or recursive-partitioning trees btrees (a.k.a CART),237

or low-rank splines bspline, or many others. The variety of base-learners gives boosting more flexibility than238

other shrinkage estimators or model-selection techniques. As an extreme example, if one uses Least-Squares239

base-learners, bOLS, and runs the boosting algorithm until m → ∞, this unpenalized model will produce240

regression coefficients that are nearly identical to a frequentist GLM.241

Practically, we deliberately constrain the base-learners and keep them weak (Bühlmann & Yu, 2003).242

Base-learners need only have a predictive performance of slightly better than random chance for the entire243

ensemble to be strong (Schapire, 1990; Kearns & Valiant, 1994). The boosted ensemble results in a smooth244

additive model of adaptive complexity:245

G : (X)⇒
mstop∑
m=1

ν · g(m)
k (Xk) = F̂ (mstop) (4)

where each prediction function gk is deliberately shrunk by the scalar parameter ν ∈ (0, 1), called the learning246

the learning-rate.247

Conventional boosting. There are many flavours of boosting, but they all share a basic algorithm. The goals248

are: i) to estimate the fit-vector F̂ := E[Y ], which is the vector of our expected values of y; and ii) to make249

an ensemble of base-learners G that can make predictions from new covariate data. Boosting is summarized250

as: i) set the initial values of fit-vectors F (0) to the MLEs of the simplest model (such as the intercept-only251

model); ii) increment m; iii) use the current fit-vector F̂ (m−1) to estimate the negative-gradient of the loss-252

function, û(m) (like the residual variation unexplained by the previous step); iv) make a prediction function253

that maps X to û(m) and append the prediction function to the ensemble G(m) ← g∗; v) increment the254

fit-vector with the predictions from g∗, shrunken by the scalar ν such that F̂ (m) = F̂ (m−1) + νf̂ ; vi) repeat255

steps ii to v until m = mstop. The regularization parameters mstop and ν govern the amount of shrinkage256

(Bühlmann & Yu, 2003; Schmid & Hothorn, 2008a).257

Component-wise boosting. The development of boosting from a classification algorithm into a statistical258

modelling framework is credited to Bühlmann & Yu (2003). In their component-wise boosting framework,259

the user specifies a large candidate set of base-learners, each representing a plausible set of sub-models for260

different main effects and interactions and non-linear effects, etc. This is somewhat analogous to the way261

in which a user would set-up a large candidate set of fixed-effect models for model-selection (but simpler).262

Figure 3 shows a comparison of 64 different fixed-effect CJS models in Program Mark, and their equivalent263
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representations as base-learners for CJSboost. Variable selection is integrated internally to the descent264

algorithm by selecting only one best-fitting base-learner per m iteration. In other words, base-learners265

compete with each other to enter the ensemble, per m.266

In component-wise boosting, the fitted ensemble G contains the final selected base-learners, which can267

be used to understand the functional relationships between covariate data and the response variable. For268

example, if covariate x1 has more predictive power than x2, we expect that the base-leaner b(x1) to be269

selected with greater frequency than b(x2). For least-square base-learners, we can retrieve the regression270

coefficient of x1 by adding up all the pertinent coefficients contained in G, multiplied by ν. These have the271

same meaning as the regression coefficients in a GLM (except they have shrinkage). More specifically, they272

are almost equivalent to the regression coefficients of an `1-regularizer like the Lasso (Bühlmann & Yu, 2003;273

Efron et al., 2004).274

Multi-parameter boosting, or GAMLSS. Another key development was the extension of boosting to include275

multi-parameter likelihood functions (Schmid & Hothorn, 2008b; Schmid et al., 2010; Mayr et al., 2012),276

sometimes called boosted-GAMLSS (or “GAMs for location, scale and shape”). This is a wide class of277

interesting regression models such as Beta regression (Schmid et al., 2013) or Occupancy-Detection models278

(Hutchinson et al., 2011) which have multiple parameters.279

The multi-parameter problem is obvious in the CJS likelihood, where we have a parameter φ for survival280

and a second parameter p for capture-probability. We must perform model-selection on both parameters.281

The fit-vectors F are no longer the expected values of the response variable Y (which does not interest282

us in CMR); instead the fit-vectors F := {F̂p, F̂φ} represent the expected values of the processes φ and p283

on the logit scale, φ̂i,t = 1

1+e−F̂φ,i,t
. Also, we now have different ensembles of base-learners per parameter,284

G := {Gp,Gφ}.285

The boosted-GAMLSS algorithm requires independent data-points, so it is not suitable for CMR. But, it286

provides the mechanism to jointly boost the survival and capture processes. The key innovation of boosted-287

GAMLSS was to estimate the negative gradient of the loss function by taking the partial derivatives of the288

loss function with respect to each parameters’ fit-vector, ûθ,i = − ∂`i
∂Fθ

, conditional on the values of the other289

fit vectors F¬θ.290

2.2. CJSboost291

CJSboost combines all the aforementioned ideas of conventional boosting (functional gradient descent292

by taking small regularized steps) and component-wise boosting (integrated variable selection) and multi-293

parameter boosting (interweaving boosting steps for φ and p), but requires one more step to make boosting294

applicable to CMR data. We must break the serial-dependence among individual captures within a capture-295

history. In other words, we garner conditional independence of data-points, and then proceed with gradient296

descent.297

I developed two algorithms to achieve this conditional independence. CJSboost-MC uses stochastic impu-298

tation of latent states; it is described in Appendix A. I will focus on another algorithm, CJSboost-EM, which299
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imputes and iteratively updates the expected values of latent states through an Expectation-Maximization300

step.301

2.2.1. The Expectation-Maximization Step302

The idea of interweaving boosting and Expectation-Maximization (EM) was first proposed in the Ap-303

pendix of Ward et al. (2009) for modelling presence-only species distribution data.304

The motivation is thus: our loss function, the negative CJS log-likelihood (1), can only be evaluated305

per capture history, and not per data-point/capture. Therefore, it cannot be boosted because there is no306

point-wise evaluation of the negative gradient. As a technical remedy, we use a slightly different surrogate307

loss function which can be evaluated per data-point. This surrogate loss function is derived from the negative308

Complete-Data log-Likelihood (CDL). The CDL can be evaluated per capture because it assumes that we309

know the latent states (zi,t, zi,t−1) at t and t−1. The negative CDL is:310

−CDL(yi,t, zi,t, zi,t−1|Fi,t,φ, Fi,t,p) = − 1[zi,t−1 =1, zi,t=1]

(
log

(
1

1+e−Fi,t,φ

)
+ yi,t log

(
1

1+e−Fi,t,p

)

+ (1−yi,t) log

(
1

1+eFi,t,p

))

− 1[zi,t−1 =1, zi,t=0] log

(
1

1+eFi,t,φ

)
− 1[zi,t−1 =0, zi,t=0]

(5)

where y and z are defined as above in (1) and F̂i,t,p and F̂i,t,φ are the fit-vectors for the capture-probability311

and survival parameters, respectively, on the logit scale.312

Using the negative CDL, we derive the surrogate loss function for the EM-step. It is called a “Q-313

function”. The idea is to replace the values of (zi,t−1, zi,t) in (5) with their two-slice marginal expectations:314

wt(q, r) := p
(
zt−1 =q, zt=r|y,F

)
. wt(q, r) is the joint marginal probability of zt−1 =q and zt=r, conditional on315

the fit vectors F and the data y. The two-slice marginals {w(1, 1), w(1, 0), w(0, 0)} can easily be computed316

with a standard “forwards-backwards” HMM algorithm (Rabiner, 1989; Murphy, 2012b), as detailed in317

Appendix B. This must be done in-between boosting steps.318

To simplify notation, we will index each capture yi,t of individual i at time t with the index j := (i, t).319

This also emphasizes how each capture is conditionally independent given z. The Q-function is:320

q(yj , {Fj,φ, Fj,p}) = −wj(1, 1)

(
log

(
1

1+e−Fj,φ

)
+ yj log

(
1

1+e−Fj,p

)
+ (1−yj) log

(
1

1+eFj,p

))
− wj(1, 0) log

(
1

1+eFj,φ

)
− wj(0, 0)

(6)

The q formula has a clear intuition: we are weighting three conditional loss functions that represent the three321

plausible latent-state transitions: alive→ alive, vs. alive→ dead, vs. dead→ dead (the fourth scenario of322
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dead→alive is not permissible).323

According to the theory of EM, by minimizing the surrogate loss function q, we also minimize the true324

risk function: the negative CJS log-likelihood (1). The advantage of working with the surrogate loss function325

is that it is easy to calculate its point-wise gradient using partial derivatives: ∂q
∂F (7).326

The two-slice marginal expectations w(·, ·) change with every update of φ̂ and p̂. Therefore, we iteratively327

boost the parameters φ and p conditional on w(·, ·), and then update w(·, ·) conditional on φ̂ and p̂. The328

expectations quickly converge and we fit a statistical CMR model that is optimal at prediction and has329

integrated variable selection.330

2.2.2. CJSboost-EM algorithm331

The formal CJSboost-EM algorithm is as followed. It is identical to the multi-parameter component-wise332

boosting algorithm of Schmid et al. (2010, §2), except for the additional EM-step (Step 5) and, of course,333

different loss and gradient functions (Step 6).334

1. Specify the candidate set of plausible base-learners {bk}Kk=1, per φ and p.335

2. Set the regularization parameters, mstop, νφ and νp; e.g. mstop =103; νφ=0.01.336

3. Initialize the fit vectors at the MLEs of a simple intercept-only model

F̂(0) :=
{
F̂

(0)
φ =logit

(
φ̂ (·)

)
, F̂ (0)

p =logit (p̂ (·))
}

4. Set m = 1.337

5. Estimate the two-slice marginal probabilities {wj(1, 1), wj(1, 0), wj(0, 0)}Jj=1 for all individuals and338

capture-periods, using the forwards-backwards algorithm (see Appendix B.3).339

6. Estimate the gradients of the surrogate loss function q w.r.t the fit vectors F̂(m−1):

û
(m)
j,φ = − ∂qj

∂F
(m−1)
φ

=
wj(1, 1)− wj(1, 0)eF̂

(m−1)
j,φ(

1 + eF̂
(m−1)
j,φ

)
û

(m)
j,p = − ∂qj

∂F
(m−1)
p

=
wj(1, 1)

(
1 + eF̂

(m−1)
j,p

)
yj − wj(1, 1)eF̂

(m−1)
j,p

1 + eF̂
(m−1)
j,p

(7)

7. For each parameter θ in {φ, p}, do:340

(a) for each k base-learner for θ, do:341

i. fit the base-learner to the gradient: bk

(
û

(m)
θ , Xk

)
⇒ gk;342

ii. make an estimate of the gradient, f̂k = gk(Xk);343

(b) find the base-learner that best-fits the gradient k∗ = argmin
k

(û
(m)
θ − f̂k)2;344

(c) append the prediction function of k∗ to the ensemble Gθ ← g∗k;345

(d) re-estimate the fit vector: F̂
(m)
θ = F̂

(m−1)
θ + νθf̂

∗
k ;346

8. Monitor the empirical risk on the full data L(Y, F̂(m)). Or, monitor the holdout-risk using an out-of-347

sample subset of the data L(Yoos, F̂
(m)
oos ) s.t. F̂

(m)
oos = {G(m)

φ (Xoos), G
(m)
p (Xoos)} to use for bootstrap-348

validation.349
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9. Update m = m+ 1.350

10. Repeat steps 5 to 9 until m = mstop.351

The three regularization parameters mstop, νφ, νp control the shrinkage, and must be tuned by minimizing352

the average holdout-risk. This is our estimate of the expected loss (see 2.2.3).353

The outputs of the algorithm are the fit vectors F̂ and the ensemble of fitted base-learners Gφ and Gp. We354

can estimate the survival of individual i at time t by back-transforming the fit-vectors onto the probability355

scale: φ̂i,t = logit−1(F̂φ,i,t). We do the same for capture-probability p̂i,t. For abundance, we use the Horvitz-356

Thompson-type estimator: N̂t = m0
t +

∑n
i 1[yi,t = 1 & t0i > t]/p̂i,t (McDonald & Amstrup, 2001). For357

predicting φ∗ and p∗ on new covariate data X∗, we merely process the data through the ensemble of fitted358

base-learners and shrink by ν, i.e., F̂ ∗θ = Gθ(X
∗) = νθ

∑
gk∈Gθ gk(X∗).359

The second algorithm, CJSboost-MC, is described in Appendix A.360

2.2.3. Regularization parameters361

In multi-parameter boosting, the most important regularization parameters are mstop, νφ, νp, which362

control the shrinkage. To guarantee a prediction optimal model, we must tune mstop, νφ, νp with cross-363

validation or bootstrap-validation. As per Schmid et al. (2013), I suggest bootstrapping the individual364

capture histories between 50 to 100 times, training a new model on each bootstrap sample. On average,365

each bootstrap leaves 36.5% of the capture-histories unused in the model fitting, which can then be used to366

estimate a holdout-risk.367

Finding the optimal value of mstop is straight-forward and routine in conventional boosting. See Fig-368

ure 1 for an example of bootstrap-validation used to estimate mcv. Tuning the Real-valued νp and νφ is369

computationally expensive and requires some careful consideration. This challenge is inherent to all multi-370

parameter boosting algorithms, including boosted-GAMLSS models (Schmid et al., 2013; Mayr et al., 2012)371

and CJSboost. Practitioners should see Appendix C for my proposed method and other ideas.372

Finally, there are complexity parameters associated with individual base-learners that must be decided373

a priori and could be considered as regularization parameters, e.g., the effective-degrees-of-freedom of a374

Penalized Least-Squares base-learner, or the maximum tree-depth of a conditional inference tree. The effects375

of these parameters have been studied in conventional component-wise boosting (Bühlmann & Yu, 2003;376

Schmid & Hothorn, 2008a; Kneib et al., 2009). Practitioners should read Appendix D for best-practises, as377

well as the tutorial by Hofner et al. (2012).378

2.3. Sparsity and Consistency379

The previous discussions were predicated on prediction and minimizing the error of estimation. There380

is another type of multi-model inference which is focused on finding the “correct” model, such as declaring381

one covariate to be truly influential and another covariate to be non-influential (what Aho et al., 2014 calls382

“B-type” thinking). This model-identification inference has a different set of assumptions, properties, loss383

functions, and estimators. These distinctions have been more-or-less ignored in the ecological literature (but384
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see Burnham & Anderson, 2004; Link & Barker, 2006; Aho et al., 2014; Galipaud et al., 2014). In the CMR385

field, this type of inference is much less common than estimating abundance, but some examples do exist386

(e.g. Pérez-Jorge et al., 2016; Taylor et al., 2016).387

Loss. For model-identification, we are no longer concerned with Eqn. (2), nor are we trying to make abun-388

dance estimates as close as possible to the truth. Instead, the implied loss is a 0/1-scoring of whether we389

found the correct model or not (Vrieze, 2012; Aho et al., 2014); or, equivalently, whether we correctly declared390

a covariate to be truly influential or not. If we declare a non-influential covariate to be important, it is a391

False Discovery (FD). If we declare a truly influential covariate to be unimportant, it is a False Rejection392

(FR). In model-identification, we wish to minimize both FRs and FDs.393

Properties. A procedure that can minimize both FRs and FDs (with probability 1 as sample size gets large) is394

known as model-selection consistent. This is very different from the efficiency property of certain shrinkage-395

estimators and the AIC. In fact, the two properties are often irreconcilable (Shao, 1993; Yang, 2005; Hofner396

et al., 2015). In certain situations, being consistent means that an estimator can have a maximum expected397

loss that is infinitely bad (Leeb & Pötscher, 2008). In other words, a procedure cannot guarantee that it will398

minimize both estimation error and FDs.399

However, there are some grey areas, depending on the assumption of the dimensionality of the true400

generative process and one’s candidate models.401

Assumptions. Whether or not a MMI procedure is consistent and/or efficient is mediated by one’s assump-402

tions about the dimensionality of the true generative process (i.e., the number of parameters in the true403

model). Consistent procedures assume sparsity : the true generative model has a finite number of covariates,404

most covariates have zero effect, and the dimensionality stays constant as sample size increases. The truth405

is the truth regardless of sample size. This is a fundamental tenant of the BIC and Bayes Factors. It is406

controversial in the MMI literature (Burnham & Anderson, 2004; Link & Barker, 2006; see also the Discus-407

sion and Rejoinder in Meinshausen & Bühlmann, 2010). For example, some authors believe that the truth408

is never sparse: natural phenomena are complex with an infinite number of influences. Some believe that as409

sample size increases, an MMI procedure should reveal more of these small influences. The AIC happens to410

be consistent under this latter assumption (Shibata, 1980) so long as one’s models are also approximately411

infinite-dimensional. I take the former view, and believe there are many situations in CMR when we want412

to limit our False Discoveries, especially in the current crisis of reproducibility.413

Champions. Bayes Factors, the BIC and their cousins are consistent as sample size gets large (Shibata,414

1986). In the regularization field, sparse estimators strive for consistency (e.g. Zou, 2006; Bühlmann & Yu,415

2006; Bach, 2008; Bühlmann & Hothorn, 2010). They may seem like shrinkage estimators, but the goal of416

sparse estimation is to shrink all non-influential covariates to zero weight. In contrast, prediction-optimized417

shrinkage estimators (and the AICc) are generally not consistent: they have a tendency to place some small418
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positive weight on non-influential covariates. In other words, they incur False Discoveries. This is not a flaw419

in their design; rather it is a mathematically consequence of being a good predictor (Shao, 1993), especially420

under multi-collinearity. See also Link & Barker (2006) for a Bayesian interpretation of why prediction-421

optimized model-selection techniques result in FDs.422

Interestingly, two recent papers by Meinshausen & Bühlmann (2010) and Bach (2008) have proposed423

similar ways to use `1-regularizers, like the Lasso and boosting, in order to find truly influential covariates424

under high-dimensional situations (small sample sizes plus large number of covariates). The idea is to425

subsample/resample the data, and tally the frequency that each covariate is selected by an `1-regularizer,426

over the entire space of the regularization parameter (e.g., m in boosting). Some authors have suggested that427

these are Frequentist approximations to Bayesian posterior inclusion probabilities (Richardson, 2010; Draper,428

2010; Murphy, 2012c). I will loosely refer to these procedures as “stability selection”, although there is a lot429

of subtle variation in this rapidly evolving field of research. In particular, its application in multi-parameter430

boosting, like boosted-GAMLSS or CJSboost, is still unvalidated. See Appendix F for clarifications.431

There are two key points. First, this type of MMI is no longer about prediction nor estimation, but uses432

prediction-optimal methods as an intermediate step for correct model-identification, i.e., which covariates are433

part of the true model. Second, posterior inclusion probabilities lead to straight-forward inferences: covariates434

with high inclusion probabilities are probably more important; covariates with low inclusion probabilities are435

probably not that important.436

Thus, CJSboost offers a choice to capture-mark-recapture practitioners. If one’s goals are to estimate437

abundance or survival, then one can use the vanilla CJSboost model tuned for optimal prediction. Or, if one’s438

goals are to find covariates that significantly effect survival, then one can use the stability-selection-enhanced439

CJSboost and calculate inclusion probabilities. This choice is analogous to switching from the AIC to the440

BIC441

2.4. Simulation 1: Estimation442

The first simulation investigated the ability of CJSboost to estimate abundance and survival, over different443

sample sizes. Technically, I demonstrate that minimizing the average holdout-risk also minimizes the square-444

error of estimating abundance and survival, as benchmarked against AICc model-selection and AICc model-445

averaging. I used the AICc because it is supposed to excel at precisely this kind of task: minimizing446

estimation error. I focused on metrics of relative efficiency, because this exemplifies the choice faced by447

Frequentist practitioners: to choose among procedures based on their relative performance to get as close as448

possible to the truth, over all theoretical data-sets.449

I tested two CJSboost-EM models: i) a linear-model called bPLS-CJSboost, which used least-square base-450

learners, as listed in figure 3; and ii) a non-linear model, called btrees-CJSboost-EM, which used conditional451

inference trees (Hothorn et al., 2006). The AICc-methods used 64 fixed-effects models listed in figure 3.452

The simulated data-sets were inspired by the European Dipper dataset from Lebreton et al. (1992). There453

were T =10 primary periods and two sexes of individuals (X ∈ {1, 2}). Individuals’ first-capture periods (t0i )454
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A) Linear Models (MLE)

φ(·)
φ(t)
φ(sex)
φ(flood)
φ(t, sex)
φ(t× sex)
φ(flood, sex)
φ(flood× sex)


×



p(·)
p(t)
p(sex)
p(flood)
p(t, sex)
p(t× sex)
p(flood, sex)
p(flood× sex)


:

64 fixed-effects
models for

model-averaging

B) Equivalent Linear Model Base-learners

bOLS(uφ,1
NJ )

bPLS(uφ, Xt; df=1)
bOLS(uφ, Xsex)
bOLS(uφ, Xflood)

bPLS(uφ, Xt,sex; df=1)
bPLS(uφ, Xt×sex; df=1)
bPLS(uφ, Xflood,sex; df=1)
bPLS(uφ, Xflood×sex; df=1)

{
bspline(uφ, Xt; df=1)

bspline(uφ, Xt×sex; df=1)

}
+



bOLS(up,1
NJ )

bPLS(up, Xt; df=1)
bOLS(up, Xsex)
bOLS(up, Xflood)

bPLS(up, Xt,sex; df=1)
bPLS(up, Xt×sex; df=1)
bPLS(up, Xflood,sex; df=1)
bPLS(up, Xflood×sex; df=1)

{
bspline(up, Xt; df=1)

bspline(up, Xt×sex; df=1)

}
:

1 boosted model
with automatic

base-learner selection

C) Equivalent non-Linear Model Base-learners (CART)

btrees(uφ, Xt,sex,flood; depth=2) + btrees(up, Xt,sex,flood; depth=2) :
1 boosted model
with automatic

covariate selection

Figure 3: Different notation for multimodel inference of a Cormack-Jolly-Seber model, comparing fixed-effects model-averaging
and boosting. A) Each fixed-effect model includes one term for φ (left) and one for p (right). θ(·) is an intercept model; θ(t) has
different coefficients per T capture periods (with appropriate constraints on t=T ); θ(a, b) is a linear combination of covariate a
and b on the logit scale; θ(a× b) is an interaction effect between a and b on the logit scale. B) Equivalent linear base-learners
(Ordinary and Penalized Least Squares from mboost; Bühlmann & Hothorn, 2007) with penalties to constrain their effective-df .
All base-learners are available in one model; selection of base-learners is by component-wise boosting. C) A CJS model with
CART-like trees, allowing non-linear effects and complex interactions. Selection of covariates is internal to the base-learners’
ctree algorithm (Hothorn et al., 2006).

were random. The true processes were time-varying effects plus an individual sex effect (X). The true455

data-generating processes 2 were: φ(t, X) = 0.91−0.01t−0.05 ·1[t = 5, 6]+0.05 ·1[t = 9, 10]−0.05 ·1[X=1]456

and p(t, X) = logit−1
(
q + t sin(t)

17

)
−10 ·1[X=1], where q controlled the mean capture-probability. Figure457

5 graphs an example simulation. For analyses, there was an additional categorical variable, called Flood,458

which grouped the captures periods {4, 5, 6}: it simulates an analyst’s hypothesis that dipper survival and459

capture-probability are different in periods 4, 5 and 6, due to environmental degradation by flooding.460

For each simulation and estimator, the mean standardized square error (MSE) was calculated for abun-461

dance (Nt,X ) and survival (φt,X ), e.g. MSE-N̂ =
∑
X∈X

∑T
t=2

(
N̂t,X−N(true)

t,X

)2

Var[Nt,X ] . A lower MSE is better. We462

2Despite the existence of an implicit “true model”, the performance of the estimators were not judged on their ability to find
it. Rather, the AIC and boosting are supposed to find/produce a model that minimizes the Expected negative log-Likelihood.
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compared the estimators’ MSE values by two statistics: i) the observed efficiency of estimator i, which is463

MSEmin

MSEi
∈ (0, 1] (higher is better), where MSEmin is the MSE of the best performing estimator; and ii) rank,464

which is the rank-order of estimates by increasing values of MSE (rank 1 is best). These criteria were used465

by early researchers of the AIC and BIC (Shibata, 1980; McQuarrie, 1999). Both criteria are empirical ways466

of approximating the more fundamental Frequentist value of relative efficiency. Better values imply that an467

procedure has, over repeated sampling, estimates that are closer to the truth (but not necessarily unbiased).468

The observed efficiency and rank calculations were summarized according to sample size scenarios: differ-469

ent combinations of average capture-probabilities p ∈ {0.2, 0.4, 0.65} and the number of captured individuals470

n ∈ {50, 100, 200, 400, 800}. I ran 20 simulations per combination of n and p.471

All boosting models used 70-times bootstrap-validation to estimate optimal values of mstop, νφ and νp.472

The base-learners were taken from the mboost R package (Bühlmann & Hothorn, 2007; Hofner et al., 2012).473

The AICc model-averaging analyses were conducted in Program MARK (White & Burnham, 1999) and474

RMark (Laake, 2013).475

2.5. Analysis: Dipper Example476

Using CJSboost-EM, I reanalyzed the European Dipper dataset from Lebreton et al. (1992). I compared477

the results to the MLEs of the fully-saturated model (φ(t× sex)p(t× sex)) as well as to AICc model-averaged478

estimates. The dataset has 294 individuals in T = 7 capture periods. Covariates included time, sex, and479

flood, similar to Section 2.4. The model-building framework was the same as in Figure 3. 100-fold bootstrap-480

validation was used to optimize mstop, νφ and νp.481

Interested readers can repeat this analysis using the online tutorial at http://github.com/faraway1nspace/482

HMMboost/.483

2.6. Simulation 2: Sparsity and Consistency484

The final simulation addressed the issue of high-dimensionality and the ability of CJSboost (EM) to find a485

sparse set of important covariates out of many spurious covariates. This type of model-identification inference486

is distinct from the estimation/prediction goals of shrinkage estimators and AIC approaches. The loss-487

function is no longer about minimizing a square-estimation error, but is focused on limiting False Discoveries488

(FD) and False Rejections (FR). For this task, one desires an estimator that is model-selection consistent ;489

which is to say, it will make zero FDs and FRs with probability 1 as sample size gets large.490

Practically, this challenge is inappropriate for fixed-effect model-selection, because one must consider all491

combinations of covariates for different parameters (φ, p). In this section, I simulated 21 multi-collinear492

covariates, resulting in more than 4 trillion different fixed-effects models (excluding two-way interactions). It493

is clearly impossible for all-subsets model-selection (unless one takes ill-advised short-cuts).494

2.6.1. Stability Selection and Inclusion Probabilities495

Theoretically, this challenge is also inappropriate for the vanilla CJSboost or other shrinkage estimators.496

Instead, I propose to use a bootstrapped-enhanced CJSboost to produce a consistent estimator. The crux of497
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this estimator is to approximate the Bayesian probability that a covariate is part of the “true model”, a.k.a.498

posterior inclusion probabilities, π(Iθ,k|Y,X). We desire such probabilities because they lead to inferences499

about the significance of covariates 3. Influential covariates should have very high inclusion probabilities,500

while spurious covariates should have low probabilities. In this simulation, I will show the distribution of501

approximate inclusion probabilities for truly-influential and spurious covariates, over different sample sizes.502

Inclusion probabilities are a fundamentally Bayesian quantity, but Frequentist approximations are desir-503

able for significance testing in a multi-model framework (Lee & Boone, 2011). Some authors (Richardson,504

2010; Draper, 2010; Murphy, 2012c) noticed that such an approximation is possible through Stability Se-505

lection plus `1-regularization (Meinshausen & Bühlmann, 2010; Shah & Samworth, 2013). The idea is to506

subsample/resample the data and tally the number of times that a covariate is selected by an `1-regularizer,507

over all values of the regularization parameter (m, νφ, νp). To calculate the approximate inclusions prob-508

abilities, Π̃θ,k, I propose the following: set the values of νφ and νp to their prediction-optimal values ν̇;509

bootstrap of the capture-histories B times; for each b bootstrap, run CJSboost for mstop iterations, where510

mstop�mcv. Stability selection probabilities, Ŝ, are estimated by scoring whether a kth covariate is selected511

in a b bootstrap before m iterations (conditional on ν̇), Ŝ
(m)|ν̇
θ,k = 1

B

∑B
b=1 1[k∈G(b,m)

θ |ν̇]. Notice that Ŝ
(m)|ν̇
θ,k512

is evaluated per m and per covariate k and per parameter θ ∈ {φ, p}. Ŝ
(m)|ν̇
θ,k will always increase with m513

(i.e., weaker `1-regularization will always increase the chance of selecting a covariate; see Figure 8). Call514

I
(true)
θ,k the indicator of whether the kth covariate is part of the true model, then the inclusion probability is515

approximated by π(Iθ,k|Y,X) ≈ Π̃
(mmax)|ν̇
θ,k = 1

mmax

∑mmax

m=1 S
(m)|ν̇
θ,k .516

From a Bayesian perspective, it is like we have a prior distribution on the model-coefficients that is the517

exponential of the negative regularization parameter (m) (Geman et al., 1992), and we are crudely integrating518

over the prior to score selection indicators. Technically, we should integrate over νφ and νp as well as m.519

I propose focusing on m strictly for computational convenience, but this short-cut needs further validation.520

Readers should refer to Appendix F to see how the above formulation relates to the existing literature on521

stability selection (Bach, 2008; Meinshausen & Bühlmann, 2010; Schmid et al., 2012; Shah & Samworth,522

2013; Hofner et al., 2015).523

2.7. Simulating Data524

In 240 simulations, I use the following generative model for survival and capture-probability:525

logit(θi,t) = βθ,0 +

21∑
k=1

βᵀ
θ,kxi,k︸ ︷︷ ︸

individual effects

+

T∑
τ=2

βθ,τ1[τ= t]︸ ︷︷ ︸
capture period effect

The intercepts were drawn randomly from βp,0 ∼ U(0.4, 0.6) and βφ,0 ∼ U(0.55, 0.8). I simulated 21 multi-526

collinear covariates (18 continuous, three discretized) drawn from a multivariate Gaussian with marginal527

variances of 1 and off-diagonal correlations between 0 to 0.6. Time-as-a-categorical-variable ({βt}Tt=2) was528

3This is not to be confused with classical Null Hypothesis Tests of the marginal effect of regression coefficients

19



also included as a possible influential covariate, for a total of 22 “covariates”. The number of captured529

individuals was stratified as n ∈ {50, 100, 200, 400, 800, 1600}. There were T =10 capture periods.530

The values of the true β coefficients were drawn randomly according to two different scenarios: A) sparsity,531

in which case a few β∗ values were large but most β values were zero (i.e., many spurious covariates); and B)532

tapering, in which case the values of the |β∗| decreased exponentially from one or two large values, to many533

small-but-nonzero values. I ran 120 simulations per scenario A and B. I highlight these scenarios because534

sparsity is a fundamental assumption of all model-selection consistent procedures, whereas some authors535

suggest that tapering is more in-line with reality (Burnham & Anderson, 2004). Tapering also challenges the536

very notion of a “true model”, in which case we can only speak about the best approximating model (but see537

Link & Barker, 2006). In an extreme form of tapering, when the magnitudes of the β values actually increase538

with sample-size, consistent procedures can have a worst-case estimation error that becomes infinite (Leeb &539

Pötscher, 2008), which I highlight to remind practitioners of the price of this type of multimodel inference.540

For the sparsity scenario (A), three covariates were randomly picked to have a significant effect, i.e. β∗θ 6=0.541

These truly influential covariates, β∗θ, had norms of 1 on the logit scale, resulting in large marginal effects542

(SD(βᵀ
kxk)≈1) that spanned 0.8−0.9 probability-units. When the β∗θ were categorical variables, then they543

had norms of 3 in order to achieve a similar marginal effect. The coefficients were simulated separately for φ544

and p.545

For the tapering scenario (B), all βθ values were non-zero. On average 5.6% of β had marginal effects546

categorized as “large” (0.5< SD(βᵀ
kxk)≤ 1, or equivalently 0.5< |βk| ≤ 1), 13.9% were “moderate” (0.25<547

|βk|≤0.5), 37.3% were small (0.05< |βk|≤0.25) and 43.1% were negligible (0< |βk|≤0.05). The coefficients548

were simulated seperately for φ and p.549

2.8. Data Analysis550

To analyze each simulated dataset, I used 22 different PLS base-learners (df = 2) for the continuous551

and categorical covariates, as well as for PLS base-learner for time-as-a-categorical variable (a.k.a, the θ(t)552

model), plus a final base-learner for the intercepts. In stability selection, base-learners must have equal553

flexibility/degrees-of-freedom; otherwise, the more complex base-learners will have a greater probability of554

being selected (see Section 2.2.3). The regularization parameters νp and νφ were optimized with ten 70-fold555

bootstrap-validation exercises, as per Section Appendix C.1.556

2.8.1. Oracle Estimator557

Finally, an auxiliary task to was derive an oracle estimator (Fan & Li, 2001; Zou, 2006). The goal is558

estimate the coefficients as if we knew the “true” model from the beginning, a property of all consistent559

procedures (Leeb & Pötscher, 2008). The idea is to threshold the inclusion probabilities at some high560

threshold 0.5� πthr < 1, and use only those covariates where Π̃k > πthr (called hard-thresholding). A final561

un-regularized CJSboost model is used to make “debiased” estimates by running m → ∞ (Bach, 2008;562
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Table 1: CJSboost vs AICc for estimating survival and abundance: results of simulation 1

Abundance N̂t Survival φ̂t
Model efficiency † rank ‡ efficiency rank

minimum AICc model 0.55(0.22) 3.86(1.22) 0.42(0.26) 4.27(1.01)
AICc model-averaged 0.57(0.2) 3.24(0.93) 0.49(0.27) 3.5(1.1)
bPLS CJSboost-EM 0.58(0.2) 3.28(1.1) 0.64(0.24) 2.86(1.11)
btrees CJSboost-EM 0.55(0.19) 3.54(1.22) 0.61(0.22) 3.09(1.15)

† observed efficiency, MSEmin/MSE, averaged over simulations (S.D. in parentheses).

†† rank of MSE, averaged over simulations (S.D. in parentheses).

bold values emphasize the best estimator.

Murphy, 2012c) 4. I showcase this oracle property on just one simulated dataset from scenario A, in order to563

demonstrate the role of the threshold πthr in determining the oracle properties and the number of FDs and564

FRs.565

3. Results566

3.1. Simulation 1: CJSboost vs AIC567

Table 1 and Figure 4 summarize the estimation performance of boosting-EM and AICc methods across568

all simulations. Figure 5 shows the model fits and the true processes for one example simulation (n = 300).569

The general result is that the bPLS CJSboost-EM model with PLS base-learners did best at minimizing570

estimation errors and obtaining higher relative efficiencies for both abundance (N̂) and survival (φ̂), over all571

samples sizes, followed by AICc model-averaging, then btrees CJSboost-EM with conditional inference trees.572

The worse performance was by the minimum AICc model.573

Regarding abundance estimates, all four estimators had similar performances, with no discernible trend574

by sample size (n and p). bPLS CJSboost had slightly better performance according to the observed efficiency575

criteria, while AICc model-averaging won narrowly according to the average MSE rank.576

However, for survival, the CJSboost models clearly outperformed the AICc methods, especially with the577

PLS base-learners: they obtained the highest overall efficiencies and best mean rank. The results varied by578

n: when n≤ 100, all methods had similar performances; but when n > 100, the boosting methods greatly579

out-performed both AICc methods.580

To understand why boosting out-performed the AICc methods, it is helpful to look at the growth in the581

magnitude of the model coefficients (||β||). According to theory on shrinkage, we would expect that ||β||582

would be smaller at low n and low p, for both boosting and AICc methods, to prevent over-fitting. The AIC583

methods had more extreme coefficient values, especially at low n and low p. Therefore, AIC methods were584

underestimating the correct amount of shrinkage necessary for optimal estimation. The btrees models had585

4After hard-thresholding, the final model may not have a unique MLE, such as as the φ(t)p(t) model. In such cases, one must
impose constraints (such as φT−1 =φT ) before attempting to debias the results and run the algorithm until m→∞. Regularized
CJSboosting does not have this problem because of shrinkage.
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Figure 4: Simulations of Cormack-Jolly-Seber data-sets show how model complexity and estimation performance vary by
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methods (thick-lines) vs CJSboost methods (dashed-lines). Left : model-complexity increases as the sample-size increases, as

measured by the absolute size of the estimated model coefficients (a.k.a the norm of β̂). Middle: relative performance estimating
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estimator. Higher efficiency is better. Right : The average observed efficiency of survival. Results are averaged over 20 simulations
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Figure 5: Simulation 1, demonstrating the CJSboost estimates from the Expectation-Maximization technique. A comparison of
capture-probability estimates p̂(t×X) and survival estimates φ̂(t×X) from models composed of linear base-learners (OLS and
PLS; in orange) and non-linear base-learners (CART-like trees; in red), as well AICc model-averaging (blue) and MLE (dashed
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slightly lower coefficient norms than the better performing PLS models, which suggests that the tree-models586

were overestimating the correct amount of shrinkage.587

Interestingly, AICc model-averaging produced better estimates than the best AICc model, with more588

shrinkage on coefficients. This is unsurprising for estimating abundance. However, there are theoretical589

problems with model-averaging when it comes to estimating model parameters such as survival, especially590

under collinearity (Cade, 2015) which is an inherent feature of CMR processes. At low sample sizes (n = 50)591
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both AICc methods had very high coefficient values, and a lot of variability. This may suggest that the AICc592

approximation does not hold well for CMR models at very low sample sizes. Interestingly, the abundance593

estimates were still competitive with boosting.594

We can gain more insights into shrinkage by scrutinizing one example simulation (Figure 5). None of595

the estimators did a convincing job of approximating the true underlying processes. The estimates from596

boosting-EM and AICc-methods revealed similar patterns for both for φ and p, but they differed in the597

amount of shrinkage: the boosted estimates were shrunk to the mean more than model-averaged estimates.598

More shrinkage resulted in better MSE performance (despite the increase in bias). The tree base-learners had599

perhaps too much shrinkage and worse MSE. The Figure also shows the MLEs to illustrate the bias-variance600

trade-off: the MLEs of the full-model φ̂(t×sex)p̂(t×sex) are unbiased but are also high-variance, in the sense601

that the estimates very wildly around the true processes.602

Figure 5 has been repeated in Appendix A using the the Monte-Carlo CJSboost algorithm.603

3.2. Results: Dipper example604

This section shows the reanalysis of the European Dipper dataset from Lebreton et al. (1992) by CJSboost-605

EM. Comparisons were between the linear bPLS CJSboost-EM model and the nonlinear bTrees CJSboost-EM606

model as well as model-averaged estimates by AICc, and the MLEs from the full-model φ(t× sex)p(t× sex).607

See Figure 6 for the fitted processes. The results can be summarized:608

i) For both survival φ and capture-probability p, the three predictive methods (AICc, bPLS-CJSboost609

or btrees-CJSboost) had similar patterns, unlike the full-model MLE. The predictive models differed610

according to the amount of shrinkage.611

ii) The btrees CJSboost model applied a lot shrinkage towards the time-constant values. Whereas the AICc612

model-averaged estimates had less shrinkage and seemed to be closest to the MLEs of the full-model.613

The bPLS model had shrinkage that was intermediate between the AICc and btrees estimates.614

iii) For survival, all three predictive methods yielded the same estimates: a survival probability of 0.48-0.5615

during the flood years (t=3, 4) and little-to-no sex-effect (< 0.005 difference between male and females).616

iv) For capture-probability, the model-averaged estimates suggested a slight sex effect of about 1.5 proba-617

bility units, whereas both boosted models shrunk the capture-probability to a constant; in contrast, the618

MLEs varied much more.619

v) Abundance estimates showed little variation among methods, due to the high overall capture-probabilities620

(p ≈ 0.9).621

3.3. Simulation 2: sparsity, consistency, and high-dimensional data622

Figure 7 summarizes the results of 240 high-dimensional simulations and their inclusion probabilities623

(Π̃θ,k,n) for truly influential and spurious covariates. The figure stratifies the average inclusion probabilities624

by sample size (n), parameter θ ∈ {φ, p}, marginal effect sizes (|βθ,k|), and by the nature of the true model625

(sparsity vs tapering). I remind readers that we desire Π̃ values of the truly influential covariates to converge626

to 1 and be well separated from the Π̃ values of the spurious covariates.627
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Figure 7: Results of 240 simulations to demonstrate the usefulness of approximate inclusion probabilities (on y-axes) for inference
about which covariates are truly influential (i.e. part of the true model) vs. spurious covariates, over different sample sizes (x-
axes). Each dot is an average inclusion probability over 20 simulations. Scenario A (top): the true model is sparse: only three
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the magnitude of their marginal effects (|βk|). Bars are ≈ ±1S.D.
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The results are summarized according to the nature of the true model.628

1. When the true model was sparse (i.e. three high-magnitude covariates and many spurious covariates)629

the results are:630

i) For survival, there was a good separation of the Π̃φ values between the truly influential covariates631

and the spurious covariates, when sample sizes were n ≥ 100. Ideally, we would prefer that the632

minimum Π̃ of influential covariates is high and the maximum Π̃ of spurious covariates is low. The633

average minimum Π̃φ,k,100 of the true covariates was 0.77 at n=100, and grew to�0.9 for n>200.634

The average maximum Π̃φ,k,100 of the spurious covariates was 0.64 at n = 100 and grew to ≈ 0.75635

at greater sample sizes. For spurious covariates, the overall average Π̃ stabilized and plateaued636

below 0.5, while for the true covariates, the Π̃φ,k,100 values converged to 1 for n > 200.637

ii) For the covariates influencing capture-probabilities, there was less separation of the Π̃p values638

between true covariates and spurious covariates, although the true covariates had Π̃p values which639

converged to ≈ 1 by n > 200, and the spurious covariates remained below 0.5.640

iii) The time-as-a-categorical variable (βφ,t and βφ,p), when spurious, had higher average Π̃θ values641

than the other spurious covariates. For φ, the average maximum Π̃φ for βφ,t was generally between642

0.6 − 0.67. For p, the average maximum Π̃p for βp,t was generally between 0.8 − 0.85. This may643

suggest a violation of the assumption of “exchangeability” among spurious covariates (Meinshausen644

& Bühlmann, 2010).645

iv) Covariates that were spurious in φ but truly influential upon p (and vice versa) did not seem to646

have Π̃φ values that were different than the other spurious covariates. In other words, the true647

model of φ did not seem to influence the inclusion probabilities for the covariates in p, and vice648

versa. This suggests that the assumption of exchangeability of spurious covariates may hold in649

multi-parameter boosting.650

2. When the true model was tapered (i.e. all covariates were part of the true model, but with decreasing651

magnitudes of marginal effects) the results were the following:652

i) The overall pattern of Π̃φ values behaved as one would expect. The covariates with large effects653

had high Π̃ values that converged to 1 as n got large, while the covariates with medium and small654

effects had lower average Π̃ values that increased as n got large, and the negligible effects had the655

lowest average Π̃ values, but which nonetheless increased as n got large (although their average656

remained below 0.5).657

ii) Seemingly, all effect sizes had monotonic increases in inclusion probabilities with increasing sample658

size. This was unlike the sparse scenario, where the Π̃ values seemed to plateau at their asymptotic659

distributions.660

iii) When time-as-a-categorical variable had negligible marginal effects, it nonetheless got higher Π̃661

values than the other negligible covariates, especially for p. In other words, βp,t had a greater662

propensity to be selected, even when it only had a tiny marginal effect.663
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As an auxiliary exercise, I also ran the same analyses using the max operator for approximating the664

inclusion probabilities (as originally suggested by Meinshausen & Bühlmann, 2010) rather than the mean665

operator (suggested by Shah & Samworth, 2013). Using the max operator, the overall results were very666

similar to Figure 7, except that the spurious covariates obtained higher Π̃ values, and there was a lot more667

variability among Π̃. Also, the time-as-a-categorical variable converged to ≈ 1, for both φ and p.668

We can also scrutinize the results of an example simulation (sparse, n = 300) and visualize the stability669

selection pathways that were used to approximate the posterior inclusion probabilities Π̃. Figure (8) shows670

how the truly influential covariates entered the ensemble very early (small m) and achieve stability selection671

probabilities of Ŝk = 1. There was a lot variability in the selection pathways of the spurious covariates, but672

they generally increased as the amount of regularization got weaker (m got larger). Sometimes their Ŝk673

values did reach 1. Readers can view an online animated GIF which shows the stability paths for 30 example674

simulations, at http://github.com/faraway1nspace/HMMboost/ and in the Supplementary Material.675

The point of these simulations was to show that the inclusion probabilities (Π̃) may themselves be a676

satisfactory end-point for an analysis. Alternatively, we can go one step further and hard-threshold the677

Π̃ values by πthr and discard the covariates with Π̃k < πthr. See Table 2. If πthr is too low, then some678

spurious covariates will get selected and there are False Discoveries (FDs). If πthr is too high, then some679

truly influential covariates get Falsely Rejected (FRs). Meinshausen & Bühlmann (2010) suggest that this680

threshold should be in the vicinity of 0.9− 0.95, and my simulations support this threshold.681

Hard-thresholding can also help us derive an oracle estimator and produce estimates that are the same682

as a model run with 100% foresight about the true model. This type of inference seemingly blends the683

two domains of MMI: estimation/prediction and consistent model-identification. Our oracle estimates are684

produced by: i) setting πthr; ii) discarding spurious covariates Π̃θ,k < πthr; iii) and running a final CJSboost685

model with m→∞ (called “debiasing” by Murphy, 2012c, or “unregularized” by Bach, 2008). If our selection686

procedure is model-selection consistent, then the new estimates should have oracle properties at large sample687

sizes. This seems to be the case when the thresholds are high (0.8<πthr<0.99), and both FDs and FRs are688

zero. However, readers should heed the warnings of Leeb & Pötscher (2008) who proved that oracle estimates689

can be very inaccurate at low-to-medium sample sizes, especially if the true model is not sparse. In other690

words, the maximum expected loss is unbounded. This is intuitive: just because we know the correct model,691

does not mean we can accurately estimate its true effect.692

4. Discussion693

This study presents CJSboost: a type of multi-model inference technique for a class of Hidden Markov694

Models (HMMs) known as capture-mark-recapture (CMR). I introduce the method using the Cormack-Jolly-695

Seber model (CJS; Cormack, 1964; Jolly, 1965; Seber, 1965) for inference about the survival and abundance696

of marked animals under conditions of imperfect detection. The contribution of this paper is to make two697

modifications to the conventional component-wise boosting algorithm (e.g. Schmid et al., 2010) in order to698
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Table 2: Estimates of coefficients from CJSboost, for one high-dimensional model-selection problem, under
different degrees of hard-thresholding

Survival Φ

Parameter
Prediction Inclusion Probability Threshold†† MLE SE

Optimal† 0.55 0.65 0.75 0.8 0.85 0.9 0.95 0.99 Oracle‡ Oracle

β̂φ(time:1) -0.002 -0.01 0 0 0 0 0 0 0 0 0

β̂φ(time:2) -0.041 -0.238 0 0 0 0 0 0 0 0 0

β̂φ(time:3) -0.036 -0.271 0 0 0 0 0 0 0 0 0

β̂φ(time:4) -0.026 -0.285 0 0 0 0 0 0 0 0 0

β̂φ(time:5) 0.017 0.205 0 0 0 0 0 0 0 0 0

β̂φ(time:6) 0.006 -0.005 0 0 0 0 0 0 0 0 0

β̂φ(time:7) 0.015 0.124 0 0 0 0 0 0 0 0 0

β̂φ(time:8) 0.022 0.196 0 0 0 0 0 0 0 0 0

β̂φ(time:9) 0.025 0.264 0 0 0 0 0 0 0 0 0

β̂φ(time:10) -0.001 -0.091 0 0 0 0 0 0 0 0 0

β̂φ(a) -0.083 -0.173 0 0 0 0 0 0 0 0 0

β̂φ(b) 0.828 0.982 1.064 1.045 1.067 1.067 1.067 1.067 1.074 1.068 0.143

β̂φ(c) -0.021 0 0 0 0 0 0 0 0 0 0

β̂φ(d) -0.761 -0.93 -0.991 -0.983 -0.965 -0.965 -0.965 -0.965 -0.919 -0.967 0.123

β̂φ(e) 0.175 0.262 0.288 0.303 0 0 0 0 0 0 0

β̂φ(f) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(g) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(h) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(i) -0.051 -0.107 0 0 0 0 0 0 0 0 0

β̂φ(j) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(k) -0.717 -0.838 -0.975 -0.968 -0.953 -0.953 -0.953 -0.953 -0.868 -0.955 0.119

β̂φ(l) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(m) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(n) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(o) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(p) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(q) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(r) -0.048 -0.151 0 0 0 0 0 0 0 0 0

β̂φ(s:1) -0.034 -0.109 0 0 0 0 0 0 0 0 0

β̂φ(s:2) 0.028 0.093 0 0 0 0 0 0 0 0 0

β̂φ(t:1) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(t:2) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(u:1) -0.061 -0.165 0 0 0 0 0 0 0 0 0

β̂φ(u:2) 0.059 0.166 0 0 0 0 0 0 0 0 0

Capture-Probability p

β̂p(time:1) 0 0.002 0 0 0 0 0 0 0 0 0

β̂p(time:2) 0 0.266 0 0 0 0 0 0 0 0 0

β̂p(time:3) 0 -0.23 0 0 0 0 0 0 0 0 0

β̂p(time:4) 0 -0.041 0 0 0 0 0 0 0 0 0

β̂p(time:5) 0 -0.098 0 0 0 0 0 0 0 0 0

β̂p(time:6) 0 0.159 0 0 0 0 0 0 0 0 0

β̂p(time:7) 0 -0.04 0 0 0 0 0 0 0 0 0

β̂p(time:8) 0 0.123 0 0 0 0 0 0 0 0 0

β̂p(time:9) 0 -0.056 0 0 0 0 0 0 0 0 0

β̂p(time:10) 0 -0.062 0 0 0 0 0 0 0 0 0

β̂p(a) 0 0 0 0 0 0 0 0 0 0 0

β̂p(b) 0.942 1.129 1.149 1.184 1.176 1.176 1.176 1.176 0.846 1.178 0.144

β̂p(c) 0 0 0 0 0 0 0 0 0 0 0

β̂p(d) 0 0 0 0 0 0 0 0 0 0 0

β̂p(e) 0 0 0 0 0 0 0 0 0 0 0

β̂p(f) -0.933 -1.142 -1.181 -1.189 -1.186 -1.186 -1.186 -1.186 -0.856 -1.189 0.135

β̂p(g) 0 0 0 0 0 0 0 0 0 0 0

β̂p(h) 0 0 0 0 0 0 0 0 0 0 0

β̂p(i) 0 0 0 0 0 0 0 0 0 0 0

β̂p(j) 0 0 0 0 0 0 0 0 0 0 0

β̂p(k) 0 0 0 0 0 0 0 0 0 0 0

β̂p(l) 0 0 0 0 0 0 0 0 0 0 0

β̂p(m) 0.042 0 0 0 0 0 0 0 0 0 0

β̂p(n) 0.01 0 0 0 0 0 0 0 0 0 0

β̂p(o) 0.81 0.993 1.033 1.047 1.059 1.059 1.059 1.059 0 1.061 0.124

β̂p(p) 0 0 0 0 0 0 0 0 0 0 0

β̂p(q) -0.027 0 0 0 0 0 0 0 0 0 0

β̂p(r) -0.063 0 0 0 0 0 0 0 0 0 0

β̂p(s:1) -0.15 -0.202 -0.243 0 0 0 0 0 0 0 0

β̂p(s:2) 0.116 0.161 0.197 0 0 0 0 0 0 0 0

β̂p(t:1) 0 0 0 0 0 0 0 0 0 0 0

β̂p(t:2) 0 0 0 0 0 0 0 0 0 0 0

β̂p(u:1) 0 0 0 0 0 0 0 0 0 0 0

β̂p(u:2) 0 0 0 0 0 0 0 0 0 0 0

False Discovery Rate: 0.342 0.237 0.053 0.026 0 0 0 0 0
False Rejection Rate: 0 0 0 0 0 0 0 0 0.167

Bold coefficients show oracle-properties: produces estimates that are the same as MLEs when the true model is known in
advance).
Covariates a-r are continuous; covariates s-u are categorical; β(time:t) is equivalent to a θ(t) sub-model.
† CJSboost-EM model with mstop tuned by bootstrap-validation.
†† Debiased CJSboost-EM model (un-regularized; m→∞) after discarding covariates with inclusion probabilities below a
threshold.
‡ MLEs when the true model is known in advance.
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make boosting appropriate for serially-dependent time-series of CMR data, a.k.a. capture-histories. One699

CJSboost method interweaves an Expectation-Maximization (EM) step between boosting iterations, and700

the second method uses stochastic imputation of latent-states. Both methods can be used to estimate the701

gradient of the loss function which is the crux of statistical boosting. This paper is meant to prove and702

motivate these modifications so that boosting can be introduced to a wider-class of CMR models, such as703

the POPAN or PCRD or spatial capture-recapture. Code is available on the Github site http://github.704

com/faraway1nspace/HMMboost as well as a tutorial.705

In this article, I introduce CJSboost by positioning it within the general theory of model-selection and706

multi-model inference (MMI); specifically, I show that CJSboost can be used for the two domains of multi-707

model inference: i) efficient estimation and/or prediction, and ii) consistent model-identification a.k.a. finding708

the hypothesis-cum-model which most support. These are what Aho et al. (2014) refers to as A-type vs.709

B-type thinking. I show why boosting is very appealing, both theoretically and practically, for CMR practi-710

tioners who use MMI techniques, such as AIC model-averaging or BIC model-selection.711

Specifically, CJSboost is a type of shrinkage estimator : it negotiates the complexity of a model in order to712

minimize a prediction error. This error is closely related to the Expected Log-Likelihood which Akaike used713

to motivate his famous derivation of the AIC (Akaike, 1974, 1998). Akaike explained that model-selection714

according to the Expected Log-Likelihood is efficient: it performs best at minimizing the square-error between715

estimates and a true process. Through simulation, I show that boosting is qualitatively similar to AICc-716

methods at estimating abundance, and it is much better at estimating survival. I also propose that CJSboost717

can be coupled with a new technique called stability selection (Meinshausen & Bühlmann, 2010) in order718

to derive a sparse estimator, that is, to find covariates that significantly influence survival and are part of719

the “true model”, much like the BIC. Therefore, CMR practitioners can use the two flavours of CJSboost in720

order to tackle both domains of MMI: efficient estimation or consistent model-identification.721

However, CJSboost has many other advantages over AIC/BIC model-selection and their constituent722

fixed-effect models:723

� it can automatically perform variable-selection and explore higher-order interactions, even in situations724

of low-sample size (i.e., the n < p problem);725

� it can include non-linear effects such as splines, regression trees, spatial kernels, or any of the base-726

learners available in the mboost family of R packages (Bühlmann & Hothorn, 2007; Hothorn et al.,727

2006; Mayr et al., 2012; Hofner et al., 2012);728

� it has shrinkage of estimates away from extreme values and inadmissible values (e.g., φ̂=1) and avoids729

parameter singularities;730

� its shrinkage properties can handle parameter non-identifiability issues better than the use of arbitrary731

constraints (e.g., fixing φT =φT−1);732

� it can better cope with multi-collinearity;733
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There are, however, many disadvantages and challenges to CJSboost. Some challenges are technical734

and require further research, such as theoretical validation of the consistency of stability selection. Other735

challenges are conceptual and will require practitioners to embrace new ideas and re-think old habits (such736

as reliance on p-values). I will briefly comment on some of the conceptual challenges first, then I will suggest737

new lines of research to address some technical challenges and useful extensions.738

4.1. Conceptual challenges739

Component-wise boosting is related to many important statistical ideas (Meir & Rätsch, 2003). It is740

similar to the Lasso solution (Efron et al., 2004; Bühlmann & Hothorn, 2007), which is favoured in machine741

learning. It is a type of model-averaging (Hand & Vinciotti, 2003) by weighting the outputs of hundreds742

or thousands of sub-models. It is also a Generalized Additive Model which is itself a type of penalized743

regression approach (Mayr et al., 2012). Despite these connections with other popular techniques, the eco-744

logical community has been slow to adopt statistical boosting. I believe this may be due to a few conceptual745

misunderstandings, such as shrinkage and suspicion of algorithmic learning techniques.746

Algorithmic Inference. Boosting originally arose as a purely algorithmic means of classification Meir & Rätsch747

(2003); Mayr et al. (2014). Some ecologists have embraced such methods (Elith et al., 2008), but I suspect748

many are sceptical of machine-learning methods in favour of parametric Maximum Likelihood Estimation749

(MLE), especially given the long-studied optimality properties of the latter. Part of the motivation of this750

article was to review some theory about model-selection, such as shrinkage and Akaike’s AIC, and show751

why they lend support to component-wise boosting for statistical inference. Namely, we now know that752

small-to-moderate sample sizes, the MLE solution of a multiple-regression problem is inadmissible because of753

shrinkage (sensu Copas, 1983, 1997). Secondly, Akaike (1974) showed us that the Expected Log-likelihood,754

rather than the Maximum Likelihood, is efficient at deciding the optimal complexity of a model. Therefore,755

there is solid theory to support the statistical utility of CJSboosting for CMR analysis, given that it is a type756

of shrinkage estimator and it approximates the Expected (negative) log-Likelihood.757

Shrinkage. Despite a huge body of research about shrinkage (Stein, 1956; James & Stein, 1961; Copas,758

1983, 1997; Royle & Link, 2002), shrinkage creates a conceptual discomfort for ecologists, and this may be759

boosting’s greatest hurdle. First, we must do away with familiar tools like p-values and confidence intervals760

(more below). More importantly, we must grapple with the red-herring of unbiased-ness, to which most761

practical ecologists seem to consider sacrosanct. Ecologists trained to scrutinize diagnostic residual-plots762

may look at the bias in Figure 2 and be very alarmed, despite the underlying loss-optimality. In other words,763

we incur some bias to minimize an expected square-error loss (see Appendix E). This made shrinkage highly764

controversial 50 years ago at the time of its discovery (Efron & Morris, 1975), and its repercussions have not765

fully permeated the non-statistical research community.766

32



Bayesian Interpretation. However, the rising popularity of Bayesianism may be the greatest advocate for767

component-wise boosting. First, `1-regularizers, such as the Lasso and component-wise boosting, have a768

Bayesian interpretation (Geman et al., 1992; Hooten & Hobbs, 2015), and the outputs are merely a type of769

a Maximum A Posteriori (MAP) estimate (Murphy, 2012c). Secondly, ecological practitioners seem uncon-770

cerned with the fact that Bayesians are technically biased due to the role of priors at finite sample sizes.771

To wit, Bayesians have become popular champions of shrinkage, to the extent that it almost seems like a772

Bayesian idea, despite its Frequentist origins. For example, Royle & Link (2002) advocated for Hierarchical773

Bayesian random-effect models for CMR primarily because of the benefits of shrinkage. CJSboost is the774

Frequentist answer to their work.775

4.2. Inference without Confidence Intervals or P-values776

In this paper, I have chosen not to show 95%CI nor classical p-values for marginal effects’ null-hypothesis777

tests. I ignore these in order to focus the reader’s attention on point-wise estimation: the type of inference778

that shrinkage and AIC-like estimators were specifically developed for and should do optimally. For example,779

if one desires a time-series of abundance, then boosting or AIC-methods should produce estimates that780

generally have the lowest mean square-error loss between truth and estimate, i.e., the point-estimates are781

as close as possible to the truth, over all possible samples from the population. This type of inference782

does not depend on significant effect sizes or 95%CI; estimation variance is directly incorporated into the783

procedure through shrinkage (Appendix E). That being said, it is common in the boosting literature to use784

bootstrapping to approximate CI, and this could be done in CJSboost by bootstrapping capture-histories.785

However, I would urge practitioners to think carefully about why they wish to have p-values or CI,786

rather than consider them as default statistics. There is growing concern about the misuse of both p-values787

(Anderson et al., 2000; Gerrodette, 2011) and CI (Hoekstra et al., 2014), and some journals have started788

banning them altogether (Trafimow & Marks, 2015). I suggest that there are alternative tools that are789

more aligned with one’s research goals. For example, if a practitioner is interested in using 95%CI or classic790

p-values to test whether a covariate is “significantly” different from zero, then perhaps the real intention791

is to discover which covariates are truely influential? For this type of model-identification inference (what792

Aho et al., 2014, called B-type thinking), I propose the use of stability selection and approximate posterior793

inclusion probabilities. Similarly, one may wish to cap their False Discoveries (Meinshausen & Bühlmann,794

2010; Shah & Samworth, 2013). This is a closer marriage of research goals and statistical analysis.795

Finally, I would also remind readers that the abandonment of CIs or p-values is not a unique deficiency796

to CJSboost, but is true for all model-selection or shrinkage estimators. The common practice of doing797

model-selection and then using the CIs or classic p-values from the best model, as if model-selection was798

never performed, is invalid. Breiman (1992) called this a “Quiet Scandal”. The sampling properties of a799

post-model-selection estimator can be significantly different from those of a single-model (Leeb & Pötscher,800

2005). This is the price of multi-model inference vs. single-model inference. Therefore, one’s only recourse801

in MMI is to use model-averaged CIs (Anderson et al., 2000) or bootstrap-approximated CIs, or multi-model802
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p-values (Lee & Boone, 2011) or, better yet, to calculate statistics which actually address one’s research803

question.804

4.3. Extensions and future considerations805

This study is merely the first step in developing and introducing boosting for CMR models. A lot of the806

theoretical work on loss-efficiency and consistency in univariate boosting for will need further validation in807

the HMM context.808

Estimation. Regarding estimation performance, the simulations showed that CJSboost is very competitive,809

and perhaps better, than AICc averaging or model-selection at estimating survival and abundance. However,810

it is unknown whether CJSboost shares any of the theoretical efficiency properties of its univariate version.811

For example: does it obtain the minimal worst-case error, i.e., is it minimax optimal (Bühlmann & Yu, 2003)?812

How sensitive is its performance to its regularization parameters? Of more practical concern, the new basis813

functions of mboost create new ways to address old CMR estimation challenges, such as random-effect base-814

learners to accommodate individual heterogeneity, or CART for automatic discovery of non-linear processes.815

These opportunities require further empirical study, such as whether they incur significant estimation trade-816

offs. For example, Bühlmann & Yu (2003) found worse estimation performance with CART-like learners vs.817

least-square learners in simple linear regression models.818

Consistency. Regarding variable selection or hypothesis-testing, this type of inference has been much less819

important in CMR than estimating abundance. However, I expect that it will become more important820

in certain “Big Data” domains where interest lies in finding significant associations between demographic821

variation and environmental covariates. For such inferences, the key property that a researcher needs is822

model-selection consistency: she desires a procedure that must recover the truly influential covariates with823

high-probability. This type of MMI is prone to False Discoveries, especially when practitioners use prediction-824

optimal methods, such as the AIC/c or its derivatives (Shao, 1993; Yang, 2005). This misuse is widespread825

in ecology, and may contribute to the current crisis of reproducibility (Galipaud et al., 2014). For consistent826

variable selection, boosting has many potential extensions, such as TwinBoosting (Bühlmann & Hothorn,827

2010). I suggest enhancing CJSboost with stability selection to approximate Bayesian inclusion probabilities.828

Stability Selection. This is an exciting and growing field of study, and the stability-selection-enhanced CJS-829

boost technique may need revision in the near future. In particular, the univariate versions of stability830

selection have theoretical bounds on the number of False Discoveries (Meinshausen & Bühlmann, 2010; Shah831

& Samworth, 2013) and Monte-Carlo selection probabilities of spurious variable (Bach, 2008), but these do832

not apply to multi-parameter boosting. Secondly, it is unclear whether we must marginalize over all three833

regularization parameters (m and νp and νφ) or whether we can, as I have suggested, focus only on m. Third,834

it is unclear whether there is a violation of the assumption “exchangeability” of spurious covariates, as may835

be the case with the time-varying covariates vs. individually-varying covariates, as suggested in the simula-836

tions. These will require more empirical study. The latter may be partially solved by using the less-restrictive837
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complementary-pairs stability selection of Shah & Samworth (2013). Nonetheless, the simulation results are838

promising and in-line with other studies: that is, influential covariates are selected with a probability that839

converges to 1 as sample sizes get large, and there is good discrimination of spurious or negligible covariates.840

Extensions. By validating the boosting technique for a simple open-population model, this study paves841

the way for more popular capture-recapture models, such as POPAN and the PCRD, which have more842

model parameters in the likelihood function, like temporary-migration processes. With more parameters, the843

boosting algorithms will require more efficient ways of tuning regularization parameters. See Appendix C.2844

for ideas in this regard.845

New Base-learners. One major benefit of the CJSboost framework is its extensibility. It can accommodate846

phenomena such as individual heterogeneity, spatial capture-recapture and cyclic-splines. These are possible847

because the CJSboost code is written for compatibility with the mboost family of R packages, and leverages848

their impressive variety of base-learners (Bühlmann & Hothorn, 2007; Hofner et al., 2012). For example, the849

brandom base-learner can accommodate individual random effects for addressing individual heterogeneity in850

a manner similar to Bayesian Hierarchical models (Rankin et al., 2016). Kernels (brad) and spatial splines851

(bspatial) can be used for smooth spatial effects (Kneib et al., 2009; Hothorn et al., 2010; Tyne et al., 2015)852

offering an entirely new framework for spatial capture-recapture. The largest advantage is that users can add853

these extensions via the R formula interface, rather than having to modify deep-level code.854

5. Conclusions855

1. Boosting is a shrinkage estimator and regularization algorithm that can be adapted to capture-mark-856

recapture through an additional Expectation-Maximization step that imputes latent-states.857

2. Boosting negotiates the “bias-variance trade-off” (Appendix E) by incurring a slight bias in all coeffi-858

cients, but yields estimates that are more stable to outliers and over-fitting, across multiple realizations859

of the data.860

3. CJSboost allows for powerful learners, such as recursive-partitioning trees (e.g., CART) for automatic861

variable-selection, interaction detection, and non-linearity. This flexibility seems to come at the cost of862

slightly more conservative estimates (if the underlying true model is linear).863

4. Both AICc model-selection and boosting are motivated by good predictive performance: minimizing864

an expected loss (a.k.a. risk, or generalization error). When using least-squares or CART-like base-865

learners, the estimates from CJSboost are qualitatively similar to AICc model-averaging, but with more866

shrinkage on coefficients.867

5. CJSboost seems to perform very well in high-dimensional model-selection problems, with the ability to868

recover a small set of influential covariates.869

6. If the goal of a CMR analysis is not estimating abundance nor survival, but to find significant covariates,870

then CJSboosted models can be enhanced with stability-selection to derive a model-selection consistent871

estimator. Further research is necessary to validate the consistency property.872
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APPENDICES1088

Appendix A. The CJSboost algorithm for Monte-Carlo approximation1089

The second strategy to boost a CJS capture-recapture model is called CJSboost Monte Carlo (MC). The1090

idea is to garner conditional independence of data-points (yj ,xj) by integrating over the distributions of1091

latent states π(zi|yi,Fi). The integration is approximated with a large sample from the posterior of zi. A1092

fast and simple “forward-filtering and backward-sampling” algorithm is used to sample latent states (Rabiner,1093

1989; Murphy, 2012b), detailed in Appendix B.4.1094

Within each boosting iteration m, we sample S sequences of zi. Per s sequence, we estimate a separate1095

negative-gradient, and fit base-learners to it. After fitting all S samples, we update the prediction vectors1096

with the best-fitting base-learners from each sequence, F
(m+1)
θ = F

(m)
θ + νθ

∑S
s f̂

(s). Over S ×m draws, this1097

is approximately equivalent to the EM algorithm. For comparable results to CJSboost-EM, the learning-rate1098

parameters νMC should be set equal to 1
S νEM, i.e., the contribution of any one sequence z(s) is small.1099

I now describe the CJSboost-MC algorithm:1100

1. Set regularization parameters S, mstop, νφ, and νp.1101

2. Initialize m = 1 and F̂(0).1102

3. For s = 1 : S, do:1103

(a) sample latent state sequence z
(s)
i ∼ π(z|yi, F̂i) (see Appendix B.4);1104

(b) estimate the negative gradients, conditional on z
(s)
i :

û
(m,s)
i,t,φ = − ∂`i,t

∂F
(m−1)
φ

=
1[z

(s)
i,t−1 =1, z

(s)
i,t =1]− 1[z

(s)
i,t−1 =1, z

(s)
i,t =0] · eF̂

(m−1)
i,t,φ

1 + eF̂
(m−1)
i,t,φ

û
(m,s)
i,t,p = − ∂`i,t

∂F
(m−1)
p

=
1[z

(s)
i,t−1 =1, z

(s)
i,t =1]

((
1 + eF̂

(m−1)
i,t,p

)
yi,t − eF̂

(m−1)
i,t,p

)
1 + eF̂

(m−1)
i,t,p

(c) for each θ in {φ, p} do:1105

i. for each k base-learner in θ do:1106

A. fit the base-learner to the gradient: bk

(
û

(m,s)
θ , Xk

)
⇒ g

(s)
k ;1107

B. make an estimate of the gradient, f̂
(s)
k = g

(s)
k (Xk);1108

ii. find the base-learner that best-fits the gradient k
∼

(s) = argmin
k

(û
(m,s)
θ − f̂ (s)

k )2;1109

iii. append the prediction function of k
∼

(s) to the ensemble Gθ ← g
(s)
k
∼

;1110

4. Update the fit vectors for each θ ∈ {φ, p}, taking the sum over all S: F
(m)
θ = F

(m−1)
θ + νθ

∑S
s f̂

(s)
k
∼

.1111

5. Estimate the empirical risk L(Y, F̂(m)), or estimate the holdout-risk on an out-of-sample subset of the1112

data L(Yoos, F̂
(m)
oos ) for cross-validation.1113

6. m = m+ 11114

7. Repeat steps 3 to 6 until m = mstop.1115
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Just as in the CJSboost-EM algorithm, we must tune ν and mstop through cross-validation or bootstrap-1116

validation (Section 2.2.3).1117

Notice that the two algorithms have different surrogate loss functions and negative-gradients. However,1118

the expected loss is still the Expected negative CJS Log-Likelihood, and the empirical risk is the negative1119

CJS log-likelihood of the observed data.1120

Figures A.9 and A.10 compare the CJSboost-MC algorithm against the CJSboost-EM algorithm. Figure1121

A.9 shows model estimates of capture-probability and survival for an example dataset from Simulation 1 of1122

the main article; we see that the MC algorithm produces approximately similar estimates, although there is1123

some extra variation in the btrees base-learners model. Figure A.10 is from the high-dimensional Simulation1124

3 in the main article. The Figure shows a scatter-plot of the estimates from the EM algorithm vs. the MC1125

algorithm, using a simulated high-dimensional dataset, where each dot is an individual i at capture-period t.1126

The results fall along the 1:1 line, which demonstrates that the algorithms are approximately equivalent.1127

Appendix B. Algorithms for Filtering and Sampling HMM Latent States1128

The CJSboost algorithms depend on conditional independence of data pairs (yi,t, Xi,t) for individuals i1129

in capture period t, in order to estimate the negative-gradient in the descent algorithm. This is possible if1130

we impute information about the latent state sequences z for pairs of capture periods at t and t−1. The1131

two CJSboost algorithms, CJSboost-EM and CJSboost-MC, achieve this same idea with two different, but1132

related, techniques. In both cases, we will use a classic “forwards-backwards” messaging algorithm to gain1133

information about the probability distribution of the latent state sequences. In CJSboost-EM, we calculate1134

the two-slice marginal probabilities p(zt−1 =u, zt = v|y1:T , φ, p), per boosting iteration; in CJSboost-MC, we1135

will sample z from its posterior distribution π(z1:T |y1:T , φ, p). See Rabiner (1989) and Murphy (2012b) for1136

accessible tutorials.1137

Both algorithms use a forwards-messaging algorithm and a backwards-messaging algorithm. The forwards1138

algorithm passes information about the state of zt conditional on all previous observations (denoted αt),1139

whereas the backwards algorithm estimates the future conditional likelihood of the capture-data given zt at1140

t (denoted βt). The α and β values are combined to make inferences about the distribution of latent states1141

per time t.1142

We will drop the indices i, and focus on the capture history of a single individual. y is the time-series of1143

binary outcomes of length T . z is a vector of latent states z ∈ {dead, alive}. We condition on an individual’s1144

first capture at time t = t0, and are only concerned with the sequence zt0:T . Survival from step t−1 to t is1145

φt. Conditional on zt, the capture-probabilities are p(yt = 1|alive) = pt, and p(yt = 1|dead) = 0. In HMM1146
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Figure A.9: From Simulation 1 of the main article, a demonstration of CJSboost estimates from the Monte-Carlo approximation
technique. A comparison of capture-probability estimates p̂(t×X) and survival estimates φ̂(t×X) from four models: CJSboost-
MC with linear base-learners (OLS and PLS; in orange); CJSBoost-MC with non-linear base-learners (CART-like trees; in red);
AICc model-averaging (blue); and MLEs of the full-model (dashed black).

45



Figure A.10: Simulation 1, demonstrating CJSboost estimates from the Monte-Carlo approximation technique. A comparison
of capture-probability estimates p̂(t×X) and survival estimates φ̂(t×X) from models composed of linear base-learners (OLS and
PLS; in orange) and non-linear base-learners (CART-like trees; in red), as well AICc model-averaging (blue) and MLE (dashed
black).
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notation, the CJS processes can be presented as the following column-stochastic matrices:1147

Φt =


dead alive

dead 1 1−φt
alive 0 φt

 Ψt =


dead alive

no capture 1 1−pt
capture 0 pt

 (B.1)

In HMM parlance, Φ is the Markovian transition process; we denote the probability p(zt = u|zt−1 = u)1148

as Φt(u, v). Ψ is the emission process representing the conditional capture-probabilities; we denote the1149

probability p(yt=1|zt=v) as Ψt(v).1150

Appendix B.1. Forwards-algorithm1151

The forward messaging algorithm involves the recursive calculation of αt(v), per time t and state zt=v.1152

αt is the filtered belief state of zt given all the observed information in y from first capture t0 until t. Notice,1153

that for clarity, we drop the notation for conditioning on φ and p, but these are always implied.1154

at(v) := p(zt=v|yt0:t)

=
1

Zt
p(yt|zt=v)p(zt=v|yt0: t−1)

=
1

Zt
p(yt|zt=v)

∑
u

p(zt=v|zt−1 =u)p(zt−1 =u|yt0: t−1)

=
1

Zt
Ψt(v)

∑
u

Φ(u, v)αt−1(u)

(B.2)

Zt =
∑
v

(
Ψt(v)

∑
u

Φ(u, v)αt−1(u)

)
,
∑
v

αt(v) = 1

The algorithm is initialized at time t0 (an individual’s first capture) with αt0(alive) = 1 and αt0(dead) = 0.1155

This is true because the animal must be alive for us to capture it. Conditional on the values of αt(v) for all1156

v, one can proceed to calculate the next values of αt+1(v), and so on, until t=T .1157

Appendix B.2. Backwards-algorithm1158

Messages are passed backwards in a recursive algorithm starting at t= T and moving backwards until

t= t0, the first-capture period, while updating entries in βt(v). βt−1(u) is defined as the likelihood of future

observations yt:T from t to T , conditional on zt−1 =u at t−1.

βt−1(u) := p(yt:T |zt−1 = u)

=
∑
v

p(yt+1:T |zt = v)p(yt|zt=v)p(zt=v|zt−1 =u)

=
∑
v

βt(v)Ψt(v)Φt(u, v)

(B.3)

The algorithm is initialized βT (·) = 1 for all states v, and proceeds backwards as above. Notice that the1159

elements of βt(·) do not need to sum to 1.1160

Having calculated the backwards and forwards messages, we can now proceed to characterize the latent1161

state distributions and boost φ and p.1162
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Appendix B.3. Two-slice marginal probabilities for Expectation-Maximization1163

Expectation-Maximization is an iterative technique for maximizing a difficult objective function by work-1164

ing with an easy “complete-data” objective function log p(y, z|θ). EM works by cycling through an M-step and1165

an E-step. In boosting-EM, the M-step corresponds to the usual update of the fit vectors F̂
(m)
θ = F̂

(m−1)
θ +νθf̂1166

(conditional on z), which are used to estimate θ̂(m) = logit−1
(
F̂

(m)
θ

)
. The E-step corresponds to imputing1167

the expectations of the latent states z, conditional on the data and current estimates of θ̂(m).1168

Technically, we require the expectations for the pairs of sequential states (zt−1, zt). In CJS, these pairs of1169

states are simply {alive, alive}, {alive, dead}, {dead, dead}. Using the Complete-Data Likelihood, we substi-1170

tute in the two-slice marginal probabilities wt :=p(zt−1, zt|yt0:T , φ, p) for the pairs (zt−1, zt). These probabil-1171

ities can be calculated easily for a capture history yi using the outputs (α, β) from the forward-backwards1172

algorithm.1173

wt(u, v) := p(zt−1 =u, zt=v|yt0:T )

=
1

ξt
p(zt−1|yt0:t−1)p(zt|zt−1,yt:T )

=
1

ξt
p(zt−1|yt0:t−1)p(yt|zt)p(yt+1:T |zt)p(zt|zt−1)

=
1

ξt
αt−1(u)Ψt(v)βt(v)Φt(u, v)

(B.4)

ξt =
∑
u

∑
v

αt−1(u)Ψt(v)βt(v)Φt(u, v),
∑
u

∑
v

wt(u, v) = 1

The E-step is completed after evaluating the set
{
wi,t(alive, alive), wi,t(alive,dead), wi,t(dead,dead)

}
, for1174

each capture period t > t0i and for each individual {yi}ni=1. This is an expensive operation; computational1175

time can be saved by re-evaluating the expectations every second or third boosting iteration m, which, for1176

large mstop > 100 and small ν, will have a negligible approximation error.1177

Appendix B.4. Sampling state-sequences from their posterior1178

For the CJSboost Monte-Carlo algorithm, we sample a latent state sequence zi from the posterior1179

π(z1:T |y1:T , φ, p), for each individual i per boosting step m. Conditional on the latent states, the negative-1180

gradients are easily evaluated and we can proceed to boost the estimates and descend the risk gradient.1181

However, because the algorithm is stochastic, we must avoid getting trapped in a local minima by sampling1182

many sequences (e.g., S ≈ 10−20), thereby approximating the full posterior distribution of z. Over all S1183

samples, the average gradient will probably be in the direction of the global minima. For large m and small1184

ν, the approximation error is small.1185

The algorithm performs backwards-sampling of the posterior using the chain rule:

p(zt0:T |yt0:T ) = p(zT |yt0:T )

t0∏
t=T−1

p(zt|zt+1,yt0:T ) (B.5)
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We start with a draw at time t = T , z
(s)
T ∼ p(zT = v|yt0:T ) = αT (v), and condition earlier states on1186

knowing the next-step-ahead state, proceeding backwards until t = t0.1187

z
(s)
t ∼ p(zt= u|zt+1 =v,yt0: t)

=
p(zt, zt+1|yt0: t+1)

p(zt+1|yt0: t+1)

∝ p(yt+1|zt+1)p(zt, zt+1|yt0: t)

p(zt+1|yt0: t+1)

=
p(yt+1|zt+1)p(zt+1|zt)p(zt|yt0: t)

p(zt+1|yt0: t+1)

=
Ψt+1(v)Φt+1(u, v)αt(u)

αt+1(v)

(B.6)

Thus, knowing α, β, Φ and Ψ, we can easily generate random samples of z from its posterior distribution.1188

The backwards sampling step is repeated for each t>t0i capture period, for each s sequence, for each individual1189

i, and for each m boosting iteration.1190

Appendix C. Algorithms for Tuning the Regularization Parameters: Number of Boosting It-1191

erations and the Learning-Rates1192

This section will present a simple work-flow for finding approximately optimal values of mstop, νφ and1193

νp that minimize our expected loss L, a.k.a. the generalization error. We approximate L through B-fold1194

bootstrap-validation. For each b bootstrap, we create a CJSboost model, G(b)(X;m, νφ, νp) which is trained1195

on the bootstrapped data and is a function of the regularization parameters νφ, νp and m. We calculate1196

the holdout-out risk using the out-of-bootstrap bc capture-histories and covariate data, (Y(bc),X(bc)). The1197

objective to minimize is the average hold-out risk, Lcv, estimated over B bootstraps.1198

L ≈ Lcv = argmin
m,νφ,νp

1

B

B∑
b=1

L
(
Y(bc), G(b)(X(bc);m, νφ, νp)

)
In univariate boosting, it is easy and routine to find the optimal mstop through bootstrap-validation,1199

conditional on a fixed value of ν. It is easy because we can simultaneously fit a model and monitor the1200

holdout-risk per m step. Therefore, we need only perform one round of bootstrapping to find the mcv that1201

minimizes the average holdout-risk.1202

However, the focus of this section will be to estimate the optimal values of νφ and νp. This is a seemingly1203

difficult task because they are continuous: we cannot realistically run a different bootstrap exercise per1204

combination of R+× R+. The challenge of optimizing νp and νφ is not unique to CJSboost, but is inherent1205

to all multi-parameter boosting techniques, such as boosted-GAMLSS. Readers who are already familiar1206

with the boosted-GAMLSS literature may notice that my approach differs slightly from other authors (e.g.1207

Schmid et al., 2013; Mayr et al., 2012). These authors use a single fixed value of ν for all parameters, and1208

then optimize separate values of mθ per parameter θ. Alternatively, I propose to optimize a global mstop for1209

both parameters, after optimizing the ratio of νθ1 to νθ2 . The two methods are equivalent in their outcome. I1210
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wish to emphasize that although the boosting literature has claimed that there is little benefit in optimizing1211

m and/or ν separately for each parameter (Schmid et al., 2013), this is untrue for CJSboost. The optimal1212

estimate of νφ may be several orders of magnitude different than the optimal νp.1213

The most easy-to-understand method to optimize νφ and νp is to discretize the set of plausible com-1214

binations, such as (10−4, 10−3, 10−2, 10−1) ⊗ (10−4, 10−3, 10−2, 10−1). This is not a terrible idea because1215

Bühlmann & Yu (2003) showed that the generalization error has a very shallow minima around the optimal1216

values of m. This means that our regularization parameters need only get within the vicinity of their optimal1217

values, rather than strict numerical convergence. However, searching for optimal values on a small grid of1218

combinations would be very expensive and imprecise. Therefore, we seek an adaptive algorithm that can get1219

closer to the optimal values of νφ and νp with only 7-10 bootstrap-validation exercises.1220

Appendix C.1. Algorithm 1 for Setting Learning-Rates1221

For just two parameters (φ,p), we can find the minimum Lcv by optimizing the ratio λ =
νp
νφ

, for a fixed1222

mean νµ = 1
2 (νφ + νp). We can safely fix νµ because it has a straight-forward inverse relationship to mstop;1223

so if we fix one, we merely solve for the other. The point is that, using the λ formulation, we only have to1224

search over a univariate discrete set of Λ =
{
λ(1), λ(2), ..., λ(J)

}
to find the λ̇ that minimizes Lcv(λ). Recall1225

also that we can always find the optimal mstop for a given λ and νµ, so we can drop m from our objective1226

function, which is now a univariate objective:1227

Lcv = argmin
λ

1

B

B∑
b=1

L
(
Y(bc), G(b)(X(bc);m,λ, νµ)

)
This is less daunting than it may seem, because the range of λ is practically bounded. For example, for1228

large mstop and λ̇ = 100, then νp � νφ, and φ is effectively shrunk to its intercept starting value. Higher1229

values of λ will have little effect on the generalization error. Also, Lcv(λ) is typically a convex function of1230

λ (assuming that as we reuse the same bootstrap-weights for all new estimates of Lcv(λ)). In other words,1231

we are searching a U-shaped Real-line for its minimum. This means we can employ any convex optimization1232

algorithm for a univariate non-differentiable function to iteratively search for the optimal λ̇.1233

The thrust of any such algorithm is a multiplicative “stepping-out” procedure to quickly find the correct1234

order of magnitude for λ̇. For example, starting at λ(0) = 1, we need only 7 doubling steps to grow λ to1235

128×λ(0); further refinements will have little practical impact on the final model estimates. A routine convex1236

optimization algorithm is the following:1237

1. set νµ=0.01 and λ(0) = 1; generate the B bootstrap samples;1238

2. initialize the sorted list Λ = {λ(0), 1
2λ

(0)};1239

3. for each λ in Λ, estimate Lcv(λ) and store the values in the list  L = {L(0), ...};1240

4. for j in 1 :J , do:1241

(a) get the current best value for the ratio λmin(L) = argmin
λ∈Λ

Lcv(λ)1242

(b) propose a new candidate λ∗:1243
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if λmin(L) = min(Λ), then λ∗ = 1
2min(Λ);1244

else if λmin(L) = max(Λ), then λ∗ = 2 ·max(Λ);1245

else λ∗ = λmin + k · α, where k is the step direction and α is the step size.1246

(c) re-calculate the learning rates from λ∗: ν
(j)
φ =

2·νµ
λ∗+1 ; ν

(j)
p = λ∗ · ν(j)

φ ;1247

(d) perform bootstrap-validation to estimate L
(j)
cv (λ∗);1248

(e) append Λ← λ∗ and append  L← L
(j)
cv ;1249

The algorithm continues until a pre-defined convergence criteria is met, or, practically, a maximum number1250

of J iterations is reached. The final values of νφ, νp, and mcv are those which correspond to the minimum1251

Lcv ∈  L.1252

There are many convex optimization algorithms which differ in how they calculate k and α. In CJSboost,1253

most of the optimization benefits occur during the “stepping-out” procedure, and so exact values of k and1254

α are less important, so long as they guarantee convergence. I suggest the following sub-algorithm (nested1255

within step 4b above). This is entirely arbitrary but succeeds in quickly ruling-out large sections of sub-1256

optimal values of λ.1257

1. Define the triplet set Γ composed of the current best estimate of λmin(L) as well as the sorted values1258

just to the left and right, such that λ
(−1)
min(L) < λmin(L) < λ

(+1)
min(L);1259

2. Sort the entries of Γ according to the order Lcv(γ
(1)) < Lcv(γ

(2)) < Lcv(γ
(3));1260

3. Estimate the step size and direction:1261

if ‖γ(1) − γ(2)‖ ≥ ‖γ(1) − γ(3)‖:1262

then α = 1
2‖γ

(1) − γ(2)‖ and k = sign(γ(1) − γ(2));1263

else α = 1
2‖γ

(1) − γ(3)‖ and k = sign(γ(1) − γ(3));1264

4. λ∗ = λmin(L) + k · α1265

Typically, seven or ten iterations are necessary in order to find suitable values of λ̇, ν̇φ and ν̇p. Unfortunately,1266

this strategy is only useful for a two-parameter likelihood with a single ratio to optimize. For other capture-1267

recapture models with more parameters (e.g., POPAN, PCRD), a different tuning strategy may be necessary,1268

such as a bivariate convex optimization algorithm.1269

Appendix C.2. Algorithm 2 For Tuning the Learning-Rates ν1270

With more parameters in the capture-recapture likelihood, the number of necessary steps in algorithm1271

1 will increase exponentially. I suggest a second iterative algorithm whose number of iterations may only1272

increase linearly with the number of parameters.1273

The principle of this second algorithm is based on the observation that when the ratio
νp
νφ

is poorly1274

optimized, then additional boosting steps along the gradient ∂`
∂Fθ

will over-fit and increase in the holdout-1275

risk. This happen asymmetrically for Fφ vs Fp. Therefore, we can monitor the extent of the asymmetry1276
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and adjust the ratio
νp
νφ

until the number of boosting steps which successfully decrease the hold-out risk is1277

roughly the same for Fφ vs Fp (averaged over all bootstrap hold-out samples).1278

Call ∆
(m)
θ a boosting step along the partial derivative of ∂`

∂Fθ
which successfully reduces the holdout-risk.1279

I suggest using the ratio of ∆-values as an estimate of λ̂ =
νp
νφ

.1280

λ̂(j) = λ̂(j−1)Q

(∑mk
m=1 ∆

(m)
p∑mk

m=1 ∆
(m)
φ

)
(C.1)

where Q is a robust measure of central tendency over all B bootstraps (median, trimmed-mean), and mk is1281

some boosting step mk�mcv.1282

The first estimate λ̂(1) will typically be an underestimate, so the algorithm is iterated, each time using the1283

previous values of λ̂(j−1) for setting ν
(j)
p and ν

(j)
φ used to run CJSboost. The bootstrap-validation exercise is1284

repeated to estimate the next λ̂(j) value according to by (C.1). λ̂(J) will typically converge to a single value1285

within approximately 10 iterations. λ̂(J) is not the optimal λ̇ as estimated by algorithm 1, but it is within1286

the vicinity of the optimal value (Figure C.11).1287

For just two ν parameters and one ratio (as in CJSboost), this second algorithm is not competitive1288

with algorithm 1. But, when there are more than two parameters in the likelihood, this algorithm can1289

simultaneously estimate all pertinent ratios.1290

Further refinements will be necessary. However, these preliminary simulations suggest that the risk1291

gradient trajectories have information which can help optimize the regularization parameters.1292

Appendix D. Specifying Base-learners1293

In component-wise boosting, there are some base-learner parameters that must be specified a priori. For1294

example, PLS and P-spline base-learners have effective degrees-of-freedom parameters which constrain their1295

flexibility to fit a process. Schmid & Hothorn (2008a) suggest that such parameters can be fixed to default1296

values, and that practitioners should instead focus primarily on optimizing mstop. Furthermore, Bühlmann &1297

Yu (2003) suggest that base-learners should be relatively weak, a priori, and that the overall model complexity1298

should be tuned by controlling the shrinkage parameters mstop.1299

A more important consideration is the relative flexibility of competing base-learners. For example, multi-1300

covariate learners and unpenalized learners have more flexibility to fit a process and minimize estimation1301

error. Therefore, they may be preferentially selected in the component-wise boosting algorithm: recall1302

that in step 7(b) of the CJSboost algorithm, it selects the best base-learner by a goodness-of-fit criterion.1303

Therefore, practitioners should enforce a similar effective degrees-of-freedom among all base-learners, as well1304

as decompose higher-order interactions and non-linear curves into their constituent components.1305

For example, if one desires model-selection among covariates x1 and x2 and their interaction x1×x2, then1306

one should specify four PLS base-learners of equal effective-df : one PLS base-learner for the x1 main-effect; a1307

second PLS base-learner for the x2 main-effect; a third PLS base-learner for the main-effects of both x1 and1308

x2 together (no interaction); and a final PLS base-learner for the interaction. This would be analogous to a1309
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Figure C.11: Two algorithms for tuning the learning-rate regularization parameters νφ and νp, and their ratio λ, in order to
minimize the expected loss (estimated via bootstrap-validation). Forty simulations compare the two algorithms, where algorithm
1 is considered optimal.
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shrinkage version of the R GLM model glm(~x1*x2,...). In the mboost R formula interface, the boosted1310

model would be set-up with the following syntax:1311

~ bols(x1,df=2)+bols(x2,df=2)+bols(x1,x2,df=2)+bols(x1,by=x2,df=2)1312

For non-linear splines on x1, we may wish to separate the linear and non-linear components, called1313

“centring” in Kneib et al. (2009) and Hofner et al. (2012). In this case, the mboost formula interface would1314

be ~bols(x1)+bbs(x1,center=TRUE,df=1).1315

The above techniques are especially important if practitioners wish to gain some mechanistic understand-1316

ing of the φ and p processes, such as concluding which covariates have a significant contribution to survival.1317

This is crucial for using the stability-selection-enhanced CJSboost to find ecologically important covariates.1318

However, when the research goal is not to uncover significant effects, but merely to accurately estimate1319

abundance, then it is less important to enforce equal effective-df among base-learners. An extreme form of1320

this is when estimation becomes a “black-box” exercise, for example, as with CART-like tree base-learners:1321

~btree(x1,x2,tree_controls=ctree_control(maxdepth=2)). Here, variable selection and non-linear ef-1322

fects and interactions are automatically incorporated, at the expense of interpretability.1323

Appendix E. Primer On The Bias-Variance Trade-off1324

This appendix uses simulations to illustrate the “bias-variance trade-off” and shows how CJSboost and1325

the AIC each negotiate the trade-off in order to minimize the expected error of estimating survival φ over1326

T capture periods. The trade-off is fundamental to understanding the optimality of Frequentist shrinkage1327

estimators and AIC model-selection. The illustrations are inspired by Murphy (2012a, figure 6.5), but adapted1328

to Capture-Mark-Recapture and the Cormack-Jolly-Seber model.1329

The trade-off is an old idea without a citable origin (although Geman et al., 1992, is often considered to be1330

a definitive reference, but the phenomenon is clearly discussed as early as 1970 by Hoerl & Kennard). Despite1331

being an old and fundamental concept of statistical estimation, I have noticed that it poorly understood among1332

academics and government scientists. In particular, it is my experience that ecologists are unduly wedded to1333

the idea of being unbiased (in estimation), such that when they are presented with visual and quantitative1334

evidence about the optimality of biased shrinkage estimators, they recoil at the sight of systematic bias, and1335

ignore the crucial role of variance.1336

In the following simulations, the goal is to minimize the Expected Error of estimating survival, as quan-1337

tified by the Mean Square Error (MSE). It is a population-level abstract quantity that can only be measured1338

in simulations when we know to the “true” process. It is Frequentist in the sense that we hope to minimize1339

the error over all possible data-sets that one might sample from the true population Y. These multiple1340

realizations are shown as grey lines in Figures E.12 and E.13. Of course, an analyst only has one dataset,1341

and his goal is to get his estimates as close as possible to the truth.1342

The bias-variance trade-off arises from a classic decomposition of the expected error: MSE = EY[φ̂ −1343

φ(true)]2 + Var(φ̂) + c. Figure E.12 also shows this decomposition. The first term is the expected difference1344
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between an estimate and the true value, i.e, the bias. This difference is visualized as the red polygon in1345

Figure E.12. In the same figure, the bias manifests as shrinkage from the true red line towards the overall1346

mean. Quantifying the bias requires knowledge of the truth φ(true), and is therefore inaccessible in real-life1347

situations. The second term is the variance and it does not depend on knowledge of the truth. Rather, it1348

arises due to the vagaries of random sampling as well as the complexity of the estimation procedure: overly1349

complex models which “over-fit” one dataset will vary wildly when fitted to a new dataset sampled from the1350

same population. The variance can be visualized as the spread of the grey lines, or the green polygon in1351

Figure E.12.1352

The MSE decomposition has a naive meaning: that in order to optimize our estimation performance, we1353

should reduce the bias and/or the variance. Clearly, most ecologists see the value of tackling either of these1354

two terms. But the nature of a trade-off has a more elusive importance: we cannot, in general, minimize1355

both terms for a given sample-size, and we may deliberately increase one term in order to decrease the other.1356

Shrinkage estimators incur a little bias and have lower variance (i.e., the red polygon is bigger but the green1357

polygon is smaller). This strategy results in a much smaller MSE values than complex unbiased estimators.1358

In contrast, the MLEs of the complex full-model are unbiased but they typically have very high variance.1359

This strategy is often worse at minimizing the MSE, for small-to-moderate samples sizes.1360

The following simulations show how different statistical methods have different strategies in negotiating1361

the bias-variance trade-off. Imagine an analyst who confronted with four different methods to estimate1362

survival. The first is estimation by Maximum Likelihood using the full-model p(t)φ(t). The second method1363

is AICc model-selection, and the third is AICc model-averaging; both use the following fixed-effects models:1364

p(·)φ(·), p(t)φ(·), p(·)φ(t) and p(t)φ(t) with constraints on pT = pT−1 and φT = φT−1 terms. The fourth1365

method is CJSboost with base-learners equivalent to the aforementioned fixed-effect models (but without1366

the previous constraints). The AICc-methods should theoretically do best because they are fundamentally1367

motivated by trying to minimize an objective function that is very closely related to MSE called the KL-1368

loss (Akaike, 1974, 1998). Likewise, CJSboost is trying to minimize a related generalization-error called the1369

negative Expected log-Likelihood, which is approximated through bootstrap-validation.1370

The fake data-sets were generated according to the following. φ
(true)
t = cos

(
t−2.3

1.2

)
/11 + 0.75. p

(true)
t were1371

drawn from a beta distribution with shape parametersA = 12 and A= 12, resulting in an average capture-1372

probability of 0.5. The p
(true)
t values were the same for all simulations. The first-captures were distributed1373

randomly through-out the capture periods t ∈ {1, . . . , 10}, with highest weight on t = 1. MLE and AICc1374

analyses were run in Program MARK (White & Burnham, 1999) and RMark (Laake, 2013). For CJSboost,1375

a ten-times 70-fold bootstrap-validation exercise was run per dataset to tune the CJSboost regularization1376

parameters. The simulations and analyses were repeated 40 times for three scenarios pertaining to the number1377

of capture-histories n∈{50, 200, 800}.1378

The results clearly show the trade-off (Figure E.13). At high sample sizes (n = 800), the shrinkage1379

estimator CJSboost has the lowest MSE and therefore wins at estimating survival. However, it has the1380
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Figure E.12: Decomposing the error of estimation (MSE) into its bias and variance components. An estimation procedure
will negotiate the bias and variance so to minimize the MSE. Top, a simulation of a true survival process (red line). Each
grey line represents one dataset sampled from the population and an analyst’s attempt to estimate survival using multi-model
inference procedures, such as boosting. The dashed black line is the mean estimate over all 30 independent grey-lines. Middle,
a visualization of the variance component, showing the variability of point-wise estimates due to randomness in the sampled
data and a procedure’s sensitivity to such differences. Bottom, a visualization of the bias: the expected difference between the
truth and the procedure’s estimates, over all realizations of the data.
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Figure E.13: Visualizing the bias-variance trade-off and the error of estimating survival in a Cormack-Jolly-Seber analysis,
using four procedures (panel rows): i) the shrinkage estimator CJSboost; ii) AICc model-averaging based on four fixed-effect
models of time-varying vs. time-constant survival and capture-probabilities; iii) the best AICc model; and iv) the Maximum
Likelihood Estimate using the full-model p(t)φ(t). Panel columns are different sample sizes (number of capture-histories) over
T = 10 primary periods. The red-lines show the true survival. Each grey line is an independently sampled dataset and an
analyst’s attempt to estimate survival. The dashed-lines represent each procedure’s average estimate over 40 simulated data-
sets and analyses. The best estimation procedure has the lowest MSE (turquoise for emphasis). Each procedure may have a
high/low bias or low/high variance, but generally cannot succeed at minimizing both. The bias is the difference between the
red and dashed line. The variance is represented by the dispersion among grey lines. At small sample sizes, the AICc methods
and boosting are very biased but have better MSE.
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highest bias. How can it be considered a better estimator than the other methods when it is biased? The1381

answer is obvious when looking at the grey lines in Figure E.13, where each line is an estimate of {φt}Tt=21382

from an independent realization of data: compared to the other methods, each grey line from CJSboost is1383

much more likely to be closer to the truth, despite systematic bias. In contrast, using the MLEs, one can1384

only claim to be unbiased over all possible realizations of the data as shown by the closeness of the dashed1385

black line to the true red line. But, for any one realization (a single grey line) the MLEs can be very far1386

away from the truth due to much higher variance.1387

At smaller sample sizes, we see that the bias becomes much more extreme for both AICc methods and1388

CJSboost. In the case of the AICc methods, the model with most support is often φ(·), in which case the1389

estimates are a single flat line. This is also the case in CJSboost, were shrinkage is so extreme as to force a1390

flat line. Therefore, at low sample sizes, we are much better off, in terms of MSE, to use the flat-lined φ̂(·)1391

estimates rather than use the full-model MLEs, which vary so wildly as to be useless.1392

This primer is meant to illustrate the role of bias and variance in estimation errors. Simulations show1393

how shrinkage estimators (CJSboost) and model-selection (by AICc) each negotiate the trade-off between1394

bias and variance to try and minimize the Expected Error. CJSboost does particularly better by incurring1395

a little bias.1396

Appendix F. Extra Notes on Stability Selection1397

In the main article, I introduce stability selection for capture-mark-recapture (CMR) and use it to enhance1398

the consistency properties of CJSboost, called SS-CJSboost. Stability selection is a new and rapidly growing1399

group of methods, and SS-CJSboost borrows elements from different but related techniques by Bach (2008)1400

and Meinshausen & Bühlmann (2010, hereafter referred to as MeBü) and Shah & Samworth (2013, ShSa).1401

In this appendix, I will highlight how SS-CJSboost relates to these methods and where further validation1402

may be necessary.1403

To review, the proximate aim of the SS-CJSboost is to calculate Π̃θ,k, an approximation of the posterior1404

inclusion probability, π(βθ,k 6= 0|Y,X): the probability that a kth covariate is part of the correct model of1405

θ. Inclusion probabilities are routine in Bayesian analyses to address questions such as: does covariate k1406

have some structural influence on survival? The analysis proceeds by bootstrapping the capture-histories1407

B times, and for each b bootstrap running a CJSboost model on the bth resampled data. We must score1408

whether a covariate has been selected by CJSboost and has entered the ensemble G(m,ν)
θ , for each value of the1409

regularization parameters (m,ν) and for each k covariate and for each b bootstrap and for each θ ∈ {φ, p}. We1410

denote this selection indicator I
(b,m,ν)
θ,k =1[k ∈ G(b,m,ν)

θ ]. A short-cut is to pre-optimize the values of νφ and1411

νp, exactly as one would do in regular CJSboost analysis, and then condition all SS-CJSboost bootstrapped1412

models on these values, called ν̇. The stability selection probabilities are calculated over B bootstraps per m1413

and k and θ: Ŝ
(m|ν̇)
θ,k = 1

B

∑B
b I

(b,m|ν̇)
θ,k . Finally, our frequentist inclusion probability is the mean of the stability1414

selection probabilities summed over all values of the regularization parameter m: Π̃θ,k= 1
mstop

∑mstop

m=1 Ŝ
(m|ν̇)
θ,k .1415
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Crudely, SS-CJSboost is most similar to the Bolasso (Bach, 2008), but with an emphasis on inclusion1416

probabilities, as discussed in MeBü and ShSa. In the following paragraphs, I explain where and why certain1417

techniques were incorporated into SS-CJSboost, and possible problems with the assumptions.1418

Selection Procedure. Bach, MeBü, and ShSa all demonstrate their methods on the Lasso. For Bach, the1419

consistency results only hold for a region of the Lasso-regularization parameter in relation to sample size.1420

MeBü allow for any selection procedure, so long as two assumptions hold: i) all the spurious covariates1421

have the same random distribution of being selected, called “exchangeability”; and ii) the true-covariates are1422

selected with higher probability. While CJSboost can satisfy the second assumption, the multi-parameter1423

likelihood may violate the exchangeability assumption; for example, when a covariate significantly influences1424

capture-probability but not survival, such structural correlations may make certain covariates more select-1425

able than others. Later on, ShSa weakens these requirements through a special variant of stability selection1426

called complementary-pairs SS.1427

Univariate vs. Multiple-Parameter Regularization. The theoretical properties derived by Bach, MeBü, and1428

ShSa were all based on univariate least-squares regularization. Stability selection has since been used for1429

univariate GLMs and GAMs (see Hofner et al., 2015, and citations therein). At the time of writing this1430

article, no stability selection work has been published in a multiple parameter context, for example, using1431

a boosted-GAMLSS model. It is unknown whether any of the theoretical properties of univariate stability1432

selection hold for multiple-parameter regularization, or for a HMM like CJSboost. Two obvious issues arise.1433

First, what is the effect of having different generative models for each parameter in the likelihood, and does1434

this violate the exchangeability assumption? For example, does a kth covariate with a significant effect in1435

one parameter θ1 result in a biased-high estimate of Π̃θ2,k for another parameter θ2? My simulations suggest1436

that this is not an issue and such covariates have the same null-distribution of Π̃ values as covariates which1437

are spurious for both θ1 and θ2. Secondly, stability selection demands that we compute Ŝ
(·)
θ,k for all reasonable1438

values of the regularization parameters. This is simple in univariate boosting with only one regularization1439

parameter, but it becomes computationally unfeasible when the regularization parameter space is bivariate1440

or trivariate (m and ν). I have proposed a short-cut to set ν̇ to their prediction optimized values, and then1441

calculate Ŝ
(m)
θ,k over m conditional on ν̇. In simulations, this seems to lead to reasonable Π̃ values.1442

Subsampling and Resampling. Bach used the bootstrap, whereas MeBü used subsampling at a rate of 50%,1443

and ShSa used complementary-pairs sampling by repeatedly dividing the data into equal-halves, but ac-1444

knowledged the similarity to bootstrapping. For MeBü and ShSa, the exact rate is important for deriving an1445

upper bound on the expected number of False Discoveries (FD) in least-squares regularization. Their bounds1446

do not apply naively to multi-parameter regularization, and so there is no reason in CJSboost to maintain1447

their 50% subsampling rate, which otherwise has some disadvantages. For example, Schmid et al. (2012) had1448

to subsample at a rate of 80%, and, in lieu of ShSa’s theorectical control on the FDs, they focused instead1449

on rejecting unimportant covariates with Π̃ values below an arbitrary threshold πthr ∈ (0.6, 0.9). To justify1450
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this alternative use of stability selection, Schmid et al. relied on statements by MeBü that exact values of1451

πthr � 0.5 have little impact on the FD error rate. Bach took a different approach, and first found a theorecti-1452

cal region of the Lasso’s regularization parameter λ and sample-size, where truely influential covariates would1453

be selected with probability ≈ 1, and spurious covariates would be selected randomly, due to the vagaries of1454

the sampled data. Therefore, if one had multiple independent realizations of the data, then one could run1455

the Lasso on all datasets, intersect the selection probabilities, and discard covariates <0.9−1. Of course, one1456

never has multiple independent datasets, and so Bach suggests the bootstrap to kull covariates that seem1457

to be selected at random. In CJSboost, it is not clear whether the theorectical properties of the Bolasso1458

hold, but I rely on research that shows how the Lasso and statistical boosting are near-equivalent estimators1459

(Bühlmann & Yu, 2003; Efron et al., 2004). Nonetheless, the intuition behind the Bolasso bootstrap is the1460

same: spurious covariates will have some random selection probability�1. This makes SS-CJSboost crudely1461

similar to the Bolasso, or the adhoc application of stability selection as in Schmid et al. (2012): we calculate1462

inclusion probabilities and pick a high threshold to reject non-influential or insignificant covariates, in hopes1463

of obtaining consistent model-selection.1464

Role of the Regularization Parameter. Stability selection probabilities S
(m)
θ,k are calculated per value of a1465

regularization parameter m, while inclusion probabilities Π̃θ,k are some marginalization over m. MeBü used1466

a max operator. ShSa suggested a mean operator, which results in biased Π̃ values but with much lower1467

variance. Richardson (2010) questions whether some other integration over m is desirable. In simulations1468

with CJSboost, I tried both max and mean operators, and there was considerably better separation between1469

true and spurious covariates with the mean operator.1470

Inclusion Probabilities. The idea that stability selection can be used to approximate Bayesian posterior1471

inclusion probabilities was mentioned in the Discussion and Rejoinder of MeBü by Richardson (2010) and1472

Draper (2010). Therefore, I suggest that Π̃ values represent interpretable end-points for a CMR analysis and1473

can lead to correct inferences about the significance of covariates, as is Bayesian multi-model studies. The1474

CJSboost simulations suggest that this is a fruitful means of inference about the true model, but further1475

study will be necessary to elucidate the implied prior and whether there is any meaning in the Π̃ values1476

beyond their original role as thresholding statistics. The original developers of stability selection did not1477

espouse such a view: MeBü and ShSa wanted to cap the number of FDs using Π̃ as a threshold; Schmid1478

et al. (2012) wished to pre-screen a high-dimensional dataset of its spurious covariates; and Bach explicitly1479

desired a means of discarding covariates to derive a consistent estimator. In other words, stability selection1480

and Π̃ are tools to threshold one’s candidate set of covariates, and then perform estimation (but see Leeb &1481

Pötscher, 2008). Other uses will require further study.1482
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