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ABSTRACT 

Well-established evidence shows that children born preterm/low birth weight 

(LBW) are at increased risk of academic difficulties (Lee, Yeatman, Luna, & Feldman, 

2011; Pritchard et al., 2009) and, despite global IQ scores within the normal range, 

nonetheless display lower academic performance than their same age peers (Bhutta, 

Cleves, Casey, Cradock, & Anand, 2002; Kerr-Wilson, Mackay, Smith, & Pell, 2011). 

This is not fully understood and previous attempts to improve these circumstances 

through means of cognitive intervention have met with little success. Therefore, the 

current thesis investigates possible underlying mechanisms of this intellectual disparity 

and tests the effectiveness of one potential intervention. In doing so, the studies 

presented focus specifically on fluid intelligence (Taub, 2002). The investigation 

through fluid intelligence is relatively novel in the current literature and therefore 

worthy of further exploration. Normal individual differences in fluid intelligence have 

been explained with reference to information processing parameters. Previous studies 

have shown that children born preterm/LBW have impairments in basic processes 

identified with executive function (Aarnoudse-Moens, Smidts, Oosterlaan, 

Duivenvoorden, & Weisglas-Kuperus, 2009; Mulder, Pitchford, Hagger, & Marlow, 

2009). However, the current study is the first to test whether differences in fluid 

intelligence, as measured by the Cattell Culture Fair Tests, between preterm (n = 217) 

and typically developing children (n = 145) could be accounted for by differences in 

working memory and cognitive flexibility, as measured by the digit span tasks and the 

Wisconsin Card Sorting Test respectively. Results indicate that the seven to nine years 

old preterm cohort performed less well on measures of fluid intelligence than their peers 

across all age groups and their differences were partially mediated by both working 

memory and cognitive flexibility in a multiple mediation analysis. It also identified at 
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least one year of developmental delay in fluid intelligence between the clinical group 

and their peers. 

Provided with evidence from Study 1 and parallel research suggesting that 

computerized working memory training may enhance working memory and fluid 

intelligence in non-clinical groups (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; 

Klingberg, Forssberg, & Westerberg, 2002; Studer et al., 2009), the second goal of this 

thesis was to conduct a preliminary study to investigate the feasibility of cognitive 

training for children born preterm/LBW. Therefore, in the second study, the utility of a 

brief adaptive working memory span training program (Buschkuehl, Jaeggi, Kobel, & 

Perrig, 2008) was tested in typically developing children. Sixty-three children, aged 

seven to nine years, were randomly assigned to one of three groups: Intervention, active 

control and passive control. The intervention group was trained in the adaptive version 

of the working memory span task and the active control group was trained in the non-

adaptive version. Both groups trained for 15 minutes each day for a duration of 20 days. 

Participants in the passive control group participated only in pre and post assessments. 

All participants were assessed using the digit span and spatial span tasks for measuring 

working memory, the Stroop task for measuring executive control, a reaction time task 

for measuring processing speed and the Raven’s Standard Progressive Matrices for 

measuring fluid intelligence. Results indicate that children in the intervention group 

improved on their trained task and demonstrated significant far transfer effects on the 

assessment of fluid intelligence compared to both control groups. However, no near 

transfer to other measures was found. The reason behind the occurrence of far transfer 

effect without evidence of near transfer effects was unclear. However, given that the 

adaptive complex working memory training task was not in any way similar to the fluid 

intelligence measure, significant differences in fluid intelligence gains were unlikely to 
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have been a consequence of practice or general familiarity effects but, rather, a 

consequence of the training. 

Although Study 1 identified that working memory and cognitive flexibility 

partially mediate birth status-related differences in Gf, the impact of these variables on 

academic performance in children born preterm is still unknown. Nonetheless, current 

evidence of far transfer to fluid intelligence after adaptive complex working memory 

span training provides support for the utility of WM training and modifiability in Gf. 

This in turn provides a preliminary evidence-base approach for psychologists to work 

toward providing neuro-remediation treatment options to targeted clinical groups, such 

as those born preterm with fluid intelligence deficiencies. In combination, the outcomes 

of these two studies provide both a theoretical contribution to our understanding of the 

deficits observed in children born preterm and an applied contribution to beginning the 

process of developing appropriate intervention programmes suitable for this clinical 

group in the future, with hopeful prospects for improving cognitive outcomes. 
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CHAPTER 1  

General Overview 

 Advancement in obstetric and neonatal care has led to significant reductions in 

infant mortality and also improvements in the long term survival rates of infants born 

preterm and low birth weight (LBW; (Saigal & Doyle, 2008). Early intervention 

programs, such as caffeine for apnea in premature infants (Davis et al., 2010; Schmidt et 

al., 2007) and antenatal magnesium sulphate therapy (Doyle, Crowther, Middleton, 

Marret, & Rouse, 2010) have been shown to have short-term neurological benefits.  

However, there continue to be long-standing concerns regarding academic 

underachievement and long-term cognitive impairments amongst children born 

preterm/LBW.  

Children born preterm/LBW are at increased risk of academic struggle, with 

various studies documenting academic achievement to be lower than that of their full 

term peers (Bowen, Gibson, & Hand, 2002; Johnson, Wolke, Hennessy, & Marlow, 

2011; Mulder, Pitchford, & Marlow, 2010; Pritchard, et al., 2009; Roberts, Lim, Doyle, 

& Anderson, 2011; Taylor et al., 2011). Evidence for academic impairments has been 

documented not only during childhood but also continuing into adolescence and 

adulthood (Johnson, et al., 2011; Mathiasen, Hansen, Anderson, & Greisen, 2009; 

Taylor, et al., 2011). Special educational needs have also been reported to be more 

prevalent for this population (Lohaugen et al., 2010; Van Baar, Vermaas, Knots, de 

Kleine, & Soons, 2009).  

Given these circumstances, current clinical research needs not only to focus on 

increasing survival rates but also reducing morbidity through improving life outcomes.  

Accordingly, this will involve continuation in the work of understanding the 

mechanisms giving rise to academic difficulties and cognitive disparity, as well as 
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providing possible solutions aimed at reducing them.   

One important line of research is to investigate the precise nature of the 

cognitive profile of children born preterm/LBW - underachievement can be the result of 

various cognitive impairments.  Previous research on the effect of prematurity/LBW on 

cognitive ability has largely focused on general intelligence or Spearman’s g through 

standard intelligence testing. In the normal population, Full Scale Intelligence Quotient 

(FSIQ) as measured by Wechsler Intelligence Scale correlates very highly with the g 

factor (Keith, Fine, Taub, Reynolds, & Kranzler, 2006). Binet and Simon (1916) 

originally designed intelligence tests as practical assessment tools to identify individuals 

with learning difficulties and predict academic achievement (Nicolas & Levine, 2012). 

Their predictive power has been verified by existing evidence of high correlations 

between intelligence and academic achievement (r = .69 - .81; (Deary, Strand, Smith, & 

Fernanades, 2007; Rohde & Thompson, 2007; Tomporowski, Davis, Miller, & Naglieri, 

2008; Wechsler, 1991).   

There is general consensus that prematurity is associated with lower IQ test 

performance (Bhutta, et al., 2002; Kerr-Wilson, et al., 2011). However, although 

evidence points to significant group differences between this clinical group and full-

term/normal birth weight (NBW) children, the performance of children born preterm 

often remains within the normal range (Bhutta, et al., 2002; Kerr-Wilson, et al., 2011). 

Full term and NBW children with IQs in the 90s generally perform respectably at 

school, whereas relatively small deficits in IQ often correspond to persisting risk of 

academic problems amongst children born preterm/LBW (Pritchard, et al., 2009). 

Perhaps this measurement of intelligence is insufficiently sensitive to answer the 

question. This suggests that a different theoretical approach may be necessary.  

Intelligence tests, such as Wechsler Intelligence Scale for Children (WISC), 
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provide global and index scores that are designed to maximise practical use. Designers 

of Wechsler-type IQ tests set out to sample knowledge broadly across many domains, 

such as working memory and processing speed. Subsequent analyses found a g factor 

using the measurement model approach. The measurement model approach refers to the 

process of identifying latent factors of intelligence through factor analyses of normative 

data representing performance on the instrument. However, this approach results in only 

a descriptive account of individual differences in performance. It does not, and was not 

intended to, identify theoretical constructs (Taub, 2002). 

In contrast, fluid intelligence (Gf), proposed by Cattell, is a theoretical construct 

representing one’s ability to reason about novel events, which is independent of one’s 

cultural knowledge and experience (Cattell, 1963). Tests that measure Gf, such as 

Raven’s Progressive Matrices (RPM) and the Cattell Culture Fair Intelligence Tests 

(CCFIT; (Cattell & Cattell, 1949), were developed based on theories of intelligence, 

using a theoretical model approach, and were designed using narrow non-verbal tests of 

abstract reasoning. Despite differences in operationalization, g, Gf and FSIQ are 

sometimes viewed as interchangeable entities (Carpenter, Just, & Shell, 1990; Carroll, 

1993, 2003; Keith, et al., 2006). For examples, some authors have suggested that Gf is 

identical to the g factor based on factor analysis of a range of psychometric cognitive 

ability tests (Gustafsson, 1984; Keith, et al., 2006; Kvist & Gustafsson, 2008). 

However, Duncan and his colleagues (1995) suggested FSIQ and Gf part company in 

some populations. For example, individuals with damage to the prefrontal cortex can 

evince no change in FSIQ but a deficit in Gf. Possibly, FSIQ represents a historical 

measure of how well such cases could think and cope in the past, which became 

embedded knowledge and, therefore, their premorbid Gf would be the best predictor of 

their current FSIQ, while their current Gf might be a better indicator of how well they 
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will cope with current and future thinking. Accordingly, tests such as RPM and CCFIT 

are suitable for theoretically-based investigations of the effect of prematurity/LBW on 

general intelligence and may provide more insight into the observation that children 

born preterm/LBW continue to display deficits in academic performance while 

obtaining normal FSIQ.  To understand causal relations in areas of cognitive abilities 

and provide empirically based suggestions for specific intervention recommendations, 

we need to incorporate theory and move beyond purely descriptive use of the FSIQ 

score.  

Some researchers have also attempted to explain individual differences in Gf 

through basic information processing constructs, such as working memory capacity, 

inhibitory control and speed of processing (A. R. A. Conway, Cowan, Bunting, 

Therriault, & Minkoff, 2002). These processing parameters are thought to constrain a 

person’s ability to perform complex thinking. Additionally, there has been a long-

standing parallel body of research that focuses on the development of Gf and its 

relationship with the aforementioned information processing constructs (Friedman et al., 

2006). Most studies of individuals born preterm/LBW reveal impairments in such 

information processing constructs, particularly executive function (Aarnoudse-Moens, 

Smidts, et al., 2009; Luu, Ment, Allan, Schneider, & Vohr, 2011; Nosarti et al., 2007) 

and working memory (I. S. Baron, Erickson, Ahronovich, Litman, & Brandt, 2010; Luu, 

et al., 2011).  

Executive function (EF) refers to high-order cognitive processing that involves 

self-regulation of reasoning and planning towards goal-directed behaviour (P. J. 

Anderson, Howard, & Doyle, 2010; Clark, Pritchard, & Woodward, 2010; Miyake et 

al., 2000). Working memory (WM) is defined as the mental capacity for temporary 

storage and active manipulation of information used in a variety of day-to-day activities 
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(Baddeley & Hitch, 1974; Kane, Conway, Bleckley, & Engle, 2001). However, no 

investigation has been reported yet on the effects of birth status on Gf and whether it 

may be attributable to impairments in these information processing parameters.   

Researchers investigating individual differences in the normal population have 

debated the direction of causality between Gf and information processing parameters for 

a long time (Engel de Abreu, Conway, & Gathercole, 2010; Heitz, Unsworth, & Engle, 

2005; Yuan, Steedle, Shavelson, Alonzo, & Oppezzo, 2006). Although controversial, 

some recent evidence showed that computerized WM training results in increased 

performance on measures of Gf, which implies a theoretical causal direction, while also 

suggesting the modifiability of Gf.  

Currently, most computerized WM training studies have been directed to 

individuals with Attention Deficit/Hyperactivity Disorder (ADHD) and university 

volunteers. Cogmed and dual n-back training programs have captured the most attention 

and working memory span training studies have just begun to show some success. It is 

suggested that these interventions may improve trained WM and possibly generalize to 

non-trained areas of WM and even Gf (Buschkuehl & Jaeggi, 2010; Jaeggi, et al., 2008; 

Thorell, Lindqvist, Bergman, Bohlin, & Klingberg, 2009). This evidence represents 

pioneering success in cognitive intervention. Consequently, success in WM-focused 

training is potentially much stronger evidence that WM plays a causal role in Gf as it is 

based on experimental design rather than correlational design. However, current 

evidence continues to show inconsistent results. These results will be discussed in later 

chapters. In particular, more studies are required to clarify the utility of WM span 

training, its effectiveness in typically developing children, as well as its potential for 

clinical groups such as those born prematurely.  
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Aims of the Current Studies 

The present studies are designed to help further understanding of the underlying 

mechanisms of the impairments found in preterm/LBW children and test possible casual 

links between cognitive abilities. These studies go beyond the traditional focus on 

FSIQ, and instead, seek to assess differences using the theoretically-based construct, Gf. 

Given strong associations respectively from FSIQ and Gf towards general intelligence, 

one would expect children born preterm/LBW also to perform less well on measures of 

Gf, however, no published studies have yet confirmed these differences. Additionally, 

no studies have investigated the neuropsychological underpinning of g amongst 

preterm/LBW, using Gf. Thus, the aim of the first study is to test whether any 

differences in Gf between children born preterm and typically developing children are 

accounted for by differences in information processing parameters, specifically WM 

and cognitive flexibility. A mediation modelling approach will be applied to allow the 

investigation of both mediators concurrently, which has rarely been documented in past 

research into prematurity and cognition.  If WM does indeed serve as a mediator, it 

would make logical sense that a WM-focused intervention may narrow the gap in Gf 

between the preterm/LBW population and typically developing children. Even if WM 

does not account for the between-group difference, WM training may still serve as a 

useful intervention for enhancing Gf. This leads to study two, in which the efficacy of 

intensive adaptive WM span training in increasing Gf will be tested in typically 

developing children, with a view to providing preliminary support for the development 

of an intervention suitable for children born preterm/LBW.  

 Together, the two studies seek to make both a theoretical contribution to the 

understanding of the deficits observed in children born preterm/LBW and an applied 

contribution to clinical practice, by starting the process of developing appropriate 
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evidence-based interventions. Both of these studies add to the literature that may assist 

in enhancing cognitive sequelae for preterm birth and possibly ameliorating the 

practical academic problem found in these children.   

Overview of Chapters 

 A review of the literature on children born preterm/LBW is presented in Chapter 

2. In particular, the review will include a comprehensive overview of definitions, 

incidence and impact of preterm birth/LBW, and academic performance outcomes for 

such children.  

Next, the literature on cognitive outcomes for children born preterm/LBW will 

be reviewed in Chapter 3.  A thorough overview of the preterm/LBW population’s 

cognitive performance in IQ tests and domain-specific abilities will be given.  

Following this, the effects of birth status differences in information processing tasks 

relevant to EF will be described. It will be shown that, although adverse outcomes are 

observed in academic performance, children born preterm/LBW often fall within the 

normal IQ range as their same age peers and, therefore, it will be argued that further 

investigations through the lens of Gf would be useful in understanding the nature of the 

deficit experienced.  

In Chapter 4, Study 1 will be described, which aims to test whether any 

difference between children born preterm and typically developing children in Gf is 

accounted for by individual differences in working memory and cognitive flexibility, 

using a mediation modelling approach.   

The literature on computerized working memory training is reviewed in Chapter 

5. Recent intervention studies are described, along with descriptions of their variations 

and treatment outcomes. Differences amongst the training regimes are discussed with 

concluding comments on the qualities of an ideal working memory training study. It 
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will be argued that, amongst other training regimes, complex working memory span 

training involves theoretical and practical components suitable for further investigation 

with typically developing children and clinical cohorts such as children born 

preterm/LBW. 

Chapter 6 presents Study 2, an evaluation of an intensive computerized WM 

intervention with typically developing children aged between 7 and 9 years. Participants 

are assigned to three groups and their performance on working memory, executive 

attention, speed of processing and Gf  are measured and compared following training. 

The utility of the intervention and the importance of the adaptive nature in the training 

procedure are discussed.   

Finally, Chapter 7 concludes the thesis with an integrated discussion of the 

findings, clinical implications, and future directions in research for children born 

preterm/LBW. 
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CHAPTER 2  

Literature Review: 
Children Born Preterm/Low Birth Weight 

 
Introduction 
 
 Previous research has documented less favourable outcomes for children born 

preterm/LBW than their full-term peers (Aarnoudse-Moens, Weisglas-Kuperus, Van 

Goudoever, & Oosterlaan, 2009; Bhutta, et al., 2002; Doyle & Anderson, 2010; E. A. 

Hutchinson et al., 2013; Johnson, et al., 2011). Recent statistics show that the incidence 

of preterm/LBW status is on the rise due to improvements in modern medical 

technology, giving children born extremely preterm and extremely low birth weight a 

higher chance of survival (Wyatt, 2010). However, the differences between this clinical 

cohort and their peers in terms of cognitive sequelae do not appear to have changed for 

the better. This chapter will present a literature review to establish the definitions of the 

basic terminology associated with preterm birth/LBW, current knowledge concerning 

its incidence, and commonly associated neurological sequelae. Academic outcomes of 

those born preterm/LBW will also be discussed. 

Defining Prematurity 

 Prematurity can be defined in terms of gestational age (GA) or birth weight 

(BW).  Gestational age can be categorized as preterm, term, or post-term. Preterm birth 

is defined by the World Health Organization (Blencowe et al., 2012; 2014), as being 

born at less than 37 weeks of gestation.  Those individuals born within 33-36 GA are 

considered moderately preterm (MPT), those less than 32 weeks GA are considered 

very preterm (VPT) and those less than 28 weeks are considered extremely preterm 

(EPT; (Lawn et al., 2010).  “Full-term” is defined as being born between 37-41 weeks 

of gestation, while being born at or beyond 42 weeks of gestation defines post-term 

birth (Johansson & Cnattingius, 2010). When defined using BW, the World Health 
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Organization defines low birth weight (LBW) as referring to those born at less than 

2,500 g. It can be further categorized as very low birth weight (VLBW) for babies 

weighing less than 1,500 g and as extremely low birth weight (ELBW) for babies 

weighing less than 1,000 g (United Nations Children's Fund & World Health 

Organization, 2004).  

 When studying prematurity, the inclusion of both BW and GA is important. This 

is because there are two groups of newborns that are not adequately accounted for when 

BW is used as the sole criterion for risk.  First is the subgroup of LBW infants known as 

“small for gestational age” (SGA), which means that, although they may be either 

preterm or born at term, they have a lower than expected gender-specific BW. Their 

BW is estimated to be below the 10th percentile for its appropriate GA. Another group 

are affected by “intrauterine growth restriction” (IUGR), frequently documented by a 

declining rate of fetal growth detected by prenatal ultrasound over the pregnancy period. 

IUGR is considered as a subset of SGA. The further the BW is below the appropriate 

GA percentile of a SGA infant, the higher likelihood of the infant being considered 

IUGR. That said, some IUGR infants may be born at full-term with a LBW, yet their 

BW may not be low enough to meet criteria for SGA. Conversely, not all SGA infants 

are small as a result of not reaching their growth potential, and, therefore, would not 

meet criteria for IUGR. They can be small but otherwise healthy. An infant’s head 

circumference, aside from birth weight and birth length, has also been often used as an 

indicator of severity in growth restriction (Campbell et al., 2012; Frisk, Amsel, & 

Whyte, 2002; Johansson & Cnattingius, 2010; Martin & Dombrowski, 2008; Saleem et 

al., 2011; Wollmann, 2009). Therefore, sample characteristics on both GA and BW are 

provided for the participants in Study 1 of Chapter 4. 

 Children born prematurely can also be categorized according to one of three 
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typical clinical conditions, namely, spontaneous preterm labour, preterm premature 

rupture of the membranes (PPROM), and medically induced preterm labour. 

Spontaneous preterm birth refers to natural premature contractions before the fetus 

reaches full-term. This is the most common type of preterm birth and is often associated 

with maternal factors such as previous preterm deliveries, stress, smoking, substance 

abuse, as well as low body mass or weight gain during pregnancy.  PPROM refers to 

labour that is initiated by the rupture of membranes. It is often associated with, but not 

limited to, inflammations, uterine distension, and cervical anomalies. Finally, medically 

induced preterm labour refers to birth deliveries through Caesarian section or labour 

induction initiated by the physician to reduce health risk to the fetus or mother. This 

procedure is often associated with fetal distress, intrauterine growth restriction and 

maternal complications, such as antepartum bleeding and preeclampsia (Behrman & 

Butler, 2007; Johansson & Cnattingius, 2010; Moutquin, 2003; Schetter & Glynn, 

2011). Although these are informative categorical details, their differentiating effects on 

preterm/LBW individuals’ cognitive outcomes is not the focus of this research and they 

are, therefore, not included in the descriptions of later studies. 

Incidence of Preterm Birth 
 

According to recent statistics, global incidence of preterm birth continues to rise 

over the years. There was approximately 13 million preterm born babies in 2005, with 

an approximate 9.6% preterm birth rate (Beck et al., 2010). In 2010, there was 

approximately 14.9 million preterm born babies, with a preterm birth rate of 

approximately 11.1% (Blencowe, et al., 2012).   

More-developed countries documented 7.5% preterm birth rate as compared to 

the 12.5% for less-developed countries. A large burden of these figures was accounted 

for by Africa (31%) and Asia (54%), which documented 85% of the overall preterm 
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births (11 million). The preterm birth rate for Africa and Asia was documented at 11.9% 

and 9.1% respectively. North America also had a very high preterm birth rate of 0.5 

million, which translates to 10.6% of all births. There was an estimated 0.9 million 

preterm births in Latin America and the Caribbean and their preterm birth rates were 

reported at 8.1%. Europe had the lowest preterm birth rate documented at 6.2%, which 

is approximately 0.5 million preterm births (Beck, et al., 2010).  

Comparisons amongst developed countries, such as Australia, Canada, Japan, 

New Zealand, the United Kingdom and United States of America, on preterm birth rate 

yield similar figures. These countries also showed a continuous rising trend in preterm 

birth over the past three decades, with a current rate ranging from 5% to 9% (Lawn, et 

al., 2010). In line with the trends of these countries, perinatal statistics in Western 

Australia showed that out of 30,670 births in 2008, 6.7% were of prematurely born (Le 

& Tran, 2008), followed by more recent statistics showing an increase to an 

approximate 8.7% (2,708 prematurely born out of 31,264 newborns) in Western 

Australia (J. A. Hutchinson, 2012).   

Commonly Associated Neurological Disorders in Preterm Birth/LBW 

Individuals born preterm are vulnerable to complications at birth such as 

intraventricular haemorrhage (IVH;(Adams-Chapman, 2009; Wyatt, 2010) and white 

matter injury (Khwaja & Volpe, 2008; Wyatt, 2010), as well as neurological pathology. 

Two of the most commonly found neurological disorders in preterm/LBW cohorts are 

Cerebral Palsy (CP; (Krageloh-Mann, 2010; Platt et al., 2007) and Attention 

Deficit/Hyperactivity Disorder (ADHD; (Amor, Chantal, & Bairam, 2012; Lindstrom, 

Lindblad, & Hjern, 2011).  

 CP refers to permanent motor deficiency that causes limitations in developing 

movements and postures.  It stems from non-progressive damage to the developing fetal 
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or infant brain. Often, this motor disorder spectrum also affects cognitive abilities, 

perception and sensation, through occurrences of epilepsy (Rosenbaum et al., 2007). 

The most recent prevalence estimates for CP was 2.11 per 1000 live births (95% CI 

1.98-2.25;(Oskoui, Coutinho, Dykeman, Jette, & Pringsheim, 2013). Recent review of 

49 studies suggested that the prevalence of CP increased as GA and BW decreased. In 

particular, low GA individuals were at increased risk for developing CP.  Those born 

EPT showed the highest prevalence (111.80 per 1000 live births; 95% CI 69.53-179.78) 

whereas those with appropriate GA of more than 36 weeks were of lowest prevalence 

(1.35 per 1000 live births; 95% CI 1.15-1.59). Patterns were similar when pooled 

prevalence was reported according to BW. VLBW individuals showed highest 

prevalence (59.18 per 1000 live births; 95% CI 43.38-73.95) and those with normal BW 

above 2500 g had the lowest prevalence of CP (1.33 per 1000 live births; 95% CI 1.19-

1.49). The prevalence amongst ELBW did not differ significantly from the VLBW 

group (Oskoui, et al., 2013).  

 ADHD is a neurodevelopmental and psychiatric disorder that, according to DSM 

IV-TR, can be categorised into three different subtypes: ADHD/C (Attention-

Deficit/Hyperactivity Disorder, Combined Type), ADHD/H (Attention-

Deficit/Hyperactivity Disorder, Predominantly Hyperactive-Impulsive Type) and 

ADHD/I (Attention-Deficit/Hyperactivity Disorder, Predominantly Inattentive Type; 

(American Psychiatric Association, 2000). Studies on neurodevelopmental trajectories 

suggest that ADHD stems from a delay in cortical maturation, particularly in the lateral 

prefrontal cortex (Shaw, Gogtay, & Rapoport, 2010; Shaw et al., 2013). According to 

earlier reported reviews on children born preterm (Bhutta, et al., 2002) and a recent 

large-scale study of the Swedish preterm cohort (Lindstrom, et al., 2011), EPT children 

were at double the risk of full-term school-aged children to be diagnosed with ADHD.  
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According to Bhutta et al. (2002), being born at lower GA was associated with 

increased risk of ADHD, reported at a pooled risk ratio (RR) of 2.64 (95% CI 1.85-

3.78) compared to controls.  A further breakdown in the degree of birth immaturity 

demonstrated a GA-related gradient.  EPT children were at increased risk with an odds 

ratio (OR) of 2.1 (95% CI 1.4-2.7), while the OR for VPT was 1.6 (95% CI 1.4-1.7). 

MPT between 33 to 34 weeks and MPT between 35 to 36 weeks were reported with 

ORs at 1.4 (95% CI 1.2-1.7) and 1.3 (95% CI 1.1-1.4) respectively (Lindstrom, et al., 

2011).  Recent data gathered from a National Health Interview Survey between 1997 

and 2005 in the United States provided similar findings regarding children born with 

LBW. Prevalence rate was reported highest in children born ELBW (Adjusted odds 

ratio [AOR] at 2.0; 95% CI 1.3-2.8), then VLBW (AOR 1.8; 95% CI 1.4-2.2) and LBW 

(AOR 1.4; 95% CI 1.2-1.6). Adjustments included factors such as race, household 

income, maternal education and other disorders (Boulet, Schieve, & Boyle, 2011).   

 In addition, studies also suggest that children born preterm/LBW more often fit 

criteria for ADHD/I rather than ADHD/H (Elgen, Sommerfelt, & Markestad, 2002; B. 

Hayes & Sharif, 2009). For example, in a recent South German study, VP/VLBW (n = 

281) were reported to be at increased risk for ADHD/I but not for AHDH/H as 

compared with full-term controls (n = 286). Specially, ORs for ADHD/I were 

documented at 2.8 (p < .001) and 1.7 (p = .02) for children at 6 years 3 months and 8 

years 5 months respectively. This was in contrast to ORs for ADHD/H which were 

documented at 1.4 (p = .396) and 0.9 (p = .82) for children at 6 years 3 months and 8 

years 5 months, respectively (Jaekel, Wolke, & Bartmann, 2013).   

Prematurity and Academic Performance 

Outcomes of Standardized Tests and Teacher Ratings 

Academic struggles become noticeable when children born preterm/LBW enter 
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the school system. According to standardized achievement tests, as well as teacher and 

parent ratings, these children perform less well than their peers across various academic 

subjects. In particular, math-related (Bowen, et al., 2002; Pritchard, et al., 2009) and 

reading-related (Bowen, et al., 2002; Lee, et al., 2011; Roberts, et al., 2011) activities 

have been found to be profoundly affected. A thorough meta-analysis of 14 studies that 

compared participants born VPT/VLBW to full-term peers, with ages ranging from five 

to 18 years, provided combined effect sizes for math at -0.60 and for reading at -0.48 

(Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009). Later studies provided similar 

evidence with comparable effect sizes. For example, Pritchard et al. (2009) compared 

children born VPT (≤ 33 weeks GA, n = 102) with their full-term peers (n = 108) on the 

Woodcock Johnson Tests of Achievement (WJ-III) subtests at six years of age.  

Findings revealed that the performance of children born VPT was inferior to their term 

peers for math fluency (p < .001, d = -0.62). Consistent with this, significant differences 

have also been found between children born EPT (< 26 GA, n = 219) and their 

classmates (n = 153) at 11 years of age, matched for gender and ethnicity, when 

assessed using the Wechsler Individual Achievement Test – II (WIAT-II). The children 

in the clinical group were outperformed by their peers with a 14.8-point difference (p < 

.0001) at a large effect size (d = -1.0) for math skills and a 7.7-point difference (p < 

.0001) at a moderate effect size (d = -0.6) for reading (Johnson, et al., 2011).   

Similar findings have been indicated by studies using ratings from teachers and 

parents. In a large scale study in Denmark, teachers and parents rated the school 

performance of children born preterm/LBW as compared to that of their peers at 10 

years of age (n = 5,319). With all results adjusted for gender, breastfeeding status and 

parental education level, findings indicated that children with LBW (<2,500 g) showed 

significantly higher risk of difficulty in both math (AOR 4.46, 95% CI 1.41-15.00) and 
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reading (AOR 1.85, 95% CI 0.81-4.22) than those with BW between 3,500 g and 3,999 

g. However, those with GA in the 33-36 week range (MPT) performed as well as their 

peers in math, which was inconsistent with other documented ratings in the literature 

(Kirkegaard, Obel, Hedegaard, & Henriksen, 2006).  

Further GA categorization in studies using teacher ratings has suggested 

difficulties in overall academic achievement among children born preterm. For 

example, with teachers blinded to students’ birth status, research has indicated that 

children born VPT, at six years of age, were rated as below average or delayed in 

academic performance two to three times more often than their peers.  The most 

concerning area rated as below average or academically delayed by teachers was math 

(VPT: 44%, n = 41 vs. FT: 14%, n = 14). Significant differences from full-term children 

were discovered in subject areas including math (p < .001, d = -0.67), reading (p < .001, 

d = -0.50), written language (p < .001, d = -0.58), language comprehension (p < .01, d = 

-0.43), handwriting (p < .001, d = -0.61), spelling (p < .001, d = -0.62), and physical 

education (p < .001, d = -0.67), but not expressive language (Pritchard, et al., 2009). 

Similar findings have been reported by Mulder, Pitchford, and Marlow et al. 

(2010), who compared teacher ratings of 9- to 10-year-old children born VPT (< 31 

weeks GA, n = 48) to those of matched term controls (n = 17). VPT children were rated 

significantly below average more frequently than their peers, not only for total academic 

achievement (OR 11.9, 95% CI 1.4-96.9) but also on math (OR 6.5, 95% CI 1.7-25.8) 

and English (OR 3.8, 95% CI 1.1-13.5).  

It is worth noting that, although standardized tests would likely provide less 

biased reflections, teachers routinely grade their students and thus their ratings are 

valuable reflections of day-to-day observations. However, these observations may also 

be affected by general classroom behaviour that may create a negative halo effect, thus 
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resulting in lower ratings. Even taking these factors into account, studies clearly 

illustrate that, whether academic abilities are measured by standardized achievement 

tests or teacher/parent ratings, children born preterm/LBW are at increased risk of 

academic difficulties compared to their peers.  

 Special Educational Needs and Academic Attainment 

Need for special education and grade retention have also been documented as 

more prevalent in children born preterm/LBW than their same-age peers.  For example, 

Mulder et al. (2010) reported that teachers rated their VPT group as significantly more 

likely to need special education (OR 7.2, 95% CI 1.5-35), including one-on-one 

assistance or small group learning, as well as help from professional care such as an 

educational psychologist, clinical psychologist or speech pathologist.  Interestingly, this 

does not only appear in VPT children:  a study comparing MPT and full-term children 

at eight years of age also found similar outcomes. The study showed that the group of 

MPT children were twice as likely to require special education as the general Dutch 

population.  As well, amongst those within mainstream schooling, the rate of grade 

retention doubled in the MPT group as compared to the term group (p < .01; (Van Baar, 

et al., 2009).  This study further demonstrated that, although MPT children appear to be 

at a lower risk of adverse health outcomes than VPT or EPT, they still require additional 

educational support and are still highly vulnerable to academic delays.  

More special educational needs are also apparent in adults born preterm/LBW. 

In line with studies on school-aged children born preterm/LBW, studies of adults 

indicate differences in educational profile. A recent Norwegian study showed that 22% 

of 19-year-old adults born VLBW (n = 55) reported having had special education 

assistance in the past as compared to 2.5% in the comparison group (n = 81; OR 11.02, 

95% CI 2.4-51.5, p < 0.001; (Lohaugen, et al., 2010).  
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Furthermore, relatively low academic attainment has been reported in adults 

born preterm. According to a nation-wide study of 27- to 29-year-old adults from 

Denmark, educational outcomes were lower in the VPT group (n = 1,422) than the full-

term group (n = 192,223).  The VPT group was observed to have completed less tertiary 

education (OR 0.77, 95% CI 0.69-0.89, p < 0.001) than the full-term group. Evidence 

also showed that the VPT group earned 11.7% (p < 0.001) less income, as well as 

depending more often on social pension (OR 3.27, 95% CI 2.58-4.13, p < 0.001) and 

welfare support (OR 2.14, 95% CI 1.81-2.55, p < 0.001) than the full-term group 

(Mathiasen, et al., 2009).  

It is important to point out that significant results reported by the 

aforementioned studies remained unchanged even after accounting for potential 

confounding factors. The findings remained after controlling for socio-economic status 

(SES; (Lohaugen, et al., 2010; Pritchard, et al., 2009) and maternal education 

(Lohaugen, et al., 2010; Mathiasen, et al., 2009), as well as excluding children with 

neurocognitive impairments (Johnson, et al., 2011; Pritchard, et al., 2009). 

Summary 

 In summary, with the increasing trend in incidence of preterm/LBW birth and 

high prevalence of neurodevelopmental disorders such as ADHD and CP associated 

with this status, it is not surprising that the impact of preterm birth/LBW on later life 

development has captured a vast interest in the literature. In particular, evidence of 

impairments in academic performance associated with preterm/LBW have been found 

in numerous areas of academic skills, particularly in math-related and reading-related 

activities. These impairments have been shown to persist from early school age to 

adulthood. These educational outcomes can also have long-lasting effects on an 

individual’s earnings and social welfare dependency (Doyle & Anderson, 2010; 
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Lohaugen, et al., 2010; Mathiasen, et al., 2009). Chapter 3 will review the extensive 

research that has been conducted on the possible cognitive causes of these educational 

outcomes.  
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CHAPTER 3 

Literature Review:  
Cognitive Outcomes of Preterm Birth 

 
Introduction 

 Healthcare professionals are not only interested in improving survival rates and 

neonatal care for children born preterm/LBW but also their long-term developmental 

outcomes (Ruegger, Hegglin, Adams, & Bucher, 2012; Vohr, 2010). Cognitive 

functioning is one of the most frequently studied topics amongst children born 

preterm/LBW. This is because cognitive abilities are highly associated with academic 

performance (r = 0.81; (Deary, et al., 2007), and to a lesser but not insignificant extent 

with other life outcomes including job status, heath and quality of life (Deary & Batty, 

2007; Mõttus, Gale, Starr, & Deary, 2012).    

 In the previous chapter, it was established that children born preterm/LBW, on 

average, perform less well than their full-term peers in terms of academic outcomes, and 

these outcomes are likely to persist into adolescence and adulthood.  In this chapter, 

studies comparing performance of children born preterm/LBW and their full-term peers 

on cognitive abilities will be reviewed.  In particular, the focus will be on the seemingly 

conflicting findings on normal range IQ, observed in a majority of yet not all preterm 

literature, but poor academic achievement (Bhutta, et al., 2002; Kerr-Wilson, et al., 

2011). In an attempt to explain this, along with the majority of past research focusing on 

traditional IQ, Gf and information processing parameters will be introduced as a 

potential avenue for theoretically based investigation. The investigation through Gf is 

also relatively novel in the current literature and therefore worthy of exploration. Given 

the extensive amount of detail presented in this chapter, Figure 3.1 will assist in 

understanding the flow of information.  
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Figure 3.1. The flow chart presents the course of information presented in Chapter 3.  
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Intelligence Quotient (IQ) and Education Attainment 

According to Spearman’s (1904) General Cognitive Ability (g factor) theory,  

individual differences in intellectual ability are largely captured by a single, general 

construct, referred to as g. Those seeking to measure this construct generally define g as 

the common variance shared by cognitive ability measures drawn from different content 

domains (e.g., verbal, spatial, numerical etc.).  

IQ tests developed to measure intelligence typically derive a general IQ score 

from performance on a battery of different cognitive ability measures. Binet and Simon 

(1916) originally designed such a test with the aim of predicting a person’s academic 

performance (Gottfredson, 1997; Jensen, 1998). The predictive value of psychometric 

intelligence estimates for individual differences in academic achievement has been 

extensively researched. It is evident that higher IQ is generally associated with better 

academic achievement (Deary, et al., 2007; Glutting, Youngstrom, Ward, Ward, & 

Hale, 1997; Wechsler, 1991). For example, Wechsler (1991) reported high correlations, 

that ranged from .70 to .81, between its Full Scale IQ score on WISC-III and an 

achievement composite from the Wechsler Individual Achievement Test (Wechsler, 

1992).  In corroboration, Deary and his colleagues (2007) analysed data of over 70,000 

children from United Kingdom, at age 11, on the Cognitive Abilities Test (CAT) and 

found that participants’ performance positively correlated with all 25 subject scores 

measured in the national examinations General Certificate of Secondary Education 

Examination (GCSE) as tested at 16 years old. Effect sizes were noted as ranging from 

medium to large. In particular, the following categories received the highest 

correlations, with the CAT’s overall intelligence score correlating with overall GCSE 

point score (r = .69, p < .001), GCSE best 8 subject scores (r = .72, p < .001), 

individual’s English score (r = .67, p < .001), and individual’s Math score (r = .77, p < 
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.001).  

The use of recognized standardized psychometric instruments and large samples 

in the aforementioned studies provide strong evidence for the positive correlation 

between intelligence and later education achievement.  Given the strong links between 

intelligence and academic achievement in the general population, a discussion of IQ test 

performance in the preterm population is warranted. 

Prematurity and IQ 

 Children born preterm/LBW have been documented to perform less well on IQ 

tests.  Bhutta and colleagues (2002) performed a meta-analysis of 15 studies, with 

findings involving 1,556 children born preterm and 1,720 controls tested across the age 

range of five to 14 years. The cognitive scores in their studies were determined from a 

variety of tests that all used the same mean (100) and standard deviation (15). 

Particularly, the WISC was most frequently used, while other assessments included the 

Wechsler Preschool and Primary Scale of Intelligence (WPPSI), the Kaufmann 

Assessment Battery of Childhood (KABC), and the British Abilities Scale (BAS).  The 

authors documented in their findings that preterm birth was associated with a 10.9-point 

difference in intelligence scores (95% CI 9.2-12.5). They also reported that there was a 

dose-relationship where lower IQ scores were correlated with lower birth weight (R2 = 

0.51, p < .001) and gestational weeks at birth (R2 = 0.49, p < .001). However, only two 

of the studies reported an average IQ of 1 SD below the mean for their preterm birth 

groups, while all others reported means within the normal range. The mean scores for 

controls in the meta-analysis were also noted as often scoring above 100. There may be 

an issue of sampling with lower-scoring full-term children not being well represented.  

 Although there have been continuous improvements in medical practice and 

prenatal care over the past four decades, this did not appear to have changed the 
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neurodevelopmental outcomes of preterm birth/LBW population (I. S. Baron & Rey-

Casserly, 2010). Kerr-Wilson, Mackay, Smith and Pell (2011) published an updated 

meta-analysis reviewing 27 studies that included 3,504 preterm and 3,540 term 

individuals tested between three and 16 years of age. The authors found consistent 

results nearly a decade after Bhutta and colleagues’ (2002) meta-analysis. The updated 

analysis included standardized psychometric assessments such as the KABC, the BAS, 

the McCarthy scale and various versions of the Wechsler IQ scales. Results indicated 

that there remained an overall IQ score difference of 11.94 points (95% CI 10.47-13.42, 

p < 0.001) favouring those born at term. A significant dose-relationship was found 

across the GA range (adjusted coefficient: -0.91, 95% CI -1.64, -0.17, p = 0.018) where 

lower GA was associated with lower IQ score. Specifically, it was also indicated that at 

< 28 weeks GA, a mean difference of 13.9 points was noted (95% CI 11.5-16.2, p = 

0.001), while an 11.4 point mean difference was found in those between 28-31 weeks 

GA (95% CI 9.7-13.2, p = 0.022) and finally an 8.4 point mean difference for those 

preterm birth individuals born at ≥ 32 weeks GA (95% CI 6.6-10.2, p = 0.314; (Kerr-

Wilson, et al., 2011). This recent meta-analysis confirmed not only at least an 8.4-point 

difference in IQ scores favouring full-term children over children born preterm, but also 

that a strong dose-response relationship exists between prematurity and IQ.  It was 

documented that IQ dropped steadily with the reduction of each gestation week. Similar 

to the previous review, a majority of the studies reported preterm groups to have mean 

IQ scores within the average range, and only four out the 27 the studies found the 

preterm birth group to have a mean IQ score of 1 SD below the mean. The control 

groups were better represented in this meta-analysis than Bhutta et al.’s (2002) as the 

mean scores for the control groups were more evenly distributed.  

A strength of the two meta-analyses was that they both excluded studies that 
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categorized children’s birth status according to BW only and also focused on GA as an 

inclusion criterion due to the possible inclusion of children born full-term but small for 

gestational age (SGA). A shortcoming for both meta-analyses was that the authors did 

not report on whether any particular demographic variables played a significant role in 

the overall differences between children born preterm and their controls.  

Nevertheless, more specific observations demonstrate that children born 

preterm/LBW achieve lower scores on IQ assessments than their peers, even though 

excluding neurologically impaired participants and adjustments on SES reduced the 

group differences. For example, in an Australian study that investigated the WISC-III 

scores of 8-year-old school-aged children born VPT and ELBW (n = 298) and their 

peers weighing more than 2,499 g (n = 262), a 9.4-point (95% CI 12.1 to 6.7) difference 

was found in FSIQ where the control group scored higher than the preterm/LBW group. 

After excluding children with neurosensory impairments from the analysis, there 

remained an 8.8 point difference (95% CI 11.6 to 6.1), and a 7.6 point (95% CI 10.3 to 

4.9) difference after SES adjustments (P. J. Anderson, Doyle, & the Victorian Infant 

Collaborative Study Group, 2003).  

Similar results were reported in a more recent study with 8-year-old children 

born EP/ELBW (n = 189) and their term born/normal birth weight controls (n = 173). 

Tested on WISC-IV, children in the control group scored higher than the EP/EBLW 

group with a mean difference of 12.5 points (95% CI 15.5 to 9.5). After SES 

adjustments, the difference was reduced but continued to be significant (10.2 points, 

95% CI 1.7 to 6.6). After SES adjustments and excluding children with neurosensory 

impairments, the difference was further reduced, yet still significant (8.8 points, 95% CI 

12.2 to 5.3; (E. A. Hutchinson, et al., 2013). Accordingly, there is an IQ score 

difference of approximately half a SD attributable to birth status and not neurosensory 
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impairments or low SES.  

Do Cognitive Differences Measured by IQ Tests Persist into Adulthood?  

Studies not only report lower IQ performance for this cohort of children, but 

cross-sectional data suggest that these deficits persist into adulthood (Allin et al., 2008; 

Hallin, Hellstrom-Westas, & Stjernqvist, 2010; Pyhala et al., 2011). For instance, a 

recent study compared 18-year-old participants born EPT/ELBW (n = 52), with an 

average GA of 27 weeks (SD = 1.0) and average BW of 1002 g (SD = 234 g), to their 

full term peers (n = 54), with an average GA of 40 weeks (SD = 1.5) and average BW of 

3612 g (SD = 525 g).  Participants were matched according to gender, age and 

residential location. Results indicated significant differences between the two groups on 

measures of IQ, using the WAIS-III, even after adjusting parental educational level 

(EPT/ELBW FSIQ: M = 92.8, SD = 15.4 vs Controls FSIQ: M = 105.7, SD = 12.5, p < 

0.001) with 95% confidence interval (CI) of the mean difference ranging from -18.27 to 

-7.45 (Hallin, et al., 2010). The authors did not provide statistical results before SES 

adjustments were made but did note that the outcome of results were not different.  It is 

also noteworthy that despite differences between the two groups, the mean FSIQ of 

adults born EPT/ELBW remained within average ranges, similar to outcomes in studies 

with children. Added to that, the controls are also on the higher side of average.   

Pyhala et al. (2011) reported similar persistence when comparing three groups of 

21- to 29-year-old young adults (age M = 25, SD = 2.1), excluding those with 

neurocognitive impairments, on WAIS-III performance. The first group consisted of 

VLBW young adults born at term, (Appropriate gestational age [AGA]; <1500 g, n = 

66), the second group consisted of VLBW young adults born SGA (<1500 g, BW for 

GA ≤ -2 SD, n = 37), and a final full-term control group (≥ 37 GA, n = 105). Results for 

all IQ indices for all three groups were within normal range. When comparing the whole 



   
Prematurity, Cognitive Abilities & Intervention  

 

40 

VLBW group with the control group, there were significant group differences favouring 

the control group (FSIQ: OR -0.57, 95% CI -0.83 to -0.31, p > .001) with results 

adjusted for gender and age at the time of testing, as well as after a second adjustment 

that included gender, age, parental education and head circumference at birth and 

adulthood (FSIQ: OR -0.38, 95% CI -0.68 to -0.09, p = .01). As indicated earlier, 

confounding variables such as residential location and parental education were 

measures used to adjust for SES, whereas head circumference was relevant to growth 

restrictions. Adjustment to these factors narrowed the gap between the clinical cohort 

and full-term, however, they were not strong enough to explain the differences between 

the two groups in adulthood.  

Outcomes in Domain-Specific Abilities 

Aside from investigating global IQ score, domain-specific abilities have been 

further explored in the literature. In early versions of the Wechsler Scales, FSIQ 

comprised Verbal IQ (VIQ) and Performance IQ (PIQ). VIQ assessed mainly verbal 

reasoning using tasks involving verbal questions and responses, while PIQ assessed 

non-verbal reasoning through tasks with visual stimuli, motor responses, as well as 

timed tests. Based on factor-analysis, four domain-specific indices could be derived, 

two of which (Verbal Comprehension Index [VCI] and Freedom from Distractibility 

Index [FDI]) constituted VIQ, while the other two (Perceptual Organization Index [POI] 

and Processing Speed Index [PSI]) were combined as a measure of PIQ. Updated 

versions of Wechsler Scales, such as WISC-IV (Wechsler, 2003), no longer use VIQ 

and PIQ but now generate four main indices, namely, VCI, Perceptual Reasoning Index 

(PRI), Working Memory Index (WMI) and PSI, to better reflect their content as 

measured by their respective groups of subtests (Wechsler, 1991, 2003). Essentially, 

POI has been renamed PRI with a greater emphasis on fluid abilities, such as including 
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the Matrix Reasoning and Picture Concept subtests. FDI has been renamed WMI with 

an addition of the Letter-Number Sequencing subtest to reflect its measured construct 

more accurately. A visual comparison of the structural differences between WISC-III 

and WISC-IV is presented below in Figure 3.2.  

The comparison of domain-specific abilities amongst individuals born 

preterm/LBW has suggested a greater magnitude of deficits in PIQ than VIQ.  For 

instance, 6-year-old children born preterm (< 34 weeks GA, n = 168) were matched 

according to gender and BW z score with their full-term controls (n = 168) and 

compared on performance using Wechsler Intelligence Scale for Children – Revised 

(WISC-R). The BW z score of within 0.1 SD of their term counterparts was considered 

an acceptable match. Findings revealed that the clinical cohort displayed significantly 

higher risk of obtaining scores less than 85 on FSIQ (OR 2.17, 95% CI 1.17-4.03, p < 

.05; aOR 2.35, 95% CI 1.20-4.61, p < .05) and PIQ (OR 2.01, 95% CI 1.10-3.68, p < 

.05; aOR 2.04, 95% CI 1.09-3.82, p < .05) but not VIQ (OR 1.47, 95% CI 0.80-2.72; 

aOR 1.52, 95% CI 0.78-2.95). Adjustments on confounding variables here included the 

child’s gender, maternal IQ, marital status and residential setting (Talge et al., 2010).  

Similar patterns of results were indicated in Pyhala et al.’s (2011) study of 

young VLBW adults. They found that there were significant group differences 

favouring the control group over the VLBW group in specific IQ estimates (PIQ: OR -

0.68, 95% CI -0.93 to -0.42, p < .001; VIQ: OR -0.29, 95% CI -0.57 to -0.02, p = .03), 

with results adjusted for sex and age at the time of testing. However, these differences 

persisted only in PIQ after a second adjustment that included sex, age, parental 

education and head circumference at birth and adulthood: PIQ (OR -0.48, 95% CI -0.76 

to -0.19, p = .001), but VIQ (OR -0.17, 95% CI -0.48 to 0.15, p = .30). This suggested 

that, although the performance in VIQ was lower in the VLBW adults, it was likely 
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attributable to a lower level of parental education and growth restriction.     

 

Figure 3.2. The structure of WISC-III and WISC-IV are shown with their respective 
subtests under each index. Optional subtests are printed in italics. ‘Mazes’ (not shown 
in the diagram) is another optional subtest under WISC-III PIQ but does not belong to 
either POI or PSI.   
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Pyhala et al. (2011) also analysed their results separately for VLBW-AGA 

(Appropriate for Gestational Age) and VLBW-SGA (Small for Gestational Age), in 

comparison with the full-term control group. VLBW-AGA performed less well than 

their control peers for FSIQ and PIQ after the two adjustment analyses respectively: 

FSIQ (1st adjustment (gender and age): OR -0.50, 95% CI -0.80 to -0.21, p = .001; 2nd 

adjustment (gender, age, parental education and head circumference) OR -0.39, 95% CI 

-0.71 to -0.07, p = .02); PIQ (1st adjustment: OR -0.62, 95% CI -0.91 to -0.33, p < .001; 

2nd adjustment OR -0.46, 95% CI -0.77 to -0.15, p = .004). These findings suggested 

that adults born at appropriate size for GA continued to show deficiencies in FSIQ and 

PIQ that were not attributable to a lack of parental education and/or restricted growth.  

In terms of comparison between the VLBW-SGA and the control group, significant 

group differences favourable to the control group were found, after both adjustment 

analyses, only in PIQ (1st adjustment: OR -0.79, 95% CI -1.14 to -0.43, p < .001; 2nd 

adjustment OR -0.53, 95% CI -0.96 to -0.09, p = .02).  Significant group differences 

between VLBW-SGA and their peers in FSIQ (OR -0.69, 95% CI -1.06 to -0.33, p < 

.001) and VIQ (OR -0.40, 95% CI -0.77 to -0.02, p = .04) were present after the first 

adjustment but not after the second.  Similarly, VLBW adults born SGA continued to 

show deficiency in PIQ as with VLBW-AGA. However, VLBW adults born SGA 

showed deficiency in VIQ or FSIQ that was perhaps attributable to parental education 

and restricted growth.  Nonetheless, overall results here indicated that PIQ appears to be 

affected in young adults with VLBW-AGA and VLBW-SGA most substantially, 

reflecting difficulties with skills such as non-verbal problem solving, spatial and 

sequencing tasks.   

Other specific analyses revealed more prominent deficits in POI and FDI/WMI. 

A study documented that 8-year-old VPT/ELBW, as compared to their full-term 
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controls, displayed significantly lower scores on all indices (p < .001), with the greatest 

mean difference shown in POI at 9.9 points (95% CI -12.7 to -7.2). This was in 

comparison to a mean difference of 8.2 points in FDI (95% CI -10.8 to -5.5), 6.8 points 

in VCI (95% CI -9.5 to -4.2), and 6.7 points in PSI (95% CI -9.4 to -4.0). Within-group 

statistics also showed that VPT/ELBW participants had their lowest average scores on 

the FDI at 93.1 (14.7). All results remained significant after excluding participants with 

neurosensory impairments, such as cerebral palsy, blindness and deafness (POI: 8.8 

points, 95% CI -11.6 to -6.1; FDI: 8.1 points, 95% CI -10.7 to -5.4; VCI: 7 points, 95% 

CI -9.6 to -4.3; PSI: 5.9 points, 95% CI -8.6 to -3.3), and adjusting for SES (POI: 8.1 

points, 95% CI -11.1 to -5.1; FDI: 7.2 points, 95% CI -10.1 to -4.3; VCI: 5.9 points, 

95% CI -8.4 to -2.8; PSI: 5.7 points, 95% CI -8.7 to -2.8). However, the figures also 

suggested that neurosensory impairment and SES adjustments partially accounted for 

differences in the cognitive abilities between the two groups (P. J. Anderson, et al., 

2003).  

Hallin, Hellstrom-Westas and Stjernqvist (2010) demonstrated similar outcomes 

on domain-specific abilities in their follow-up study comparing adults born EPT (n = 

52) and matched full-term adults (n = 54). Participants were tested at 18 years of age 

using WAIS-III. They not only showed significant group differences on FSIQ but also 

across all the four indices. Of particular interest was that, again, the greatest between-

group mean difference was found in POI where the full-term group performed better 

than the EPT group by an average of 16.2 points. Within-group statistics also showed 

that the preterm birth group performed particularly poorly, on average, on the WMI, 

(EPT: M = 88.3, SD = 14.6 vs FT: M = 96.3, SD = 12.1, p = .003) with a mean 

difference of 95% CI ranging from -13.21 to -2.84, when compared to their own 

performance on other indices, namely VCI (EPT: M = 95.0, SD = 13.5 vs FT: M = 
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104.4, SD = 12.4, p < .001, 95% CI -14.43 to -4.43), POI (EPT: M = 96.2, SD =18.1 vs 

FT: M = 112.4, SD = 14.5, p = .001, 95% CI -22.53 to -9.81), and PSI (EPT: M = 92.6, 

SD =14.2 vs FT: M = 100.2, SD = 12.1, p = .004, 95% CI -12.69 to -2.48). These 

results were consistent with Anderson et al.’s study (2003), where between-group 

comparisons showed that the greatest mean differences occurred in perceptual reasoning 

tasks, favouring the control group and the greatest within-group differences for the 

preterm/LBW group were working memory related tasks. Since perceptual reasoning 

tasks were initially grouped under PIQ and working memory related tasks were 

considered under VIQ (see Figure 3.2), perhaps these results could explain the 

consistently larger magnitude of deficits in PIQ than VIQ among those born 

preterm/LBW. Although results here also suggested that children and adults born 

preterm/LBW are likely to find working memory related tasks most difficult to 

complete, their perceptual abilities were most markedly different from their same age 

peers.  

Impact of Confounding Factors 

Evidence of cognitive impairment is apparent even when various confounding 

factors have been considered. Studies demonstrate that prematurity continues to be a 

predictor of lower IQ found in those born preterm/LBW when adjustments have been 

made (P. J. Anderson, et al., 2003; E. A. Hutchinson, et al., 2013; Pyhala, et al., 2011). 

SES has been most commonly included for adjustment. This is because SES is 

associated with adverse birth outcomes including LBW, prematurity and growth 

restriction. Measures of SES may include parental education, intelligence or occupation, 

as well as household income or residential location (Kramer et al., 2009).  A recent 

study documented that SES predicted long-term cognitive trajectories found in ELBW, 

with maternal education being the strongest predictor. In particular, Voss and colleagues 



   
Prematurity, Cognitive Abilities & Intervention  

 

46 

(2012) suggested that children born ELBW had better cognitive developmental 

outcomes when their mothers were more educated than those who were less educated 

due to a likelihood of better parenting style and knowledge in cognitive stimulation in 

the former.  

Nonetheless, a recent meta-analysis that covered 27 studies and consisted of just 

over 7,000 participants (50% preterm and 50% term), with ages ranging from four to 14 

years, suggested otherwise. Its findings suggested that the result of significant IQ 

differences between those born preterm/LBW and their peers did not differ between 

studies that documented the inclusion of SES adjustments and those that did not (p = 

.316; (Kerr-Wilson, et al., 2011). Given evidence from the meta-analysis, support for 

the argument that (lack of) maternal education is the strongest predictor of cognitive 

impairment found in those born preterm/LBW has not been fully justified and would 

benefit from further investigation. However, it is acknowledged that the risk of preterm 

birth decreases as SES increases (Thompson, Irgens, Rasmussen, & Daltveit, 2006), and 

adult SES is moderately associated with IQ (Fergusson, Horwood, & Ridder, 2005; 

Herrnstein & Murray, 1994; Sternberg, Grigorenko, & Bundy, 2001). 

Heritability of maternal IQ may also play a role in the cognitive ability of 

children born preterm (Talge, et al., 2010). Additionally, some studies document that 

the chances of preterm birth can be familial (Clausson, Lichtenstein, & Cnattingius, 

2000; Pennell et al., 2007; Wilcox, Skjaerven, & Lie, 2008). Studies on twins suggested 

that heritability for preterm birth could be as high as 40% (Clausson, et al., 2000; 

Treloar, Macones, Mitchell, & Martin, 2000). Mothers who were born preterm have an 

increased risk of preterm birth (Porter, Fraser, Hunter, Ward, & Varner, 1997; Wilcox, 

et al., 2008) and the risk increased as the mother’s GA at birth decreased (Porter, et al., 

1997). Research on the heritability of preterm birth also suggested that maternal 
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genetics were more influential to preterm birth deliveries than paternal genetics (Boyd 

et al., 2009; Svensson et al., 2009; Wilcox, et al., 2008).  

Other confounding variables have also been considered.  These include 

neurosensory impairments and head circumference. Studies have shown that 

prematurity and LBW continue to be associated with lower IQ even after adjusting for 

neurosensory impairment (P. J. Anderson, et al., 2003) and head circumference (Pyhala, 

et al., 2011). These confounding variables have been observed to correlate with an 

increasing degree of prematurity.  As discussed in earlier sections, those born 

premature/LBW have an increased risk of ADHD and CP, which are also commonly 

associated with neurosensory impairments (Bhutta, et al., 2002; Lindstrom, et al., 2011; 

Oskoui, et al., 2013; Rosenbaum, et al., 2007). Head circumference has often been used 

as an indicator for growth restriction found amongst SGA/IGUR (Frisk, et al., 2002) 

and has been suggested to correlate modestly with IQ in the general population (Jensen, 

1994).  

Although these aforementioned confounding factors do not appear to fully 

explain the underlying differences in cognitive development observed between those 

born premature/LBW and those of typical development/full term, their associations with 

prematurity and LBW should not be dismissed as they have been shown to narrow the 

gap of unexplained differences (P. J. Anderson, et al., 2003; E. A. Hutchinson, et al., 

2013; Pyhala, et al., 2011; Talge, et al., 2010). 

Fluid Intelligence (Gf) and Education Attainment   

In order to better understand impaired academic achievement but normal range 

FSIQ scores found in those born preterm/LBW, and to provide a theoretical basis for an 

investigation of the effect of prematurity on intelligence, it is proposed that Gf needs to 

be invoked (Duncan, et al., 1995; Taub, 2002). Traditional use of FSIQ as a measure of 
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general intelligence stems from factor analysis and, thus, instruments that provide an 

FSIQ score rely on a measurement model. Moreover, Colom and his colleagues (2002) 

suggested that FSIQ provides a measure of ‘intelligence in general’ rather than the 

scientific concept of general intelligence. In contrast, instruments that measure Gf stem 

from theoretical models of intelligence and are therefore able to assist in formulating 

and testing causal theories of relationships between cognitive abilities. In reference to 

the Cattell-Horn theory of intelligence (1963), Gf refers to a theoretical construct that 

relates to the ability to adapt to novel ideas and situations. It involves complex cognitive 

processes and relates to one’s ability to reason logically, solve problems and build 

associations among ideas. Induction and cognition of figural relations are its primary 

factors, which require non-verbal skills and are usually less culturally influenced. Gf 

stands in contrast to crystallized intelligence (Gc), which measures one’s accumulation 

of learned knowledge.  

Gf and Gc are perceived as distinct but related constructs (Cattell, 1963; 

Kaufman, Kaufman, Liu, & Johnson, 2009; McArdle, Ferrer-Caja, Hamagami, & 

Woodcock, 2002).  For example, McArdle and his colleagues (2002) provided evidence 

on the Gf  - Gc distinction. They analysed data of individuals aged from two to 95 years 

on Gf and Gc abilities using the Woodcock-Johnson Psycho-Educational Battery – 

Revised (WJ-R) and found that the two have different growth patterns in the course of 

lifespan development. They stated that at initial rate of growth, Gf was slower than Gc 

and that Gf peaked earlier than Gc at approximately 22.8 vs. 35.6 years respectively. Gf 

also declined faster than Gc after it reaching its peak. 

 On the other hand, Cattell and Horn (1963) proposed, in their earliest 

conceptualization of the theory, that Gf facilitates and enhances the ability to acquire Gc 

which has been referred to as the Investment Theory (Cattell, 1963).  Although evidence 
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for this directional relationship has been scarce, there is evidence showing that they are 

both associated with educational attainment and essential to academic success. Both Gf 

and Gc have been documented to correlate with the number of years of schooling 

ranging from .44-.64 for Gc and .48-.59 for Gf (Kaufman, et al., 2009; Kaufman & 

Wang, 1992; Schweizer & Koch, 2002; Sharma, Sharma, & Sharma, 2011). Some other 

authors have also claimed that Gf has a particularly strong influence on academic 

achievement and academic growth compared to Gc (Ferrer & McArdle, 2004), although 

other authors have argued otherwise (Postlethwaite, 2011; J. Raven, 1989).    

Despite inconsistent views on whether Gf or Gc has a stronger influence, Sharma 

et al. (2011) demonstrated the two constructs to show distinctive patterns of predictions 

in academic subjects. In their recent research in India, they tested the performance of 

Year 11 students (n = 200) using Raven’s Standard Progressive Matrices (RSPM) as a 

measure of Gf and the General Mental Ability Test (GMAT) as a measure of Gc and 

investigated their corresponding correlations with school subjects.  Results, irrespective 

of gender group, revealed that performance on RSPM was more predictive of Math and 

Science, whereas performance on GMAT was more predictive of Language and Social 

Science. In particular, RSPM predicted 36% to 58% of variance in Math, and 32% to 

35% of variance in Science as compared to only 9% to 13% variance in Math and 8% to 

9% variance in Science by GMAT. In contrast, GMAT predicted 37% to 45% of 

variance in English Language, and 44% to 56% of variance in Social Science as 

compared to only 10% to 11% variance in English Language and 6% to 13% variance in 

Science by RSPM (Sharma, et al., 2011).  

Prematurity and Fluid Intelligence 

 Researchers have also proposed that g and Gf are perfectly related or even 

equivalent constructs, at least in studies within normative cohorts (Gustafsson, 1984; 
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Keith, 2005; Kvist & Gustafsson, 2008), although others contest this (Blair, 2006; 

Gignac, 2006; McArdle, et al., 2002).  This disagreement stems from clinical evidence 

in both adults and children. Studies using neuropsychological testing with adults with 

dorsolateral prefrontal cortex damage indicate that they perform within the normal 

range when assessed on measures of g, however exhibited poor performance on 

measure of Gf (Duncan, et al., 1995).  Similarly, examinations of children with 

developmental disorders, particularly those with ADHD and specific learning 

difficulties, also demonstrated normal-range performance on measures of g, yet 

compromised cognitive functioning in EF components relating to Gf (Barkley, 1997; 

Tamm & Juranek, 2012). 

 Although children born preterm/LBW show performance profiles similar to 

children with ADHD in terms of normal range IQ, academic difficulties as well as 

impairments in basic information processing components of EF, which will later be 

discussed, no published studies have yet explicitly investigated the effects of 

prematurity on Gf.  Nonetheless, an earlier thesis by Davies (2004), investigated Gf  

performance among children born preterm/LBW as part of an investigation on general 

intelligence. In one study, he concluded that significant differences existed between 

children born preterm/LBW (n = 139) and their full-term peers (n = 73) aged seven to 

nine years on Cattell Culture Fair Intelligence Test (CCFIT) raw scores (p < .001, η² = 

.12). After controlling for Wechsler FSIQ scores, full-term peers continued to score 

significantly better than children born preterm/LBW (p = .01, η² = .03).  His 

observations also suggested that 9-year-old children in the clinical cohort performed at a 

level identical to the 7-year-old children in the full-term group. Davies’ (2004) study 

provides preliminary evidence on the effects of preterm/LBW status on Gf. However, 

replication of such investigations using other Gf measures and age groups is warranted 
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to confirm his findings.  

Examination of other existing empirical evidence supports a likely hypothesis 

that preterm/LBW will present with lower scores on tests measuring Gf. Firstly (and 

obviously), factor analysis shows FSIQ and Gf to have strong loadings on Spearman’s g 

(Gustafsson, 1984; Keith, 2005; Keith, et al., 2006; Kvist & Gustafsson, 2008). 

Therefore, if preterm/LBW children exhibit lower scores than their peers on FSIQ, then 

they would also be expected to perform less well on tests of Gf than their peers. 

However, this alone would only predict a deficit in Gf proportional to the deficit in 

FSIQ.  Secondly, and more interestingly, domain-specific indices indicate relatively 

large mean deficits in preterm/LBW children in PIQ (Talge, et al., 2010) and POI (P. J. 

Anderson, et al., 2003; Hallin, et al., 2010). As these indices tap into non-verbal 

abilities and include subtests that may be more Gf loaded rather than knowledge based 

(Wechsler, 1991), we may expect to find a Gf  deficit disproportionate to the FSIQ 

deficit in this population. However, thorough investigation of this possibility remains to 

be done.  

Explaining Individual Differences in Fluid Intelligence through Information 
Processing Parameters 
 

Information processing parameters are basic cognitive system properties that, 

when taken together, may explain Gf variance. However, little research has investigated 

basic cognitive processes in relation to Gf amongst children born preterm/LBW. The 

most relevant study was published by Rose, Feldman, Jankowski, and Van Rossem 

(2011) on children born preterm, in which they inspected the effect of prematurity on 

FSIQ through several basic cognitive processes.  

Rose et al. (2011) compared children born preterm (n = 44) with full-term peers 

(n = 86), group-matched on SES and gender at 11 years, on measures of working 

memory, attention, processing speed, representational competence, and FSIQ.  The 
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authors described representational competence, a term less commonly documented in 

the literature, as “the ability to extract commonalities from experiences and represent 

them symbolically” (Rose, et al., 2011, p. 199). Cognitive abilities were assessed using 

subtests from the Cambridge Neuropsychological Testing Automated Battery 

(CANTAB), the Cognitive Abilities Test (CAT), and the Specific Cognitive Abilities 

Tests (SCA). FSIQ was assessed using WISC-III.  Rose and her colleagues (2011) 

reported that, having excluded those with IQ <70 which constituted five of the children 

in the preterm group, children born preterm showed pervasive deficits in all four areas. 

More importantly, taken together, these deficits fully accounted for the preterm/full 

term differences measured using IQ.  A cascade of effects was presented where children 

born preterm demonstrated impairments on speed and attention tasks, considered to 

represent elementary information processing, leading to impairments on memory and 

representational competence tasks, which are more complex, and subsequently resulting 

in IQ deficits relative to their full-term peers. The cascade model has been adapted in 

Figure 3.3 for clarity. This represents one of very few studies documenting impairments 

in core information processing abilities and investigating them as mediating factors in 

explaining the birth status differences in IQ. However, similar studies using different 

age groups and a wider range of representative factors are required in the future to 

further generalise their findings, particularly when factors such as representative 

competence has rarely been documented.  
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Figure 3.3. The results of standardized estimates of birth status effects on full scale IQ 

through basic information processing abilities at 11 years old. Significant pathways are 

indicated in solid lines, † p < .06, * p < .05, **p < .01. Adapted from “Basic 

Information Processing Abilities at 11 years Account for Deficits in IQ Associated with 

Preterm Birth” by S. A. Rose, J. F. Feldman, J. J. Jankowski, and R. Van Rossem, 2011, 

Intelligence, 39(4), p.18. 

However, given that children born premature/LBW typically present with 

average-range IQ, resulting in the previously discussed inability of global IQ to explain 

this group’s academic struggle as compared to their peers, Rose et al.’s (2011) study 

may not capture the full scope of cognitive deficits. Nonetheless, their approach may be 

useful in exploring how core information processing abilities may be substantial 

mediating factors for possible birth status differences in Gf.  

The literature on prematurity/LBW has documented the pivotal roles played by 

the basic cognitive processes found in executive function, which include aspects such 

working memory, cognitive flexibility and inhibition. In the next few sections, these 

processes and the effect of prematurity on each of them will be elaborated. 
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Executive Function (EF)  

 EF refers to higher-order cognitive processing that relates to self-regulation of 

problem solving, reasoning and planning towards goal-directed behaviours (P. J. 

Anderson, et al., 2010; Clark, et al., 2010; Miyake, et al., 2000). Theories on how to 

conceptualize EF have been controversial with some researchers arguing for a unitary 

model (Brydges, Reid, Fox, & Anderson, 2012; Duncan, Emslie, Williams, Johnson, & 

Freer, 1996; Wiebe, Espy, & Charak, 2008), while others consider EF to comprise 

related but distinguishable subcomponents (Baddeley, 1996; Miyake, et al., 2000). The 

factor structure of EF changes developmentally, starting unitary in young children but 

distinguishable components emerge with development in mid to late childhood. 

Therefore, subcomponents are more easily identified as individuals age (Best, Miller, & 

Jones, 2009; Isquith, Gioia, & Espy, 2004). 

Factor analyses have led to the proposal of some separate essential 

subcomponents under the EF umbrella term, including planning, fluency, and 

attentional control (Mulder, et al., 2009), while Miyake et al. (2000) suggested the 

distinctive functions of three core abilities. Although the components proposed in 

Miyake et al.’s (2000) seminal paper on adults may not have conclusively been 

demonstrated as a comprehensive list, they have been further supported by Lehto, 

Juujarvi, Kooistra, and Pulkkinen’s (2003) evidence in child populations. The proposed 

factors include inhibitory control, cognitive flexibility and working memory. The 

authors suggested that these core components were relatively independent of one 

another, yet also combined to contribute to complex executive tasks.  

In daily life, EF takes the form of creating goals, making plans, performing 

actions and monitoring performance in relation to established goals, while adjusting 

one’s action to maintain effectiveness of a series of goal directed behaviours (Jurado & 
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Rosselli, 2007).   

Inhibitory Control 

Inhibitory control refers to the ability to suppress automatic and prepotent 

responses in order to perform the task at hand.  This requires one to focus on the task 

and refrain from acting on first impulse (Heitz, et al., 2005; Miyake, et al., 2000). 

Exemplar tasks often used to measure inhibition include the Stroop task (Stroop, 1992), 

and Go-No-Go task (Cragg, Fox, Nation, Reid, & Anderson, 2009). The Stroop task 

requires participants to name the colour that the words on a list are printed in. The ink 

colour may be congruent or incongruent with the meaning of the word, such as seeing 

the word “RED” that is printed in red ink or seeing the word “RED” but printed in 

yellow ink, in which the correct response would be red and yellow respectively. The 

difference in time between the conditions is used as a measure of inhibition (Stroop, 

1992). In one of the many variations of the Go-No-Go task, participants are asked to 

release a “home” button and press a response button as quickly as possible when a 

targeted stimulus is presented on the computer screen, referred to as the “go” condition. 

In the “no-go” condition, where no stimulus or a non-targeted stimulus is presented, 

participants are to withhold any response and remain pressing on the “home” button. 

The number of correct response to a “no-go” condition is used as an indicator of 

inhibition (Cragg, et al., 2009). 

Cognitive Flexibility  

Cognitive flexibility, also known as shifting, refers to the ability to flexibly 

switch one’s focus of attention between mental sets and tasks. This means switching 

from the engagement in one task to commence a new task (Jurado & Rosselli, 2007; 

Miyake, et al., 2000). From here, cognitive flexibility and shifting are used 

interchangeably. Examples of tasks considered to measure shifting include Wisconsin 
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Card Sorting Test (WCST; (Heaton, Chelune, Talley, Kay, & Curtiss, 1993; Miyake, et 

al., 2000), plus-minus task (Miyake, et al., 2000) as well as the Trail Making Test – Part 

B (TMT-B; (Reitan, 1971; Reitan & Wolfson, 1992) documented in EF studies (Jurado 

& Rosselli, 2007; Mulder, et al., 2009). WCST is a sorting task that requires 

participants to match category cards under one of four stimulus cards. Participants are to 

switch amongst three principles, namely colour, number, and form, using the feedback 

provided by the examiner. The raw score on perseverative errors from the task is often 

used as the outcome measure (Brydges, et al., 2012; Heaton, et al., 1993). The plus-

minus task requires participants to solve math problems in three two-digit numbers lists, 

first in addition and then subtraction, and subsequently switch between addition and 

subtraction. The measure of shifting is derived from the cost of shifting. This is 

calculated using the difference between the time in completing the final list - alternating 

between addition and subtraction - and the average time in completing the first two lists 

(Miyake, et al., 2000). In the TMT-B task, there are 15 circles on a sheet of paper with a 

number and a letter in each of them. Participants are required to draw a line to connect 

the circles alternating between a number and a letter in sequential order (i.e. 1->A->2-

>B). The measure of shifting is derived from the time used to complete the task (Reitan, 

1971). 

Working Memory  

 Working memory (WM) refers to the mental capacity for temporary storage and 

active manipulation of information used in a variety of everyday activities (Baddeley & 

Hitch, 1974; Kane, et al., 2001). Thus, WM tasks require the individual not only to store 

information but also to recode stored information in a way that allows for effective and 

efficient manipulation of task-related material when needed. Exemplar tasks frequently 

used include operation span tasks (M. L. Turner & Engle, 1989), digit span tasks 
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(Wechsler, 1991, 2003), and spatial span tasks (Wechsler, 1991). For all these tasks, the 

number of correct trials is used as the outcome measures. In an operation span task, 

participants are presented with a string of words with a distracting task in between each 

word in the form of a math problem. Participants are to recall the set of words in the 

order it was presented. The difficulty is increased following successful trials by the 

increment of another word (M. L. Turner & Engle, 1989). The digit span task requires 

participants to recall strings of digits verbally presented by the examiner in forward and 

backward sequences (Wechsler, 1991, 2003). For the spatial span task, the stimulus is 

presented in a visual-spatial way where the examiner points to square cubes randomly 

placed on a board. Participants are then asked to repeat where the examiner has pointed 

in either forward or backward sequence (Wechsler, 1991).    

 As working memory updating is one of the key processes in both upcoming 

empirical studies, its theory deserves some further attention. The most commonly 

referenced models in the conceptualization of WM are the multicomponent model 

developed by Baddeley and Hitch (1974) and the executive attention model by Kane, 

Conway, Bleckley, and Engle (2001). Baddeley and Hitch (1974) initially proposed that 

WM comprises three main components: a domain-general central executive, and two 

domain-specific subsidiary components -  the phonological loop and visuo-spatial 

sketchpad. The central executive was proposed to be accountable for attentional control, 

processing information held in the two specific domains and retrieval from long-term 

memory. The phonological loop was proposed to temporarily store verbal information, 

and the visuo-spatial sketchpad to temporarily store visual and spatial material.  A 

recent addition to the WM model is a fourth component known as the episodic buffer. It 

is responsible for binding information coming through from the other WM components 

(Baddeley, 2000; Baddeley & Logie, 1999).   
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 Kane et al.’s (2001) executive attention model agrees to some extent with that of 

Baddeley and Hitch (1974), in particular with respect to the existence of a central 

executive. However, Kane et al. (2001) stressed that the executive attention function, 

also known as ‘controlled attention’, is dependent on one’s working memory capacity 

(WMC).  According to their definition: 

 “An executive control capability… is…an ability to effectively maintain 

stimulus, goal, or context information in an active, easily accessible state in the face of 

interference, to effectively inhibit goal-irrelevant stimuli or responses, or both.…. This 

attentional control capability allows flexibility in response to environmental demands, 

whether those demands involve keeping many representations active in some contexts, 

keeping only one simple goal active in other contexts, or keeping irrelevant 

representations or responses at bay through inhibition” (Kane, et al., 2001, p. 180). 

 Engle (2002) explains that in the controlled-attention model, higher WMC is a 

consequence of higher control attention capability rather than merely the ability to store 

more items for active processing.  Essentially, higher WMC reflects a greater ability to 

inhibit interference and distraction by means of focused attention.  

  This concept of WMC was also clearly defined in Heitz, Unsworth and Engle 

(2005):  

 “In other words, although we measure WMC quantitatively by the number of 

items recalled on complex span tasks, the scores on such measures reflect controlled-

attention ability rather than the number of “units” of information that can be held in a 

short-term store. Accordingly, we propose that WMC is an ability reflecting the extent 

to which an individual is able to control attention, particularly in situations involving 

interference from competing information, activated representations, or task demands” 

(p. 64). 
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In support of this model, Kane et al.’s (2001) research showed that there is a 

positive association between individual differences in working memory span and 

attentional control. “Higher memory span” adults were more capable than “lower 

memory span” adults of inhibiting distracters and maintaining attention to relevant 

information for further processing. They also viewed executive attention as a key 

connecting component to high level functioning, potentially an essential mechanism of 

Gf  (A.R.A. Conway, Kane, & Engle, 2003; Kane, et al., 2001).  

Even though it seems like WM and inhibitory control are both measures of 

attentional control, a key feature and commonality amongst these multi-system WM 

models is that there exists a short-term storage (STM) component and an executive 

attention control component to WM that does not exist in the construct of inhibitory 

control. STM is usually measured using simple span tasks, for example the digit span 

forward task that requires an individual to store and recall information directly and 

immediately. In contrast, the attentional control component is usually measured using 

complex span tasks, for example operational span tasks and digit span backward tasks 

that require an individual not only to store information but also to manipulate it in some 

way to arrive at a correct response (Baddeley, 2000; Baddeley & Hitch, 1974; Cowan, 

2000; Engle, 2002; Engle, Tuholski, Laughlin, & Conway, 1999; Kane, et al., 2001).  

Nonetheless, pure measures of storage capacity and attentional control may not 

be achievable as it is difficult to measure one independently of the other (Heitz, et al., 

2005).  Presumably, some tasks are more sensitive to capacity than attention and vice 

versa. As suggested by Unsworth and Engle (2006), overload occurs when the number 

of items required to be recalled extends beyond one’s STM capacity in simple span 

tasks, therefore a long item length task in simple span tasks also tap executive attention 

control mechanisms.  Similarly, complex span tasks require an individual to utilize both 
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STM storage and attentional control (Bayliss, Jarrold, Gunn, & Baddeley, 2003). 

Therefore, STM and attentional control components of WM are both important in their 

own varying degrees, with complex span tasks more reliant on attention control in 

addition to STM storage and vice versa for simple span tasks (Heitz, et al., 2005). 

Normal Developmental Trajectories of EF and Methodological Concerns  

Literature on the normal developmental trajectories of EF suggests that each 

component develops differently across the lifespan, but interpretations vary depending 

on the methodology used to measure the component as well as the complexity of the 

task (Best, et al., 2009). The study of normal EF development has disproportionately 

focused on preschool-age children in the past. This is because researchers have been 

primarily interested in identifying the specific age at which EF, in general or as specific 

components, emerges (Garon, Bryson, & Smith, 2008). Nevertheless, the study of 

normal developmental trajectories of EF in typical school-aged children is also 

important, as changes in EF take place beyond early childhood. New environmental 

stimuli and new experiences become relevant, ranging across academic, social, and 

school-related domains (Best, et al., 2009).  

According to several authors who support the distinction between the three core 

components suggested by Miyake et al. (2000), these distinct components are less 

noticeable and more intertwined in children as compared to adults (Isquith, et al., 2004; 

Miyake, et al., 2000). However, evidence of component-specific developmental 

trajectories suggests that components do work separately at different ages. In a 

comprehensive review of EF development in children after their preschool years, Best 

and his colleagues (2009) summarized findings on how specific components of EF 

change developmentally.  

Basic inhibitory control abilities emerge as young as one year old. 
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Developmental changes in inhibition are more noticeable during early 

childhood/preschool years with rapid development occurring between three and five 

years of age. Although changes to inhibition continue to occur from school entry level 

through to adolescence, these changes reflect changes in speed and accuracy rather than 

fundamental changes in the ability to inhibit prepotent responses, as found in young 

children. Adult levels of inhibitory control abilities are said to be reached around 14 

years of age (Best, et al., 2009; Mulder, et al., 2009).  

On the other hand, cognitive flexibility and WM can be detected in preschool 

age children and evolve in a linear progression beginning in early school age years. At 

approximately three years of age, the ability to shift in simple tasks with a maximum of 

two stimulus-response rules emerges. The ability to shift in tasks with more rules can be 

detected around the age of five years. Between the age of seven to nine years, children 

demonstrate significant improvement in the ability to switch between multi-dimensional 

tasks, which then plateaus around the age of 12-years (P. Anderson, 2002; Best, et al., 

2009). 

A normal developmental trajectory in WM is similar to that of cognitive 

flexibility. It emerges as early as four years of age. By around seven years of age, 

children are well capable of performing various WM tasks, particularly those involving 

visuo-spatial and verbal working memory. Continuous linear increment can be observed 

until it begins to plateau around 11 years of age and peak around age 20 (Best, et al., 

2009; Gathercole, Pickering, Ambridge, & Wearing, 2004; Lehto, et al., 2003). 

Nonetheless, no single assessment provides a pure measure of any intended 

construct (Best, et al., 2009; Senn, Espy, & Kaufmann, 2004). This leads to several 

methodological concerns, in particular regarding the purity of EF tasks as measures of a 

single construct and the reliability of EF measures. Task impurity has been a concern 
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for measures of EF (Burgess, 1997; Rabbitt, 1997). For example, the plus-minus task as 

documented in Miyake et al.’s (2000) study is used to assess shifting abilities, however, 

mental math calculations have long been acknowledged to rely heavily on working 

memory (DeStefano & LeFevre, 2004). Also, an individual may employ other processes 

that the task was not originally intended to engage (Hughes & Graham, 2002).   

The concept of such task impurity also leads us to other methodological issues 

with EF. Researchers have asserted that it is very difficult, or even impossible, to 

establish reliable measures of EF (Burgess, 1997; Rabbitt, 1997).  This is because the 

central idea of measuring EF is to assess how well one self-regulates to cope with and 

solve new problems. Thus, the issue of novelty of stimuli arises when a task is 

administered again after the first time, making the task no longer novel and no longer a 

measure of EF (Burgess, 1997; Jurado & Rosselli, 2007; Rabbitt, 1997).   

In summary, the developmental trajectories of, as well as methodological issues 

inherent in, EF should be considered when proceeding with both correlational and 

experimental studies.  This is especially true, and perhaps inconvenient, for longitudinal 

and repeated measure studies that try to establish utility in cognitive interventions.   

Prematurity and Information Processing Parameters of EF 

Dysfunctions in EF are often discussed in relation to damage to the prefrontal 

cortex (Eslinger, Flaherty-Craig, & Benton, 2004) as well as other neurological 

impairments (Narberhaus et al., 2008; Nosarti et al., 2004). Such damage is also 

commonly found amongst individuals born preterm/LBW.  Studies show those children 

born preterm are vulnerable to prefrontal cortex injuries and thinning of the corpus 

callosum (Narberhaus, et al., 2008; Nosarti, et al., 2004). These two areas of the brain 

are interconnected and include a large white matter volume. White matter injuries are 

also commonly found. These are associated with the occurrence of periventricular 
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leukomalacia (PVL) and are often present in the development of cerebral palsy. In 

addition, according to de Kieviet et al. and his colleagues’ (de Kieviet, Zoetebier, van 

Elburg, Vermeulen, & Oosterlaan, 2012) meta-analysis review on 15 studies, children 

born VPT/ VLBW are found to have an overall reduction in total brain volumes, 

including the cerebellum, hippocampus and corpus callosum area, as well as volumes in 

white and grey matter as compared to their term peers. These reductions are also 

influential towards lower cognitive performance, for example general IQ, EF and 

memory.   

Another frequently noted cerebral injury amongst children born preterm is 

intraventricular haemorrhage (IVH). Immature blood vessel development at early birth 

may cause IVH (Edgin et al., 2008; Inder, Lawrence, & Neil, 2010). Given the above, 

impairments in EF would be considered relatively likely in children born preterm/LBW.  

Meta-analyses also confirm that EF impairments are present in the group and that 

degree of prematurity significantly predicts the degree of impairment (Mulder, et al., 

2009). The effect of prematurity is also evident across all subcomponents of EF, but 

particularly WM (Aarnoudse-Moens, Smidts, et al., 2009; Fraello et al., 2011; Mulder, 

et al., 2009; Nosarti, et al., 2007). The following sub-sections elaborate on the effects of 

prematurity and LBW on the three basic processes of EF. 

Inhibitory Control 

Evidence of impairment in inhibitory control has been documented in children 

born preterm/LBW. Mulder et al.’s (2009) review demonstrated that individuals born 

preterm, ranging from five to 22 years of age, exhibited impairments in inhibitory 

control proportional to their GA. A combined moderate effect size (d = -0.50) was 

recorded for inhibition performance with children born preterm (<26 weeks) showing 

more commission errors on the Go/no-go test than their peers. A much smaller effect 
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size (d = -0.16) was found for individuals born preterm with GA ≥ 26 weeks. A 

significant relationship was detected between effect size and GA for those born ≥26 

weeks (R2 = .74; p = .006), suggesting that children born more mature showed less 

impairment on inhibitory control tasks. However, the number of studies included in the 

review was rather small (N = 8).  

A recent large sample study with children born VPT aged between four and 12 

years provided a more precise estimate of children’s inhibitory control ability. A 

comparison of VPT (n = 200) with their full-term peers (n = 230) on a stop task that 

recorded omission errors, commission errors and stop signal reaction time demonstrated 

standardized mean differences (SMD) of -0.15, -0.41 and -0.43 respectively, after 

adjusting for age, gender and speed of processing, with comparison group as reference 

(SMD = 0.0). Children born full-term performed better than the VPT group. Although 

adjustments for IQ and neurosensory dysfunction were undertaken, the authors did not 

include any statistical details of the effects of these on the results. Nonetheless, neither 

of the aforementioned confounds undermined the significant results in favor of the full-

term group. This study also demonstrated that although their sample of VPT/VLBW (M 

= 95.3, SD = 15.8) performed significantly less well than their full-term controls (M = 

105, SD = 13.4) on IQ (p < .001), the VPT/VLBW’s performance were within normal 

range (Aarnoudse-Moens, Duivenvoorden, Weisglas-Kuperus, Van Goudoever, & 

Oosterlaan, 2012). 

Specific age-groups were also reviewed. For example, a study compared age-

matched 6-year-old VPT/VLBW (BW: M = 1042.6g, SD = 31.8, GA: M = 28.0, SD = 

1.4, n = 50) with full-term controls (n = 50) and found significant group differences 

after controlling for IQ scores (Aarnoudse-Moens, Smidts, et al., 2009). Findings 
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showed that the full-term control group performed better than the VPT/VLBW group on 

both efficiency scores for inhibition from the Go/No-Go (before adjusting for IQ: p < 

.01, d = -0.83; after adjusting for IQ: p = .03, d = -0.51) and Day-Night tasks (before 

adjusting for IQ: p < .01, d = -1.35; after adjusting for IQ: p < .01, d = -0.79). Moreover, 

GA, maternal education and neurosensory impairments were not significant predictors 

of inhibition performance.  Similar to Aarnoudse-Moens et al. (2012), the two groups 

differed significantly on IQ measures (p < .001) but both VPT/VLBW (M = 92.5, SD = 

17.5) and the full-term group (M = 109, SD = 19.2) performed within the average range 

(Aarnoudse-Moens, Smidts, et al., 2009).  

Findings presented by Ford et al. (2011) with EPT/ELBW aged seven to nine 

years  provided a more comprehensive picture and included several other confounding 

factors. It was reported that the clinical cohort performed less well on inhibitory control 

than their same age full-term controls as measured by the Stroop task (p = .033, η2
p = 

.0.05). Their regression analysis further demonstrated that birth weight was a significant 

predictor of Stroop performance (β = 0.36, p = .038). Children with a higher birth 

weight performed better on the Stroop task. Inclusion of SES and neuro-biomedical 

history, such as respiratory distress syndrome (RDS) and intraventricular hemorrhage, 

to their regressions suggested evidence of interaction between SES and neuro-

biomedical history on Stroop (β =0.41, p = .027). This suggested that the influence of 

neuro-biomedical history on Stroop in children born EPT/ELBW was higher in low SES 

households. Once again, despite these between group differences, participants in the 

EPT/ELBW group attended mainstream schools, showed no significant neurological 

disabilities, and displayed average IQ.  However, Ford et al.’s (2011) study also 

demonstrated clearly the significant impact of SES and neuro-biomedical history, 

despite these factors not fully accounting for group differences.  
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These inhibitory control impairments are also evident in late teen and adult 

samples of individuals born preterm/LBW. For example, 16-year-olds born VLBW 

were compared with a full-term control group on subtests measuring inhibitory control 

through the Delis-Kaplan Executive Function Scale (D-KEFS). Results indicated that 

VLBW participants did not perform as well as their peers (p < 0.05; (Luu, et al., 2011). 

Similarly, 19- to 25-year-old VPT adults (n = 61) were compared with a peer control 

group (n = 64), where participants were assessed on inhibitory control skills using the 

Test of Attentional Performance - Incompatibility subtests (TAP/I). Results indicated 

that the VPT group performed less well than their controls (p < .05). Only 18% of VPT 

adults scored less than 1SD below the mean score of their peers, suggesting that the 

majority of VPT adults displayed substantial impairments as measured by the TAP/I 

task (Nosarti, et al., 2007).  The aforementioned studies with adolescents and adults all 

documented normal IQ scores for VPT/VLBW groups. 

In general, the literature shows that impairment in inhibitory control is 

consistent and prevalent in both children and adults born preterm/LBW, despite their 

average IQ scores. Effect sizes for impairments in inhibition range from moderate to 

large, which are comparable to those demonstrated in earlier meta-analysis for academic 

problems found in those born preterm/LBW, specifically in regards to math (d = -0.60) 

and reading (d = -0.48; (Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009). In 

addition, while Mulder et al. (2009) suggested that greater GA is associated with 

smaller deficits, Aarnoudse-Moens et al. (2009) found that GA did not significantly 

predict performance in inhibition tasks. Currently, most studies rely on single measures 

in their investigations and at different age groups. More studies are needed to 

understand the precise impact of prematurity on inhibitory control. Specifically, the 

inclusion of several inhibitory control measures in one study across different age groups 
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and different subgroups of children born preterm can shed light on their developmental 

differences in inhibitory control.  

Cognitive Flexibility  

Deficits in cognitive flexibility have been documented in the preterm/LBW 

population relative to their full-term peers, but these finding are mixed. Meta-analysis 

suggested that the measurement tool used to assess shifting has a strong impact on the 

outcomes of comparison studies. It was documented that studies using the TMT-B to 

measure shifting performance demonstrated a moderate effect size (N = 6, d = -0.50, 

95% CI 0.36-0.64), with the clinical cohort performing less well than their full-term 

control peers. This was in contrast to studies that described using sorting tasks, such as 

WCST, where shifting performance was not significantly different from control peers 

(N = 6, d = -0.10, 95% CI -0.06-0.27; (Mulder, et al., 2009).   

Findings from another review of 12 EF studies corroborated the aforementioned 

results using TMT-B as a measure of shifting. The review described the performance of 

VPT/VLBW individuals, ranging from eight to 22 years of age, as below that of their 

full-term peers. A reported combined effect size of -0.49 (p < .001) was documented, 

with the TMT-B as measurement. Their reported correlation between BW/GA and 

shifting performance was not significant (Aarnoudse-Moens, Weisglas-Kuperus, et al., 

2009). This study did not, however, provide details on the impact of SES, neurosensory 

impairments or IQ on their range of reviewed studies.  

A similar effect size to the aforementioned 12-study review was found in a study 

of 6-year-old, age-matched children, comparing VPT/VLBW and full-term controls. 

The study used the Object Classification Task for Children (OCTC) as a measure of 

shifting and found that the control group performed better than the clinical cohort before 

(p < .01, d = -0.77), and after controlling for IQ scores (p = .04, d = -0.40; (Aarnoudse-
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Moens, Smidts, et al., 2009). Although it was noticeable that both the p-value and the 

effect size have reduced after controlling for IQ, Friedman et al. (2006) suggested that 

there is a very low correlation between shifting and IQ in young adults. Further 

investigations on the impact of SES and neonatal risks did not show predictive variance 

amongst the 6-year-old sample. However, in contrast to the review, GA was found to 

explain 12% of variance in the shifting measure. In addition, similar to that documented 

for inhibitory control, the clinical group continue to perform at normal range IQ despite 

displaying impairments in cognitive flexibility tasks (Aarnoudse-Moens, Smidts, et al., 

2009).  

Nonetheless, a majority of recent findings were in agreement with Mulder et 

al.’s (2009) conclusion regarding the influence of measurement tools. For example, 

when Aarnoudse-Moens and her colleagues (2012) tested children born VPT/VLBW, 

between the age of four to 12 years, on a range of EF processes, they did not find any 

significant between-group differences on shifting using a stimulus-response 

compatibility task. Also in contrast with findings using TMT-B, Luu et al. (2011) did 

not find any significant group differences on measures of shifting in children born 

VPT/VLBW at 16-years of age when assessed using the Delis-Kaplan Executive 

Function Scale (D-KEFS).  

In sum, group differences in cognitive flexibility between the clinical cohort and 

their full-term peers appear to be inconsistent in both children and adults born 

preterm/LBW when measurement tools other than TMT-B was used (Aarnoudse-

Moens, et al., 2012; Luu, et al., 2011). More evidence on the effect of prematurity/LBW 

on shifting is required in measures other than TMT-B.  This is because given the current 

evidence, it is unable to ascertain whether those born premature/LBW display deficits 

pertaining to shifting or an alternate cognitive process to which TMT-B is sensitive. 
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Ideally, future studies should test the same clinical cohort concurrently with various 

shifting measures and across age groups.  

Working Memory  

Psychologists have taken particular interest in WM. Not only because evidence 

exists for WM’s associations with prematurity/LBW, whether it be tested as a general 

process or in specific forms, but also WM’s unique relationship with Gf. Recent meta-

analysis of 12 EF studies comparing VPT/VLBW to their full-term peers, ranging from 

seven to 14-years of age, on measures of digit span detected significant group 

differences with children born VPT/VLBW displaying lower scores with a combined 

effect size of -0.36 (p < .001; (Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009). 

However, the impact of confounding factors such as IQ and SES on the combined effect 

was not considered in the analysis.  

Studies that have considered confounding variables have mixed findings. For 

example, Ford et al. (2011) documented significant WM deficits in children born 

EPT/ELBW. They compared children born EPT/ELBW (n = 45) with their full-term 

controls (n = 45), aged between seven and nine years, on the combined scores of 

performance using digit span backwards and spatial span backwards. Inclusion criteria 

for participants included average IQ, no significant neurological disabilities as well as 

attendance at mainstream schools. Results indicated group differences with full-term 

controls performing significantly better (p = .007, η2
p = 0.08). The interaction between 

SES and neonatal medical risk significantly predicted the clinical group’s performance 

on WM (β = 0.42, p = .022). It was suggested that EPT/ELBW children growing up in 

higher SES families had less adverse effects stemming from neonatal medical risk at 

birth than those in lower SES families.  

However, a more recent and larger scale study by Aarnoudse-Moens et al. 
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(2012) reported otherwise. Children, aged between four and 12-years, born VPT/VLBW 

(n =200) were compared with their full-term peers (n = 230). The full-term group 

performed significantly better than children born VPT/VLBW on the spatial span task 

(p = .002) and the digit span backwards task (p = .001). This was indicative of small 

standard mean differences of -0.34 and -0.32 respectively. These impairments were no 

longer statistically significant after adjusting for IQ, although all participants performed 

at average IQ. It was also noted that neurosensory impairments did not have a 

significant impact on WM tasks.   

A closer analysis of existing research demonstrated impairments in specific WM 

areas, for example, verbal and visuo-spatial WM, amongst children born preterm/LBW.  

Recently, Clark and Woodward (2010) compared 6-year-old VPT children (GA: M = 

27.9, SD = 2.38; BW: M =1066 g, SD = 316.27; n =103) with full-term control (GA: M 

= 39.51, SD = 1.19; BW: M =3574.58 g, SD = 409.84; n =108).  They tested 

participants on verbal and visuo-spatial WM performance using the digit span task and 

Corsi blocks task respectively (including both forward and backward spans). All 

children displayed average IQ as tested using the WPPSI, although significant between 

group differences were detected in favour of the full-term group (p < .001). Group 

differences were particularly marked on the backward aspect of each WM task. 

However, after controlling for SES and neurological impairments, only differences on 

the Corsi block backward span task remained significant (FT: M = 9.73, SD = 7.29 vs 

VPT: M = 6.35, SD = 6.04, p = .02, d = -0.51).  This study indicated that perhaps the 

clinical group was more vulnerable to visuo-spatial rather than verbal impairments.   

In contrast, another study conducted a comparison between age-matched 6-year-

old VPT/VLBW  (n = 50) and full-term controls (n = 50) on verbal WM measured using 

digit span task. Results indicated that the clinical cohort was out-performed by their 
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control peers on backward (BWD) spans (p = .01, d = -0.80), even after controlling for 

IQ scores (p = .02, d = -0.53). In addition to that, GA, SES and neurosensory 

impairments did not significantly predict variances in WM scores. Additionally, 

children in this sample all performed with average IQ (Aarnoudse-Moens, Smidts, et al., 

2009). These findings suggest WM deficits in children born preterm/LBW was not 

accounted for by other factors.  

 Fraello et al.’s (2011) investigation was not in total agreement with the above 

evidence in regards to the specific areas of WM impairments as demonstrated in a 

recent small sample study comparing preterm/LBW (GA: M = 28.4, SD = 1.8, BW: M = 

972.7 g, SD = 151.4, n = 49) and full-term (n = 20) adolescents’ performance on WM 

tasks . Participants were assessed at 12 years of age and matched by age, gender and 

minority status. The authors used the WISC-III, the Comprehensive Test of 

Phonological Processing (CTOPP) and the Clinical Evaluation of Language 

Fundamentals-III (CELF-III) as measures for WM, which included digit span forward 

and backward tasks, a non-word repetition task, a verbal sentences recall task, as well as 

a multistep oral concepts and directions recall task. Results revealed no significant 

differences in digit span forward or backward tasks and non-word repetition, with 

maternal education ruled out as a potential confound. However, they showed that full-

term adolescents performed significantly better than the preterm cohort in tasks that 

were of higher verbal complexity, such as recalling sentences (FT: M = 11.1, SD = 2.8 

vs PT: M = 8.5, SD = 3.2, p = .004) and recalling concepts and directions (FT: M = 

10.4, SD = 3.1 vs PT: M = 7.4, SD = 2.7, p = .001).  It was concluded that as novel 

verbal information increases in complexity, children born preterm/LBW showed more 

difficulties in their ability to process and recall this information. Unfortunately, the 

authors did not provide any effect size statistics for their results. Therefore, further 
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comparisons could not be made with other studies and generalizations given the small 

sample size were to be made with caution. Nevertheless, Freallo et al.’s (2011) results 

here may provide some insight into reading difficulties identified in preterm/LBW and 

support Kane and Engle’s (2001) controlled attention theory.  This is because simple 

WM tasks, such as digit span tasks, require less focused attention, less inhibition of 

interference and distractions than complex, novel, verbal WM tasks, such as recalling 

sentences. Focused attention and inhibitory control are essential components of 

executive attention, which is also positively associated with working memory capacity 

and levels of cognition. Thus, the reported significant group difference in higher 

complexity tasks is consistent with a difference in executive attention.  

Working memory impairments in individuals born preterm/LBW appeared to 

also persist into late teens (Luu, et al., 2011) and early adulthood (Hallin, et al., 2010). 

For example, WM abilities of 16-year old VPT adolescents (BW ≤ 1250 g, n = 337) 

were compared with their full-term peers (n = 102), matched according to age, gender, 

race and residential area.  Performance on the Wechsler Memory Scale (WMS) 

backward span task was compared between the two groups with covariates adjusting for 

SES, such as maternal education and minority status. Significant group differences in 

favour of the full-term group were found in backward span task: mean difference [MD] 

= -1.7, 95% CI -2.5 to -0.8, p < .005). The results were then adjusted for IQ measured 

by the Peabody Picture Vocabulary Test – Revised (PPVT-R), and results indicated that 

significant differences continued to be apparent (MD = -1.0, 95% CI -1.8 to -0.3, p < 

.05). However, significant differences were no longer detected when further excluding 

participants with neurosensory impairments (NSI) and those with IQ < 70. SES and IQ 

did not provide a full explanation for the differences in working memory as measured 

by the backward span task, although the adjustment of IQ did narrow the gap. 
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Nevertheless, NSI and low IQ participants, together with SES and IQ fully accounted 

for the differences found in their sample of adolescence. Subsequently, their results for 

verbal and visual spatial memory after exclusion of participants with NSI and IQ < 70 

contrasted with those of working memory backward span. When the adolescents were 

tested using California Verbal Learning Test as a measure of verbal memory and the 

Rey-Osterrieth Complex Figure Test as visual spatial memory, the three adjustments 

continued to narrow the discrepancy between the clinical group and the full-term group, 

but significant differences continue to exist. Results after each adjustment for 1) SES, 2) 

IQ, and 3) NSI and IQ < 70: immediate verbal memory: (1: MD = -7.1, 95% CI -9.7 to -

4.5, p < .005; 2: MD = -5.2, 95% CI -7.5 to -2.9, p < .005; 3: MD = -4.2, 95% CI -6.5 to 

-1.9, p < .005) and delayed verbal memory: (1: MD = -0.8, 95% CI -1 to -0.5, p < .005; 

2: MD = -0.6, 95% CI -0.8 to -0.3, p < .005; 3: MD = -0.5, 95% CI -0.7 to -0.3, p < 

.005), as well as visual spatial memory, again both immediate (1: MD = -5.6, 95% CI -

7.6 to -3.6, p < .005; 2: MD = -3.9, 95% CI -5.7 to -2.2, p < .005; 3: MD = -2.8, 95% CI 

-4.6to -1.0, p < .005) and delayed (1: MD = -5.7, 95% CI -7.6 to -3.7, p < .005; 2: MD = 

-4.0, 95% CI -5.7 to -2.3, p < .005; 3: MD = -2.9, 95% CI -4.7 to -1.1, p < .005; (Luu, et 

al., 2011).   

All in all, WM impairments in those born preterm/LBW are consistently evident 

and these impairments are persistent in both children and adults. Impairments are also 

apparent in both working memory as measured using STM measures and attentional 

control measures. Confounding variables, such as SES and NSI played a role in 

narrowing the gaps of significant differences. Global IQ measures also narrowed the 

discrepancy, however, similar to findings for inhibitory control and cognitive flexibility, 

children born preterm/LBW displayed average IQ, which would not lead us to predict 

WM impairments.  
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Confounding Variables 

Several covariates are often included in the study of EF amongst those born 

preterm/LBW.  These include SES, as measured using residential location, parental 

education, household income, race and age.  The main reason for including these 

variables is their documented association with EF outcomes (Aarnoudse-Moens, 

Smidts, et al., 2009; Ardila, Rosselli, Matute, & Guajardo, 2005; Jurado & Rosselli, 

2007; Rosselli & Ardila, 2003). The impact of these covariates varies across studies. 

They can be unique predictors of EF performance in one study (Ford, et al., 2011), but 

have no predictive value in another (Aarnoudse-Moens, Smidts, et al., 2009). Although 

evidence shows that these covariates do not account for the entire EF impairment found 

between those born preterm/LBW and their peers, studies that control for these factors 

would likely provide a more accurate estimation of the magnitude of differences 

genuinely attributable to birth status.  

Global IQ scores have been included as a potential confounding variable in the 

EF studies reviewed earlier (Aarnoudse-Moens, Smidts, et al., 2009; Luu, et al., 2011; 

Nosarti, et al., 2007). The reason to control for IQ was to ensure that any impairment 

discrepancy found between clinical groups and their peers was not attributable to any 

pre-existing intelligence differences. As indicated, controlling for IQ does narrow the 

gaps in the discrepancy of the basic information parameters between the groups 

(Aarnoudse-Moens, Smidts, et al., 2009). This could be interpreted in several ways. It 

could be that the EF component in question could explain differences in IQ but still has 

variance left over. It could also be that controlling for IQ makes no difference because 

the EF component itself is not related to group differences in IQ. However, researchers 

have also argued that analysing IQ as a covariate is inappropriate when IQ itself may be 

meaningfully and intrinsically related to the clinical condition (Dennis et al., 2009; 
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Miller & Chapman, 2001). For example, Miller and Chapman (2001, p. 45) specified 

that “IQ would be very likely to be meaningfully related to brain damage, so using IQ as 

a covariate would disrupt any comparison of brain-damaged and control groups’ 

performance: IQ differences would almost certainly be part of group differences in 

brain-damage status. As a consequence, removing variance associated with IQ would 

alter the diagnostic group variable substantively.” 

Relationships between Working Memory and Fluid Intelligence 

There has been strong parallel research that supports the robust relationship 

between WM and Gf. Some focus on investigations of WM as part of EF and compare 

predictive power across the three aforementioned basic components of EF towards Gf 

(Duan, Wei, Wang, & Shi, 2010; van der Sluis, de Jong, & van der Leij, 2007). Others 

have provided evidence on specific components within the WM model and their 

respective relations to Gf (Engel de Abreu, et al., 2010; Tillman, Nyberg, & Bohlin, 

2008).  

Miyake et al.’s (2000) study of the unity and diversity of EF and their proposed 

three latent variables of EF (WM, inhibitory control, and shifting), described 

previously, has driven much of EF-related research. Friedman et al. (2006) replicated 

Miyake et al.’s (2000) model and tested which of the three EF constructs best predicted 

Gf . In their study, Raven’s Progressive Matrices (RPM) and WAIS Block Design 

subtest were used to measure Gf, while a multiple-choice vocabulary subtest and the 

WAIS Information subtest were used as measures for Gc. Using 234 young adults, aged 

16 to 18 years, and applying structural equation modelling (SEM), whereby inter-EF 

correlations were accounted for, the authors concluded that WM was the only EF 

construct that significantly (ps < .001) accounted for both fluid and crystallized 
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intelligence measures, with explained variance ranging from 37% to 45%.  Results 

indicated that WM updating predicted both Gf and Gc in similar degrees, with path 

coefficients of .74 and .79 respectively. The authors also pointed out that there remained 

unexplained variance of 49% to 57% in intelligence (Ackerman, Beier, & Boyle, 2005; 

Hornung, Brunner, Reuter, & Martin, 2011). These findings imply that not all EF 

processes were independently related to intelligence, but WM showed the strongest 

correlation with intelligence. Furthermore, EF did not fully explain variability in 

intelligence. 

Several published articles have tested how well EF, using Miyake’s (2000) 

model, predicts Gf in children, (Brydges, et al., 2012; Duan, et al., 2010; Lehto, et al., 

2003; van der Sluis, et al., 2007). All of these used either Raven’s Progressive Matrices 

(RPM) or the Cattell Culture Fair Intelligence Test (CCFIT) as measures of Gf.  

However, the use of EF tasks varied extensively.  For example, Duan et al. (2010) tested 

61 Chinese children with an average age of 11.88 years and confirmed the existence of 

three distinct, yet correlated, constructs of EF.  The measures they used included two 2-

back tasks; two Go/no-go tasks; and a local global task as well as digit shifting for 

measures of WM, inhibitory control and cognitive flexibility, respectively. Their 

investigation through SEM indicated a significant path coefficient between WM and Gf 

and a shared variance of approximately 35% (p < .01). However, neither inhibitory 

control nor shifting predicted significant additional variance in Gf and their documented 

shared variances with Gf were at 19% and 7% respectively. Although this study assisted 

in depicting a strong relationship between WM and Gf, the reliabilities of their measures 

were questionable. As reported in their article, all their measures were modified 

versions of the original task and no reliability figures were provided for reference.  

Van der Sluis et al. (2007) were unable to replicate the three constructs proposed 
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by Miyake (2000) when testing 172 children aged between nine to 12 years. Only two 

components, WM and cognitive flexibility, were detectable, but not inhibitory control. 

Nonetheless, they reported that WM accounted for 15.1% of variance in Raven’s 

Standard Progressive Matrices (RSPM). Although WM showed the strongest relation 

with Gf, the percentage of variance explained was less than those indicated in other EF 

or WM studies.  

Brydges et al. (2012) also tested Miyake’s (2000) EF model and sought to 

replicate Friedman et al.’s (2006) findings in the child population. The authors tested 

215 children, between the ages of seven and nine, on measures of inhibitory control, 

working memory, shifting, as well as Gf and Gc.  EF tasks used included the Stroop task, 

Go/no-go task, and the compatibility reaction time task for inhibition; letter-number 

sequencing, backward digit span, sentence repetition for WM; and the WCST, verbal 

fluency, and the letter monitoring task for shifting. The majority of selected tasks were 

from subtests of the WISC-IV, the British Abilities Scale, and the NEPSY. Results 

indicated that there was only one general construct to EF rather than the suggested three 

constructs. In their SEM model, EF was strongly predictive of both Gf and Gc at 80% 

and 69% variance respectively.  Similar to Friedman et al. (2006), there remained 

unexplained variance of 20% and 31% in Gf and Gc respectively. It was noted that raw 

scores were used across the whole age range in Brydges et al.’s (2012) study, which 

could possibly lead to correlations being inflated by the effect of age-related changes. 

Another possible interpretation of the age-related differences in structural models 

maybe in terms of the differentiation hypothesis (Deary et al., 1996), also termed ‘the 

law the diminishing returns’ by Spearman’s (1927). As confirmed by many other 

authors, the g factor is stronger and accounts for more variance in mental tests when 

assessed in young children and when cognitive ability levels are low compared to adults 
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and populations of high cognitive ability (Deary, et al., 1996; Detterman & Daniel, 

1989; Jensen, 2003). Nonetheless, Brydges et al.’s (2012) documented invariance 

testing results that indicated that there were no structural differences in EF and 

intelligence amongst the age groups. As well, their choice of EF tasks appeared more 

reliable than those used in previously reviewed papers as all tasks where taken from 

reliably established assessment batteries. In sum, the aforementioned findings suggest 

that EF does indeed have a strong association with Gf and, when components of EF are 

identified, WM and Gf had the most consistent association in children.  

 Several meta-analyses have been conducted to examine the relationship between 

WM and Gf in adults. Ackerman, Beier, and Boyle (2005) examined 86 studies and 

reported a shared variance of 25% (r = 0.48) for the two constructs. However, a re-

analysis of the published studies in Ackerman et al.’s (2005) using the SEM approach 

revealed a much higher true correlation (r = 0.85) between the latent constructs of WM 

and Gf (Oberauer, Wilhelm, Schulze, & Suß, 2005), indicating a shared variance of 

72%. Several methodological refinements were used in Oberauer et al.’s (2005) study 

that likely brought about the discrepant results. In particular, Oberauer et al. (2005) 

commented that Ackerman et al.’s (2005) inclusion criteria for their selection of tasks 

was unclear and did not adequately represent the construct of interest. Furthermore, 

Ackerman et al. (2005) used a fixed-effects model to conduct their study, while 

Oberauer et al. (2005) used a random-effects model. Oberauer et al. (2005) argued that a 

meta-analysis consists of participants that originated from various different populations, 

therefore a random-effects model was more appropriate.  Their use of analysis method 

was also different. Oberauer et al. (2005) used SEM instead of aggregation of indicators 

and correlational analysis with correction for attenuation as in Ackerman et al.’s (2005) 

study. The relationship between latent variables, excluding error variance, is arguably 
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more accurate. Subsequently, a re-analysis of 10 latent variable studies, also used in 

Ackerman et al.’s (2005) meta-analysis, was conducted and yielded a high correlation 

between WM and Gf  (r = 0.72) and a shared variance of approximately 50% (Kane, 

Hambrick, & Conway, 2005).                                                                                                     

Given that WM emerges as a distinct construct relatively early in development 

and contributes to variance in Gf for both adults (Engle, et al., 1999; Shelton, Elliott, 

Matthews, Hill, & Gouvier, 2010) and children (Engel de Abreu, et al., 2010; Fry & 

Hale, 2000; Hornung, et al., 2011), the WM-Gf link will now be explored within the 

multi-component WM theory. According to Engle and Kane (2004) and Conway et al. 

(2003), WM and Gf are closely related due to their dependence on executive attention 

control abilities, while others believe that the STM storage capacity, rather than the 

executive attention control, better explains WM-Gf link(Chuderski, Taraday, Necka, & 

Smolen, 2012; Colom, Rebollo, Palacios, Juan-Espinosa, & Kyllonen, 2004; Colom, 

Shih, Flores-Mendoza, & Quiroga, 2006 ).  

A general consensus has been established that WM and Gf, although clearly not 

isomorphic, are closely associated in children. Earlier reviews have documented 

correlations between WM and Gf ranging from 0.64 to 0.82 (Fry & Hale, 2000). Further 

investigations also investigated contributions of specific WM components, such as the 

STM and executive attention control, in predicting individual differences in Gf in 

children. For instance, some authors claim that executive control was significant in 

predicting Gf while STM did not (Bayliss, Jarrold, Baddeley, Gunn, & Leigh, 2005; 

Engel de Abreu, et al., 2010; Swanson, 2008). In particular, Engel de Abreu et al. 

(2010) tested 119 children, ranging from kindergarten to Year 2 in school.  Measures 

used in the study included the counting recall and backwards digit recall tasks for 

complex memory, digit recall and non-word repetition tasks for short-term memory, and 
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Raven’s Coloured Progressive Matrices Test (RCPM) for Gf.  The authors concluded 

that the complex span tasks, as measures of executive attention control, were better 

predictors of performance on the Gf task than were the STM tasks.  They also suggested 

that complex span tasks rely heavily on executive attention control to effectively 

complete goal-directed behaviour and inhibit interference to elicit appropriate 

responses, which was in accordance with Kane et al. (2001).  

In divergence from the above, Tillman, Nyberg, and Bohlin (2008) suggested 

that it was not a question of either/or but that both storage and processing components 

of WM were significant and influential contributors to the development of higher 

cognitive reasoning.  Nevertheless, more evidence from both children and adults is 

needed in order to provide a clear understanding on how these components contribute to 

individual differences in Gf as it is likely that the developmental trajectory across 

different age groups and variations in the use of measurement tools may influence these 

findings. Moreover, concurrent comparison of each component in the same sample 

would afford a more sophisticated opportunity to evaluate relative contribution. 

Summary 

 In conclusion, on global IQ scores, preterm/LBW individuals score lower than 

their full-term peers by approximately 10-12 points. However, studies not only show 

that the performance of individuals born preterm/LBW fall within normal range on 

global IQ score but that they display substantial academic difficulties at school which 

could continue to later life. It appears that global IQ cannot readily explain the full 

extent of difficulties of this clinical cohort. Inspection of domain-specific abilities from 

the traditional IQ test suggests that the children born preterm/LBW display greater 

deficit in fluid abilities than crystallized abilities.  However, no published evidence has 

been presented to date regarding the investigation of Gf amongst children born 
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preterm/LBW. The investigation through Gf is relatively novel in the current literature 

and therefore benefit from further examination.  

The literature has also provided ample evidence on the effect of 

prematurity/LBW on the basic processes within EF. In particular, investigation of the 

normal developmental trajectories of EF shows that WM and cognitive flexibility are 

two particularly rapidly changing components in school-aged children. In addition, 

children born preterm/LBW display relatively large difficulty on tasks measuring WM 

performance compared to other information processing parameters. While persistent 

WM impairments are found in school-aged children born preterm/LBW, results are 

inconsistent for cognitive flexibility. The inconsistency may be due to the use of 

different measurement tools.  

A close relationship has been demonstrated between Gf and EF-related 

information processing parameters, with WM being viewed as a strong predictor of Gf. 

However, whether the effect of prematurity in Gf impairments is attributable to these 

EF-related information processing parameters is still unknown. 
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CHAPTER 4 

Study 1: Effects of preterm birth on fluid intelligence: Investigating working 
memory and cognitive inflexibility as potential mediators  

 
Introduction 

Psychologists have used global IQ measures to examine differences in general 

intelligence in children born preterm/LBW. Global IQ measures are an obvious starting 

point because of their ability to predict academic achievement (Deary, et al., 2007; 

Rohde & Thompson, 2007). From the literature review, children born preterm exhibit at 

least a 10-12 point decrement in FSIQ, however, their mean scores remain within the 

average range (Bhutta, et al., 2002; Kerr-Wilson, et al., 2011). Despite this consistent 

finding, low academic achievement has also continually been documented in children 

and adults born preterm/LBW (Bowen, et al., 2002; Johnson, et al., 2011; Mulder, et al., 

2010; Roberts, et al., 2011; Taylor, et al., 2011). Moreover, neurodevelopmental 

evidence has shown that children born preterm/LBW perform less well than their peers 

in the basic information parameters of executive function, including inhibition, WM 

and, possibly, cognitive flexibility. 

Previous research has taken a componential approach, which assumes that 

information processing components are building blocks of higher cognitive abilities 

(Sternberg, 1981). For example, evidence indicates that differences between birth 

groups on global IQ impairments can be fully accounted for by basic information 

processing parameters (Rose, et al., 2011). However, this evidence does not adequately 

explain the discrepancy between normal range global IQ scores and consistent reports 

of poor academic achievement.  

Therefore, the examination of theoretically based cognitive constructs, such as 

Gf, may be fruitful in assisting the understanding of this cognitive discrepancy. Past 

research has presented us with some success in other contexts. For example, Duncan et 
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al. (1995) resolved a similar issue in the adult literature where patients with damage to 

their prefrontal cortex, causing executive function impairments, presented with 

‘average’ scores on global IQ measures but exhibited compromised Gf performance. He 

claimed that the underlying mechanism of the g factor is most appropriately examined 

through measures of Gf.  Research on children with developmental disorders, such as 

ADHD, reveals a similar pattern (Barkley, 1997; Tamm & Juranek, 2012). Given the 

pattern of cognitive abilities shown by children born preterm/LBW, perhaps the 

consideration of Gf will be worthy of investigation. 

Factor analyses have documented that Gf and FSIQ have strong loadings on g in 

the general population, (Gustafsson, 1984; Keith, et al., 2006; Kvist & Gustafsson, 

2008). If this is due to their isomorphism, then the clinical cohort is likely to perform 

lower on Gf measures than their peers, but only to the extent that their FSIQ is lower. 

However, there has only been preliminary documentation of deficiencies in Gf amongst 

children born preterm/LBW.  Whether the clinical cohort displays developmentally 

lagged performance on Gf as compared to their peers is also not well documented. If Gf 

is indeed impaired, it is still unclear whether birth status difference in Gf deficits is 

attributable to EF in general or specific components or combinations of both.  

According to the literature on typical development, the greatest changes affecting 

children of school age also occur in WM and cognitive flexibility, both of which 

develop rapidly during early childhood, rather than inhibition (Best, et al., 2009). 

Studies on how well EF predicts Gf also suggest that WM is a more consistent predictor 

of Gf  than the other two widely identified EF components (Fry & Hale, 2000; Kane, et 

al., 2005; Kyllonen & Christal, 1990; Shelton, et al., 2010), and that it may possibly 

play a causal role in Gf  (Jaeggi, et al., 2008; Klingberg, et al., 2002; Studer, et al., 

2009). In addition, WM has been shown to have strong associations with academic 
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achievement, particularly in math and reading (Alloway, 2009; Alloway & Alloway, 

2010; Alloway, Gathercole, Kirkwood, & Elliot, 2009; Maehler & Schuchardt, 2009), 

which have been identified as areas of difficulty in children born preterm/LBW 

(Pritchard, et al., 2009; Roberts, et al., 2011).  

Cognitive flexibility also appeared to be impaired in children born preterm/LBW. 

The ability to switch between stimulus-response rules in simple tasks typically emerges 

around three to five years of age in normal development. However, preschoolers may 

struggle in tasks that require switching between more than one set of stimulus-response 

rules, for example matching with color is switched to matching with shapes within the 

same task (Espy, 1997). Older children may continue to struggle with complex rules, 

but a sharp improvement in ability to withhold perseverative behavior has been 

suggested to take place between seven and nine years of age (P. Anderson, 2002). 

Provided with this information, the comparison of cognitive flexibility between children 

born preterm and their same aged peers between seven to nine years old may shed light 

on developmental trajectory differences.   

Studies of cognitive flexibility in preterm/LBW samples have also demonstrated 

rather mixed results. Variations in measures used, age of sampling group as well as 

sample size have made it difficult to compare outcomes across studies. Evidence of 

deficiency in cognitive flexibility in children born preterm/LBW have been frequently 

documented using TMT-B task (Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009). 

However, the TMT-B task requires eye-hand co-ordination and motor skills from using 

pen and paper to connect testing items. It also uses the time to complete the task as the 

outcome variable (Reitan & Wolfson, 1992). WCST, on the other hand, is an alternative 

measure of cognitive flexibility that requires participants to match cards while 

completing the task without any time constraints (Heaton, et al., 1993). The 
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administrative difference between the two tasks may impede on test performance for 

young children and the TMT-B task may underestimate the shifting ability of those 

children that need more processing time. Therefore, using perseverative errors from 

WCST, as opposed to the TMT-B task, for investigating cognitive flexibility amongst 

children born preterm/LBW may benefit exploration of this issue (Mulder, et al., 2009).   

Therefore, the current study will investigate the effects of prematurity on Gf and 

the role of two core information processing parameters, namely working memory and 

cognitive flexibility, in a group of seven to nine-year-olds. Measures used in the study 

will include the Cattell Culture Fair Tests for Gf, the digit span tasks for working 

memory, and the WCST for cognitive flexibility, respectively. Coordinators of the 

Project Kids Intellectual Development Study (PKIDS) have carefully selected the 

assessments used as suitable for this age group, representative of these core constructs 

and with lower construct overlap than other options. 

The Current Study 

The current study has three aims:  

1) To test whether children born preterm show Gf impairments as compared to  

their same age peers;  

2) To ascertain whether children born preterm show WM and cognitive 

flexibility deficits relative to their same age peers; and  

3) To determine whether birth group differences in Gf between preterm and 

typically developing children are attributable to WM and/or cognitive 

flexibility.  

Hypotheses 

1) Given similarities in cognitive profile identified in adults with frontal lobe 

damage and children with ADHD, it is predicted that the preterm cohort will 
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perform less well than their same age peers in the Gf task.  

2) If information processing parameters constrain Gf, it is predicted that the 

current sample of children born preterm will present with deficits in both 

WM and cognitive flexibility relative to their same age peers. 

3) If WM is causally related to Gf, and children born preterm show deficits in 

both, it is predicted that WM will partially mediate birth group differences in 

Gf. If cognitive flexibility is causally related to Gf, and children born preterm 

show deficits in both, it is predicted that cognitive flexibility will also 

partially mediate birth group differences in Gf.  

Method 

Participants 

The archival records of 362 children were considered for analysis in the study. 

Participants were recruited through PKIDS, which is an ongoing research program 

based at Murdoch University and previously at the Neuro-cognitive Development Unit 

(NDU) of the University of Western Australia (UWA). Participants to the program were 

recruited through primary schools within the metropolitan area of Perth city in Western 

Australia, within which participants born preterm were recruited through Kind Edward 

Memorial Hospital. Information packs were distributed to parents and interested parents 

and participants were contacted upon completion of consent forms.   

The data set included typically developing children born between 1988 and 

1991, who participated in PKIDS in 1998, and children born preterm born between 

1990 and 1992, who participated in PKIDS in 1999.  Table 4.1 displays the sample 

characteristics. One participant was excluded due to missing data for gestation weeks 

and birth weight, giving a final total of 217 participants (106 females, 111 males) in the 

preterm group. At the time of assessment, participants in the preterm group ranged from 
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seven to nine years old (M = 8.31, SD = .70) and consisted of those with birth weight 

ranging from 505g to 2760g (M = 1331.42g, SD = 452.03) and gestational age ranging 

between 23-34 weeks (M = 29.35, SD = 2.50). The comparison control group was made 

up of 145 typically developing children (63 females, 81 males), group-matched for age 

(M = 8.43, SD = .92). The two groups did not differ significantly in age or gender 

composition as indicated by a Mann-Whitney U test. Within the preterm group, there 

was a strong positive correlation between birth weight and gestational age, where lower 

birth weight was associated with shorter gestational age, r = .75, p < .001.  

Table 4.1  

Characteristics of LBW Preterm Group and Control Group  

 LBW Preterm Group Control Group 
 7-year 

olds 
(n = 87) 

8-year 
olds 
(n = 69) 

9-years 
olds 
(n = 61) 

7-year 
olds 
(n = 55) 

8-year 
olds 
(n = 47) 

9-years 
olds 
(n = 43) 

  
M (SD) 

 
M (SD) 

 
M (SD) 

 
M (SD) 

 
M (SD) 

 
M (SD) 

 
Birth weight 
(g) 

 
1250.32 
(471.26) 

 
1284.20 
(385.68) 

 
1500.49 
(455.53) 

   

 
Gestational 
age (weeks) 

 
28.66 
(2.40) 

 
29.22 
(2.51) 

 
30.48 
(2.24) 

   

 
Age 

 
7.60 (.26) 

 
8.44(.32) 

 
9.18 (.16) 

 
7.45 
(.28) 

 
8.54(.27) 

 
9.57 
(.30) 

 

A significant difference was found in birth weight between the preterm age 

groups, F(2, 214) = 6.34, p = .002. Scheffe’s post hoc test showed that the 7-year-olds 

(p = .004, d = 0.46) and the 8-year-olds (p = .022, d = 0.38) were born significantly 

lighter than the 9-year-olds. However, the birth weight of 7- and 8-year-old children 

was not significantly different.  

A significant difference was also found in gestational weeks between the age 

groups, F(2, 214) = 10.53, p < .001. Scheffe’s post hoc test showed a similar pattern 
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where 7-year-olds (p < .001, d = 0.62) and 8-year olds (p = .012, d = 0.41) were born 

significantly earlier than the 9-year olds, with no difference found between the younger 

two groups.  

Measures 

Cattell Culture Fair Intelligence Test (CCFIT). The CCFIT (Cattell, 1973) 

was used to measure participants’ Gf. It is a non-verbal assessment that has been 

commonly used in studies of intelligence (Brydges, et al., 2012; Colom, Abad, Rebollo, 

& Shih, 2005; Colom, Rebollo, Abad, & Shih, 2006; Dang, Braeken, Ferrer, & Liu, 

2012).  

The test is intended to measure cognitive ability with little dependence on 

knowledge, thereby minimizing the influence of cultural factors, educational 

background and verbal fluency. Individuals are required to identify figural relations 

through inductive reasoning. PKIDS used Scale 2 Short Form A, which consists of four 

timed subtests with 46 items to be answered within an allocated time of 12.5 minutes 

altogether. The item difficulties gradually increase within each subtest (Cattell, 1973). 

The four subtests are summed to produce a total score, which serves as the outcome 

variable in the present study.   

According to CCFIT’s manual (Cattell, 1973), the immediate test re-test 

correlation for Scale 2 Short Form A, using 650 students, was .73. The internal 

consistency (Cronbach’s alpha) of the test, based on data from 3999 participants was 

.76. The test also showed criterion validity via a high correlation with another 

intelligence measure, the WISC, at .70. Form A also shares a variance of .66 attributable 

to g (Cattell, 1973).   

 Digit span task. The digit span task is a subtest included in the Wechsler 

Intelligence Scale for Children – Third Edition (WISC-III) as a measure of WM 
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(Wechsler, 1991). The subtest consists of a forward task and a backward task, both of 

which are commonly used in WM literature (Swanson, 2008; Tillman, et al., 2008) and 

amongst cognitive studies of prematurely born children (Clark & Woodward, 2010; 

Fraello, et al., 2011).  

This task requires participants to verbally repeat sequences of numbers in the 

same order for digit span forwards and in reverse order for digit span backwards. The 

number of digits increases as examinees successfully recall two consecutive trials of a 

given length and testing is discontinued when examinees fail to correctly recall two 

strings of digits of the same length. The raw scores of digit span forwards and 

backwards are summed to indicate the number of correct trials for the task. This number 

is used as the outcome variable for the examinees’ WM.  Although it is possible to 

separate out the scores for digit span forwards and backwards respectively, recent 

studies have demonstrated that the combined score is also adequately suitable in 

representing WM as a single cognitive ability (Bowden, Petrauskas, Bardenhagen, 

Meade, & Simpson, 2013).   

According to the WISC-III manual (Wechsler, 1991), the reliability coefficient 

for the digit span subtest, estimated by split half correlations for the specific age groups 

of 7- and 9-year-olds ranged from .81 to .84 (n = 200 for each age group).  

 Wisconsin Card Sorting Test (WCST). The WCST (Heaton, et al., 1993) 

measures participants’ executive function (EF). In particular, it measures an individual’s 

ability to carry out goal-directed activities together with planning, initiation, and 

resistance to perseveration.   

In this test, participants are presented with four ‘key’ cards differing in three 

dimensions: colour, number and form. Participants are required to match each of the 

128 stimulus cards to one of the key cards. The matching rules change after every ten 
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consecutive correct responses, however, the rule is not divulged to the participants. 

Thus, the task requires participants to induce the tacit rule by attending to the feedback 

provided on their responses and change rules appropriately. The examiner provides 

feedback on each trial by saying ‘Right’ or ‘Wrong’ to inform the participants of their 

performance. The test terminates once participants complete categorizing on the three 

dimensions (colour, number, or form) two times, or after sorting all stimulus cards 

(Heaton, et al., 1993; Romine et al., 2004).  

Of the various outcome measures available, raw score on perseverative errors 

from the WCST was chosen as the outcome measure. A perseverative error is defined as 

“a failure to shift category after receiving negative feedback from the previous trial” 

(Barceló & Knight, 2002, p. 353). The task has been known to assess the shifting 

component of EF. Therefore, a high score in this task reflects a lower level of shifting 

ability, also referred to as cognitive flexibility (Best, et al., 2009). For the ease of 

interpretation, this performance is subsequently labelled as ‘cognitive inflexibility’ in 

this study. Alternate-form reliability from a student sample (n = 75) ranged from .25 to 

.63 (Bowden et al., 1998). Although the test was originally intended for the adult 

population as a means to identify prefrontal cortical damage, extensive research has 

used WCST in children to determine its sensitivity and specificity, and has developed 

further normative data for it to be used in the child population (Bull & Scerif, 2001; 

Chase-Carmichael, Douglas Ris, Weber, & Schefft, 1999; Heaton, et al., 1993; Romine, 

et al., 2004). 

Procedure 

The study was granted ethical approval by the Human Research Ethics 

Committee of Murdoch University, Western Australia (see Appendix A). It employed a 

retrospective design where participants’ data were obtained from those who took part at 
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PKIDS in 1998 and 1999. The program was established in 1995 and runs every year as 

a two-week school holiday program. Children participating in the present study 

underwent two consecutive days of psychometric testing in a child-friendly 

environment.  The tests used in this study are a subset of a larger assessment battery. 

Each testing session lasted no longer than 30 minutes in recognition of the limited 

attention span of typically and atypically developing primary school aged children. 

Well-trained post-graduate psychology students administered all the measures in 

accordance with standardized administration procedures. The WCST and digit span task 

used in the present study were administered individually, while CCFIT was 

administered in small groups. 

To maintain high engagement levels, standardized psychometric assessment was 

presented to children as solving ‘puzzles’ in return for tokens. Children were able to 

exchange their tokens for materials used in building a rocket and a planet in the context 

of an outer-space alien theme story. During the day, children were also provided with 

game activities and meals during non-testing times. All children received a small gift 

and a certificate at the end of their two-day participation with PKIDS. The return rate of 

participants between Day 1 and 2 is more than 95%, suggesting that children experience 

the day as fun and engaging. The return rate for longitudinal return after 2 years is more 

than 85% with the majority of non returners being due to ill-health or families that have 

moved and could not be contacted. 

Results 

SPSS for Windows Version 17.0 was used for all data analyses. Results are 

divided into three sections. The first section details data preparation. The second section 

provides results for birth group differences on the three cognitive measures. 

Developmental trends are also presented. Finally a mediation analysis is used to test 
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whether effects of birth status on Gf are mediated by measures of working memory and 

cognitive inflexibility, as well as whether these mediation effects differ according to age 

group.  

Data Preparation  

Assumptions were tested before proceeding with the analyses. The assumption 

of normality was assessed for each cohort and within each age group separately for each 

measure, using a combination of the Skewness and Kurtosis statistics and visual 

inspection of histogram and normal Q-Q plots. If inspection of normal Q-Q plots 

showed observed sample data points clustering tightly along the normal distribution line 

with only occasional minor deviation, normality was assumed (Field, 2009c; 

Tabachnick & Fidell, 2001b).  

For the digit span task, the assumption of normality was met for the distribution 

of scores for all ages in both groups. On the CCFIT, no violations of normality were 

found for the preterm cohort but some were found within the control group, particularly 

the 8-year-old group was slightly negatively skewed. Although absolute normality 

could not be assumed, inferential statistics used in the analysis are relatively robust to 

violations of this assumption (Tabachnick & Fidell, 2001a). The assumption was, 

however, severely violated on the WCST measure of perseverative errors, with the 

distributions of both groups showing positive skew.  A non-parametric Mann –Whitney 

U test was then used as a conservative test for birth group differences in WCST 

performance. Perseverative error scores were then log transformed (first, adding 1 to 

raw scores). These WCST transformed scores were used in all subsequent analysis. 

Although minor deviations from normality continued to exist, this would have a 

negligible impact on robust inferential statistics (Tabachnick & Fidell, 2001a).  

 The homogeneity of variance assumption, tested using Levene’s Test, was met 
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for the digit span task but was violated for WCST (p = .049) and CCFIT (p = .041). 

With moderate to large sample size and equivalent group size, ANOVA is robust to the 

violation of this assumption (Allen & Bennett, 2010). Since the current group sizes 

were not equivalent, as a precaution against this violation, a more stringent p level 

of .01 was used instead of the usual .05. All tests results reported in the following 

sections are two-tailed. When post hoc tests are required, the Scheffe’s post hoc test is 

used, as it is most conservative and flexible (Tabachnick & Fidell, 2001c). Effect sizes 

are provided using Cohen’s d and partial η². The effect sizes of Cohen’s d are 

interpreted following Cohen’s guidelines where 0.20, 0.50 and 0.80 represent a small, 

medium, and large effect size, respectively (Cohen, 1992). 

Birth Group Differences 

Descriptive statistics for the two birth groups’ performance on CCFIT, WM, and 

WCST are provided in Table 4.2.  
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Table 4.2.  
 
Descriptive Statistics for Psychometric Test Raw Scores for Each Group  
 Preterm Control 
Variables n M (SD) n M (SD) 
 
Gf - CCFIT 

    

All ages 216 24.14 (6.43) 144 28.94 (5.62) 
Age 7 86 21.02 (6.55) 55 26.44 (5.54) 
Age 8 69 25.06 (5.45) 47 29.43 (5.86) 
Age 9  61 27.51 (5.24) 42 31.67 (3.87) 

 
WM – Digit span 

All ages 215 11.80 (2.92) 144 13.17 (2.76) 
Age 7 87 10.68 (2.52) 55 12.18 (2.22) 
Age 8 68 12.59 (3.04) 46 13.50 (2.83) 
Age 9  60 12.53 (2.83) 43 14.07 (2.97) 

 
Cognitive Inflexibility – WCST 

All ages 213 33.95 (25.77) 137 20.28 (12.94) 
Age 7 85 43.69 (29.43) 51 22.69 (12.73) 
Age 8 68 29.76 (21.12) 45 18.91 (12.34) 
Age 9  60 24.88 (20.13) 41 18.80 (13.69) 

 
Cognitive Inflexibility – WCST (after transformation) 

All ages 213 1.43 (.32) 137 1.25 (.28) 
Age 7 85 1.53 (.34) 51 1.31 (.25) 
Age 8 68 1.40 (.27) 45 1.21 (.29) 
Age 9 60 1.30 (.31) 41 1.20 (.30) 

Note. Gf = Fluid intelligence; CCFIT = Cattell Culture Fair Intelligence Test; WM = 
Working memory; EF = Executive function; WCST = Wisconsin Card Sorting Test. 
 

Fluid intelligence: CCFIT.   

 A 2 x 3 ANOVA was used to test for group differences in the CCFIT raw 

scores between children born preterm and their typically developing peers in each age 

group. Analysis indicated that there was a significant main effect of birth group, F 

(1,354) = 58.29, p < .001, partial η² = .14, with the control participants performing 

better than their preterm born peers. As expected, a significant main effect of age group 

was also found, F (2,354) = 32.35, p < .001, partial η² = .16, indicating that older 
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participants performed better than younger ones. Post hoc analysis indicated that the 9-

year olds scored significantly higher than the 8-year olds (p = .008), and the 7-year olds 

(p < .001), and the 8-year olds also scored significantly higher than the 7-year olds (p 

< .001). The birth group x age group interaction effect was not statistically significant. 

Mean scores for the preterm and control groups across the three age groups are 

presented in Figure 4.1.  

One-way ANOVAs specified that the preterm group performed less well than 

their matched controls with a medium to large effect size for each separate age group 

(Cohen, 1992). Refer to Table 4.3 for inferential statistics and effect sizes. 

Table 4.3  
 
Inferential Statistics and Effect Sizes for the Measures of Cognitive Function across 
Each Age Group  
Variables F η² Cohen’s d Contrast 
 
Gf - CCFIT 

    

All ages (1,358) = 53.01*** .13 0.77 PT < T 
Age 7 (1,139) = 25.80*** .16 0.86 PT < T 
Age 8 (1,114) = 16.90*** .13 0.77 PT < T 
Age 9 (1,101) = 19.22*** .16 0.87 PT < T 

 
WM – Digit span 

    

All ages (1,357) = 19,73*** .05 0.47 PT < T 
Age 7 (1,140) = 13.12 *** .09 0.61 PT < T 
Age 8 (1,111) = 2.52 .02 0.30 PT < T 
Age 9 (1,102) = 7.28** .07 0.53 PT < T 

 
Cognitive Inflexibility – WCST (after transformation) 

All ages (1,348) = 29.00*** .08 0.58 PT > T 
Age 7 (1,134) = 16.67*** .11 0.71 PT > T 
Age 8 (1,111) = 12.38** .10 0.67 PT > T 
Age 9 (1,99) = 2.83 .03 0.34 PT > T 

Note. PT = Preterm birth group; T = Term group.  
**p < .01, ***p < .001.  
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Figure 4.1. Mean CCFIT total raw scores for each of the preterm and their control age 
group. 
 

Working memory: Digit span task.  
 
A 2 x 3 ANOVA demonstrated that there was a significant effect of birth group 

on WM, F (1,353) = 19.72, p < .001, partial η² = .05, with the control group participants 

outperforming their preterm born peers. The effect of age group was significant, F 

(2,353) = 16.81, p = < .001, partial η² = .09.  Post hoc analysis showed that 9-year-old 

children (p < .001) and 8-year-old (p < .001) children performed significantly better 

than 7-year-old children, but the two older groups did not differ significantly from each 
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other. A follow up simple effects analysis for each birth group showed that the pattern 

of significance was the same for each age group. The birth group x age group 

interaction effect was not statistically significant. A visual inspection of the trend can be 

viewed in Figure 4.2. However, one-way ANOVA showed a significant difference by 

birth status in 7-year-old and 9-year-old children in their performance on the digit span 

task in favour of the control group, whereas 8-year-old participants did not show a 

significant birth group effect. Effect sizes ranged from small to medium (Cohen, 1992). 

Detailed inferential statistics are presented in Table 4.3.  

Figure 4.2. Mean digit span total raw scores for each of the preterm and their control 
age group.  
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Cognitive Inflexibility: WCST.  

A 2 x 3 ANOVA on perseverative errors on the WCST showed a significant 

effect of birth group, F (1,344) = 27.29, p < .001, partial η² = .07, with the preterm 

group producing consistently more errors than the control group. There was also a 

significant effect of age group, F (2,344) = 9.68, p < .001, partial η² = .05. Post hoc 

analysis revealed that 9-year-old children (p < .001) and 8-year-old (p = .005) children 

performed significantly better than 7-year-old children, but the two older groups were 

not significantly different from each other. A follow up analysis showed that this pattern 

of age group significance was present in the preterm group but not in the typically 

developing children. In children born preterm/LBW children, 7-year olds made more 

perseverative errors on the WCST than their 8-year-old (p = .034) and 9-year-old peers 

(p < .001), but the older two groups did not differ.  In the typically developing control 

group, no significant difference was found in the age group comparisons. Nevertheless, 

a significant birth group x age group interaction effect was not found. Figure 4.3 

presents their different cognitive trajectories. 

One-way ANOVA, using transformed WCST scores, analyzed separate age 

group differences. It indicated that the control group performed better than the clinical 

cohort among 7- and 8-year-old participants but not the 9-year-old participants, with 

effect sizes ranging from small to medium (Cohen, 1992). Refer to Table 4.3 for 

statistics and a comparison of effect sizes with other measures across age groups.   
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Figure 4.3. Mean WCST perseverative errors for each of the preterm and their control 
age group.  
 
Mediation Analysis 

A multiple mediation analysis was performed to explore the degree to which 

birth status effects on Gf were mediated by both digit span performance and WCST 

performance.  

Preacher and Hayes’ (2004, 2008) SPSS macro script, named PROCESS, on 

their website: http://www.afhayes.com/introduction-to-mediation-moderation-and-

conditional-process-analysis.html (2013) provided both Normal Theory Sobel Test and 
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bootstrapping methods to test direct and specific indirect effects. All results for indirect 

effects produced by PROCESS generated 95% bias-corrected bootstrap confidence 

intervals. The number of bootstrap samples was set at 1000. This bootstrapping 

approach helps alleviate errors in normality assumption that the Sobel test makes when 

calculating indirect effects. The bootstrapping approach is now considered best practice 

over the commonly used Baron and Kenny (1986) approach, as the latter has been 

reported to have relatively low statistical power (A. F. Hayes, 2009; Hoyt, Imel, & 

Chan, 2008; MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002; Preacher & 

Hayes, 2008).  

 In Figure 4.4, the c coefficient depicts the total effect of birth status on Gf before 

controlling for WM and cognitive inflexibility. The c’ coefficient illustrates the direct 

effect of birth status on Gf after concurrently controlling for WM and cognitive 

inflexibility. The product of path coefficients a1 and b1 represent the indirect effect of 

birth status on Gf through WM. Similarly, the product of path coefficients a2 and b2 

represent the indirect effect of birth status on Gf through cognitive inflexibility. The 

analyses were first conducted using all participants and then repeated for each age group 

separately. The data is dummy coded using 1 for the clinical cohort and 0 for typically 

developing children. Raw correlations and results are presented in Table 4.4 and 4.5 

respectively. 
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Figure 4.4. This illustrates the multiple mediation analysis path models for the current 

study.  The first model presents a direct pathway and the second model presents 

indirect/mediated pathways. 

 

Table 4.4 

Raw Correlations between Variables used in Multiple Mediation Analysis  

 1 2 3 4 5 
1. Birth Group - -.02 -.36** -.23** .28* 

2. Age Group  - .38** .29** -.25** 

3. CCFIT total score   - .44** -.47** 

4. Digit Span raw score    - -.32** 

5. WCST (PE)     - 

Note. CCFIT = Cattell Culture Fair Intelligence Tests; WCST (PE) = Wisconsin Card 
Sorting Test (log perseverative errors)  
** p < .01 
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Table 4.5 
 
Results of Multiple Mediation Analysis for Each Age Group as Predictors of Fluid 
Intelligence 
 

   Birth Status  
 

Age 
Group 

 
Total 
effect 

 
Direct 
effect 

 
Mediation by  

Working Memory 

 
Mediation by  

Cognitive Inflexibility 
 
 

 
c 

 
c’ 

 
a1 

 
b1 

 
a1xb1a 

 
a2 

 
b2 

 
a2xb2b 

 
All 
ages  
n = 347 

 
-4.90*** 

 
-2.85*** 

 
-1.30*** 

 
.67*** 

 
-.87*** 

 
.18*** 

 
-6.43*** 

 
-1.18*** 

 
Age 7 
n = 136 

 
-5.16*** 

 
-3.07** 

 
-1.40** 

 
.35 

 
-.49 

 
.22*** 

 
-7.14*** 

 
-1.60** 

 
Age 8 
n = 111 

 
-4.78*** 

 
-3.22** 

 
-.90 

 
.48** 

 
-.43 

 
.20*** 

 
-5.78** 

 
-1.14* 

 
Age 9  
n = 100 

 
-4.23*** 

 
-2.89** 

 
-1.43* 

 
.74*** 

 
-1.06* 

 
.10 

 
-2.70* 

 
-.27 

Note. Unstandardized coefficients are presented.  
a Specific indirect effect for working memory. 
b Specific indirect effect for cognitive inflexibility.  
*p < .05, **p < .01, ***p < .001  
 

As presented in Table 4.5, both age-collapsed and separate age group analyses 

revealed significant total effect and direct effect of birth status towards Gf. The direct 

effect showed that the preterm cohort performed less well than their peers on CCFIT, 

after controlling for both WM and cognitive inflexibility performance concurrently. 

Both specific indirect effects were statistically significant for the combined age groups. 

According to the Sobel Test, there was a partial mediation effect through WM: Z = -

3.46, p < .001, with a 95% bias corrected bootstrap confidence interval that did not 

include 0. Similarly, there was a partial mediation effect through cognitive inflexibility 

(Z = -4.19, p < .001), which was also verified by a 95% bias corrected bootstrap 

confidence interval that did not include 0. The total indirect effect (unstandardized), 
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which refers to the sum of both specific indirect effects, was -2.04, with a 95% bias 

corrected bootstrap confidence interval that did not include 0. Approximately 5% 

variance in WM is explained by birth status (R2 = .0475, F = 17.21, p < .001), while 8% 

variance in cognitive inflexibility is explained by birth status (R2 = .0782, F = 29.27, p < 

.001). 13% variance is accounted for from estimating Gf from birth status alone (R2 = 

.1343, F = 53.52, p < .001). The two mediators and birth status together accounted for 

36% variance in Gf (R2 = .3585, F = 63.90, p < .001). 

When analyses were conducted with each age group separately, results were 

different. A partial mediation effect of birth status on Gf through WM was not 

statistically significant for 7-year-olds (Z = -1.42, p = .154) or 8-year-olds (Z = -1.31, p 

= .189), but was statistically significant for 9-year-olds (Z = -2.17, p = .030). On the 

other hand, a partial mediation effect of birth status on Gf through cognitive inflexibility 

was statistically significant in both 7-year-olds (Z = -2.95, p = .003) and 8-year-olds (Z 

= -2.41, p = .016), but was not significant in 9-year-olds (Z = -1.15, p = .248). The total 

indirect effect (unstandardized), for the 7-year-old age group was -2.09, for the 8-year-

old age group was -1.57, and for 9-year-old age group was -1.33. All results were 

verified with a 95% bias corrected bootstrap confidence interval that did not include 0. 

For the 7-year-old age group, approximately 8% variance in WM is explained by 

birth status (R2 = .0776, F = 11.28, p  = .001), while 11% variance in cognitive 

inflexibility is explained by birth status (R2 = .1106, F = 16.66, p < .001). 14% variance 

is accounted for from estimating Gf from birth status alone (R2 = .1441, F = 22.56, p < 

.001). The two mediators and birth status together accounted for 29% variance in Gf (R2 

= .2931, F = 18.25, p < .001). As for the 8-year-old group, approximately 2% variance 

in WM is explained by birth status (R2 = .0216, F = 2.40, p  = .124), while 11% variance 

in cognitive inflexibility is explained by birth status (R2 = .1107, F = 13.56, p < .001). 
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16% variance is accounted for from estimating Gf from birth status alone (R2 = .1589, F 

= 20.59, p < .001). The two mediator variables and birth status together accounted for 

31% variance in Gf (R2 = .3119, F = 16.17, p < .001). Finally, for the 9-year-old age 

group, near 6% variance in WM is explained by birth status (R2 = .0580, F = 6.04, p  = 

.016), while approximately 3% variance in cognitive inflexibility is explained by birth 

status (R2 = .0255, F = 2.56, p = .113). 16% variance is accounted for from estimating 

Gf from birth status alone (R2 = .1645, F = 19.29, p < .001). The two mediators and birth 

status together accounted for 39% variance in Gf (R2 = .3882, F = 20.31, p < .001). 

 In short, the negative relationship between preterm birth status and Gf, as 

measured by CCFIT, was partially mediated by both lower WM (digit span) and 

cognitive inflexibility (perseverative errors) concurrently, when the entire sample was 

examined. When analysed using separate age groups, again with the other mediator in 

the model simultaneously controlled, only WM was a significant partial mediator for 

participants in the 9-year-old age group, whereas only cognitive inflexibility was a 

significant partial mediator for participants in the 7- and 8-year-old age groups. 

Discussion 

 This study examined the effect of preterm birth status on Gf through two basic 

information processes, namely WM and cognitive flexibility, in children aged between 

seven and nine years. There were several major findings. First, children born preterm 

showed impairments in Gf and in all the basic information processes measured. Second, 

multiple mediation modelling revealed that differences between the groups in Gf 

remained after concurrently controlling for both WM and cognitive inflexibility. The 

modelling also demonstrated that the two basic processes in preterm children partially 

mediated their deficits in Gf when age-collapsed analysis was performed. Finally, the 

aforementioned partial mediation results differed when the three different age groups 
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were analysed separately. These findings are discussed separately below.   

Birth Group Differences  

 Fluid intelligence differences were found between children born preterm and 

their peers. The preterm group scored significantly lower on the CCFIT than their same 

age peers as hypothesized. The effect size was large across all age groups as compared 

with other measures in the study. The performance of both groups also improved with 

increasing age. Only preliminary findings have previously been documented for the 

performance of Gf in children born preterm/LBW, which stated that the preterm cohort 

showed significantly lower scores on the CCFIT (Davies, 2004). The current results 

corroborated those of Davies (2004) where effect sizes for group differences in Gf 

ranged from medium to large (d = -0.50 to 1.00). The effect sizes for group differences 

in Gf across children aged 7-to 9-years in the present study ranged from -0.77 to -0.87. 

Given that the sample in this study overlapped with that of Davies’ (2004) study, with 

both comprising participants from PKIDS, similar results were not surprising. However, 

the larger sample in the present study, as compared to Davies’ (2004) further confirmed 

the extent of Gf differences between children born preterm and their same aged peers. In 

addition, the performance of children born preterm was also consistent with the 

evidence of strong positive correlations between Gf and the g factor (Gustafsson, 1984; 

Keith, 2005; Kvist & Gustafsson, 2008) as well as between FSIQ and the g factor 

(Jensen, 1998; Keith, et al., 2006). Essentially, prior evidence of FSIQ disparity 

between children born preterm/LBW may, therefore, also be reflected in measures of 

Gf. The present study’s effect size for group differences in Gf is similar to those effect 

sizes reported in other studies for group difference in FSIQ that ranged from 0.62 to 

0.96 (Davies, 2004; Orchinik et al., 2011).   

 Furthermore, studies that examined domain-specific abilities also confirmed that 
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both children and adults born preterm/LBW showed more difficulties in nonverbal 

reasoning tasks (Grunau, Whitfield, & Davis, 2002; Johnson, 2007; Pyhala, et al., 2011; 

Talge, et al., 2010). They revealed particularly large mean deficits in perceptual 

reasoning subtests in between group comparisons (P. J. Anderson, et al., 2003; Hallin, 

et al., 2010). Observations on the current pattern of CCFIT raw scores from Table 4.2 

and error bars in Figure 4.1 not only corroborate with the aforementioned findings but 

also revealed a developmental lag of at least one year. In particular, 9-year old children 

born preterm in the sample displayed CCFIT raw scores slighter better than 7-year old 

typically developing children and worse than 8-year-old typically developing children. 

This developmental lag in Gf also replicated preliminary findings reported by Davies 

(2004).  

 Working memory impairments were identified in children born preterm relative 

to their same-age peers. The current finding was consistent with existing evidence in the 

literature pertaining to verbal WM, as measured by the digit span task (Aarnoudse-

Moens, Smidts, et al., 2009; Ford, et al., 2011). The effect size in the current age-

collapsed analysis (d = -0.47) was similar to that obtained in the recent meta-analysis (d 

= -0.36 (Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009). These results were also 

expected as domain-specific studies have revealed that those born preterm/LBW 

generally perform particularly poorly on the FDI/WMI in comparison with the 

remaining three indexes that form FSIQ (P. J. Anderson, et al., 2003; Hallin, et al., 

2010). However, their performance at eight years of age did not significantly differ from 

their peers. These results appear inconsistent with previous research that suggests WM 

impairments found in young children born preterm/LBW (Aarnoudse-Moens, Weisglas-

Kuperus, et al., 2009; Ford, et al., 2011) persist to early adulthood (Hallin, et al., 2010).  

Nonetheless, a comparison for separate age groups showed that the effect size for the 8-
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year-old age group (d = -0.30) is relatively small (Cohen, 1992) compared to the other 

age group findings in this study.   

 A significant difference found between age groups confirmed that there was 

indeed a relatively large improvement in WM for both birth status groups from age 

seven to eight. Children after the age of seven begin to adopt more sub-vocal rehearsal 

strategies (Gathercole & Hitch, 1993; Pickering, Gathercole, & Peaker, 1998), where 

verbal rehearsal of auditory information can assist in short term memory storage. Digit 

span in the study is reflective of verbal working memory ability and the results may be 

related to the emergence of such strategic processes thus leading to a developmental 

improvement in task performance for both groups. Perhaps typically developing 

children continue to develop after this initial strategy switch while children born 

preterm require more time to consolidate the switch and move on to further 

improvements. As results further indicated, the performance on the digit span task of the 

9-year-old children born preterm was virtually identical to 8-year-old children born 

preterm. This explains the re-emergence of a significant between-group difference on 

the digit span task at nine years. However, while this explanation has theoretical 

integrity, it could also be an issue of random sampling. 

Nonetheless, the pattern of digit span raw scores from Table 4.2 and overlapping 

error bars in Figure 4.2 are consistent with a developmental lag of at least one year, 

similar to the performance differences in CCFIT. The 8-year old children born preterm 

display digit span mean scores comparable to those of 7-year old typically developing 

children indicating substantial delay.  

 Cognitive inflexibility was found in the preterm group as they demonstrated 

significantly more perseverative errors on WCST as compared to their control peers. 

The effect size in the current age-collapsed analysis (d = -0.58) was stronger than that 
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obtained in the recent meta-analysis (d = -0.49(Aarnoudse-Moens, Weisglas-Kuperus, 

et al., 2009), even though this study used a sorting task and Aarnoudse-Moens et al.’s 

(2009) meta-analysis only included studies using TMT-B, thought to be more sensitive 

to effects of preterm birth, as the measure of cognitive flexibility. 

 The current findings corroborate some earlier documented results (Aarnoudse-

Moens, Smidts, et al., 2009; Nosarti, et al., 2007), but conflict with others (Aarnoudse-

Moens, et al., 2012; Luu, et al., 2011). Of particular interest was that the current results 

diverged from the conclusions drawn in Mulder et al.’s (2009) meta-analysis, which 

documented significant differences between the preterm cohort and their peers only 

when TMT-B was used as a measurement tool, as opposed to the use of WCST. 

However, separate age group analyses showed a decrease in the number of 

perseverative errors as children age, which indicates an improvement in performance on 

the WCST task. Group differences were no longer significant for this study’s sample of 

9-year-old preterm children. It appears that these results demonstrated a trend of 

increase in performance and that significant group differences diminished as the 

children aged. These results did not support the notion that impairments in the cognitive 

flexibility process of EF persist (Nosarti, et al., 2007), but rather the interpretation of a 

“catching up” trend. A maturational lag of approximately two years is observed in the 

pattern of WCST perseverative errors transformed raw scores from Table 4.2 and error 

bar overlaps in Figure 4.3. The 9-year-old children born preterm displayed mean 

perseverative errors comparable to those observed in 7-year-old typically developing 

children. The certainty of any “catching up” trend would have to be confirmed from 

longitudinal studies in the future. 

Mediation Analysis   

 Very few studies have attempted to explain the general intelligence disparity 
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between preterm/LBW and their full-term peers through basic processes. One of the 

first was performed by Rose and her colleagues (2011), in which they suggested that 

information processing variables, including speed, attention, memory and 

representational competence, completely mediated IQ differences between their 

preterm/LBW and full-term samples of 11 years of age. The current multiple mediation 

analysis provided an alternative investigation by examining Gf and its concurrent 

relationships with basic information process in a cohort of children born preterm. The 

close relationship between Gf and WM has been well-established and it might seem 

obvious that if WM predicts Gf, and both WM and Gf impairments are found in children 

born preterm then the reason for Gf deficiency is poor WM. However, this is not a 

necessary logical consequence because the causes of between group differences can be 

different from causes of within-group differences. 

 From the current analysis, where all other mediators in the model were 

controlled simultaneously, it was concluded that there was a significant direct effect of 

birth status on Gf whether data were analysed combining age groups or treating them 

separately. Added to that, both WM and cognitive inflexibility were significant partial 

mediators of the path from birth status to Gf in the age-collapsed analysis. Further 

analyses by separate age groups indicated that WM was a significant partial mediator 

only for participants in the 9-year-old age group and cognitive inflexibility was a 

significant partial mediator only for participants in the 7- and 8-year-old age groups. As 

children move from less to more differentiation of EF, the impact of each component on 

Gf changes.  

 Although the present study’s approach was compatible with Rose et al.’s (2011) 

study in which basic parameters are theorised to serve as building blocks for higher 

cognitive abilities closely related to g, measured in FSIQ or Gf tasks, direct comparison 
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of their study and the current study was difficult as the use of measures and age groups 

of participants were different. While the current study adopted simultaneous mediation 

modelling, Rose et al.’s (2011) study developed a cascade model through an SEM 

approach. The divergence of the present results also stems from the less comprehensive 

coverage of basic information processing parameters than that of Rose et al. (2011). 

Aside from the difference in coverage of measuring tasks used, the two studies also had 

no overlap in the use of measures. Another divergence was the inclusion of three 

consecutive age groups rather than one, as in Rose et al. (2011). Since measures of basic 

information parameters are often affected by developmental trajectories at different age 

(Best, et al., 2009), the current study was able to provide comparisons on how birth 

status effects on Gf were accounted for by WM and cognitive inflexibility differently at 

each age group. The current analysis is the first to demonstrate WM and cognitive 

inflexibility as significant partial mediators of birth status effect on Gf by means of 

multiple mediation analysis. The results of the mediation analysis established that Gf 

impairments in children born preterm should not be neglected, as significant differences 

in Gf remained present throughout the three age groups over and above the significant 

mediation effects detected.   

 Furthermore, the current analysis of significant mediation effects for WM and 

cognitive inflexibility simultaneously indicated that, in these age groups, the two 

components were not equivalent and were working separately. Although developmental 

research has suggested that EF may be viewed as a unitary construct for typically 

developing children ranging from 7- to 9-year-olds (Brydges, et al., 2012), the current 

results on children born preterm were in agreement with typical developmental 

trajectory evidence of separate EF components in children (Lehto, et al., 2003). 

Whether EF is viewed as a unitary construct or as factor components still seems worthy 
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of debate (Duan, et al., 2010; Miyake, et al., 2000; Wiebe, et al., 2008). 

Limitations  

 A number of limitations should be considered when interpreting the current 

findings.  First of all, the use of a single measurement tool to assess one information 

processing component might not be the ideal approach given that task impurity and 

reliability of EF measures have been raised as methodological concerns (Best, et al., 

2009; Burgess, 1997; Rabbitt, 1997). In regards to task impurity, for example, the WM 

measure in this study is a combination of verbal storage and executive control. This fits 

well with some theories where short-term storage capacity and attentional control are 

conceptually linked (Engle, 2002; Heitz, et al., 2005; Kane, et al., 2001) but less well 

with others that claim WM to have distinct multiple facets (Baddeley & Hitch, 1974). 

There continues to be debate over which aspects of WM are most important in 

predicting Gf (Engel de Abreu, et al., 2010; Hornung, et al., 2011). Nevertheless, studies 

have pointed out that even simple span tasks, such as digit span, are capable of tapping 

executive attention control (Unsworth & Engle, 2006). The present study used the 

combined score of forward digit span and backward digit span that perhaps is more 

sensitive to short-term storage capacity, but since no task is a pure measure of either 

short-term storage or attentional control, conclusions can only be drawn about 

participants’ ability in general WM but not whether short-term storage or attentional 

control was more predictive of birth status effects on Gf. A possible methodological 

refinement would be to include more than one measure for each cognitive construct, as 

well as including measures that are distinctively sensitive to short-term storage and 

attentional control respectively. The use of a latent-variable approach would also 

increase the strength of the study. Despite the aforementioned concerns, previous 

empirical researchers (Clark, et al., 2010; Friedman, et al., 2006; Mulder, et al., 2009) 
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have commonly treated the measures utilized in this study as valid and reliable 

assessments tools for measuring the constructs in question.  

Secondly, the present study was unable to control for confounding factors, such 

as SES and pre-existing differences in FSIQ, which may influence the strength of the 

study. Recruitment of participants for PKIDS occurs across a wide range of areas 

around Perth, Western Australia, to cover children in a variety of SES settings. Given 

that SES is associated with adverse birth outcomes (Kramer, et al., 2009), there could be 

a chance that participants with more financial resources and more favourable 

developmental background volunteered for research. It is also worth considering that 

attendance at PKIDS involves two full days of free activities for the children during the 

school holiday period and this is often appealing to lower SES families. Since the 

present study did not account for confounding variables, birth group differences may be 

at least partly attributable to SES differences. Unfortunately the results here cannot 

argue against that entirely, however, evidence in previous meta-analysis of 7000 

participants suggested that SES was not enough to account for significant results on 

cognitive outcomes and explain all the differences between the birth groups (Kerr-

Wilson, et al., 2011). Aside from the aforementioned factors, the impact of perinatal 

characteristics, such as infections and IVH, for the clinical population was not available. 

Therefore, the results of the current study were unable to demonstrate how perinatal 

characteristics play a role in the cognitive development in children born preterm.    

 One other limitation is that, even though the sample size was 362 for the age-

collapsed analyses, when the sample was broken down by age group, the cell size 

became relatively small. There is a possibility that the different mediation pattern for 

different age groups stems from a lack of power in smaller groups, causing mediators to 

drop out. However, this does not explain the pattern of reversal in significant partial 
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mediation found from WM to cognitive inflexibility and the presence of reasonable 

effect size in most age groups.    

 Finally, the birth weight and GA of the controls were not included in the 

archival data therefore specific characteristics for the control sample could not be 

provided. However, the PKIDS program has a tick box on the enrolment form for 

parents to indicate whether their typical child was LBW or preterm. Therefore, the 

PKIDS program would know that they are not preterm, but information on their birth 

weight was not included. 

 Clinical Implications and Future Directions 

The current findings are amongst the first to confirm deficits in Gf among 

children born preterm, and that both WM and cognitive inflexibility serve as significant 

partial mediators at different age groups. Although there has yet to be consistent 

evidence on early intervention for the remediation of WM or Gf, the current results can 

assist in designing an appropriate educational environment for children born preterm.  

Although this research does not present strong enough evidence to claim 

causality and provide precise recommendation for the development of practical early 

intervention, it has identified specific areas of impairment that would likely benefit from 

intervention. In particular, educational plans that avoid the overload of cognitive 

systems involving WM and cognitive flexibility would seem to be beneficial cognitive-

accommodation strategies to support the learning progress of children born preterm. For 

example, when developing reading comprehension exercises, the teacher can try to keep 

the WM load low by allowing children to refer back to their books more frequently and 

avoid frequent changes in the rules involved in the exercises. However, cognitive 

intervention rather than the treatment-as-usual model of accommodation of deficits may 

have better chances of generating generalizability or transfer of abilities.    
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Recent progress in WM training programs suggests that this may be a fruitful 

area for further exploration as a neuro-remediation option for children born preterm. 

There is still debate about whether WM training generalizes to other untrained WM 

tasks, executive functions, or even Gf, but some promising results have been 

documented (Chein & Morrison, 2010; Jaeggi, et al., 2008; Klingberg et al., 2005; 

Redick et al., 2012). In addition to WM training, cognitive flexibility training may also 

be appropriate since the current study has demonstrated that the effects of birth status on 

Gf is also partly attributable to cognitive inflexibility in children born preterm. No 

research has yet explored this approach, but some studies have been done on the effects 

of alternating thinking strategies and aerobic exercise (Diamond & Lee, 2011), which 

may warrant further investigation. Given that cognitive flexibility is also a crucial 

component of EF and correlated with WM and inhibitory control, training may perhaps 

have an effect on other EF components and Gf. However, the current sample 

demonstrated a ‘catching up’ trend in cognitive inflexibility that no longer mediated the 

effects of birth status on Gf amongst the eldest age group, and given previously 

documented weaker associations between cognitive flexibility and Gf than between WM 

and Gf (van der Sluis, et al., 2007), perhaps training in WM should be the priority in 

research exploration.  

Several possible improvements to methodology should be considered in future 

replications and exploratory research amongst children born preterm. For example, the 

inclusion of both verbal and visuo-spatial WM tasks would be more comprehensive in 

providing measures of both short-term memory and executive attention control as they 

might also be sensible in reflecting components commonly addressed in WM theories 

(Baddeley & Logie, 1999; Engle, 2002; Kane, et al., 2001). These additional measures 

would also provide more understanding of which specific WM component better 
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predicts Gf amongst children born preterm: executive attentional control or STM 

storage. The inclusion of another commonly addressed EF component, inhibitory 

control, would also increase the strength of the study as it would then fully address all 

key components documented in Miyake’s (2000) seminal paper on EF structure.  

Also, as suggested by MacKinnon, Fairchild, and Fritz (2007), proper use of a 

mediation framework allows researchers to identify which mediating variable is likely 

to be causally related to the outcome, which then allows researchers to target that 

mediating variable during intervention in order to change the outcome. Therefore, future 

research can investigate how additional combinations of cognitive processes may play a 

role in currently identified differences in Gf amongst children born preterm using 

multiple mediation modelling or more advanced SEM approaches. Such research would 

work towards identifying specific causal relations as a remedy to some of the academic 

delays identified amongst children born preterm.  

 Finally, given that attention deficits are prominent in children born preterm, it is 

difficult to ascertain that the results of the study and particularly the performance on 

assessments for children born preterm were not affected by attention deficits. Perhaps 

children born preterm are capable of managing complex information when they are 

fully focused, however, whether they have given their full attention on assessments is 

unknown. It is therefore important for future studies to ensure that trained and skilled 

researchers administer the psychological assessments and to maintain good rapport and 

motivational effort throughout testing. As noted in previous sections, well-trained post-

graduate psychology students administered all assessments in the PKIDS program.    

Summary 

 In conclusion, these findings indicated that prematurity is associated with 

impairment in Gf and that this impairment may be partly attributable to WM and 
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cognitive flexibility deficits. If indeed deficits in these core cognitive constructs 

underpin the academic struggles of children born preterm, then recent cognitive training 

research that demonstrates an ability to enhance WM, executive function and even Gf 

(Jaeggi, et al., 2008; Jaeggi, Buschkuehl, Jonides, & Shah, 2011) is of great practical 

interest to researchers, parents and teachers of the preterm birth population.  
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CHAPTER 5 

Literature Review:  
Computerized Working Memory Training  

 
Introduction 

Considering the fact that children born preterm/LBW display, on average, 

noticeably lower scores on tasks measuring WM and Gf, what, if anything, can be done 

to help these children catch up with their peers? Given the positive associations between 

these cognitive abilities and academic outcomes, it appears desirable for researchers to 

look into ways of improving them.  

Past attempts to improve cognitive functioning have ranged from 

pharmacological means (Elliott et al., 1997; D. C. Turner, Blackwell, Dowson, McLean, 

& Sahakian, 2005) to interventions through physical exercises (Tomporowski, et al., 

2008) and musical training (Hetland, 2000; Moreno et al., 2011; Schellenberg, 2004). In 

recent decades, researchers have begun to suggest the use of intensive computerized 

WM training as a plausible way of enhancing WM, and some have even detected 

generalization effects to higher-order cognitive abilities, such as Gf (Jaeggi, et al., 2008; 

Klingberg, et al., 2002).   

Cattell (1987) noted that Gf increases until around the age of 15 then gradually 

decreases as one gets older. A similar curve was also demonstrated in McArdle et al.’s 

(2002) study, where Gf  reaches its peak age around 23 years old before it gradually 

decreases. The expected rate of increase in Gf between the ages of two and 19 years 

were shown to be much faster than between the ages of 20 and 75 years. The authors 

suggested that when individuals have reached Gf peak age, measurements of cognitive 

abilities taken at the time should show little to no improvement. Nonetheless, recent 

WM interventions have suggested otherwise as their findings point to the ability to 

enhance Gf performance after it has peaked, which further refutes the necessary stability 
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of intelligence. Thus, a review of the literature on computerized WM intervention is 

presented in this chapter. This includes understanding the different types of training and 

their variations, exploring the potential modifiability of both WM and Gf, and 

understanding the importance of adaptive training involved in the learning process.  

Types of Computerized Working Memory Training 
 
 The most extensively described intensive computerized WM training 

interventions are Cogmed training, n-back training, and complex working memory 

(CWM) span training. Klingberg, Forssberg and Westerberg (2002) were among the 

first to publish their work on the success of WM training and subsequently developed 

the Cogmed Working Memory Training Group (Pearson Inc., 2011). The overall 

theoretical assumption behind their training is that WM is one of the most essential 

processing functions that underlie other cognitive abilities, such as logical reasoning 

(Hornung, et al., 2011; Tillman, et al., 2008). Furthermore, WM and EF are closely 

related to prefrontal cortex functioning and impairments in this area have been 

prominent in individuals with ADHD (Castellanos, Sonuga-Barke, Milham, & Tannock, 

2006; Stuss, 2011). Therefore, much of the Cogmed group’s early research focused on 

children with ADHD.  

There are now three versions of Cogmed training available, specifically targeted 

at different age groups: Cogmed JM for pre-schoolers, Cogmed RM for school-age 

children, and Cogmed QM for adults (Pearson Inc., 2011). Lohaugen et al. (2011) 

provide a comprehensive description of the computer tasks. In brief, the training 

includes a variety of WM tasks, allowing participants to train in areas of short-term 

storage, processing and manipulation of information, as well as immediate recall. The 

presented stimuli are either in visuo-spatial or verbal formats, or both (J. Holmes, 

Gathercole, & Dunning, 2009). A coach is also included in the training process to 
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provide the family and participant with weekly feedback regarding performance and 

motivational support (Lohaugen, et al., 2011).  

The Cogmed program includes a battery of adaptive training tasks that tap 

overlapping mental processes. This diversity of tasks is likely to increase the chance 

that overall training will lead to generalized training-related cognitive benefits. This 

overlap has been justified through a number of studies that suggest WM in general, 

rather than specific domains, is the most influential cognitive function that predicts 

higher-order logical reasoning. However, such overlap could affect the determination of 

which particular task or process is key for generalization (Morrison & Chein, 2011). It 

is important then, theoretically, to consider other computerized WM training aside from 

Cogmed. In recent decades, many other researchers have embraced the rising popularity 

of cognitive training and proposed other training regimens, such as dual n-back and 

CWM. 

Dual n-back training was initially tested in Jaeggi, Buschkuehl, Jonides, and 

Perrig’s (2008) pioneering study. They investigated the effects of adaptive dual n-back 

training on measures of Gf. The authors proposed that n-back training integrated 

executive processes and attentional control similar to those tapped by reasoning tasks, 

therefore leading to successful transfer effects. The neural mechanisms, specifically 

activity in the lateral prefrontal cortex and parietal cortex, have been shown to mediate 

the relationship between demanding WM tasks, such as dual n-back task, and Gf  (Gray, 

Chabris, & Braver, 2003).  

In the dual n-back task, individuals are asked to respond to visual and auditory 

stimuli simultaneously. The stimuli are presented as a cue at a spatial location on the 

computer screen and an audio presentation of a letter of the alphabet. The goal is to 

identify whether one of the current stimuli is identical to one of the stimuli n trials back. 
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Similar to Cogmed training, an adaptive feature is included. The difficulty is adjusted 

according to individuals’ performance on the task, where n increases or decreases with 

successful and unsuccessful attempts, respectively. The task requires individuals to be 

trained on this highly demanding WM task at a difficulty level tailored to them. Studies 

have also used a single n-back task, where individuals are only presented with and 

required to respond to either a visual or auditory stimulus. Figure 5.1 illustrates an 

example of the dual 2-back condition (Jaeggi, et al., 2008).  

 
Figure 5.1. A visual example of the dual n-back training task, 2-back condition. 

Adapted from “Improving fluid intelligence with training on working memory” by S. 

M. Jaeggi, M. Buschkuehl, J. Jonides, and W. J. Perrig, 2008, Proceedings of the 

National Academy of Sciences of the United States of America, 105(19), p. 6830.  

  

More recently, additional published studies have investigated the effect of CWM 

span on enhancing WM and Gf. Studies have directed attention to the reliability and 

validity of CWM tasks as measures of working memory capacity and executive 

attentional control, both of which have strong associations with Gf. Therefore, 

individual differences in performance on CWM tasks have been viewed as a promising 

predictor of complex high-order cognition. (A.R.A. Conway et al., 2005; Unsworth, 

Redick, Heitz, Broadway, & Engle, 2009). CWM span tasks may take many forms, but 
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they must consist of two essential elements. One is the “to-be remembered (TBR)” 

(Unsworth, et al., 2009, p. 636) item and the other is some type of cognitive processing 

activity. TBR items are typically recalled in sequential order but range across various 

kinds of presentation stimuli, such as spatial locations, numbers, letters, words, and 

shapes. TBR items are interspersed through the cognitive processing task, which is 

unrelated to the TBR items and also takes varying forms, such as counting, solving 

mathematical problems, and judging whether the given stimuli are upside down or not 

(Unsworth, et al., 2009). Loosli, Buschkuehl, Perrig, and Jaeggi (2012) describe an 

example of such a task in their study with typically developing children. Refer to Figure 

5.2 for an illustration of the task adapted from their original article.   

 

 

 

 

 

 

 



   
Prematurity, Cognitive Abilities & Intervention  

 

122 

 
 

Figure 5.2. A visual example of the animal adaptive span task. Each trial consists of 

two stages. The participant is to encode whether the animal is right way up or upside 

down during the Processing/Encoding Stage. During the Recall Stage, the participant is 

asked to recall the animals presented in the Processing/Encoding Stage in sequential 

order. The number of animals presented for each trial is adaptive to the participant’s 

performance. Adapted from “Working memory training improves reading processes in 

typically developing children” by S. V. Loosli, M. Buschkuehl, W. J. Perrig, and S. M. 

Jaeggi, 2011, Child Neuropsychology, 18(1), p. 6.  

 

As seen in Figure 5.2, during Part 1: the processing/encoding stage, participants 

are required to identify whether each animal presented in a sequence in the centre of a 

computer screen was right way up or upside down. Participants are to click on the 

bottom right/green icon or the bottom left/red icon, respectively. Simultaneously, 

participants are required to remember the sequence of animals in their order of 
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appearance. An error prompt appears on the screen when participants exceeds a time 

limit to respond or provide an incorrect answer. In Part 2: the recall stage, participants 

are provided with the four choices of animals and are required to recall their appearance 

in sequential order. The task has an adaptive feature where the difficulty of the task 

matches each participant’s performance. This is determined by using the number of 

animals required to be remembered in each trial, termed “set size”. Moreover, the 

maximum number of animals is indicated, labelled as “Highscore”, on the Feedback 

screen page (Loosli, et al., 2012).   

Variations in Training Regime 

 Aside from the different types of computerized WM training, there are also 

variations in the training regimes that researchers have used within their cognitive 

training studies. These include variations in training schedule, dosage, and the inclusion 

of passive and/or active controls. Table 5.1 summarizes the variations in these 

computerized WM training studies. 

 Training schedules varied slightly across different cognitive training studies. 

Typically, Cogmed training research describes a training schedule of at least 20 sessions 

in 4-6 weeks with the number of sessions ranging from 20-25 (Dahlin, 2011; J. Holmes, 

et al., 2009; J.  Holmes et al., 2010; Klingberg, et al., 2005; Klingberg, et al., 2002; 

Lohaugen, et al., 2011; Lundqvist, Grundstrom, Samuelsson, & Ronnberg, 2010; 

Westerberg et al., 2007).  Similarly, studies evaluating n-back training (Chooi & 

Thompson, 2012; Jaeggi, et al., 2011; Redick, et al., 2012; Studer, et al., 2009) and 

CWM span training report using a training schedule of 20 sessions within 4-6 weeks 

(Chein & Morrison, 2010), with the exception of a few. In particular, Jaeggi et al.’s 

(2008) pilot dual n-back study tested participants across 8, 12, 17, and 19 days and 

Loosli et al.’s (2012) CWM training study tested participants rather briefly over 10 
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sessions across 2 weeks.    

 The duration of each session varies more extensively than the overall training 

schedule. They range from as brief as 12 minutes (Loosli, et al., 2012) to as long as a 

full hour (Lundqvist, et al., 2010). There does not appear to be a consistent timeframe 

for the duration of training each day across reviewed computerized WM studies. For 

example, two studies that tested children with ADHD report using 20-25 minutes of 

training per day (J.  Holmes, et al., 2010; Klingberg, et al., 2002), while another reports 

at least a 40-minute training session for the same clinical population (Klingberg, et al., 

2005). Studies on children with low WM, special needs, and of adolescents born ELBW 

report a training dosage that ranges from 30-40 minutes per session (Dahlin, 2011; J. 

Holmes, et al., 2009; Lohaugen, et al., 2011). 

 The inclusion of both a passive no-contact control group and an active non-

adaptive training control group in addition to the adaptive training group are important 

elements in evaluating cognitive interventions. A passive no-contact control group 

enables a study to control for any maturational changes and possible practice effects. 

However, participants in a no-contact control group may be aware that they are not 

participating in any intervention, and thus may have less motivation in performing at 

their best on their cognitive assessments because they expect no change in their 

performance scores. The inclusion of an active, yet non-adaptive training control group, 

where participants train on a low dosage WM task, acts as an alternative treatment 

group.  It controls for training adherence through a non-challenging but related training 

task.  It also assists in controlling for expectancy effect, also known as the Hawthorne 

effect (Shipstead, Redick, & Engle, 2010).  

According to current literature, none of the Cogmed training evaluations 

included both types of control groups except for those performed on children at 
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preschool age (Nutley et al., 2011; Thorell, et al., 2009). Thorell et al. (2009) included 

an inhibition training group along with a non-adaptive active control group, whereas 

Nutley et al. (2011) included a non-verbal training group and a combined training 

group, which was trained on both WM and non-verbal skills. In contrast, three studies 

evaluating n-back training included both passive and active control groups (Chooi & 

Thompson, 2012; Redick, et al., 2012; Studer, et al., 2009). None of the currently 

reviewed CWM span training studies included both passive and active control groups in 

their investigations (Chein & Morrison, 2010; Loosli, et al., 2012), which limits their 

strength in controlling for the aforementioned confounding factors.  

 In summary, training studies generally evaluate WM training over at least 20 

sessions within a 4-6 week training period. However, the wide variation in daily training 

time across different studies makes it difficult to compare results and determine an 

optimal training duration for future studies. Nonetheless, the inclusion of both a passive 

and an active control group is deemed more appropriate, given the aforementioned 

methodological benefit. 

Near Transfer and Far Transfer Effects 

Studies have investigated whether WM training enhances abilities that closely 

resemble processes involved in the trained task, referred to as near transfer effects, as 

well as whether WM training extends to improved performance in different processing 

domains, referred to as far transfer effects (Barnett & Stephen, 2002; Chooi, 2012). A 

summary of recent computerized working memory training results is presented in Table 

5.1.  Results for follow-up assessments are described in later sections.   
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 Table 5.1  A Summary of Recent Computerized Working Memory Training Studies 

Author 
(year) 

Population (age 
in years) 

Adaptive 
Training 
(n = ?) 

Training Dosage Time 
(mins) 

Control 
group 
(n = ?) 

Near Transfer 
to WM 

Far transfer to 
cognitive tasks 

Far 
transfer to 

Gf 

Follow 
up 

 
Klingberg et al. 

(2002) 

 
ADHD 
(7-15) 

 
Cogmed 
(n = 7) 

 
~ 24 sessions in 

5-6 weeks 

 
25 

 
Active 
(n = 7) 

 
Span board* 

 
Stroop* 

 
RCPM* 

 
n/a 

 
Klingberg et al. 

(2002) 

 
Healthy 

volunteers 
(7-15) 

 
Cogmed 
(n = 4) 

 
26 sessions 
in 5 weeks 

 
25 

 
none 

 
Span board* 

 
Stroop* 

CRT 

 
RCPM* 

 
n/a 

 
Klingberg et al. 

(2005) 

 
ADHD 
(7-12) 

 
Cogmed 
(n = 24 ) 

 
20 sessions in 20 

days 

 
40 

 
Active 

(n = 20) 

 
Span board* 
Digit span* 

 
Stroop* 

 
RCPM* 

 
3 mths 

 
Westerberg et al. 

(2007) 

 
Stroke patients 

(34-65) 

 
Cogmed 
(n = 9) 

 
25 sessions in 5 

weeks 

 
40 

 
Passive 
(n = 9) 

 
Digit span* 
Span board* 

Delayed recall 
Claeson-Dahl 

RUFF* 

 
Stroop 

PASAT* 
 

 
RSPM 

 
n/a 

 
Thorell et al. 

(2009) 

 
Preschool 

(4-5) 

 
Cogmed 
(n =17) 

 
~ 25 sessions in 5 

weeks 

 
15 

 
Passive 
(n = 16) 
Active 1 
(n = 18) 
Active 2 
(n =14) 

 
Span board* 
Word span* 

 
Day-Night Stroop 

Go/no-go CE 
Go/no-go OE* 

Nepsy* 
Block Design 
Go/no-go RT 

 
n/a 

 
n/a 

 
Holmes et al. 

(2009) 

 
Low WM 

(8-11) 

 
Cogmed 
(n = 22) 

 
20 session in 5-7 

weeks 

 
35 

 
Active 

(n = 20) 

 
Complex 

span* 
Following-

instructions* 

 
WASI 

WORD 
WOND 

 
n/a 

 
6 mths 
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Author 
(year) 

Population 
(age in years) 

Adaptive 
Training 
(n = ?) 

Training 
Dosage 

Time 
(mins) 

Control group 
(n = ?) 

Near Transfer to 
WM 

Far transfer  
to cognitive tasks 

Far 
transfer to 

Gf 

Follow 
up 

 
Holmes et al. 

(2009) 

 
Low WM 

(8-11) 

 
Cogmed 
(n = 22) 

 
20 session 

in 5-7 
weeks 

 
35 

 
Active 

(n = 20) 

 
Complex span* 

Following-
instructions* 

 
WASI 

WORD 
WOND 

 
n/a 

 
6 mths 

 
Holmes et al. 

(2010) 

 
ADHD 
(8-11) 

 
Cogmed 
(n = 25) 

 
20-25 

sessions in 
6-10 weeks 

 
20-25 

 
While on 

medication at pre-
test 

 
AWMA* 

 
    WASI 

 
n/a 

 
6 mths 

 
Lundqvist et al. 

(2010) 

 
Brain-injured 

patients 
(27-63) 

 
Cogmed 
(n = 10) 

 
21-25 

sessions in 
5 weeks 

 
45-60 

 
Passive 
(n = 11) 

 
Block span 

forward/ 
backwards* 

Listening 
span 

Picture span 

 
PASAT* 

Color-Word  
Interference Test* 

 

 
n/a 

 
20 wks 

 
Nutley et al. 

(2011) 

 
Preschool 

(4-4.5) 

 
Cogmed 
(n = 24) 

 
25 sessions 

in 5-7 
weeks 

 
15 

 
Passive 
(n = 25) 
Active 1 
(n =25) 
Active 2 
(n =27) 

 
Visuo-

spatial grid* 
AWMA* 

Word span 

 
Repeated Patterns 
Sequential Orders 

Classifications 
Block Design 

 
RCPM 

 
n/a 

 
Lohaugen et al. 

(2011) 

 
ELBW 
(14-15) 

 
Cogmed 
(n =16) 

 
25 sessions 
in 5 weeks 

 
30-40 

 
Passive full-term 

(n = 11) 
Active full-term 

(n = 19) 

 
Digit span* 

LNS* 
Spatial 
span* 
WMS 

(Verbal 
learning)*  

 
n/a 

 
n/a 

 
6 mths 
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Author 
(year) 

Population Adaptive 
Training 

Training 
Dosage 

Time 
(mins) 

Control group Near Transfer to 
WM 

Far transfer to 
cognitive tasks 

Far 
transfer to 

Gf 

Follow 
up 

 
Gruewaldt et 

al. 2013 

 
VLBW 
(5-6) 

 
Cogmed JM 

(n = 20) 

 
25 sessions in 

5 weeks 

 
10-15 

 
n/a 

 
Digit span 
(Forward) 

(Backward) 
Spatial span  
(Forward) 

(Backward)* 
 

 
Nepsy: 
Visual attention total 
time  
Auditory attention and 
response set*  
Phonological processing*  
Comprehension of 
instructions 
Repetition of nonsense 
words*  
Memory for faces*  
Narrative memory* 
Sentence repetition* 

 

 
n/a 

 
n/a 

 
Gruewaldt et 

al. 2015 
 

 
VLBW 
(5-6) 

 
Cogmed JM 

(n = 20) 

 
25 sessions in 

5 weeks 

 
10-15 

 
Passive VLBW 

age-matched 
(n = 17) 

 

 
Digit span 
(Forward) 

(Backward) 
Spatial span  
(Forward) 

(Backward)* 
 

 
Nepsy: 
Visual attention total 
time  
Auditory attention and 
response set*  
Phonological processing*  
Comprehension of 
instructions 
Repetition of nonsense 
words*  
Memory for faces*  
Narrative memory* 
Sentence repetition* 

 
 

 
n/a 

 
7 mths 
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Author 
(year) 

Population Adaptive 
Training 

Training 
Dosage 

Time 
(mins) 

Control 
group 

Near Transfer 
to WM 

Far transfer to 
cognitive tasks 

Far  
transfer to  

Gf 

Follow 
up 

 
Jaeggi et al. 

(2008) 

 
University 
students 

(26) 

 
Dual 

n-back 
(n = 35) 

 
12-19 days 

 
25 

 
Passive 
(n = 35) 

 
Digit span* 

Reading span 

 
n/a 

 
BOMAT* 

 
n/a 

 
Studer et al. 

(2009) 

 
University 
students 

(mean age 19) 
 

 
Dual 

n-back 
(n = 21) 
Single  
n-back  

(n = 25) 

 
20 sessions in 4 

weeks 

 
15-20 

 
Passive 
(n = 43) 

 

 
n/a 

 
n/a 

 
RAPM* 

BOMAT* 

 
n/a 

Jaeggi et al. 
(2011) 

Healthy 
children 
(7-10) 

Single 
n-back 

(n = 32) 

20 sessions in 
4-6 weeks 

15 Active 
(n = 30) 

n/a n/a RSPM* 
TONI* 

3 mths 

 
Chooi and 

Thompson (2012) 

 
University 
students 

(mean age 19) 

 
Dual 

n-back 
(n = 22) 

 
8 days / 20 

days 

 
30 

 
Passive 
(n = 45) 
Active 

(n = 26) 

 
Complex span 

 
Vocabulary Tests 
Perceptual speed 

tasks 

 
RAPM 

 
n/a 

 
Redick et al. 

(2012) 

 
University 
students 
(18-30) 

 
Dual 

n-back 
(n = 24) 

 
20 sessions in 

4-5 weeks 

 
30-40 

 
Passive 
(n = 20) 
Active 

(n = 29) 

 
Symmetry span 
Running Letter 

span 
 

 
SynWin 

Control Tower 
ATClab 

Vocabulary 
General Knowledge 
Letter Comparison 

Number 
Comparison 

 
RAPM 
RSPM 
CCFIT 

Paper Folding 
Letter Sets 

Number Series 
Inferences 
Analogies 

 

 
n/a 
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Author 
(year) 

Population Adaptive 
Training 

Training 
Dosage 

Time 
(mins) 

Control 
group 

Near Transfer to 
WM 

Far transfer to 
cognitive tasks 

Far  
transfer to 

Gf 

Follow 
up 

 
Jaeggi et al. 

(2008) 

 
University 
students 

(26) 

 
Dual 

n-back 
(n = 35) 

 
12-19 days 

 
25 

 
Passive 
(n = 35) 

 
Digit span* 

Reading span 

 
n/a 

 
BOMAT* 

 
n/a 

 
Studer et al. 

(2009) 

 
University 
students 

(mean age 
19) 

 

 
Dual 

n-back 
(n = 21) 
Single  
n-back  

(n = 25) 
 

 
20 sessions 
in 4 weeks 

 
15-20 

 
Passive 
(n = 43) 

 

 
n/a 

 
n/a 

 
RAPM* 

BOMAT* 

 
n/a 

Jaeggi et al. 
(2011) 

Healthy 
children 
(7-10) 

Single 
n-back 

(n = 32) 

20 sessions 
in 4-6 weeks 

15 Active 
(n = 30) 

n/a n/a RSPM* 
TONI* 

3 mths 

 
Chooi and 
Thompson 

(2012) 

 
University 
students 

(mean age 
19) 

 
Dual 

n-back 
(n = 22) 

 
8 days / 20 

days 

 
30 

 
Passive 
(n = 45) 
Active 

(n = 26) 

 
Complex span 

 
Vocabulary Tests 
Perceptual speed 

tasks 

 
RAPM 

 
n/a 

 
Redick et al. 

(2012) 

 
University 
students 
(18-30) 

 
Dual 

n-back 
(n = 24) 

 
20 sessions 

in 4-5 weeks 

 
30-40 

 
Passive 
(n = 20) 
Active 

(n = 29) 

 
Symmetry span 
Running Letter 

span 
 

 
SynWin 

Control Tower 
ATClab 

Vocabulary 
General Knowledge 
Letter Comparison 

Number Comparison 

 
RAPM 
RSPM 
CCFIT 

Paper Folding 
Letter Sets 

Number Series 
Inferences Analogies 

 
 

 
n/a 
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Note. RCPM = Ravens Colored Progressive Matrices; CRT = Choice Reaction Time; PASAT = Paced Auditory Serial Attention Test; RSPM = 

Raven’s Standard Progressive Matrices; Go/no-go CE = Go/no-go Commission Errors; Go/no-go OE = Go/no-go Omission Errors; Go/no-go RT = 

Go/no-go Reaction Time; WASI = Wechsler Abbreviated Scale of Intelligence; WORD = Wechsler Objective Reading Dimensions; WOND = 

Wechsler Objective Number Dimensions; AWMA = Automated Working Memory Assessment; LNS = Letter-Number Sequencing; WMS = 

Wechsler Memory Scale; NEPSY = A Developmental Neuropsychological Assessment; BOMAT = Bochumer Matrizen Test; RAPM = Raven’s 

Advanced Progressive Matrices;; TONI = Test of Nonverbal Intelligence; CCFIT = Cattell Culture-Fair Intelligence Test; NDRT = Nelson-Denny 

Reading Test; SLT = Salzburger Lesetest for reading process. 

*Significant change compared to control group at post-assessment. 

 

Author 
(year) 

Population Adaptive 
Training 

Training 
Dosage 

Time 
(mins) 

Control 
group 

Near Transfer to 
WM 

Far transfer to 
cognitive tasks 

Far  
transfer to 

Gf 

Follow 
up 

 
Chein and 
Morrison 

(2010) 

 
University 
students 

(mean age 
20) 

 
CWM 
span 

(n = 19) 

 
20 sessions 
in 4 weeks 

 
30-45 

 
Passive 
(n = 21) 

 
Complex span* 

 
Stroop* 
NDRT* 

Verbal reasoning 
Spatial reasoning 

 
RAPM 

 

 
n/a 

 
Loosli et al. 

(2012) 

 
Healthy 
children 
(9-11) 

 

 
CWM 

(n = 20) 

 
10 sessions 
in 2 weeks 

 
12 

 
Passive 
(n = 20) 

 
n/a 

 
SLT* 

 
TONI 

 
n/a 
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 Near Transfer to Working Memory 

 Near transfer to WM tasks has often been measured by digit span tasks, span 

board tasks and CWM tasks. An explanation for near transfer to occur is that the 

adaptive WM training is effective in improving WM abilities that do not entail task-

specific strategies. If the training task truly involved temporary storage and active 

manipulation of information strategies, then subsequently those who participated in 

training should be able to generalize their abilities to other tasks that utilize the same set 

of skills.  

Examples of significant near transfer to WM have been found across several 

studies after Cogmed training. It was difficult to compare results given the differences 

in use of measures in each study, however, out of the total 10 reviewed studies that used 

Cogmed training, all 10 reported one or more measures with significant near transfer 

effects. Several studies that tested children with ADHD found improvements in visuo-

spatial working memory (J.  Holmes, et al., 2010; Klingberg, et al., 2005; Klingberg, et 

al., 2002) and verbal working memory (J.  Holmes, et al., 2010; Klingberg, et al., 2005). 

According to Holmes, Gathercole and Dunning (2009), significant near transfer effects 

occurred in a group of children with low working memory. Results indicated that there 

were significant training gains for the adaptive training group on all measures of the 

Automated Working Memory Assessment, including tasks of verbal short-term memory 

(p = .01, d = 0.62), visuo-spatial short-term memory (p < .01, d = 1.2), verbal memory 

(p < .01, d = 1.55), and visuo-spatial memory (p < .01, d = 1.03). In addition, the 

authors also found significant gains in a following-instructions task (p < .01, d = 0.83; 

(Gathercole, Durling, Evans, Jeffcock, & Stone, 2008).  

 Aside from the groups with ADHD or low WM, the effectiveness of Cogmed 

training has also been examined across other clinical populations. For example, adults 
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with stroke (Westerberg, et al., 2007) and brain injuries (Lundqvist, et al., 2010), 

children with special needs (Dahlin, 2011), as well as children of ELBW (Lohaugen, et 

al., 2011) have all demonstrated successful near transfer to working memory tasks.  

Only two out of the 10 studies gathered data from typically developing 

participants, specifically, preschool children aged four to five years old, and they too 

found significant near transfer to WM measures (Nutley, et al., 2011; Thorell, et al., 

2009). No other studies have investigated typically developing participants of other 

school age.   

 In further elaboration, two of the studies on adults with brain injuries and stroke 

documented a significant near transfer effect to non-trained WM tasks with a large 

effect size. For example, Westerberg et al. (2007) documented significant differences 

after training in favour of the training group in the digit span task (p = .005, d = 1.58) 

and span board task (p = .05, d = 0.83). Similarly, Lundqvist et al. (2010) observed 

significant improvements in all WM measures (p < 0.01) except for span board forward 

at 4-week post-assessment.  

As for children with clinical backgrounds, Dahlin (2011) compared the effects 

of Cogmed WM training in a no treatment control group to those children with special 

needs.  Evidence pointed to significant near transfer effects on WM related non-trained 

tasks, including measures of digit span forward (p < .05, d = 0.66) and backward (p < 

.05, d = 0.67), span board forward (p < .01, d = 0.98), but no near transfer on the span 

board backward task. However, the author’s findings here should be interpreted 

cautiously because the training group received considerably more attention and 

reinforcement than the no treatment control group, which received only the usual 

special education support. This could stimulate additional positive impact through 

motivation on performance of outcome measures. There also appeared to be a large 
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discrepancy between the numbers of participants in the training group as compared to 

the control group, which may lead to plausible bias. Refer to Table 5.1 for sampling 

characteristics.  

 To date, only three computerized WM training studies document their utility in 

individuals of LBW. Lohaugen et al. (2011) were the first to demonstrate the 

effectiveness of Cogmed training in ELBW adolescents. Participants, ranging from 14 

to 15 years old, were age-matched across three groups: an ELBW group (n = 16) and a 

term-born control group (n = 19), both of which participated in training, and a third full-

term control group that did not participate in any training (n = 11). Results indicated 

that there were significant improvements in non-trained tasks for both groups in 

training. Both ELBW and full-term groups in training displayed significant 

improvements in digit span score (ELBW: p < .01; FT: p < .001), spatial span score 

(ELBW: p < .001; FT: p < .001), and letter-number sequencing (LNS; ELBW: p < .05; 

FT: p < .001) at post-intervention. Both groups also improved on performance of verbal 

learning tasks except for the subtest that measured delayed memory in word lists. A 

comparison of results with the non-training group of full-term participants indicated no 

practice effect on the outcome measures. The authors claimed that the training program 

was as effective for ELBW adolescents as it was for the controls in enhancing WM. 

However, the authors’ claim could be strengthened if an active control ELBW group 

was also present. The inclusion of an ELBW clinical peer group would allow further 

comparison of the ELBW cohort and the full-term cohort, and the extent of their 

improvements from training with reference to their own cohort as controls.   

 Grunewaldt and her colleagues (Grunewaldt, Lohaugen, Austeng, Brubakk, & 

Skranes, 2013; Grunewaldt, Skranes, Brubakk, & Lahaugen, 2015) recently published 

two other studies from Norway that investigated the effectiveness of the Cogmed 
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program in 5 to 6 years old VLBW children.  In the earlier study, Grunewaldt et al. 

(2013) used a Stepped Wedge design. Both groups (Group 1: n = 9; Group 2: n = 11) 

were tested before the training and four months after the training. Outcome measures 

included the digit span and spatial span tasks as well as subtests from the NEPSY. The 

authors combined the results of the two groups in analysing the training effects because 

of the small sample size. Findings revealed that, after five weeks of training and four 

weeks of treatment as usual, the participants showed significant improvements in spatial 

span backwards (p = .01), auditory attention (p = .012), phonological processing (p = 

.004), repetition of nonsense words (p = .017), memory for faces (p = .001), narrative 

memory (p = .003) and sentence repetition (p = .005).  Grunewaldt et al.’s (2015) 

subsequent study improved slightly in methodology and included a control group. The 

authors compared the data they gathered from the previous study (Grunewaldt, et al., 

2013) and compared the VLBW participants’ (n = 20) training results with a VLBW 

age-matched control group (n = 17). The same outcome measures were used. 

Assessments were administered to both groups four months after the intervention group 

completed training and then again at 7-months follow-up. Results indicated that only 

spatial span backwards (p = .003), memory for faces (p = .012), and narrative memory 

(p = .002) remained significant at follow-up. Despite significant results, Grunewaldt et 

al.’s study (2013; 2015) did not provide an immediate post-training assessment. 

Without such information, the significant improvements found four weeks after training 

can be a result of other activities that the participants were involved in rather than a 

genuine effect of the computerized intervention. 

Studies using n-back training have not been as successful in achieving near 

transfer in non-trained WM as with those observed in Cogmed training studies. Only 

one out of the five reviewed studies documented a significant near transfer to WM. 
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Jaeggi et al.’s (2008) pilot study on healthy university students was one rare example. In 

Jaeggi et al.’s (2008) experiment, 70 healthy university student participants (mean age = 

25.6, SD = 3.3) were placed into either the intervention group (n = 35) or the control 

group (n = 35). The intervention group was divided into four different training groups, 

and matched on days of training with four control groups that received only the pre- and 

post-test assessments within the corresponding time intervals. The main difference 

between the four pair of groups was the time duration of training, specifically across 8 

days, 12 days, 17 days and 19 days with n = 16, 22, 16, and 15 participants 

respectively. Outcome measures for WM included the digit span task, tested in all 

groups, and the reading span task, tested in all except for the 8-day training group. 

Results revealed that participants in training not only improved on the training task but 

also improved in performance on the digit span task. Despite relatively less successful 

reports of near transfer after dual n-back training, Jaeggi et al.’s (2008) finding on group 

x session interaction effects, as opposed to the pre-post effects documented in most 

Cogmed training studies, provided evidence on a training dosage response. A group x 

session interaction was detected indicating a dose response in near transfer to the digit 

span task, where more training led to a greater near transfer effect (p < 0.001; ηp² 

= .17).  

Amongst other n-back training studies that have included non-trained WM 

measures, no significant near transfer effects have been found (Chooi & Thompson, 

2012; Redick, et al., 2012). Chooi and Thompson (2012) argued against the success of 

the approach after their attempt to replicate Jaeggi et al.’s (2008) dual n-back study 

showed non-significant results for all transfer effects. Chooi and Thompson (2012) 

assigned their participants to three groups and, within each group, the participants were 

further divided into 8-day or 20-day training schedules: intervention (8-days: n = 9; 20-
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days: n = 13), active control (8-days: n = 15; 20-days: n = 11) and passive control (8-

days: n = 22; 20-days: n = 23). Participants in the intervention group were trained in the 

adaptive dual n-back version of the training task for 30 minutes, four days per week, 

whereas the active controls were trained in a non-adaptive dual 1-back version of the 

task for 20 trials each session. There was no mention of the total time differences spent 

on the computer across the two groups. The passive control group did not participate in 

any training. Despite their findings, the described replication appeared to have rather 

small cell sizes of less than 20 participants in both intervention and active control group 

as compared to other dual n-back studies. This would have reduced the statistical power 

of their analysis.  

Similarly, near transfer to non-trained WM has not been documented in CWM 

span training thus far (Chein & Morrison, 2010; Loosli, et al., 2012). Even though 

Chein and Morrison reported significant improvements in WM (p < .005, d = 1.42) for 

their training group after CWM training, their assessment tasks for WM were spatial 

and verbal memory tasks that resembled their CWM training task. Therefore, this does 

not constitute a valid near transfer to non-trained WM.  

In general, there is consistency in successful near transfer effects after Cogmed 

training but not other methods of training. Effect sizes for near transfer after Cogmed 

training ranged from medium (d = 0.62) to large (d = 1. 58). The relative number the 

participants in the studies across the three training types did not appear to affect the 

results of near transfer, most studies had 10 to 20 participants in each comparison 

group.  According to successful Cogmed findings, the training schedule varied across a 

time range from 15 to 60 minutes. Unfortunately, there is no study yet to suggest 

whether shorter or longer duration of training per day led to more successful results. 

However, it was observed that younger children were assigned to less training time per 



   
Prematurity, Cognitive Abilities & Intervention  

 

138 

day and school students were trained with more. Nonetheless, overall training remains 

the same across age groups, and training is commonly documented from 20-25 sessions 

over a span of 5-7 weeks.  

Far transfer to Other Cognitive Tasks 

In regards to far transfer to other cognitive tasks, studies typically included 

measures of executive function (EF), while some also included processing speed and 

reading-related measures. Across the various intervention studies, it was noted that 

Stroop was one of the most commonly used measures amongst others, as listed in Table 

5.1.   

Far transfer to measures of EF may be explained by the relationship between 

WM and components of EF. As reviewed earlier, WM is an essential part of EF and 

findings have also demonstrated that both WM and EF rely on prefrontal cortex 

functioning. Therefore, training on WM would tap similar neurological systems, thus 

leading to possible transfer effects (Castellanos, et al., 2006; Miyake, et al., 2000; Stuss, 

2011).  

Several Cogmed training studies have found far transfer to cognitive tasks other 

than WM. In particular, statistically significant improvements as measured by the 

Stroop task were found after Cogmed training in two studies of 7- to 15-year-old 

children with ADHD (Klingberg, et al., 2005; Klingberg, et al., 2002), as well as 

children with special needs (p < .01; (Dahlin, 2011) and one recent study in adults with 

brain injury (p < .01; (Lundqvist, et al., 2010). However, the effect sizes for these 

significant results were quite small, ranging from a Cohen’s d of 0.06 to 0.34 (Dahlin, 

2011; Klingberg, et al., 2005). Other studies of Cogmed with stroke patient adults 

(Westerberg, et al., 2007) and typically developing pre-schoolers (Thorell, et al., 2009) 

documented no significant improvements on the Stroop task.  
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Processing speed measured by choice reaction time tasks and Go/no-go task 

were included in a small study with healthy adults (Klingberg, et al., 2002) and pre-

schoolers (Thorell, et al., 2009), respectively, however, no improvements were recorded 

after Cogmed training. The generalizability of some of these studies was very limited 

due to the recruitment of a very small sample, especially those with fewer than 10 

participants in each group (Klingberg, et al., 2002; Westerberg, et al., 2007).   

Some studies have included reading and math-related measures, as well as 

global intelligence assessments. Only one study of children with special needs has 

demonstrated significant improvements in reading comprehension tasks after Cogmed 

training as measured by the Progress in International Reading Literacy Study and IEA 

Reading Literacy (p > .001, d = 0.88; (Dahlin, 2011). Whereas Holmes et al. (2009) 

found no significant differences in his participants, after training with Cogmed, in terms 

of VIQ and PIQ performance from the Wechsler Abbreviated Scales of Intelligence 

(WASI), or the reading and mathematical subtests from the Wechsler Objective 

Reading Dimensions (WORD) and Wechsler Objective Number Dimensions (WOND), 

respectively. 

Contrary to Cogmed training, very few dual n-back training studies included far 

transfer measures to capture changes in cognitive areas other than Gf. Two recent 

studies have attempted to explore the presence of transfer on verbal and perceptual 

tasks, for example, by including vocabulary and perceptual speed tasks, aside from the 

usual reasoning tasks. As expected, no far transfer to these tasks was found. In addition, 

neither of the studies found any far transfer effects in any of the measures included 

(Chooi & Thompson, 2012; Redick, et al., 2012). These authors claim that dual n-back 

training does not lead to any near or far transfer effects.   

 Nonetheless, far transfer to both EF tasks and reading-related tasks has been 
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documented after CWM span training. Chein and Morrison’s (2010) study of university 

students reported significant improvements on between-group comparisons for the 

Stroop task (p = .039, d = 0.57) and the Nelson-Denny Reading Test (p = .04, d = 0.58) 

after CWM span training that included verbal and spatial CWM tasks. However, on 

repeated measures analyses, group x session interaction showed no effect (p = .13, ηp2 = 

.056), whereas using only successfully trained participants to test for interaction showed 

marginal significance effect (p = .053, ηp2 = .103). They claimed that they were able to 

replicate findings of enhanced performance in cognitive control shown in Klingberg et 

al.’s (2005) study. Similar interaction patterns for the reading task were demonstrated, 

with initially no significant group x session interaction (p = .077, ηp2 = .08) followed by 

subsequent significance restricting the sample to only successfully trained participants 

(p = .013, ηp2 = .174). Successfully trained participants were defined as those showing 

statistically significant improvement in the spatial CWM task. Nevertheless, this was 

the first published study to show improvements in reading comprehension using CWM 

training.   

Following Chein and Morrison (2010), Loosli et al. (2012) also found a 

significant far transfer effect to reading processes using Salzburger Lesetest (SLT) after 

only 10 sessions of CWM training in healthy children aged nine to 11 years. In 

particular, they found significant transfer effects for word reading (p < .01, d = 1.03) 

and text reading (p < .05, d = 0.72) from the SLT. Despite Loosli et al.’s (2012) 

findings, the study included no measures of untrained WM tasks and thus raised the 

question of whether significant improvements in reading were due to the CWM span 

task used in the study specifically or a WM process that was transferable. Nonetheless, 

the authors’ findings indicated that the effects of short duration training should not be 

underestimated since they did find significant outcomes despite all previous findings 
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pointing to at least 20 sessions over 4-6 weeks of training to achieve any training gains. 

Perhaps this calls for future investigation into shortened duration training, specifically, 

and the optimal training schedule to achieve successful gains, generally.   

As described, both CWM training studies found consistent results in reading 

tasks. This appeared in line with literature that suggests a strong link between complex 

span tasks and reading comprehension (Daneman & Merikle, 1996). More consideration 

in the future of whether this type of training task included reading-related activity and 

whether cross-task stimulus similarity is necessary for transfer effects is important.  

 In general, more consistent evidence is required to conclude that WM training 

shows far transfer to other cognitive tasks, including EF, processing speed and reading-

related measures. Current literature suggests only a consistently small effect size found 

using the Stroop task as a measurement outcome after Cogmed training. Questions 

remain regarding other WM training regimes and their utility in far transfer. Evidence 

of transfer, or of lack of transfer, to other cognitive functions besides WM and Gf could 

also shed light on what mechanisms underlie successful generalization.    

Far Transfer to Fluid Intelligence 

Another area of interest in the literature is far transfer to Gf after adaptive 

computerized WM training. Experimental studies have demonstrated successful far 

transfer results, however, not all studies have replicated successful findings. One 

possible explanation for successful transfer stems from the close but distinctive 

relationship between WM and Gf.  As elaborated in previous chapters, studies have 

documented a high correlation between WM and Gf ranging from 0.72 to 0.85 in adults 

(Kane, et al., 2005; Oberauer, et al., 2005) and a correlation ranging from 0.64 to 0.82 

in children (Fry & Hale, 2000).  

Performance on Raven’s Progressive Matrices has been most commonly used as 
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the outcome measure. Of those studies that included such observations, improvement in 

the Raven’s task has been reported after Cogmed training in children with ADHD 

(Klingberg, et al., 2005; Klingberg, et al., 2002), but not healthy pre-schoolers (Nutley, 

et al., 2011) or adult patients with stroke (Westerberg, et al., 2007). To elaborate on 

underlying mechanisms, the Cogmed training regimen appears to fit with Baddeley and 

Hitch’s (1974) model of WM as it utilizes training exercises that focus mainly on visuo-

spatial components. There has been evidence in support of this STM component of WM 

and its link with Gf (Chuderski, et al., 2012; Hornung, et al., 2011), which has also been 

reviewed in Chapter 4.   

On the other hand, the use of n-back training and complex span training appears 

to fit the argument that training on any form of adaptive, challenging WM task may lead 

to successful transfer, especially to measures of Gf. Evidence from n-back and complex 

span training may relate to Kane et al. (2001) and Engle’s (2002) view on WM and 

WMC. Kane et al. (2001) and Engle (2002) emphasized the importance of controlled 

attention. In particular, higher WMC is seen as a consequence of higher control 

attention capability and it is also suggested as a key component of higher-order 

cognitive functions. The n-back task and complex span task both require executive 

attention and improvements in these tasks may be indicative of improvements in 

controlled attention. Thus, gains in training through challenging WM tasks may transfer 

to improvements in Gf via their influence on controlled attention.   

 Most of the improvements in Gf have been found after training with the dual n-

back task. The first success in far transfer to Gf was documented in Jaeggi et al.’s (2008) 

pilot study of healthy university students. Outcome measures for Gf included Raven’s 

Advanced Progressive Matrices (RAPM) for the group trained for eight days, while the 

other three groups (12, 17, and 19 days of training) were tested on the Bochumer 
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Matrizen Test (BOMAT). Significant improvements were found in BOMAT for the 

three groups but not in the RAPM. These documented gains in Gf remained significant 

after controlling for performance differences in digit span (p < 0.001), and reading span 

(p < 0.01) as well as averaged n-back level achieved during the last session (p < 0.001). 

Therefore, the authors concluded that this far transfer effect to Gf was attributable to the 

dosage of dual n-back training in which more training led to more improvement in Gf (p 

< 0.001, partialη² = 0.48). Further observation on the relationship between inter-

individual differences in Gf and subsequent training gain demonstrated a main effect for 

performance group (low-Gf and high-Gf group), which indicated that those participants 

with a lower Gf to begin with showed larger training gains (Jaeggi, et al., 2008).  

However, interpretation of this successful far transfer to Gf as a result of n-back 

training should be made with caution. It was unexplained, in their dual n-back study 

(Jaeggi, et al., 2008), why RAPM was used only in the group trained for eight days 

while other groups were tested on the BOMAT. A possible explanation may stem from 

potential ceiling effects with RAPM in university students, which would restrict the 

ability to detect change with WM training. Whereas BOMAT, as claimed in Jaeggi et 

al.’s (2010) later study, had less ceiling effect issues and left more scope for scores to 

improve. Indeed, there was no certainty as to whether these factors could have 

contributed to the significant findings for groups trained longer than eight days, but the 

consistency in measures used would highly improve the strength of the comparison. 

Furthermore, they described shortening the testing time on Gf measures (RAPM and 

BOMAT) without clear justification other than “to keep the pre- and post-test sessions 

short enough” (Jaeggi, et al., 2008, p. 6832). Whether this change affected participants’ 

performance on the tests was unknown and could have important impact to the proposed 

findings.     
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Nevertheless, later studies testing the effectiveness of the single n-back task 

have also successfully demonstrated far transfer to Gf. Students from the National 

Taiwan Normal University were trained in either the dual n-back task or the single n-

back task with performance compared with a no-training group. Similar to the earlier 

study, the RAPM and the BOMAT were used to measure far transfer effects, but were 

administered to all groups. The groups were matched according to their age, gender, and 

pre-training test performance. Both training groups showed greater improvements on 

measures of Gf than the control group. Comparing the two training groups, the single n-

back group appeared to have improved significantly more than the dual n-back group on 

their trained task (p < .05). Evidence also indicated that the single n-back task was as 

effective as the dual n-back task in enhancing Gf (RAPM: p < .01; BOMAT: p < .05; 

(Studer, et al., 2009). However, no comparisons were made with an active control group 

of either non-adaptive nature or non-WM nature.  

 Furthermore, evidence of far transfer to Gf has been demonstrated in typically 

developing children using n-back tasks. Jaeggi, Buschkuehl, Jonides, and Shah (2011) 

recently tested the adaptive single n-back task on children where they modified and 

presented task stimuli in a child-friendly manner similar to a video game. The study 

included 62 typically developing 7- to 10-year-old students, of whom 32 participated in 

the intervention group and 30 in the active control group. This time, the authors 

included an active control group, which was trained on knowledge and vocabulary-

based tasks, but no waitlist control. The duration of training was controlled between 

groups. All participants took part in the same pre- and post-assessments on measures of 

Gf using Raven’s Standard Progressive Matrices (RSPM) and the Test of Nonverbal 

Intelligence (TONI). A composite score was derived from the two measures for 

analysis. A 10-question self-report questionnaire was also administered to participants 
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at post-test as a measure of engagement in their training. They were able to replicate 

findings showing a significant far transfer effect to Gf from their n-back training only 

when they split the intervention group into two, namely a large training gain and small 

training gain group: significant group differences were only found when comparing the 

large training gain group with other groups (large training group vs small training 

group: effect size d = 0.80; large training group vs active control group: effect size d = 

0.55). The results of the post-training questionnaire were in line with their other results, 

showing that participants in the small training gain group gave higher ratings of 

difficulty during training. Moreover, rather than an emphasis on dose of training time, 

as mentioned in their first dual n-back study (Jaeggi, et al., 2008), the findings for this 

study indicated that the amount of training gain on the n-back task was the essential 

element to achieve far transfer to Gf (Jaeggi, et al., 2011). The authors’ conclusion here 

supported the theory that higher WMC, which required better ability in executive 

attentional control, was the essential underlying mechanism behind Gf improvements in 

training (Engle, 2002; Kane, et al., 2001). However, this calls into question the direction 

of causality. If participants with the potential to do well at Gf measures also seem to 

learn to do the n-back task more effectively than those with less potential to do well, 

then it is no longer a true experimental effect because participants are not effectively 

getting the same treatment. Nonetheless, participants in Jaeggi et al.’s (2011) study 

reported that the initially high-Gf group displayed smaller training gains than the 

initially low-Gf group and also stated that the initially high-Gf and initially low-Gf 

groups did not differ significantly in the amount of transfer displayed.  

 Jaeggi et al.’s (2011) study not only provided evidence to extend the 

effectiveness of n-back training to typically developing children but also described 

findings on their self-report questionnaire. This assessment of participants’ engagement 
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level was analysed and linked back to their findings, which other computerized WM 

studies have rarely included. It appears that the anxiety associated with the increase in 

the cognitive demands of the task played a role in individual performance when 

evaluating training effects. Although the Cogmed online training program is now 

available to the public as a paid training program and offers regular coaching by trained 

staff, very few published studies have incorporated analyses regarding the coaching 

component and how it may be linked with their findings and individual performance. 

Some may have mentioned its existence briefly (Lohaugen, et al., 2011; Nutley, et al., 

2011) and some have omitted it altogether (J. Holmes, et al., 2009).  Whether or not 

participants’ self-reported experience contributes to the utility of an effective cognitive 

training program continues to be an area that requires more investigation in future 

studies.  

Moreover, despite described success in far transfer effects to Gf, both of Jaeggi 

et al.’s (2008; 2011) studies included only one control group, for example, either a 

passive control group or an active control group, for comparison. The inclusion of both 

would lead to stronger comparison analyses, as noted earlier, enabling the studies to 

account for possible practice effects and expectancy effects, respectively. Each of these 

studies being the first to link dual n-back and single n-back training, respectively, with 

improved Gf  have room for methodological refinement.   

In contrast to these successes, Redick et al. (2012) as well as Chooi and 

Thompson (2012) were unable to find transfer to Gf in their dual n-back training studies 

on university students. The two studies included both passive and active control groups, 

with Redick et al.’s (2012) active control group participating in an adaptive visual 

search task, which is a similarly challenging yet different task, and Chooi and 

Thompson’s (2012) active control group participating in a lower dose training schedule. 
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These two recent studies made improvements in their methodology in determining the 

effectiveness of dual n-back training as they also included multiple outcome measures 

covering both near transfer and far transfer. Indeed, the results of these two studies 

highlighted the need to view earlier findings with more caution as their improved 

methodology, as compared to that of Jaeggi et al. (2008; 2011), did not support earlier 

successful transfer (Slagter, 2012; Sternberg, 2008). However, it should also be noted 

that both of these studies used a relatively long daily training duration than previously 

documented dual n-back studies. A prolonged training period may lead to a possible 

reduction in engagement level and the repetition from a long duration of dual n-back 

task can also lead to boredom and decrease in motivation. These factors together may 

have significant impacts to successful learning (Green & Bavelier, 2008; Vygotsky, 

1978/1997; Yerkes & Dodson, 1908). 

In terms of CWM training studies, none has documented successful far transfer 

to Gf (Chein & Morrison, 2010; Loosli, et al., 2012). A closer look at their training 

schedules (see Table 5.1), may suggest a possible explanation for their failed attempts. 

Previously documented successful far transfer to Gf has utilized a schedule with a 

minimum training time of 15 minutes and no longer than 25 minutes each day over a 4-

6 weeks period. However, Chein and Morrison (2010) requested their participants to 

train for 30-45 minutes per session. As stated earlier, prolonged training may have an 

impact motivation and learning (Endler, Rey, & Butz, 2012; Vygotsky, 1978/1997; 

Yerkes & Dodson, 1908). As for Loosli et al. (2012), the case was an opposite one 

where participants were requested to train for only 12 minutes per session over 2 weeks. 

Their training schedule is much shorter than previously documented successful attempts 

in the literature and thus it comes to no surprise when no far transfer to Gf was detected. 

In summary, the literature on far transfer to Gf has shown that dual n-back 
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training gained more success than other training regimes. Successful results stem from a 

training time that ranged from 15-25 minutes each day over 20 sessions from 4-6 

weeks. Those that reported using training time longer than 30 minutes showed no 

transfer. Available effect sizes suggested an improvement on Gf ranging from small (d = 

0.32) to medium (d = 0.65) when intervention groups were compared with other control 

groups. Although evidence appeared to be consistent at this point, it is apparent that 

many of the successful transfer effects to Gf stem from research by Jaeggi (2008) and 

her colleagues as well as from the same university (Jaeggi, et al., 2010; Studer, et al., 

2009).  More research from different research parties would enhance the reliability and 

decrease possible researchers’ bias of these current outcomes. Moreover, given the 

theoretical explanation behind the utility of CWM span and dual n-back training, CWM 

span training should also demonstrate transfer to higher-cognitive functions such as 

those tested in RSPM tasks. Perhaps the use of previously successful training schedules 

is needed in the replication of CWM training studies.  

Does Training Gain Persist?  

The next question of concern is whether the described near transfer and far 

transfer effects detected immediately post intervention persist and for how long they are 

sustained. Only six out of 17 of the reviewed studies included follow-up assessments to 

determine whether improvements in training persisted. Of those that did, follow-up 

assessments were performed from three to six months post intervention (J. Holmes, et 

al., 2009; J.  Holmes, et al., 2010; Jaeggi, et al., 2011; Klingberg, et al., 2005; 

Lohaugen, et al., 2011; Lundqvist, et al., 2010). Refer to Table 5.1 for details regarding 

studies with follow-up assessments.  

More follow-up assessments were found amongst Cogmed training studies than 

other types of training. For example, Klingberg et al.’s (2005) study on children with 
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ADHD reported that, as compared with baseline, their participants’ gain on the span 

board task (p < .001, d = 0.93) and digit span task (p < .01, d = 0.59) remained 

significant at 3 months follow-up assessment (span board task: p < .002, d = 0.92; digit 

span task: p < .03, d = 0.57). Their effect sizes were comparable with those recorded 

immediately post intervention. However, performance gains on Stroop and RCPM were 

no longer significant at follow-up assessment (Stroop: post assessment: p < .025, d = 

0.34; follow-up: p = .07, d = 0.25; RCPM: post assessment: p < .01, d = 0.45; follow-

up: p < .12, d = 0.30). Lohaugen et al. (2011) also reported that their ELBW cohort’s 

performance improvement on digit span (p < .01) and spatial span (p < .001) remained 

significant at six months follow-up assessment when results were compared with 

baseline performance (follow-up assessment for digit span: p < .05; spatial span: p < 

.01) but performance on the Letter-Number Sequencing task was no longer significantly 

higher than baseline. From the results of these follow-up assessment, near transfer was 

more sustainable than far transfer with larger effect sizes holding up slightly better than 

smaller effect sizes. 

Similar results were documented for Cogmed training studies on children with 

low working memory (J. Holmes, et al., 2009) and ADHD (J.  Holmes, et al., 2010) at 

their 6-month follow-up assessments. When comparing performance between baseline 

and follow-up, measures on visuo-spatial STM, verbal WM, and visuo-spatial WM 

remained significant (J. Holmes, et al., 2009; J.  Holmes, et al., 2010). However, both 

studies documented that their participants’ performance on measures of verbal STM 

were not sustained, with results of a significant decline between post-intervention 

assessment and follow-up assessment (p < .05, d = 0.47) for the ADHD cohort (J.  

Holmes, et al., 2010) as well as non-significant differences between baseline and 

follow-up (post assessment: p < .01, d = 0.62; follow-up: p < .13, d = 0.44) for the low 
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WM cohort (J. Holmes, et al., 2009). Holmes et al. (2009) further documented a 

significant result at 6-month follow-up for their low WM cohort, compared with 

baseline performance, on measures of math using WOND (p < .01, d = 0.49), which had 

not previously been significant at post-assessment (p < .31, d = 0.11). The authors 

suggested that this was expected because any cognitive gain that transfers to learning 

required some time before significant results could be reflected in standardized tests. 

However, this was the only study to document a significant result at follow-up but not at 

post-test.  

 The only dual n-back training study with an inclusion of a follow-up assessment 

was published by Jaeggi et al. (2011). The study reported that significant gains on their 

RSPM and TONI composite score remained significant compared to baseline at both 

post assessment (p < .05, d = 0.80) and 3 month follow-up (p < .05, d = 0.92). No 

studies from CWM training included follow-up assessments. Clearly, more studies that 

include follow-up procedures are necessary in order to compare maintenance amongst 

different training regimes.  

The Importance of the Adaptive Nature of Training 

The importance of the adaptive nature of WM training is discussed here. 

Adaptive WM training refers to providing participants with an individual training 

experience whereby the training taxes WM with an optimally challenging dose. This 

means that the difficulty of the training task is automatically adjusted for each trial to 

match the individual’s WM performance. This adjustment is implemented in small 

increments or decrements after the individual has demonstrated mastery or inadequacy, 

respectively, of their current level of difficulty. For example, as the participants’ 

performance improves, the difficulty of the training task increases in order for it to 

maintain a suitable cognitively challenging level, whereas if the participants’ 
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performance deteriorated, the difficulty decreases (Green & Bavelier, 2008; Pearson 

Inc., 2011).  

Adaptiveness is considered an important feature in the currently discussed 

computerized WM training literature. Concepts stemming from the Zone of Proximal 

Development Theory (ZPD; (Vygotsky, 1978/1997) and Yerkes-Dodson Law (Yerkes 

& Dodson, 1908) may assist in understanding its importance as they have been 

influential to the literature of motivation, learning, and task performance. According to 

the ZPD theory, Vygotsky (1978/1997) proposes that as the proximity between the 

difficulty level of a task and one’s capability increases, the chance of successful 

learning also increases. In contrast, discrepancy between the two decreases the chance 

of successful learning. Similarly, the Yerkes-Dodson Law (Yerkes & Dodson, 1908) 

proposes that optimal arousal from difficulty level of a task maximizes performance 

gain. This law states that, in order for one to actively learn or seek knowledge, a certain 

degree of arousal and motivation, which provides intrinsic energy for one to move 

towards directed behavior, is necessary. In simple tasks, high arousal leads to optimal 

task performance. However, simple tasks provide little inherent arousal, though this can 

be optimized by conditions that increase arousal, for example external reward or 

punishment. This arousal forms an inverted U-shape with performance on task. Difficult 

tasks, on the other hand, induce too much arousal and the anxiety associated with the 

increase in task difficulty and arousal after exceeding the optimal level tends to block 

learning rather than activate learning. Therefore, tasks well matched to a person’s 

ability optimize arousal.  

Endler, Rey and Butz (2012) investigated the impact of adaptive features of a 

small group of participants (n = 37), ranging from 16 to 48 years of age, using an 

adaptive e-learning program. The authors concluded that their results fit well with the 
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ZPD ((Vygotsky, 1978/1997) and Yerkes-Dodson Law (Yerkes & Dodson, 1908) with 

key areas, such as interest, challenge, and anxiety, being influential to motivation and 

learning. Accordingly, by adapting the difficulty level of the WM computer training 

task to one’s ability on a trial-to-trial basis, it is likely to optimise individuals’ arousal 

for learning as well as maintain a suitable level of motivation for successful learning 

(Endler, et al., 2012; Teigen, 1994; Vygotsky, 1978/1997; Yerkes & Dodson, 1908).  

Other Factors Affecting Learning and Possible Transfer of Learning 

 There are other determinants of successful learning and transfer of learning aside 

from the importance of an adaptive task with emphasis on motivation and arousal 

discussed above. Factors such as feedback and reward are also likely to play an 

important role. Additionally, variability in the task and context can increase the chance 

of transfer.  

 Feedback and rewards are considered a learning signal to allow participants and 

experimenters to distinguish whether answers to questions are correct or not. With 

correct interpretation of feedback information, algorithms can be created to tailor 

adaptive training programs. As well, feedback allows participants to assess their own 

accomplishments or lack thereof (Green & Bavelier, 2008) and adjust their effort 

accordingly. On the other hand, the use of extrinsic reinforcement and reward has often 

been found to be useful for learning and is indeed used by academic teachers in schools 

for typically developing children as well as those with learning disabilities (Flora, 

2004). The usefulness of a reward also has important implications. According to Green 

and Bavelier (2008), the value and worth of an identical reward is different for every 

person and is referred to as “the relative desirability of a reward” (p.11). Accordingly, 

feedback and rewards also impact motivation to a different extent for different 

individuals.   



   
Prematurity, Cognitive Abilities & Intervention  

 

153 

 The possibility of transfer has been related to variability. Transfer between tasks 

is proportional to the overlap in stimulus-response pairings. If two tasks use completely 

different stimuli, or require completely different responses (or both), then typically no 

transfer can be found. Variability refers to extending the range of stimulus-response 

pairings in training, thus the second task will be more likely to be in common with it.  If 

the second task has nothing in common, no transfer is expected, regardless of the 

variability of the trained task. Both the variability of the task, where learning is 

undertaken, and the context in which stimuli are presented can affect transfer success. 

When variability is high, it enhances the flexibility of the learning and thereby reduces 

the chance of dependence on learning only strategies or information specific to a 

specific form of the task. In other words, higher variability enables higher 

generalization probabilities (Green & Bavelier, 2008). The transfer of learning is the 

exception rather than the rule, therefore when transfer occurs it captures scientists’ 

attention. Thus, some have considered the current evidence of transfer effects following 

WM training as mere build up of familiarity with Raven’s like matrices and stimuli 

(Moody, 2009; Shipstead, et al., 2010).  

Summary of the Various Training Regimes  

Cogmed Training. Some consistent evidence has shown that Cogmed training 

improves non-trained WM demanding tasks, but conclusions about their transfer effects 

to higher-order cognition, such as Gf, cannot be drawn from existing evidence. Aside 

from Klingberg et al.’s (2005; 2002) earlier studies of children with ADHD and four 

healthy adults, no other Cogmed training have shown both near and far transfer to non-

trained WM and Gf respectively. Given existing strong evidence on the predictability of 

Gf  from WM (Engel de Abreu, et al., 2010; Fry & Hale, 2000; Hornung, et al., 2011), 

these results subsequently raise concerns about the generalizability of Cogmed training.  
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Does Cogmed training work within the non-clinical population? Klingberg et al. 

(2002) suggested that initial impairments in cognitive function or WM were not 

required in order to see improvements in WM through Cogmed training. They claimed 

this because their four healthy participants demonstrated significant improvements in 

the span board task, Stroop task, and RCPM task after training. However, this 

conclusion seems rather overreaching given the small number of participants. Although 

there have been recent published articles on the efficacy of Cogmed training with 

healthy pre-schoolers (Nutley, et al., 2011; Thorell, et al., 2009), these studies continue 

to show successful transfer to non-trained WM measures and yet no transfer to Gf 

measures. Thus, whether the receptiveness to benefits from WM training is dependent 

on initial WM impairments or not, it appears inconclusive due to limited studies with 

healthy participants across different age groups, particularly in regards to transfer 

effects to Gf. In addition, on one level, if WM training can assist or “cure” individuals 

with cognitive impairments, then training for non-clinical cohorts do not provide much 

important information. However, at a theoretical level, if training enables researchers to 

distinguish between WM training benefits and WM training benefits that apply only to 

those who show deficiency in what is being trained, then it is of much more importance 

as it also distinguishes underlying differences between normal individuals and those 

with deficiency.      

Accordingly, a subsequent concern is the use of clinical populations in the 

experimental research with Cogmed training. Many studies investing the utility of 

Cogmed training invited clinical populations, including ADHD, patients with stroke and 

brain damage, individuals born premature and low birth weight. The reliance on 

difficult-to-access populations with various cognitive and motor limitations constrains 

the full experimental investigation of what makes the training task effective. It also 
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limits studies’ power to identify significant effects.   

 Dual n-back Training. Research on dual n-back training has provided some 

astonishing outcomes with their demonstration of success in far transfer to Gf after 

training.  However, the conclusion about the theoretical interpretation of these findings 

is unclear and the utility of dual n-back training is still debated for several reasons. First 

of all, evidence on successful transfer to Gf is based on studies that did not include an 

active control group (Jaeggi, et al., 2008; Studer, et al., 2009). When comparisons were 

made only between the training group and a passive group, results of far transfer could 

be explained by various factors other than training, for example test-retest practice 

effects as well as motivational and engagement level. Similarly, significant transfer 

results from comparisons between the intervention group and the active control group 

(Jaeggi, et al., 2011) without a passive/wait-list control group fails to control for 

placebo effects. In dual n-back studies where all three groups were included, transfer to 

Gf could not be detected (Chooi & Thompson, 2012; Redick, et al., 2012). This 

methodological concern raises doubts of the utility of this training regime.  

 Secondly, the aforementioned studies showing successful transfer to Gf differ 

from those that did not find successful transfer in terms of training schedule. The former 

group detected transfer in daily training that ranged from 15-25 minutes whereas, 

paradoxically, the latter group, which did not detect transfer, asked their participants to 

train for 30-40 minutes each day. Could shorter training lead to more success than 

longer training? Conclusions about the utility of dual n-back training cannot be made 

until replication of successful transfer using the same training regime and schedule is 

presented.   

Moreover, dual n-back training can be very challenging as it requires 

participants to respond to visual and auditory stimuli simultaneously. It has been tested 
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primarily amongst university students (Chooi & Thompson, 2012; Jaeggi, et al., 2008; 

Redick, et al., 2012; Studer, et al., 2009). The suitability of the task for children is 

doubtful.  

 Complex Working Memory Span Training. Kane et al. (2001) explained that 

individuals with higher memory span were more proficient in inhibiting distracters and 

focusing on pertinent stimuli required for further processing, where a high WM capacity 

did not only refer to the ability to store more items for active processing but also 

included a higher attentional control capability. CWM training aims to increase WM 

capacity and has been suggested to predict higher-order cognitive functions, such as 

those measured by Gf tasks (A.R.A. Conway, et al., 2005; Engle, 2002; Kane, et al., 

2001; Unsworth, et al., 2009). Therefore, this approach provides a firm theoretical 

background in explaining the underlying mechanism of any successful near and far 

transfers. 

 However, research using CWM training remains rather new as compared to the 

use of Cogmed and dual n-back. Although CWM training has been tested in both 

children (Loosli, et al., 2012) and adults (Chein & Morrison, 2010), their training results 

were only compared with a passive control group. Again, this raises the problem of 

Hawthorne effect and their results of successful transfer may only be practice effects. 

Furthermore, the training schedules in these studies varied from research that previously 

documented successful transfer and, therefore, proper comparisons are not possible. 

Therefore, there continue to be many gaps to fill in determining the effectiveness of 

CWM training. 

Ideal Characteristics of Working Memory Training Studies  

 Provided with the current understanding of WM training and recommendations 

from recent reviews, the ideal working memory training study should meet certain 
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methodological requirements. First, participants should be randomly assigned to the 

different groups. This would ensure that the effects of training are not a result of pre-

existing group differences. Second, the intervention group should be compared to both 

an active control group and a passive control group. This is to account for Hawthorne 

and practice effects, respectively. Third, ideally there should be multiple measures as 

indicators of any specific construct. This would enhance the likelihood that any transfer 

effects are a result of training and not a result of learning task-specific strategies.   

In addition, motivational factors and issues with participants’ compliance should 

be given attention, since intensive WM training requires participants to train 

continuously every day on an adaptively challenging task, repetitively. Motivation and 

engagement in the training task affects learning success (Green & Bavelier, 2008; 

Vygotsky, 1978/1997; Yerkes & Dodson, 1908). This holds true particularly in 

evaluating WM training with children (Jaeggi, et al., 2011; Prins, Dovis, Ponsioen, 

Brink, & van der Oord, 2011) because continual modification in WM training tasks to 

provide motivational support, such as including game-like elements, may enhance 

learning abilities (Harlen & Crick, 2003; Prins, et al., 2011). Existing studies have often 

overlooked the importance of this issue and seldom report their procedures in coping 

with this factor. Some studies have included questionnaires after training to learn about 

participants’ engagement level or difficulties that they experience (Lohaugen, et al., 

2011; Nutley, et al., 2011), but these findings have not been reported quantitatively so 

that comparison across studies can be made.    

Participants’ compliance is another issue that has seldom been addressed. Given 

that daily training can be repetitive and boring, it can be difficult for researchers to 

ensure participants comply with pre-assigned training schedules. Only Cogmed studies 

have described the use of a coach to ensure that participants comply with training 
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routines (Lohaugen, et al., 2011). Without properly addressing the possibility of non-

compliance, the study could face a high dropout rate in participants, thus reducing the 

power of any experimental study.  

Summary 

In conclusion, while more evidence to confirm the effectiveness of Cogmed, n-

back, and CWM training is still required, the aforementioned studies provided valuable 

evidence that adds to the computerized WM training literature. The understanding of the 

underlying mechanisms behind WM training and whether or not it provides enough 

justification to refute the notion of intelligence being a fixed trait continue to be 

controversial. However, reviewed findings are amongst the first to challenge the 

consensus that an individual’s WMC (Z. Chen & Cowan, 2008; Cowan, 2000; Miller, 

1956; Rickers, AuBuchon, & Cowan, 2010) and Gf (Cattell, 1987; McArdle, et al., 

2002) are fixed. They propose the possibility that intensive WM training may improve 

performance on trained tasks as well as generalizing to non-trained abilities.  

Given the discussion of cognitive impairments amongst children born 

preterm/LBW in earlier chapters and that the sequelae of impairments stretch into 

adolescence and adulthood, early intervention for this group seems desirable. However, 

there are still many gaps to be filled in the literature of cognitive training in preparation 

for extensive research amongst the children born preterm/LBW. As seen to date, only 

one Cogmed study (Lohaugen, et al., 2010) has focused on this population and its 

results remained within the scope of near transfer. On the other hand, dual n-back 

appears too difficult and challenging for children born preterm/LBW. Although training 

on their single n-back version with children (Jaeggi, et al., 2011) has demonstrated far 

transfer, the theoretical explanation of this effect remains uncertain due to a lack of 

concurrent near transfer evidence. In contrast, the theoretical underpinning for CWM 
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adaptive span training is relatively clear. Although CWM training has only been tested 

in undergraduates (Chein & Morrison, 2010) and adolescents (Loosli, et al., 2012), 

more research using modified game-like and friendly versions may disclose their 

suitability for children born preterm/LBW. However, given that the CWM training 

regime is still at its early stage of investigations, typically developing children should be 

tested before experimenting with more vulnerable clinical cohorts.  
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CHAPTER 6 

Study 2: Adaptive working memory span task training to increase fluid 
intelligence in typically developing children 

 
Introduction 

 
Many recent studies have suggested that computerized WM training may 

enhance WM performance, as well as Gf (Jaeggi, et al., 2008; Jaeggi, et al., 2011; 

Klingberg, et al., 2005; Klingberg, et al., 2002). Computerized WM training may be 

beneficial for children born preterm/LBW as well. This is because previously discussed 

outcomes clearly demonstrate that prematurity at birth is associated with WM 

impairments (Pritchard, et al., 2009) and as demonstrated in study one, not only did 

children born preterm display impairments in Gf but WM was also a significant partial 

mediator of differences in Gf. In addition, WM and academic achievement are highly 

correlated, particular in respect to math and reading underachievement pertinent in this 

clinical cohort (Alloway, 2009; Alloway & Alloway, 2010).  

Reported findings of significant improvement in performance of the WM 

training task itself as well as transfer to non-trained cognitive tasks were amongst the 

first to cast serious doubt on the permanence of individual differences in WM capacity 

(Cowan, 2000; Rickers, et al., 2010) and Gf (Cattell, 1987; McArdle, et al., 2002). 

These findings are of great interest because past attempts to increase intelligence have 

not had much success (Moreno, et al., 2011; Tomporowski, et al., 2008; D. C. Turner, et 

al., 2005). Currently published studies have mostly experimented with university 

students (Chein & Morrison, 2010; Chooi & Thompson, 2012; Jaeggi, et al., 2008; 

Redick, et al., 2012; Studer, et al., 2009), and clinical groups including brain injured 

patients (Lundqvist, et al., 2010; Westerberg, et al., 2007), children with ADHD (J.  

Holmes, et al., 2010; Klingberg, et al., 2005; Klingberg, et al., 2002) and low working 

memory (J. Holmes, et al., 2009). Only one study assessed the outcome of WM training 
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in children of LBW, which reported significant near transfer to several measures of 

untrained WM following Cogmed training. However, no far transfer measures were 

included in the study (Lohaugen, et al., 2011). As described above, several WM training 

studies have been done with clinical groups. The frequent reliance of many previous 

studies on difficult-to-access populations with various cognitive and motor limitations 

has restricted the full experimental investigation of what makes the training task 

effective, as well as limiting studies’ power to detect significant effects if they exist. 

Typically developing school-aged children have rarely been involved, despite the 

obvious relevance of such research to a school-aged population.   

Amongst the growing number of computerized WM training studies in the field, 

the chosen task for the current study – the complex working memory (CWM) training – 

will be one adopted from Loosli et al.’s (2012) study. The CWM training used a classic 

and specific complex span task that allowed clear depiction of the association between 

any improvements in training and the processes involved in complex span task. CWM 

training on a narrow task stands in contrast to Cogmed WM training studies that used a 

combination of tasks in their training program. CWM training would not be expected to 

show transfer given the lack of overlapping stimulus-response demands between tasks. 

Therefore, if transfer effects are present, the only theoretical explanation for it is Kane 

et al.’s (2001) theory on executive attention. As well, stepping away from Cogmed’s 

resource demanding methods for engaging children in order to keep them practising and 

dual n-back task’s challenging simultaneous auditory/visual requirements, it becomes 

important to see whether CWM tasks can be adapted to make them sufficiently 

enjoyable and optimally challenged to persist with.  

Therefore, this current study’s main goal is to assess the utility of an adaptive 

computerized CWM span task in typically developing children to attain preliminary 
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support, or otherwise, for the potential use of this training in children born 

preterm/LBW. If CWM training is successful in achieving a better score on measures of 

Gf that is due to genuine increase in Gf through enhancing executive attention, then it is 

likely to transfer to real life and may assist in further remediation of academic 

difficulties found in children born preterm/ LBW. In contrast to Loosli et al.’s (2012) 

original study, the present study will extend the training from their 10 sessions to the 

more commonly adopted 20-day regime. Other methodological changes are also 

discussed below.  

Previously published papers on CWM training have not documented the 

inclusion of an active control training group to control for practice effects and possible 

Hawthorne effects (Chein & Morrison, 2010; Loosli, et al., 2012). Therefore, this study 

will include a non-adaptive training group that practices the same span training at a 

lower dosage without challenging WM capacities as opposed to only a non-training 

passive control group. The total time spent in front of the computer for the non-adaptive 

version of training will also be controlled, making it identical to the adaptive 

intervention group (Shipstead, et al., 2010). Essentially, if the adaptive training group 

shows more transfer improvements than the non-adaptive active control group and the 

non-training passive control group, then there is evidence to confirm the significant 

contribution of the adaptive complex WM span training. However, it the performance 

on the measures of the two training groups demonstrates no significant differences, then 

the results may be interpreted as a Hawthorne effect.  

The particular age groups, between seven and eight years, are examined. This is 

because it has been suggested that cognitive development transpires quickly at this early 

school age and that critical periods of change begin around the age of seven years 

(Diamond, 2002). This age group is also chosen in preference to the 9-year-old age 
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group because of the findings in Study 1. Given that the 9-year-old age group showed 

birth status differences in Gf that were partially mediated by WM and that the preterm 

cohort appeared to demonstrate at least one year of developmental lag in WM and Gf , 

training that serve as early intervention and learning programs that enhance the overall 

educational outcomes of children (Blair, 2002; Ramey et al., 2000) would need to 

happen before the age of nine.  

This study will also include more diverse cognitive measures than Loosli et al.’s 

(2012) study, allowing it to test the breadth of generalization and to establish its limits. 

Outcome measures will include measures of untrained WM: digit span and spatial span 

tasks; a measure of executive attention: the Stroop task; a measure of processing speed: 

the choice reaction time task; and a measure of Gf : Ravens Progressive Matrices. It is 

expected that if improvements are observed in the intervention group on the adaptive 

span training task, demonstrating effortful and motivated training, then untrained WM 

tasks, executive function tasks and the Gf task will also improve if the training effects 

are due to changes in underlying working memory capacity and executive attentional 

control, and these are causally related to Gf. In contrast, a significant transfer effect is 

not expected to show in speed of processing tasks following adaptive span training 

because speed is only moderately correlated to working memory, and, according to 

cascade models (Fry & Hale, 1996) is causally “upstream” from WM.  

The Current Study 

This second study examines the utility of computerized adaptive animal span WM 

training for typically developing children, as a preliminary step to developing future 

interventions for children born preterm/LBW.  The aim is to investigate whether near 

and far transfer occur to a greater degree in the intervention group than the active and 

passive control groups. To this end, the occurrence of the following phenomena in the 
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intervention group after adaptive training will be assessed: 

1) Whether specific training effects on the working memory span task are observed 

after training. 

2) Whether near transfer effects to untrained working memory tasks are present. 

3) Whether a far transfer effects to executive function is present. 

4) Whether a far transfer effect to speed of processing is present. 

5) Whether a far transfer effect to fluid intelligence is present. 

Hypotheses 

 To the extent that training changes the underlying construct of WM, rather than 

merely familiarising participants with superficial aspects of the training task, it is 

hypothesized that:  

1) There will be a significant improvement in the training task.  

2) There will be significant near transfer effects to the digit span and spatial span 

tasks. 

3) There will be a significant far transfer effect to the Stroop task. 

4) There will not be a significant far transfer effect to a reaction time task.  

5) There will be a significant far transfer effect to the RSPM task.  
 
 

Method 

Participants 

Initial recruitment included 92 Year 2 students from six public primary schools, 

three Catholic primary schools and four referrals recruited through a snowballing 

method from the suburbs of Perth, Western Australia. Consent forms were signed by 

each school’s principal to allow for distribution of invitation letters. Year 2 teachers of 

participating schools distributed invitation letters containing information about the 

study, together with consent forms to their students and parents. Interested participants 
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replied by completing the consent forms and returning them to their class teachers. A 

total of 638 information sheets and consent forms packages were distributed to the 

participating schools with a return rate of 13.8%. Copies of invitation letters are 

presented in Appendices B through E. 

Next, screening questions were asked via telephone to ensure that participants 

met inclusion and exclusion criteria. Inclusion criteria were that participants were, at the 

time of testing, (1) attending Year 2 at school and (2) had a computer with Internet 

access at home. Exclusion criteria included participants who had (1) hearing or visual 

disabilities that would influence pre/post assessments and the use of the online 

computer intervention program, (2) current diagnosis of clinically significant mental 

health illness requiring therapy, (3) current diagnosis of intellectual disabilities, or (4) 

current medical illness that required ongoing medical attention. 

After the initial screening process conducted via telephone, one student was 

excluded for not meeting the screening criteria and 10 decided not to proceed with the 

study. A total of 81 students proceeded through pre-test assessment and were allocated 

to one of three groups.  However, 17 students did not complete 20 days of training as 

required and thus were excluded from the current analyses. Another student was 

excluded from the analyses due to high distractibility at testing, which led to a 

discontinuation of post-test assessment. A participant flow chart through recruitment 

and testing processes is presented in Figure 6.1. 

Sixty-three students were included in the final analyses. Participants ranged 

from 6.72 - 8.51 years old (M = 7.40, SD = .39) at the time of initial testing. Participants 

were pseudo-randomly assigned to three groups: the intervention group (n = 21) the 

active control group (n = 19) and the passive control group (n = 23). Age and gender 

proportions are shown in Table 6.1. The attrition rate between pre and post-test were 
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25%, 32.14% and 4.16% for the intervention, active control and passive control group 

respectively.   

Participants’ age did not differ significantly across the three groups, F (2, 60) = 

.49, p = .614.  Pearson’s chi-square also indicated no significant differences in gender 

composition across the three groups, χ² (2) = .290, p = .865. 

 

Table 6.1 
 
Final Analysed Sample: Characteristics of Participants by Group 
_____________________________________________________________________ 
 

 Intervention  
group 

Active control 
group 

Passive control 
group 

 
Mean Age (SD) 

 
7.46 (.44) 

 
7.41 (.38) 

 
7.34 (.38) 

 
Gender proportion 
(M:F)  
 

13:8 13:6 14:9 

Note. SD = Standard deviation; M = Male; F = Female 
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Figure 6.1. Recruitment, response rate and the flow of participants in the current 

adaptive working memory span training experiment. INT = Intervention group; AC = 

Active control group; PC = Passive control group. The ratio of males to females are 

included and presented as (number of males : number of females) in the figure. One 

student from the PC group did not meet criteria. 
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Measures 

 Digit span Task. This task measured children’s verbal WM and was one of the 

subtests from the Wechsler Intelligence Scale for Children – Fourth Edition (WISC-IV). 

The task has been commonly used in the literature of WM (Swanson, 2008; Tillman, et 

al., 2008) and cognitive studies in clinical cohorts, for example prematurely born 

children (Clark & Woodward, 2010; Fraello, et al., 2011).  

As described in study 1, the task required the participant to verbally recall 

sequences of digits, first, in sequential order for the forward span and then in reverse 

order for the backwards span. The combined raw score of total correct trials in both 

spans was used as the outcome measure. Internal consistency reliability coefficient for 

digit span subtest by split half correlations is .87. The test-retest reliability coefficient 

from 243 children over an interval of 32 days, is .81 (P. E. Williams, Weiss, & Rolfhus, 

2003).   

A parallel version of the task was used at post assessment. The parallel version 

was devised by reversing the digits within each trial that consisted of the same number 

of digits. Examples of a 2-digit and a 3-digit trial can be found in Figure 6.2.   

Digit Pre-test Digit Span Post-test 

Forward Backward Forward Backward 

Example of a 2-digit trial 

2-9 

4-6 

2-1 

1-3 

6-4 

9-2 

3-1 

1-2 

Example of a 3-digit trial 

3-8-6 

6-1-2 

5-7-4 

2-5-9 

2-1-6 

6-8-3 

9-5-2 

4-7-5 

 
Figure 6.2. Examples of the Digit Span pre-test and its corresponding post-test used in 
the current study.  
 

Spatial span board task. This task measured participants’ visual WM. The task 
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used in the current study is one of the optional subtests from the Wechsler Memory 

Scale – Third Edition (WMS-III; (Wechsler, 1997). This has also been referred to as the 

Corsi block task. Various versions are commonly used in studies of WM (Colom, et al., 

2005) and cognitive intervention research (Klingberg, et al., 2005; Lohaugen, et al., 

2011).  

The test consisted of 10 randomly located cubes on a plastic flat surface with 

numbers 1-10 printed on the sides facing the examiner. The examiner tapped on the 

blocks at a rate of one block per second in a specific sequence starting with two blocks. 

Examinees were tested on their ability to hold the locations of a visual-spatial sequence 

in memory and replicate them. In particular, they were required to replicate the tapping 

sequence, using their finger, in the appropriate order for forward and backward span, 

similarly to the digit span task. As with digit span task, the length of the sequence was 

increased after every second trial. The test was discontinued when the child failed to 

replicate both trials within a level of difficulty. The outcome variable for participants’ 

visual WM was the number of correct trials. According to the testing manual, the 

reliability coefficient for test-retest intervals ranging from 2 to 12 weeks for the spatial 

span task was documented at .72, while average internal consistency was documented at 

.79 (Wechsler, 1997). 

Parallel versions were also used at post-test.  It was devised in a similar manner 

to that described in the digit span task where the order of the numbers has been 

switched. Figure 6.3 shows examples of a 2-block and a 3-block trial.   
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Spatial Span Pre-test Spatial Span Post-test 

Forward Backward Forward Backward 

Example of a 2-block trial 

3-10 

7-4 

7-4 

3-10 

10-3 

4-7 

4-7 

10-3 

Example of a 3-block trial 

1-9-3 

8-2-7 

8-2-7 

1-9-3 

3-9-1 

7-2-8 

7-2-8 

3-9-1 

 
Figure 6.3. Examples of the Spatial Span pre-test and its corresponding post-test used in 
the current study.  
 

The Stroop Test. This task was used to measure participants’ inhibitory ability. 

The test included four conditions, each presented on a separate sheet of paper, with 30 

items in each condition. In the first ‘Word’ condition, participants were required to read 

the listed colour words (‘red’, ‘blue’, or ‘green’) aloud. All the words were printed in 

black ink. In the second ‘Colour’ condition, participants were required to name the 

colours that strings of Xs are printed in. The items were listed as ‘XXXX’ in colours of 

red, blue, or green. In the third ‘Congruent’ condition, participants were required to 

name the colour of the words ‘red’, ‘blue’, or ‘green’ printed in their matching colours. 

Finally, in the ‘Incongruent’ condition, participants were to name the printed colour of 

the words ‘red’, ‘blue’, or ‘green’, printed in colours that did not correspond to the 

printed word. Other than the ‘Word’ condition, their correct response was always the 

ink colour of the presented item (J.-Y. Chen, 1996; Homack & Riccio, 2004; MacLeod, 

1991).  

Participants were timed on each of the testing conditions. The difference in time 

between the ‘Incongruent’ condition and the ‘Colour’ condition was used as outcome 

measure. This same method of scoring has been performed in other studies as a measure 

of inhibition in children (Brydges, et al., 2012). Temporal reliability for each separate 
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condition has been documented as good (r > .80; (Homack & Riccio, 2004). The same 

version of the Stroop task was used at both pre- and post-test.  

 Reaction Time Task.  A 4-choice reaction time task was used to measure 

children’s speed of processing. Various versions of reaction time tasks have been used 

to measure processing speed in the cognitive literature (Fry & Hale, 2000; Rose, et al., 

2011) and computerized WM training studies (Klingberg, et al., 2002).   

 A DOS-based computer program was created and used for the display of stimuli 

to participants. Four different coloured circles (blue, green, red, white) were used as 

stimuli and appeared in random order in the centre of the screen, one at a time. The 

circle appeared in the centre of the 15-inch screen computer with a black background. 

Each colour was presented 32 times within a total of 128 trials. The task required 

participants to press a corresponding colour key indicated on the keyboard. Children 

began by completing eight practice trials before being tested on 128 trials within a 

single block. Participants’ mean reaction time was used as the outcome variable for 

subsequent data analysis. The instructions were presented on the computer screen and 

read aloud to the participants as follows:  

“Press the button that matches the colour on the screen. Go as quickly as you can 

without making mistakes.”  

Raven’s Standard Progressive Matrices (RSPM; (J. C. Raven, 1958). This 

test was used to measure children’s Gf. Empirical studies of intelligence and cognitive 

intervention have also used this as their measure of Gf  (Dang, et al., 2012; Jaeggi, et al., 

2011; Klingberg, et al., 2005). RSPM contains 60 items with 12 items in each of the 

five sets (A,B,C,D,E) provided in a booklet. The difficulty progressively increases 

within each section and between sections. In the test, participants are required to 

identify the missing part of a targeted geometrical design from amongst six to eight 
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possible choices, Sets A and B provide six choices and Sets C, D, and E provide eight 

choices. Burke (1972) documented the odd even split-half reliability coefficient at .96 

(n = 567). A test-retest correlation coefficient, from a smaller sample (n = 11), was 

recently documented at .83 (J. E. Williams & McCord, 2006). 

In the current study, the items were divided into two parallel versions with 30 

items each. The level of difficulty for items in each set was matched using existing 

results of Rasch analysis from 600 Year 1 and 2 students tested by the cognitive 

developmental psychology laboratory at Murdoch University. The raw score of the test 

was used as the outcome variable.  

 Working Memory Training task. The intervention group was trained using an 

adaptive animal span WM task. The task was an adapted version of the BrainTwister 

program provided by the University of Bern (Buschkuehl, et al., 2008). The program 

automatically terminated after participants had attended to the task for 15 minutes on 

each training day. The program consisted of two stages and used four stimulus animal 

pictures throughout the training: cow, dog, horse, and pig. In the first stage, the 

Processing/Encoding Stage, animals appeared in the middle of the screen beginning 

with one animal at level one and increasing by one animal for each subsequent level. 

The number of animals is referred to as the ‘set size’. Participants were asked to 

indicate whether the animals on the screen were upside down or the right way up by 

clicking on one of the up/down arrows that were located on the left and right of the 

computer screen, respectively, with a computer mouse. These animals appeared in 

different random orders for each trial. Crocodiles appeared at the top of the screen to 

indicate an error if participants clicked on the wrong arrow or exceeded the 3-second 

time limit without responding. This was to ensure that participants did not make random 

selections in the process of the task.   
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In the second stage, the Recall Stage, participants were required to indicate the 

sequence of the animals that had been presented in the first stage of the task by clicking 

on the animals in the correct order of appearance. The four animals reappeared on the 

screen for participants to choose. The recalled animals then appeared underneath a red 

line on the screen in the sequence of the participant’s choice. This was done by clicking 

on each animal in order, at which the animal appears at the bottom of the screen as 

confirmation. No changes can be made once a choice has been confirmed. 

After the completion of the two stages, a screen appeared with a histogram on 

the side and a basket in the middle. The histogram indicated the highest set size that the 

participant had reached and the basket held accumulated candies, representing the 

number of trials to which the participant had correctly responded. The next trial began 

after the Feedback Stage. 

The training task had an adaptive feature whereby the set size was determined according 

to three rules: Rule 1 – If no prompt was required in Part 1 and recollection was correct 

in Part 2, then the next set size is increased by one animal; Rule 2 – If a prompt was 

required in Part 1 but participants reproduced a correct sequence in Part 2, then the next 

set size remains unchanged; Rule 3 – Regardless of the outcome in Part 1, if participants 

provided an incorrect sequence in Part 2, then the next set size decreases by one animal. 

Feedback is provided after each trial through a point system represented by a candy. 

Participants earn one candy for every correct attempt as described in Rule 1.  No 

candies are earned or taken away in any other circumstances. These rules allowed the 

program to adjust its difficulty for each individual participant. The three rules were 

identical to the ones used in Loosli et al.’s (2012) study on CWM training with children.  

The active control group completed a non-adaptive version of the same task. In 

the non-adaptive version, the number of animal stimuli presented remained constant at 
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two. This low dosage yet similar activity allowed participants to have the same degree 

of contact with the researcher, thus making the adaptive feature the key difference 

between the groups (Shipstead, et al., 2010). Both the adaptive and non-adaptive 

versions of the training tasks were located online and participants used an assigned 

login number and password to access it. Children and parents could also click on an 

‘Instructions’ link on the screen to access the game instructions and the contact details 

of the researcher at any time. Participants’ task performance data were stored online, 

accessible only by the researcher and supervisors of the present study. An example of 

the flow of a trial is captured from the actual task that the participants view online and is 

presented in Figure 6.4. 
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Figure 6.4. Experimental Procedure of the Adaptive Working Memory Span Training. 

This demonstrates a set size of two animals in sequential order as seen on the computer 

screen.  

 

Procedure 

 This study was granted ethical approval by the Human Research Ethics 

Committees of Murdoch University in Western Australia (see Appendix F), the 

Department of Education of Western Australia (see Appendix G), and the Catholic 

Education Office of Western Australia (see Appendix H).  
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 Two major periods of data collection were conducted over two school terms and 

holidays, with participants joining the research at different times from different schools 

throughout the data gathering process. Participants were assigned to one of the three 

groups pseudo-randomly by continuously matching gender and the number of 

participants per group prior to baseline assessment. Pseudo-random assignment has 

been used in other cognitive training studies (Jaeggi, et al., 2011). Subsequently, 

participants were assigned a number in one of the groups according to a pre-set 

sequential order (#1 - INT, #2 - AC, #3 - PC, #4 - AC, #5 - INT, #6 - PC), and so on. 

This pattern was used in order to assist later categorization of the online training task, 

where intervention group participants would key in their personal code (which was 

always odd) and an odd number activated the adaptive version of training, while an 

even number activated a non-adaptive version for the active control group. Only 

participants who completed 20 days of training within six weeks from pre-assessment 

were included in the data analyses.  The researcher, also the author of this thesis, 

completed all data collection and assessments following verbatim test instructions for 

this unblinded study. 

For participants who met criteria for the study, a time convenient to the 

participant and a parent was arranged for individual pre-testing in the child’s home. All 

participants took pre- and post-tests on the five outcome measures prior to and after 

training. The intervention group and the active control group completed 4-6 weeks of 

online WM training in the adaptive and non-adaptive versions of the training task, 

respectively. These participants accessed the task online each day and completed 15 

minutes of training for 20 days, 5 days a week and excluding weekends. However, if 

participants missed a day of training during the weekdays, they were given the option to 

make up for the day of missed training on the weekends. The passive control group did 
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not engage in any online training.   

For those assigned to the intervention group and active control group, once pre-

testing was completed, the researcher demonstrated to both the participant and the 

parent how to use the online program as well as a reinforcement schedule. To ensure 

that participants in the intervention and active control group were reinforced to continue 

throughout the online training, participants received a star sticker on a progress chart 

each day upon completion of the task. Parents of participating children were asked to 

assist with monitoring task completion at home while the researcher provided all the 

required materials. When participants received five stars consecutively on their progress 

chart, which indicated that they have trained for 5 days, they received a small gift. 

Participants assigned to the passive control group also received a small gift following 

pre- and post-testing.  The passive control group was informed that they would have an 

opportunity to use the adaptive version of the online program upon completion of the 

research project. All participants were notified that they could withdraw from the study 

at any time if they did not wish to continue.  

The Kruskal-Wallis Test was used to examine whether there was a significant 

difference between the number of days in between pre- and post-test for each group. 

This test was used because the assumption of normality regarding the number of days in 

between training was violated for all three training groups. Refer to Table 6.2 for 

relevant descriptive statistics. Results indicate that there were no significant differences 

in the number of days between pre- and post-testing for the intervention group (Mean 

Rank = 33.07), the active control group (Mean Rank = 28.39), and the passive control 

group (Mean Rank = 34.00), χ² = 1.09, df = 2, N = 63, p = .579, η² = .018, d = 0.27. 
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Table 6.2  
 
Descriptive Statistics for the Number of Days Between Pre- and Post-Tests 
 

 Intervention  
group 

Active Control  
group 

Passive Control 
group 

 

Lower Bound M 

 

33.69 

 

32.72 

 

34.45 

Upper Bound M 38.59 37.38 38.68 

Median 38 34 36 

 

Results 

SPSS for Windows Version 17.0 was used for all data analysis.  Results are 

divided into four sections. The first section will describe general data preparation. Next, 

the assessment of the specific training effects for the intervention group will be 

presented. Then the examination of pre-test differences, followed by investigations of 

transfer effects will be presented.  

Data Preparation  

The specific training effects for the intervention group were analysed using 

paired sample t- tests and, where normality assumptions were violated, the results were 

analysed concurrently using Wilcoxon Signed Rank Test to ensure accurate 

interpretations. Descriptive statistics for all cognitive measures at pre-test and post-test 

of all three groups are provided in Table 6.3, as well as their respective pre- and post-

test comparisons. Subsequent correlational analysis was used to determine whether 

there were significant associations between inter-individual differences and training 

performance.  

A series of one-way between groups ANOVAs was used to perform between 

group comparisons at pre-test amongst the three groups. The assumption of normality 

was tested using Shapiro-Wilk statistics (p < .05) and Q-Q Plots were inspected. The 
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homogeneity of variances assumption was also tested using a Levene’s test (p < .05). 

Welch’s F was used when this assumption was violated (Field, 2009b). Although 

ANOVA is robust to its assumption violations, a non-parametric Kruskal-Wallis one-

way ANOVA was concurrently used to ensure the validity of the test results when 

violations were detected. 

Subsequently, following the recommendation of Bonate (2000), a series of 

ANCOVAs, which have the advantages of accounting for regression to the mean and 

good statistical power compared to other methods when assumptions are met, were used 

to analyze post-test differences in reflection of transfer effects on each measure. Since 

ANCOVA has been suggested to be robust to moderate violations of the assumption of 

normality (Bonate, 2000, p. 96), unless data indicated severe violations to the normality 

assumption, current data were not transformed. Upon detection of significant effects, a 

planned contrast was performed comparing the intervention group with both active 

control group and passive control group respectively (Field, 2009a; Tabachnick & 

Fidell, 2001a).   
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Table 6.3 
 
Descriptive Statistics for Psychometric Test Scores of Each Group 
Measures              Pretest        Posttest     
 n M SD M  SD p d 
 
Digit Spana                           

INT 
                      AC 
                     PC 

 
 
21 
19 
23 

 
 
13.14 
12.11 
11.74 

 
 
2.37 
1.49 
1.82 

 
 
13.52 
12.32 
12.48 

 
 
2.56 
1.64 
1.81 

 
 
.329 
.578 
.038* 

 
 
0.15 
0.14 
0.41 

      
Spatial Spana 

INT 
AC 

                      PC 

 
 
21 
19 
23 

 
 
11.00 
10.74 
10.13 

 
 
2.98 
3.05 
2.49 

 
 
12.00 
10.95 
11.35 

 
 
3.10 
2.70 
2.50 

 
 
.161 
.734 
.016* 

    
 
0.33 
0.07 
0.49 

 
Stroopb                                           

INT 
AC 
PC 

 
 
21 
19 
23 

 
 
32.36 
38.60 
35.64 

 
 
12.10 
12.30 
16.33 

 
 
29.71 
25.18 
28.96 

 
 
13.39 
8.68 
15.17 

 
 
.224 
.001** 
.089 

 
 
0.21 
1.28 
0.42 

 
Reaction Timec                                            

INT 
AC 
PC 

 
 
21 
19 
23 

 
 
1178.71 
1316.95 
1205.65 

 
 
162.22 
223.76 
180.88 

 
 
1146.00 
1222.53 
1153.78 

 
 
112.61 
198.84 
151.13 

 
 
.202 
.001* 
.027* 

 
 
0.24 
0.76d 
0.46d 

 
RSPMe 

INT 
AC 
PC 

 
 
21 
19 
23 

 
 
13.86 
13.42 
12.13 

 
 
3.81 
3.61 
4.28 

 
 
17.48 
14.89 
13.83 

 
 
4.09 
4.07 
4.13 

 
 
.000*** 
.037* 
.031* 

 
 
0.92 
0.38 
0.40 

Note. Comparisons between pre- and post-test are presented using paired sample t-test. 
Cohen’s d is provided for effect size.  
a Total points scored. 
b Time difference between Incongruent condition and Neutral condition (secs). 
c Average time (ms). 
d The Wilcoxon Signed Test is used for Reaction Time task in both Active and Passive 
control group because of violations of normality assumption, with effect size provided 
in r.  
e Total trials correct. 
*p < .05, **p < .01, ***p < .001 
 

Specific Training Effects: Intervention Group 

To analyse whether performance on the training task changed after intervention, 

several measures of baseline performance and performance after training were recorded 
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and compared. Two measures of baseline performance were included and defined: 

Baseline A – the highest set size achieved in the first session; Baseline B – the average 

set size achieved in the first session. As the highest set size was not always achieved in 

the final training session, and is a less reliable indicator of performance than average set 

size, both performance measures are shown in Table 6.4. Figure 6.5 and Figure 6.6 

show a summary of the participants’ training progress using their highest and average 

set size performance in each session, respectively.  

Table 6.4  

Descriptive Statistics for Training Performance in Set Sizes 
 First Session 

 
 

Throughout 
Training 

(1st to 20th session) 

Final Session 
(20th session) 

 
 Mean (SD) Mean (SD) Mean (SD) 
 

Highest set size 
achieved  

 
4.86 (1.01)a 

 
7.67 (1.35) 

 
6.10 (1.58) 

 
Average set size 

achieved 

 
2.81 (0.93)b 

 
5.62 (1.43) 

 
4.19 (1.25) 

Note. a Baseline A: highest set size achieved on the first training day.  
b Baseline B: overall average set size achieved on the first training day. 
 

Two separate analyses were performed comparing Baseline A and Baseline B, 

respectively, with participants’ training progress. Firstly, Baseline A was compared with 

both the highest set size achieved on the final session and the highest set size achieved 

throughout the 20-days of training.   

When comparing Baseline A with highest set size achieved in the participants’ 

final training session, violations to normality assumption were detected, therefore a 

paired sample t-test was conducted concurrently with a Wilcoxon Signed Ranks Test. 

Both tests provided similar significant findings with participants performing better on 

their final training session than on Baseline A, t (20) = -3.67, p = .002, d = 0.96. The 

Wilcoxon Signed Rank Test showed that 16 students improved on the training task, 



   
Prematurity, Cognitive Abilities & Intervention  

 

182 

three students did not perform as well as they did at baseline, and two remained the 

same, T = 25, z = -2.86 (corrected for ties), p = .004, r = -.67.  

Similar procedures were carried out using Baseline A and highest set size 

achieved throughout the 20 sessions. Both paired sample t-test and the Wilcoxon Signed 

Rank Test’s results showed a significant result. The paired sample t-test indicated 

participants who completed the adaptive animal span training improved significantly on 

task performance, t (20) = -10.65, p < .001, d = 2.4, when Baseline A span was 

compared with the highest set size achieved throughout training. Similarly, the 

Wilcoxon Signed Rank Test showed that students had an overall significant 

improvement on the training task, T = 0, z = -4.00 (corrected for ties), p < .001, r = -.92. 

Twenty students showed improvement after training and one showed no difference in 

performance after training, no student’s performance became worse.  

Secondly, Baseline B was compared with the average set size achieved on the 

final session and the average set size obtained throughout the 20-days of training, both 

of which demonstrated results consistent with comparisons using Baseline A.  A 

comparison between Baseline B and participants’ average set size achieved on their 

final training session using a paired sample t-test indicated significant improvement 

between students’ first and last training session, t (20) = 6.50, p < .001, d = 1.27. Again, 

the Wilcoxon Signed Ranks Tests were used due to violations of the normality 

assumption. Results indicated the same significant findings, T = 5, z = -3.70 (corrected 

for ties), p < .001, r = -.85. Eighteen students showed improvement, one did not 

perform as well during the final training session as their first training session, while two 

students showed no differences on their average level performance.  

Students’ average performance in their first session as indicated by Baseline B 

was also compared with their average set size reached throughout training. Paired 
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sample t-test results indicated a significant increase with training, t (20) = -11.46, p 

< .001, d = 2.38.  However, the assumptions of normality for both variables were 

violated. Again a Wilcoxon Signed Ranks Test was used to confirm the analysis.  

Similar results were found, T = 0, z = -4.05 (corrected for ties), p < .001, r = -.88.  In 

this comparison, all 21 students showed an increase in their average level achievement 

with training.   

To provide a percentage of improvement, the following formula was used, as 

documented in Chooi and Thompson (2012):  

Improvement % = Average highest training score – Average first training score  x 100 
            Average highest training score 

Participants in the intervention group yielded a mean improvement of 48.93%. 

 

Figure 6.5. The mean training set sizes achieved and their standard errors for each 

training session across the 20 days of training are presented for the intervention group.  
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Figure 6.6. The highest training set sizes achieved and their standard errors for each 

training session across the 20 days of training are presented for the intervention group.

  

Individual Differences and Training Performance 

 To further investigate whether training performance was related to individual 

differences within the intervention group, correlational analysis were performed using 

cognitive performance at pre-test, differences in scores between pre and post 

assessment, as well as two measures of training gain. Training gain was calculated using 

(a) the difference between Baseline A and highest set size achieved throughout training, 

(b) the difference between Baseline B and the highest session average achieved 

throughout training. Pearson’s correlational analysis indicated no significant 

associations between cognitive performance as measured at pre-test and the two 
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measures of training gain. Similarly, no significant correlations were found between 

changes in cognitive performance and the two types of training gains. The normality 

assumptions for data on digit span pre-test and training gain (a) were violated, however, 

an inspection of their Spearman’s rho correlation with the respective variables did not 

change the results. Refer to Table 6.5 for a summary of the correlation analysis.  

Between Group Comparisons at Pre-Test 

 Groups’ performance was analysed to determine whether significant pre-test 

differences were present. The Shapiro-Wilk statistics showed that the assumption of 

normality was violated for some of the tasks, however further examination of Q-Q plots 

did not suggest severe deviations from normal distribution. Kruskal-Wallis one-way 

ANOVA was used to confirm findings. The assumption of homogeneity of variances 

was met for all the tasks.  

Digit span. The assumption of normality was violated for the intervention group 

(p = .019), and the active control group (p = .048), but no extreme scores were detected 

within each group. Results of ANOVA indicated no significant differences at pre-test 

between groups, F (2, 60) = 3.05, p = .06, η² = .09, d = 0.64. A non-parametric 

Kruskal-Wallis one-way ANOVA confirmed that there were no statistically significant 

differences between the pre-test performance in the intervention group (Mean Rank = 

37.88), the active control group (Mean Rank = 30.32), and the passive control group 

(Mean Rank = 28.02), χ² = 3.51, df = 2, N = 63, p = .173,η² = .06, d = 0.49.  

Spatial span. The assumption of normality was violated for both the active 

control group (p = .036) and passive control group (p = .024). Again, no extreme scores 

were observed within each group. Results of ANOVA showed no significant differences 

at pre-test between groups, F (2, 60) = .547, p = .582, η² = .02, d = 0.27. A Kruskal-

Wallis one-way ANOVA indicated no statistically significant differences in the pre-test 
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performances on spatial span task between the intervention group (Mean Rank = 34.93), 

the active control group (Mean Rank = 32.18), and the passive control group (Mean 

Rank = 29.17), χ² = 1.11, df = 2, N = 63, p = .575,η² = .02, d = 0.27. 

Stroop.  All assumptions were met for Stroop scores. Results of the ANOVA 

indicated that there were no statistically significant differences among the three groups’ 

performance on the Stroop task at pre-test, F (2, 60) = 1.01, p = .369,η² = .03, d = 

0.37. 

Reaction time task.  The assumption of normality was violated for the active 

control group (p = .012) and passive control group (p = .003). One extreme score was 

observed in the passive control group in terms of average time required for completing 

the task. However, this score remained within the range of scores observed in the active 

control group, thus it is interpreted as a true reflection of the students’ ability at the time 

of testing. Results of ANOVA suggest no significant differences at pre-test between 

groups, F (2, 60) = 2.97, p = .059, η² = .09, d = 0.63. A Kruskal-Wallis one-way 

ANOVA indicated no statistically significant differences among the pre-test reaction 

time performances of the intervention group (Mean Rank = 28.02), the active control 

group (Mean Rank = 39.55), and the passive control group (Mean Rank = 29.39), χ² = 

4.68, df = 2, N = 63, p = .096,η² = .075, d = 0.57.  

RSPM. All assumptions were met for RSPM scores. Results of the ANOVA 

indicated that there was no statistically significant difference among the three groups’ 

performance on the Ravens task at pre-test, F (2, 60) = 1.15, p = .323,η² = .04, d = 

0.392.  

Transfer Effects: Between Group Comparisons at Post-Test 

A series of one-way ANCOVAs were used to test for differences at post-test on 
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each measure, with group (intervention, active control, or passive control) as the 

independent variable fixed factor, post-test scores as the dependent variable and pre-test 

scores as a covariate.   

Digit span. The Shapiro-Wilk test showed minor violations of the assumption of 

normality for the Passive Control group (p = .05).  Linearity was evident in scatterplots.  

Both assumptions of homogeneity of regression slope, F (2, 57) = .71, p = .499, and 

homogeneity of variances, F (2, 60) = .28, p = .758, were met. Results of the final 

ANCOVA indicated that there were no statistically significant differences between the 

three groups’ performance on digit span total at post-test, F (2, 59) = .56, p = .574,ηp² 

= .02.      

Spatial span. The Shapiro-Wilk test showed that the assumptions of normality 

were supported for all three groups. Linearity was evident in scatterplots. Assumption 

of homogeneity of regression slope, F (2, 57) = .10, p = .908, and homogeneity of 

variances, F (2, 60) = 2.58, p = .084, were met. Again, results indicated no statistically 

significant difference between the three groups’ performance on spatial total at post-test, 

F (2, 59) = .83, p = .442,ηp² = .03.    

 Stroop task. All groups satisfied the assumption of normality and linearity. Both 

assumptions of homogeneity of regression slope, F (2, 57) = .3.02, p = .057, and 

homogeneity of variances, F (2, 60) = .1.351, p = .267, were met. Final ANCOVA 

results showed no statistically significant difference between the three groups’ 

performance on the Stroop task at post-test, F (2, 59) = .1.708, p = .190,ηp² = .055. 

 Reaction time task. The assumption of normality was violated for both control 

groups at pre and post-test but not for the intervention group. Due to severe violations, 

data were transformed. Log transformation best achieved normal distributions for all 

groups at pre- and post-test. ANCOVA was carried out due its robustness and the 
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evidence of covariate scores achieving a normal distribution. Assumptions of linearity, 

along with assumption of homogeneity of regression slope, F (2, 57) = 2.08, p = .135, 

and homogeneity of variances, F (2, 60) = .23, p = .792, were met. The three groups did 

not differ significantly at post-test performance on the reaction time task, F (2, 59) = .24, 

p = .785,ηp² = .01.   

RSPM. The Shapiro-Wilk test showed that the data met assumptions of 

normality for all three groups. Scatterplots indicated linearity. Assumptions of 

homogeneity of regression slope, F (2, 57) = .44, p = .645 and homogeneity of 

variances, F (2, 60) = 1.31, p = .276, were met. There was evidence of a statistically 

significant difference between the three groups’ performance on the Ravens task at 

post-test, F (2, 59) = 4.29, p = .018,ηp² = .13. Planned contrasts revealed that the 

intervention group performed significantly better than both the active control group (p 

= .019), and the passive control group (p = .011), while the active control group and the 

passive control group were not significantly different (p = .891).  Adjusted group means 

were 16.92 (SD = .649) for the intervention group, 14.657 (SD = .678) for the active 

control group, and 14.530 (SD = .623) for the passive control group. Refer to Figure 6.7 

for a visual representation of the significant transfer effect on RSPM.   
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Figure 6.7. Transfer effects on mean scores and their standard errors for the Raven’s 

Standard Progressive Matrices assessment at Pre-test and Post-test for each group.  
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Table 6.5  
Summary of Correlations on Cognitive Measures at Pre-test, Differences in Scores at Post-test, and Training Gains of the Intervention Group 
 
 1 2 3 4 5 6 7 8 9 10 11 12 
1. DS pre-test - -.26 .20 .00 -.02 -.37 -.07 .19 .33 .06 .27 .07 

2. DS difference  - -.02 -.13 .00 -.25 .10 -.04 -.14 .13 -.32 -.29 

3. SS pre-test   - -.49* -.42 -.10 -.26 -.01 .66** .25 .06 .09 

4. SS difference    - .33 -.19 .10 .16 -.35 .27 .09 -.04 

5. Stroop pre-test     - -.26 .40 -.03 -.54* .20 -.20 -.10 

6. Stroop difference      - .16 -.18 -.04 -.42 .22 .18 

7. CRT pre-test       - -.72** -.09 -.15 .01 .11 

8. CRT difference        - -.19 .20 -.04 -.31 

9. RSPM pre-test         - -.27 .19 .24 

10. RSPM difference          - -.01 -.02 

11. Training gain (a)           - .78** 

12. Training gain (b)            - 
Note. DS = Digit Span task; SS = Spatial Span task; CRT = Choice Reaction Time task; RSPM = Raven’s Standard Progressive Matrices; 
Training gain (a) = the difference between Baseline A and the highest set size achieved throughout training; Training gain (b) = the 
difference between Baseline B and the highest average set size achieved throughout training. ** p < .01, * p < .05 
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Discussion 
 
 The goal of this study was to investigate whether computerized WM training, 

specifically in the form of CWM span task, could demonstrate near and far transfer 

effects. It was hypothesized that participants in the intervention group would 

demonstrate significant improvements in the training task and that both near transfer 

and far transfer would be detected with the exception of performance on the speed of 

processing task. Results indicated significant improvements in the training task, which 

supported the initial hypothesis. However, results concerning transfer of training to 

untrained tasks only partially supported the hypothesis. No significant near transfer to 

measures of non-trained WM, or far transfer to measures of executive attention, was 

detected. However, significant far transfer to Gf was detected. The implications of these 

findings are discussed.  

Implications of Training Performance for the Intervention Group  

Analyses of intervention participants’ change in performance on the training 

task indicated statistically significant improvements throughout the training period. 

Their performance curves, using both highest and average training set size for each 

session across the 20 training days, revealed an improvement in performance from the 

first training session up to approximately session 13 with performance levelling off 

thereafter (refer to Figure 6.5 and 6.6). This training trend was contrary to Studer et al. 

(2009) and Jaeggi et al.’s (2008) n-back training studies where continuous improvement 

was reported on the trained task throughout training. One possible explanation is that 

children in the current experiment had reached a point where they were no longer 

engaged and motivated to achieve further. Perhaps a more refined and personalised 

reinforcement schedule would keep the children engaged (Green & Bavelier, 2008). An 

alternative explanation could be that the children in the study, in contrast to adults in the 
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aforementioned studies, had simply reached their maximum capacity. Children of 

school age may have limited scope for devising strategies to keep improving when 

faced with relatively complex and challenging tasks, resulting in children plateauing 

after 13 sessions.    

Nonetheless, the participants in this experiment improved in the training task as 

much as those documented in other WM training studies. The present calculation of 

participants’ percentage of improvement in the training group was 48.93%. No direct 

comparison could be made because the only CWM training study providing an 

improvement percentage was one that trained their participants for 10 days and reported 

a 23% increase in specific trained performance (Loosli, et al., 2012). However, the 

current improvement percentage was slightly higher than the documented improvements 

in Chooi and Thompson’s (2012) 20-day dual n-back study (44%), although they found 

no transfer effects. The current participants’ improvements were very similar to Jaeggi 

et al.’s (2008) 19-days dual n-back training (47%) that also documented far transfer 

effects in Gf. Although direct comparisons cannot be made due to the difference in 

training regime, these similar percentages of improvements could be a good indication 

of comparable commitment and effort demonstrated amongst the training participants.  

Transfer to Working Memory  

Near transfer to untrained WM measures after adaptive WM training would 

logically have been predicted, given that this CWM training involved elements shared 

with the untrained WM measures. However, this prediction was not upheld. The current 

results did not indicate significant transfer to untrained WM tasks, namely digit span 

and spatial span. Evidence for near transfer to these measures after training in CWM has 

been scarce. Chein and Morrison’s (2010) CWM training experiment found significant 

between group differences and a significant group x session interaction demonstrating 
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near transfer, however their claims were based on performance improvements in short 

term memory measures that highly resembled the CWM training task, (i.e., both used 

letters and locations as stimuli). Moreover, their results were only compared with a 

passive control group, which as mentioned in the previous chapter, lacked the control of 

expectancy effect. Therefore, their significant findings could merely be a result of 

practice effect that entailed training in specific strategies.  

Nonetheless, the present results showing no near transfer to measures of WM 

can be compared with other computerized WM interventions. The findings were 

consistent with Redick et al. (2012) as well as Chooi and Thompson (2012), where both 

studies’ participants were trained using dual n-back tasks. On closer observation, the 

effect size for near transfer effect at post-test on the digit span task (p = .56, ηp² = .02) 

and the spatial span task (p = .83, ηp² = .03) in current study were similar to those 

detected in Redick et al.’s (2012) study as measured by symmetry span (p = .59, ηp² = 

.02) and running letter span (p = .82, ηp² = .011).  

One possible explanation for unsuccessful near transfer from the present study’s 

adaptive animal span training could be that simple span tasks are more reliant to short-

term memory storage (Heitz, et al., 2005). Therefore the current adaptive span training, 

which was a complex span task, overlapped less with the skills involved in simple span 

assessments. Although evidence suggests that the use of combined scores for digit span 

and spatial span tasks are adequate in representing WM (Bowden, et al., 2013), perhaps 

separating forward and backward span scores may increase the sensitivity to this 

complex span training and provide scores towards respective WM components, namely 

short-term memory capacity and executive attentional control. 

Transfer to Other Cognitive Tests  

In regards to far transfer effects to other cognitive measures, no significant 
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group differences were detected at post-test on the Stroop. The results partially 

corroborated Chein and Morrison’s (2010) study that reported no training group x 

session interaction effect of CWM training on performance of Stroop initially, but 

subsequently claimed a marginally significant interaction effect on the Stroop task 

performed on comparisons between the subgroup who demonstrated training success 

and their control group. Although the present study and theirs both used a CWM 

training regimen, a discrepancy in intervention lies in the duration of training time. 

Chein and Morrsion (2010) trained their participants for 30-45 minutes each session 

whereas the participants in the current study was only trained for 15 minutes. The 

current results were also consistent with Thorell et al. (2009) and Lundqvist et al.’s 

(2010) studies who used Cogmed training and found no significant transfer to the 

Stroop task. However, the empirical evidence for successful transfer to Stroop was 

presented in the initial Cogmed studies reported by Klingberg (2005; 2002).  

The current literature on whether WM training is transferable to attentional 

control tasks appears mixed and the need for replication to confirm the absence or 

presence of transfer is necessary. Thus far, most of the existing evidence has relied on 

identifying transfer to the Stroop task (Chein & Morrison, 2010; Klingberg, et al., 2005; 

Klingberg, et al., 2002; Thorell, et al., 2009; Westerberg, et al., 2007). The use of other 

attentional control tasks would provide a more comprehensive picture. Given that 

evidence of far transfer to attentional control is absent in the current study but present in 

Chein and Morrison’s (2010) study, perhaps considerably longer training duration may 

be necessary for transfer, as measured by Stroop task, to occur.  

In contrast to attentional control, speed of processing has not been well studied 

within computerized WM training. The initial reason to include a processing speed task 

was to allow the testing and potential falsification of models of WM training that claim 
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that benefits to Gf occur through WM improvement. If the present results showed 

transfer to a broad range of tasks, including measures of other suggested causes of 

individual differences in Gf, then it would cast doubt on the specific WM interpretation. 

The current findings showed no significant transfer effect at post-test on the choice 

reaction time task. As hypothesized, WM training had no significant impact on 

measures of speed of processing. Although no direct comparisons to studies using 

CWM training could be made, WM training studies using other training tasks also 

documented non-significant results (Chooi & Thompson, 2012; Klingberg, et al., 2002). 

Chooi and Thompson (2012) even recorded worsening of perceptual speed performance 

after their dual n-back training in both their 8-day (d = -0.62) and 20-day training 

groups (d = -1.56). As suggested by Fry and Hale (1996), the relationship between 

speed of processing, WM and Gf is a directional one where “differences in speed have a 

direct effect on working memory capacity, and these individual differences in memory 

are a direct determination of fluid intelligence” (p. 241). From this perspective, changes 

in WM to cause upstream changes in speed would not necessarily be expected.   

Transfer to Gf  

This is the first study reporting a significant far transfer effect to the untrained 

RSPM task following adaptive CWM training. The type of training task, as well as the 

choice of training schedule, for school-aged children appears to be factors influential to 

this success.  The current experiment used a classic CWM adaptive span training: it 

contained ‘TBR’ items (i.e., animals) interspersed with a type of cognitive processing 

activity (i.e., judging whether the animals were upside down or right side up (Engle, 

2002; Kane, et al., 2001; Unsworth, et al., 2009). According to Kane et al.’s (2001) 

executive attention model, attentional control underlies performance on Gf tasks, and 

complex memory span are good measures of this. Therefore, training effects on CWM 
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tasks should show far transfer, and it did. Although there is a possibility that the score 

increment found in RSPM may be interpreted as the intervention group becoming better 

at performing the task, the intervention group did performed significantly better than the 

two control groups and thereby addressing practice effects. In addition, the features of 

the RSPM task were also not in any way similar to the CWM training, thereby 

suggesting genuine transfer that did not rely of strategy-specific learning.  

Why, then, is far transfer to Gf present in the current study and not in other 

studies and, particularly, other CWM training experiments with university students 

(Chein and Morrison, 2010) and healthy school-aged children (Loosli, et al., 2012)? The 

training schedule appears to be an important factor to Gf transfer on top of the choice of 

training task. The present study’s results were consistent with the earlier dual n-back 

(Jaeggi, et al., 2008; Studer, et al., 2009) studies with healthy undergraduate volunteers 

and the single n-back study (Jaeggi, et al., 2011) with typically developing children, 

both of which described using the same duration of approximately 20-days training and 

15 minutes of training time per day to achieve far transfer effects to Gf tasks. Evidence 

of far transfer effects were also found in Klingberg et al.’s (2002) study of children with 

ADHD, although they described using a slightly longer duration and dosage of 25 

minutes of training each day that lasted for 24 to 26 days. However, most of the studies 

that did not detect far transfer to Gf adopted a relatively long daily training time of at 

least 30 to 40 minutes (Chein & Morrison, 2010; Chooi & Thompson, 2012; Redick, et 

al., 2012; Westerberg, et al., 2007), and one especially brief intervention of only 12 

minutes per training day (Loosli, et al., 2012). These include training using Cogmed 

(Nutley, et al., 2011; Westerberg, et al., 2007), dual n-back (Chooi & Thompson, 2012; 

Redick, et al., 2012), and CWM tasks (Chein & Morrison, 2010; Loosli, et al., 2012).  

Observations on adaptive training schedules and the occurrence of far transfer to 
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Gf in the current study and past interventions suggest that the optimal timing lies 

between approximately 15-25 minutes each day for at least 20 days across four to six 

weeks. This appears to be a safe and promising schedule to adopt in WM training with 

healthy school-aged participants.  

The results of the present study are also more readily interpretable as genuine far 

transfer to Gf as it included several important methodological strengths. Unlike studies 

that rely only on a passive control group where documentations of significant transfer 

may only be a result of expectancy effects despite the presence of significant Gf transfer 

(Jaeggi, et al., 2008; Studer, et al., 2009), the present study included both active and 

passive control groups, which ruled out both Hawthorne and practice effects, 

respectively. The two other CWM studies (Chein & Morrison, 2010; Loosli, et al., 

2012), despite documenting an absence of far transfer to Gf, also lacked the inclusion of 

active control groups.  

Although, far transfer to the Gf task was detected, which was arguably occurred 

through core information processing changes, it appears puzzling that no far transfer 

effects were found to the Stroop task that most closely represented attention control 

ability. Although no precise conclusion can be drawn that explains this pattern of 

results, a comparison of the current adaptive animal CWM span task to the two 

respective tasks - the Stroop task and RSPM task - may shed light on this phenomenon. 

Both the CWM task and RSPM used accuracy across a broad time limit as their 

dependent variable, whereas the Stroop task used time of completion. In order to 

perform well in the CWM task and RSPM task, participants had to spread their attention 

across multiple stimuli with little time constraint. However, in order to perform well in 

the Stroop task, participants were required to narrow their focus of attention, ignore 

irrelevant stimuli and perform the task as quickly as possible. Moreover, the Stroop task 



   
Prematurity, Cognitive Abilities & Intervention  

 

198 

may be more sensitive to reading abilities, while neither the CWM nor RSPM tasks 

were reading-dependent. The above comparisons implied that perhaps there is more 

than one type of attentional control ability. Stroop and RSPM tasks tapped different 

abilities, with the current CWM training task more relevant to the RSPM task than the 

Stroop task. However, this explanation does not appear to fit well with the marginally 

significant interaction effect found on the Stroop task followed by a longer duration of 

CWM training as described in Chein and Morrison (2010), as compared to the current 

shorter duration of CWM training. Therefore, further investigation is warranted as to 

why there is a presence of far transfer to Gf without the presence of transfer to attention 

control. Whether the explanation stems from a matter of task sensitivity, the difference 

in training duration, or something entirely different is unclear.  

Parallel Versions of Assessments 

The intention with pre-post measurements was to identify changes that occur 

after training and make comparisons across the three groups. Requesting participants to 

take part in the same assessment twice within a short period of time may create practice/ 

retest effects. Although this study’s inclusion of both active and passive control groups 

already assisted in addressing practice effects, the addition of parallel forms used in the 

study further minimizes retest effects. Some other studies have used parallel forms in 

their studies (Chein & Morrison, 2010; Jaeggi, et al., 2008; Jaeggi, et al., 2011; Loosli, 

et al., 2012), often by separating odd and even numbers items; while some did not use 

parallel forms (Klingberg, et al., 2005; Klingberg, et al., 2002; Nutley, et al., 2011). 

 The type of parallel forms used may also contribute to the possible reasons 

behind the lack of transfer found in untrained WM tasks and the attentional control 

Stoop task. In particular, it may stem from the use of post-test that lacked novelty 

compared to pre-test. Specifically, the WM measures used were semi-parallel forms 
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where the order of items was changed, but not the stimuli themselves. Similar to WM 

measures, the trials within the choice reaction time task were randomised at pre- and 

post-test. However, the Stroop task was identical at pre- and post-test. Only RSPM were 

split into two parallel forms, with different items matched for difficulty, and represent 

truly novel items for participants at the two testing times. Given that the most valid 

measures of EF should assess how well one self-regulates to solve new problems 

(Burgess, 1997; Jurado & Rosselli, 2007; Rabbitt, 1997), the pre- and post-test used for 

WM and attentional control may have lacked adequate validity as measures of EF at 

post-test, due to their lack of novelty. Thus, it could be that if CWM training enhances 

EF, this is only detectable when a novel, yet parallel version of assessment is used at 

pre- and post-test. Therefore, RSPM may have a higher validity than other measures in 

the study to adequately reflect on true changes before and after training. If the tasks do 

lose novelty, participants, in general, are also expected to perform better on the tasks. 

Overall practice effects from the active and passive control group appear to support this 

line of argument. At post-test, participants in both control groups performed 

significantly better in the reaction time task and the RSPM task, while the passive 

control group also performed significantly better at post-test in the digit span task, 

spatial span task. They also performed somewhat better on the Stroop task but results 

were not significant. Practice effects on RSPM are usually greater for those with low 

scores on first testing (J. C. Raven, 1958). Given that the intervention group performed 

slightly better than the other groups at pre-test, some practice effects on the RSPM task 

from the passive control group can be expected (Refer to Table 6.3).  

Limitations  

There are several limitations to the present study. First, the use of single 

measures to represent specific domains may have an impact on the validity of the results. 
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No measure is ‘process pure’ and able to capture a specific cognitive domain without 

systematic and unsystematic measurement error. Changes in single test scores may be 

driven by ability or interest or other random factors, and thus cannot provide definitive 

evidence to support that underlying change stems solely from CWM training (Shipstead, 

Hicks, & Engle, 2012). In order to demonstrate that WM training instigates real change 

in any one cognitive domain, tasks that represent the same domain should all 

demonstrate significant improvement, not just one type of domain-specific task. For 

example, if CWM training is successful in improving Gf, then tasks that measure Gf 

such as both RSPM and Cattell Culture Fair Intelligence Tests should also show 

improvements. The use of more than one measure for each cognitive domain would 

assist in ruling out task-specific skills or strategies inherent in a single measurement 

outcome. That said, the tests in the current study have been widely used in the literature 

and have sound psychometric properties in their relevant domain literature. For example, 

RSPM has been considered the best measure of Gf (Carpenter, et al., 1990) and used in 

the majority of WM intervention studies (Jaeggi, et al., 2008; Klingberg, et al., 2002; 

Redick, et al., 2012). 

A second limitation concerns the administration of reinforcement. Although 

materials were provided for use as reinforcement for the continuation of participants’ 

daily participation, this factor was not captured in any quantitative or qualitative terms. 

Parents of participants in the intervention group and the active control group were 

required to provide their children with stickers and weekly prizes when corresponding 

training was completed, but it was not clear whether parents complied with these 

instructions, or whether the rewards had the desired effect on motivation. The lack of a 

desired effect on motivation could explain the high number of drop-outs/ incompletion 

training within the intervention group. Perhaps a formal questionnaire requesting 
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participants to rate their interest in or boredom with the task and how difficult they 

found it, completed after each training session, could provide more informative and 

quantitative data on motivation and engagement levels. Real time online data regarding 

time breaks that the participants may have taken in between trials during each training 

session could also give a good indication of motivation behaviour. In the absence of 

such information, we cannot be certain whether participants’ performance levelling off 

after the thirteenth session can be explained by reaching their maximum capability or by 

losing motivation.  

Motivational factors that impact on the performance or compliance level of the 

active control group is also a concern, since the repetition of their task through a 

presentation of stimuli of a fixed difficulty in training may easily result in boredom and 

learned helplessness as described in recent critiques for intensive computerized WM 

training (Morrison & Chein, 2012; Shipstead, et al., 2012). An indication of this in the 

present study was that the drop-out rate for the active control group was considerably 

higher than the two other groups. Other cognitive studies have not documented specific 

drop-out rates, thus specific comparisons were unavailable. A possible way to amend 

the impact of boredom could be to widen the range of animals used as stimulus in the 

task for both active control group and intervention group. This would allow for more 

variety in stimulus context to counterbalance some of the boredom associated with the 

task as well as decreasing stimulus familiarity. According to Dempster (1981), the more 

familiar the stimulus presented in STM tasks, the easier the task becomes due to the 

ease in chunking. Nonetheless, the use of low dosage non-adaptive control groups has 

occurred in several other cognitive intervention studies (J. Holmes, et al., 2009; 

Klingberg, et al., 2005; Klingberg, et al., 2002) and the choice of non-adaptive training 

task is in line with recently suggested methodologies (Redick, et al., 2012; Shipstead, et 
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al., 2012). Despite concerns of demotivation, the descriptive statistics and 

corresponding effect sizes (Table 6.3) for pre and post-test scores of both active and 

passive control groups did not appear to demonstrate worsening performance. On the 

contrary, several significant differences at post-test appeared in the active control group, 

including the Stroop task, reaction time task as well as the RSPM in the current study.   

There are, however, several alternative choices of training task for the active 

control group that may also be suitable. First, the use of an alternative adaptive training 

that does not tax on WM abilities, such as reading comprehension. This would provide 

participants in the active control group with similar arousal to learning and the 

Hawthorne effect can be controlled with a better match on expectation between the 

groups (Shipstead, et al., 2012). Another type of active control is to present trials in a 

range of difficulties at random rather than systematically matched to participants’ 

current performance. This may perhaps provide better control in terms of investigating 

whether adaptiveness is the key to successful learning.  

In addition to the above, all parts of the research were conducted by one 

researcher, including recruitment, allocation of participants, explanation of training 

procedures to the participants and family, as well as pre- and post-assessments. The 

researcher, thus, was not blind to the conditions to which the participants had been 

allocated. There could be a possibility of researcher bias. However, as the current 

analysis showed no initial pre-test differences amongst the three groups and the 

researcher closely followed verbatim written instructions for all testing procedures, the 

current results are not readily attributable to bias alone.   

 A final limitation was that this study did not include follow-up analysis to assess 

further changes, if any, in following weeks or months in comparison to the two control 
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groups. This was due to the limitations of resources and funding. Very few current 

studies on WM training have included follow-up studies. Those that did also 

documented mixed findings. Cogmed training showed that near transfer was more 

sustainable than far transfer with large effect sizes being better maintained than small 

effect sizes. For example, Klingberg et al. (2005) documented transfer to digit span, 

spatial span and Stroop tasks that was maintained after three months while transfer to 

RCPM was not maintained. Jaeggi et al. (2011) reported the only dual n-back study 

showing significant improvements in Gf maintained at 3-months follow-up. Amongst 

the scarce follow-up analyses, results tend to reveal a reduction in effects over time.   

Clinical Implications  

The key clinical implication is that the findings of successful far transfer to Gf 

provide preliminary support for the use of CWM training in other clinical populations 

that demonstrate impairments in Gf, particularly children born preterm/LBW. From the 

results of Study 1, evidence shows that children born preterm performed at lower Gf 

than their same age peers and that the effect was partially mediated by low WM and 

cognitive inflexibility.  

There are also obstacles to successful training that subsequently leads to transfer 

of Gf. These may include participating in WM training tasks that are too easy, having 

difficulty self-regulating to keep training in a repetitive task, as well as the availability 

of feedback and rewards. The current adaptive animal complex WM span task is able to 

address the aforementioned obstacles. This training is suitable for 7-year-old typical 

children with success in increasing Gf, therefore it might also be expected to be suitable 

for 8-to 9-year-old children born preterm, given evidence from Study 1 of at least one 

year’s developmental delay in the preterm cohort’s performance as compared with their 

peers. In addition, this form of training does not appear to be overly demanding on 
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either parents or children as it can be completed at home on their personal computer that 

is connected to the internet, without special laboratory equipment or continuous 

guidance from expert personnel. Parents are also provided with reinforcement materials 

to assist in maintaining children’s motivation, while the program provides trial-to-trial 

feedback to enhance arousal for continuous training. The training is not overly 

demanding for the participants but its adaptive feature allows each participant to train at 

a challenging yet individualized level. This adaptive feature has been argued to be an 

essential element to successful learning and maintaining a close proximity between the 

task difficulty level and the individual’s capability should maximize performance gain 

(Vygotsky, 1978/1997; Yerkes & Dodson, 1908). Concrete evidence has been provided 

from the results that adaptive training is useful relative to the control groups. The 

comparatively larger effect size on improvement scores in Gf in the intervention group 

(p < .001, d = 0.92) than the active control (p = .037, d = 0.38) and passive ontrol group 

(p = .031, d = 0.40), as well as successful learning in specific trained performance as 

reflected in a nearly 50% improvement after training, appear to support the utility of the 

adaptive feature.  

Future Directions 

These promising findings are just one step on the way to the development and 

validation of early intervention neuro-rehabilitation programs for children born preterm 

and other clinical groups. Future studies have many methodological and pragmatic 

issues to address.  

As a priority, future studies should consider the practical application of gains 

from WM training. What remains unknown is whether transfer is detectable in 

behaviours of daily living, such as educational achievement (Sternberg, 2008). 

Achievements tests and teacher ratings can be included in future research to examine 
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transfer effects outside psychometric tests. If training gains remain evident only on 

psychometric tests, then it is of little practical significance to real life.  

Another obvious future question is whether the current findings replicate in 

children born preterm/LBW. Now that the current study provides evidence for genuine 

increase in Gf following CWM training in school-aged typically developing children, 

we can be more confident that children born preterm/LBW will not be exposed to 

unnecessary risks. Moreover, if school-aged children born preterm/LBW do perform 

better at Gf tasks after CWM training, then achievement tests and teacher ratings can 

also be included in future research to examine transfer effects beyond psychometric 

tests. Researchers should also investigate impacts for different age groups as cognitive 

impairments have been suggested to persist into adolescent and adulthood.  

Furthermore, a comparison of the different training regimes and the variations of 

training programs would be useful. A study that includes all three types of training 

regimes, namely the Cogmed training, the dual n-back training and the complex span 

training, with appropriate control groups and a standardized training schedule would 

shed light on which training regime is most useful or whether they have different effects. 

Currently, there is no documentation on the ideal training schedule such as the duration 

of training time per day or the duration of overall training. With the extensive variations 

in training schedules in existing studies, direct comparisons of training utilities are 

difficult. 

Dose-relationships are also important to explore given the motivational 

challenges of sustaining repetitive tasks, especially for children. The drop out rate in 

this study is likely to be evidence of how challenging this program was. Fine tuning 

minimum requirements for change is critical in making the program accessible to 

children. 
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Future studies should also be mindful not only to include more than one measure 

for each cognitive domain in question as to rectify concerns of task impurity (Burgess, 

1997; Rabbitt, 1997), but also to include measures of SES (Aarnoudse-Moens, Smidts, 

et al., 2009; Ardila, et al., 2005) and a motivational questionnaire (Lohaugen, et al., 

2011; Nutley, et al., 2011) as discussed earlier. These would help to more accurately 

account for the strength of training gains and transfer.  

Summary 

 In conclusion, the results of Study 2 demonstrated that intensive training using a 

focused adaptive CWM span training task could lead to transfer to an untrained Gf task. 

Unlike other studies, the presence of far transfer effect to Gf was not attributable to 

Hawthorne effects. Given that the study used a classic CWM training regime with the 

inclusion of both active and passive control group, as well as reliable parallel versions 

of assessment reflecting the features of the RSPM task that were not in any way similar 

to the CWM training, the significant differences in Gf gains were unlikely to be a 

consequence of practice or general familiarity effects but, rather, a consequence of the 

WM training. This success provides preliminary support on the utility of adaptive 

CWM training to increasing Gf and, therefore, may be beneficial to other clinical groups, 

such as children born preterm/LBW, who also demonstrated impairments in Gf.  

The use of brief WM training to increase intelligence or specific cognitive 

abilities is still relatively new. Despite the growing number of published studies, the 

literature still lacks concrete evidence on the underlying mechanisms of successful 

transfer effects. Therefore, refinement and replications of the investigations of WM 

training utility across different laboratories and age groups, such as the current study, 

are important. More replications of successful far transfer effects are required to 

confirm the utility of CWM training and these replications should be completed with 
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careful thinking on the use of methodology.  
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CHAPTER 7 

Summary and General Discussion 

This chapter consists of three main sections. The first section provides a 

summary of the thesis, including the main goals of the purposed research. The second 

section provides summaries of the two studies with their major findings and their 

integrated implications for children born preterm/LBW. Finally, it ends with 

recommendations for future research and a conclusion of the thesis.  

Summary of Current Research 

The main purpose of this thesis was to extend the current understanding of the 

underlying differences in cognitive and learning outcomes for children born 

preterm/LBW, with the anticipation that this would direct the development of future 

research. Children born preterm/LBW often display average IQ in the current literature; 

yet frequent academic difficulties and persistent EF-related impairments. Children born 

preterm/LBW often do not evince detectable impairments, particularly in global 

measures, but continue to struggle at school or lag behind their peers in more basic 

cognitive processes (Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009; Kerr-Wilson, et 

al., 2011; Pritchard, et al., 2009) such as WM and cognitive flexibility. In addition, the 

fact that IQ and Gf could part company has been demonstrated in children with ADHD, 

who also displayed EF impairments against an average IQ (Barkley, 1997; Duncan, et 

al., 1995; Tamm & Juranek, 2012). Given that the majority of current research focused 

on traditional IQ, investigations through Gf is a novel approach to the literature. Gf is 

also closely related to working memory and possibly other EF constructs, thus 

investigations through Gf may also assist traditional IQ in explaining the discrepancy of 

lower performance in EF tasks and academic results in those children born preterm with 

normal IQ. Therefore, the current choice of approach to gaining a better understanding 
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of the observed discrepancy was through investigations in their development of Gf and 

subsequently, ways of increasing Gf.  

Summary of Findings  

This section is divided into three sub-sections. The first is a summary of the 

findings in Study 1 and implications for developmental understanding of the impact of 

children born preterm. The second sub-section is a summary of the findings in Study 2 

and its implications for theories of intelligence. The final sub-section discusses the 

clinical implications of these findings for children born preterm/LBW.   

Summary of Study 1 

Study 1 aimed to investigate whether children born preterm, from seven to nine 

years of age, exhibit Gf impairments. Further, whether birth status effects in Gf 

differences could be explained by differences in basic information processing 

parameters, namely WM and cognitive inflexibility. Results indicated that children born 

preterm did indeed show impairments in Gf and that these differences were partially 

mediated by WM and cognitive inflexibility. WM and cognitive inflexibility were 

strong predictors of Gf, each of them played a separate mediating role and there 

remained unexplained variance in the pathway model. Remaining unexplained variance 

may stem from other cognitive elements such as processing speed and attention, as 

suggested by Rose et al. (2011). On further analysis, children born preterm appeared to 

show developmental delay of at least one year compared to their same age peers, rather 

than a permanent deficit. This has important implications for the potential modifiability 

of these functions, and together with the understanding of their similarities and 

differences in developmental trajectories, may shed light on some of the 

neurodevelopmental challenges for children born preterm, whilst also pointing to areas 

that require further exploration.  
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Similar Developmental Trajectories in Gf 

The two groups of participants in Study 1 appeared to have the same 

developmental trajectory, with children born preterm performing at least one year 

behind (refer to Figure 4.1). In the typically developing population, Gf changes rapidly 

in a linear manner in early to middle childhood. The changes of fluid ability in children 

over one year is of comparable magnitude to changes in adulthood that spans across 

approximately 11 years (Kaufman, et al., 2009; McArdle, et al., 2002; Schweizer & 

Koch, 2002; Sharma, et al., 2011). This study is amongst the first to demonstrate that 

there was a similar pattern of linear progression in mean scores on the Gf task between 

children born preterm and their peers across the three age groups. There was evidence 

of a developmental delay rather than a deficit. Given these similarities, remediation 

programs that serve to enhance Gf appears fruitful for children born preterm as a way of 

catching up to their same age peers.  

Different Developmental Trajectories in WM 

In the current study, the children born preterm and the typically developing 

children appeared to have different developmental trajectories in WM. Studies on the 

normal developmental trajectory of WM suggested that WM emerges as young as four 

years of age. By six to seven years, children are fully equipped with various WM 

components, such as short-term memory storage, phonological loop and visuo-spatial 

sketchpad. The development of WM increases in a linear fashion and peaks around age 

20 (Best, et al., 2009; Gathercole, et al., 2004; Lehto, et al., 2003). According to 

existing literature, children born preterm/LBW displayed consistent deficiencies in the 

performance of WM tasks as compared to their same age peers (Aarnoudse-Moens, 

Weisglas-Kuperus, et al., 2009; Ford et al., 2011). Given that different measures and 

levels of task complexity, as well as gestational age and birth weight, can all influence 
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the outcomes of group comparison, a distinct developmental trend has not been 

proposed by existing studies. However, studies have detected a significant group 

difference with a combined effect size of -0.36 between children born preterm/LBW 

and their full-term peers, over the age range from seven to 14 years of age (Aarnoudse-

Moens, Weisglas-Kuperus, et al., 2009).  

From the results of the present study, the sample of typically developing 

children demonstrated the linear progression described in the literature. However, the 

sample of preterm in the current study deviated from this linear progression. Children 

born preterm struggled with storing and manipulating information more than their same 

age peers. There was a very similar pattern of mean scores indicating a developmental 

delay between ages seven and eight, but not between eight and nine. The effect size 

detected in the present study was also relatively high compared to that recorded in 

earlier reviews (d = 0.30 – 0.61). This suggested that children born preterm are likely to 

have their own developmental trajectory, which is perhaps much more delayed after 

developing the basic WM abilities at eight years of age (Refer to Figure 4.2). If this 

deceleration in WM development generalises to the preterm/LBW population, then it 

may be that children aged at seven could benefit from early intervention programs and 

those between eight and nine could benefit from remedial programmes, both of which 

target WM abilities. Furthermore, given the adaptive nature of the discussed WM 

training and close monitoring of training progress, the differences in WM 

developmental trajectory between children born preterm and those born at term in the 

older age groups is likely to have minimal affect on the generalization of the positive 

WM training effects in term born peers towards children born preterm. Nonetheless, the 

signs of different trajectories found in the present study could also be the result of 

random sampling, since this is a between-groups (cross-sectional) study and therefore 
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within-groups (longitudinal) data would help to disambiguate the current observation.  

Different Developmental Trajectories in Cognitive Flexibility 

In the current study, the children born preterm and typically developing children 

also showed different developmental trajectories in cognitive flexibility. The 

developmental trajectory of cognitive flexibility in the normal population is similar to 

that of WM in the normal population. According to the existing literature, the ability to 

shift between tasks and rules emerges as young as three years of age in typically 

developing children. Children at this age can shift between simple stimulus-response 

rules within a task measuring cognitive flexibility. These simple tasks should involve no 

more than two distinct rules. Significant improvements emerge around the age of five to 

six years where individuals are capable of shifting between more rules in more complex 

tasks. Between the ages of seven and nine years, children demonstrate significant 

improvement in the ability to switch between multi-dimensional tasks, but this plateaus 

at around the age of 12 years (Best et al., 2009; P. Anderson, 2002). 

As compared to typically developing children, research on the developmental 

trajectory of cognitive flexibility in children born preterm/LBW is not well documented. 

Consistent evidence of deficit has been reported from studies using TMT-B as an 

assessment tool. Documentation of significant differences between VPT/VLBW and 

full-term groups, ranging from eight to 22 years old, was presented with a moderate 

effect size (Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009). Evidence has been 

mixed for assessment tasks other than the TMT-B, where between-group differences in 

cognitive flexibility are not reliably found in children born VPT from 4-12 years old 

(Aarnoudse-Moens, et al., 2012) or at 16 years old (Luu et al., 2011).   

Study 1 did not use the TMT-B, however, it did find significant group 

differences of a moderate effect size in 7- and 8-year-old children. The younger children 



   
Prematurity, Cognitive Abilities & Intervention  

 

213 

born preterm exhibited greater difficulty in shifting their focus of attention between 

tasks than their same age peers and made more errors on the WCST task. However, 

rather than a developmental lag, children born preterm in the present study 

demonstrated a “catching up” trend (Refer to Figure 4.3). Contrary to the normal 

developmental trajectory research, the current findings showed significant 

improvements in the preterm sample but not in the normal developing children across 

each age group. Given this finding, perhaps parents and teachers need not worry about 

the cognitive flexibility of children born preterm as, perhaps, it is only a matter of time 

when these children catch up to their peers. However, the degree of cumulative effect 

during the period of delay is unclear.  

Summary of Study 2 

The aim of the second study was to evaluate the suitability and the utility of a 

child-friendly version of adaptive CWM span training in improving Gf. Given that WM 

is highly predictive of Gf and that recent studies have suggested the possibility of 

improving WM and Gf after WM cognitive training, testing the effectiveness of WM 

training in typically developing children at seven years of age was expected to shed 

light on whether it is also suitable as early intervention and remedial programs for 

children born preterm/LBW between seven and nine years of age. Following a classic 

CWM span training of 20 days’ duration, 15 minutes each day, results indicated that 

training led to successful learning in the intervention training group. Results also 

showed that the adaptive WM span training task did not lead to improvements in non-

trained measures, including WM, controlled attention, and speed of processing, 

however, training did demonstrate successful far transfer to the assessment of untrained 

Gf. The results of having far transfer in Gf in the absence of near transfer to WM and 

attentional control task were unexpected. A precise explanation cannot be drawn to this 
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pattern of findings at this point and further investigation is warranted.  

Results with Higher Validity than Existing Studies  

Many of the previous studies that documented successful generalization from 

training gains have used only passive/no-contact control groups. This raised concerns 

over the validity of these studies as participants in the training group of these studies 

may have performed better due to expectation associated with being actually in training 

and more contact or coaching from the researchers in the experiment (Redick, et al., 

2012; Shipstead, et al., 2010). In response to these concerns of validity, the current 

study has demonstrated successful far transfer to Gf after adaptive CWM training with 

the inclusion of both active and passive control groups. Therefore, the results of 

adaptive CWM training can be said to have resulted in genuine changes in Gf over and 

above those seen in both control conditions.  

Theoretical Contributions 

The results of Study 2 also make other theoretical contributions. First, the 

current findings on successful far transfer effects to Gf add supporting evidence to the 

literature regarding a theoretical causal, directional, relationship between WM and Gf. 

Such experimental evidence is considered much stronger confirmation of the causal role 

of WM towards Gf, compared to correlational studies that documented naturally 

occurring associations between WM and Gf ranging from 0.64 to 0.82 (Fry & Hale, 

2000). 

Second, the current investigation with typically developing children supports 

Klingberg et al.’s (2002) notion that initial impairment in WM is not a pre-requisite for 

seeing cognitive transfer after computerized WM training. Consequently, this supports 

the idea that Gf can be modified after all (Jaeggi, et al., 2008; Sternberg, 2008) and that 

intelligence may not be as resistant to change as proposed by some researchers (Jensen, 



   
Prematurity, Cognitive Abilities & Intervention  

 

215 

1998; Redick, et al., 2012).  

Integrated Practical Implications for Children Born Preterm/LBW 

The two studies presented in this thesis make contributions to clinical practice 

with children born preterm. Study 1 provided information that may assist in targeting 

cognitive abilities for remedial programmes and promoting educational support for 

possible ways to increase WM and Gf amongst children born preterm.  

To elaborate, the results of Study 1 provided evidence of developmental delay in 

Gf and also found a relatively large sized deficit in Gf (d = -0.77) in the present study 

compared even to academic difficulties found in math in previous studies (d = -0.60; 

(Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009), a subject that has been suggested 

to be affected most profoundly amongst the clinical cohort (Bowen, et al., 2002; 

Pritchard, et al., 2009). Given that math has been known to rely heavily on WM 

(DeStefano & LeFevre, 2004) and Gf is predictive of math performance (Sharma, et al., 

2011), it is of priority and great educational interest to investigate further the 

relationship surrounding these constructs. With this information, together with evidence 

on the modifiability of Gf, the present results provide hope for children in the clinical 

cohort that perhaps computerized WM training may increase Gf and subsequently lead 

to better academic outcomes.   

In order to provide recommendations for possible treatment, causal directions 

need to be understood and the current thesis has attempted to achieve this through 

experimental manipulation in Study 2. Several factors suggested that recent success in 

computerized WM training to enhance WM and possibly Gf may be fruitful for children 

born preterm/LBW. First, WM has also been found to partially mediate birth status 

effects on Gf in Study 1. Second, WM has been viewed as underpinning academic 

difficulties in children born preterm/LBW (Alloway, 2009) and finally, parallel research 
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suggests a strong correlation between WM and Gf  (Fry & Hale, 2000).  

The detection of successful far transfer on Gf following adaptive CWM training 

in the sample of typically developing children in Study 2 provides support for its use 

with children born preterm/LBW. This clinical population may now be invited for 

experimental procedures without risking unnecessary stressful events on top of existing 

medical interventions that they may have already experienced. Furthermore, given that 

the findings in Study 2 provide evidence of positive effects of adaptive CWM training 

for normal developing children aged seven to nine years old, not attributable to practice 

or Hawthorne effects, it would be predicted that the same training regime accompanied 

with the same training schedule and dosage would be beneficial to children born 

preterm/LBW.  

Future Directions 

 Continuous research is needed to fully understand the underpinning of cognitive 

differences between preterm/LBW and their control peers as well as determining 

appropriate remedial programs to enhance their cognitive abilities and academic 

outcomes. It is recommended that future research to not only refine and replicate the 

present research as documented in limitations in earlier sections but also to move 

forward in methodologies and pose practical research questions.  

Future research should seek to verify the importance of basic information 

processes in explaining Gf differences between preterm/LBW and their full-term peers 

through multiple mediation modelling or SEM analyses as this line of approach is 

relatively sparse when compared against studies that demonstrate group differences. 

The use of a latent variable approach in future research, for both theoretical 

understanding of cognitive abilities in children born preterm/LBW and practical 

intervention experiments, may also enhance methodological power.  
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 A subsequent step forward would be bridging research to connect the 

understanding of birth status effects on Gf through EF-related components to their 

impact on the academic performance in children born preterm/LBW. This would 

provide us with answers as whether developmental delay found in Gf adequately 

explains academic difficulties amongst the clinical cohort. Questions remain as to 

whether deficits in Gf explain discrepancies in academic achievement more adequately 

than the Gf /Gc conglomerate measured by FSIQ. In addition, the birth status effects on 

Gc and its relationship with academic achievement amongst children born preterm/LBW 

have yet to be thoroughly investigated. Concurrently, clarification of these issues shall 

further assist in the development of educational remedial programs to improve the 

sequelae of children born preterm/LBW.   

Another area deemed fruitful to explore is whether this generalized gain in Gf 

also transfers to practical, real life behaviours, because if they do not, then they are of 

little practical significance(Sternberg, 2008). Therefore, aside from examining whether 

adaptive CWM training can increase performance on untrained Gf amongst children 

born preterm/LBW, research can also target whether training can generalize to 

achievement and behaviour assessments.  

Conclusions 

 The incidence of children born preterm/LBW remains high and will continue to 

rise given the continuous improvements in medical procedures that lead to the increase 

in survival rates. Therefore, there is an ongoing need not only to monitor the changes in 

cognitive abilities between this clinical cohort relative to full-term typically developing 

children, but also to understand the underlying mechanisms of identified differences in 

intelligence and the role of basic information processes.  

The understanding of developmental trajectories and cognitive abilities 
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underlying Gf deficits in children born preterm/LBW, together with the implication that 

intensive adaptive CWM training can increase Gf, will better prepare psychologists in 

offering suggestions to this clinical cohort with appropriate educational and remedial 

programmes in the future. 
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developmentȱofȱchildrenȱ
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Appendix B 

 
Participating School: Letter of Approval  

 
Research title:  
Can we improve children’s fluid intelligence through working memory training? 
 
 
 
I, __________________________________________ (Principal’s name) of  
 
_____________________________________________ (School’s name) have read the 
research information sheet. Any questions about the research have been answered.  
 
I agree to distribute information sheets and consent forms to students of Year 2 in our 
school.  However, participation in your research will be the decision of the children and 
their parents.  
 
We understand that all information is treated as confidential and will not be released by 
the investigator unless required to do so by law, where such circumstances will be 
explained. 
 
We agree that research data gathered for this study may be published, provided 
participating children’s names or other information that might identify the children, are 
not used.  
 
My signature below indicates that I have understood the information provided. 
 
 
 
School Principal’s signature:            Date:  
          
________________________________          ________________________  
 
 
 
Chief Investigator:  
 
Helen Ko (Student researcher) 
Dr Helen Davis (Principal supervisor) 
Dr Corinne Reid (Co-supervisor 
 
 
 

 
 
 
 

 

This study has been approved by the Murdoch University Human Research Ethics 
Committee (Approval 2011/079).  If you have any reservation or complaint about the 
ethical conduct of this research, and wish to talk with an independent person, you may 
contact Murdoch University’s Research Ethics Office (Tel. 08 9360 6677 or e-mail 
ethics@murdoch.edu.au). Any issues you raise will be treated in confidence and 
investigated fully, and you will be informed of the outcome.  
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Appendix C 
 

Participant Invitation Letter 
 
Research title:  
Can we improve children’s problem solving through working memory training? 
 
Dear Participant and Parents,  
 
We invite you to participate in our research study looking at the effects of computer 
memory training on children’s memory and intelligence. This study is part of my degree 
in Doctor of Psychology at Murdoch University, supervised by Dr Helen Davis and Dr 
Corinne Reid.   

 
Nature and Purpose of Study 
Research has shown that some kinds of memory training may not only improve 
people’s memory, but also their ability to solve unfamiliar problems. We would like to 
know whether this training has any benefits for children in Year 2.  
 
What would I be asked to do? 
All children who participate will be asked to complete some tasks and puzzles involving 
memory and thinking.  These tasks will take about 30-40 minutes and children will 
complete them individually at home, at a time convenient to you.  Children will then be 
put into one of two groups.  One group of children will be asked to play an animal game 
on computer for 15 minutes each day for 20 days (excluding Saturdays and Sundays).  
The game will be set up online for children to access from their home computer, and we 
will arrange initial training of the program to include the parents and participating child.  
Parents will be asked to assist in monitoring the child’s progress.  The second group of 
children will not be given the game to play immediately.  After 20 days, all children 
will complete again the tasks and puzzles involving memory and thinking.  At the end 
of the study, participating children who did not play the game will be given the 
opportunity to play. 
    
Do I have to take part? 
No. Parents and children are completely free to say yes or no. The research team will 
respect your decision whichever choice you make, and will not question it.  
 
What if I wanted to change my mind? 
If you say yes, but then you or your child want to stop participating, that’s OK.  Just let 
me know and you can stop at any time.  
 
What will happen to the information I give - is it private and confidential? 
The answers given on the tasks and scores achieved on the animal game will remain 
strictly confidential and will be seen only by the investigator and supervisor.  We will 
record names so that we can keep track of different children’s progress during the study, 
but as soon as a child completes the study, his or her name will be removed from all 
data and no one will be able to identify them.  Any other contact information provided 
to us will also be shredded as soon as the child completes the study.  
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At the end of the study in December 2012, a summary of the results will be sent to you 
and the school.  This will also be made available on the School of Psychology Research 
Results website: 
http://www.psychology.murdoch.edu.au/researchresults/research_results.html 
No individual children will be identified.  
  
Is this research approved? 
The research has been approved by Murdoch University Human Research Ethics 
Committee.  
 
Who do I contact if I wish to talk about the project further? 
If you would like to talk about the project further or have any concerns and questions, 
you are welcome to contact us either by email or by phone (see below).  
 
OK – so how do I become involved? 
If you do want to be a part of this project, then please do no hesitate to contact me by 
email: hko.research@gmail.com or phone: 0406143208.  We will then arrange a time 
convenient for you and your child to begin assessment.  
 
This letter is for you to keep. 

Yours sincerely, 

 

Helen Ko                                          Dr Helen Davis                          Dr Corinne Reid 
(Student researcher)                         (Principal supervisor)                (Co-supervisor) 
Email: hko.research@gmail.com     h.davis@murdoch.edu.au          corinne.reid@uwa.edu.au 
mbl: 0406143208                             tel: 9360 2859 
 
                                                                  
 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

This study has been approved by the Murdoch University Human Research Ethics 
Committee (Approval 2011/079).  If you have any reservation or complaint about the 
ethical conduct of this research, and wish to talk with an independent person, you may 
contact Murdoch University’s Research Ethics Office (Tel. 08 9360 6677 or e-mail 
ethics@murdoch.edu.au). Any issues you raise will be treated in confidence and 
investigated fully, and you will be informed of the outcome.  
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Appendix D 
 

PARENT CONSENT FORM  
 
Research title: Can we improve children’s problem solving through working 
memory training? 
 
 
I _____________________________________________ (insert name of 
parent/guardian) and 
 
______________________________________________ (insert child’s name) have 
read the research information sheet. Any questions we have about the research have 
been answered.  
 
We agree to participate in the study and understand that it will include completing 
memory and thinking tasks and may also include 20 days of playing an online computer 
game.  However, we know that we may change our minds at any time and withdraw 
from the research project without having to provide further explanations. 
 
We understand that all information is treated as confidential and will not be released by 
the investigator unless required to do so by law, where such circumstances will be 
explained to me.  
 
We agree that research data gathered for this study may be published, provided my 
child’s name or other information that might identify my child, is not used.  
 
My signature below indicates that we have understood the information provided. 
 
Parent /guardian’s signature:            Date:  
          
________________________________          ________________________  
 
 
Phone Number (H): _______________________(M):______________________ 
 
Email: 
___________________________________________________________________ 
 
 
Chief Investigator:  
 
Helen Ko (Student researcher) 
Dr Helen Davis (Principal supervisor) 
Dr Corinne Reid (Co-supervisor) 
 
 
 

Appendix C 
 

This study has been approved by the Murdoch University Human Research Ethics 
Committee (Approval 2011/079).  If you have any reservation or complaint about the 
ethical conduct of this research, and wish to talk with an independent person, you may 
contact Murdoch University’s Research Ethics Office (Tel. 08 9360 6677 or e-mail  
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Appendix E 
 

School-aged Participants’ Consent Form 
 
Research title: Can  we  improve  children’s  problem  solving  through  working  
memory  training? 
 
My name is _______________________ (write your own name). 

 
My parents have explained the study to me and all my questions have been 
answered.  
 
I would like to take part in this memory game study.   
 
I am happy to do some puzzles before and after I start playing the online game for 
the next 20 days (not Saturdays and Sundays).  
 
I am happy to play the game on my own and will try to give it my best shot. 
 
I know that I can choose not to answer your questions if I do not want to.  
 
I know that I can stop doing any of the puzzles or playing the game if I do not 
want to.  
 
 
 
        
Child’s Signature   
 
 
Chief Investigators:  
 
Helen Ko (Student researcher) 
Dr Helen Davis (Principal supervisor) 
Dr Corinne Reid (Co-supervisor) 

 

 

 

This study has been approved by the Murdoch University Human Research Ethics 
Committee (Approval 2011/079).  If you have any reservation or complaint about the 
ethical conduct of this research, and wish to talk with an independent person, you may 
contact Murdoch University’s Research Ethics Office (Tel. 08 9360 6677 or e-mail 
ethics@murdoch.edu.au). Any issues you raise will be treated in confidence and 
investigated fully, and you will be informed of the outcome.  
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Appendix F 

 
ȱ
ȱ
 Research Ethics Office 
 Division of Research and Development 
ȱ
ȱ Chancellery Building

South Street

MURDOCH  WA  6150

Telephone: 9360 6677

Facsimile: 9360 6686

human.ethics@murdoch.edu.au

www.research.murdoch.edu.au/ethics

Wednesday,ȱ20ȱJulyȱ2011ȱ
ȱ
DrȱHelenȱDavisȱ
SchoolȱofȱPsychologyȱ
MurdochȱUniversityȱ
ȱ
ȱ
DearȱHelen,ȱ
ȱ
ProjectȱNo.ȱ ȱ 2011/079ȱ
ProjectȱTitleȱ ȱ Canȱweȱimproveȱchildrenȇsȱfluidȱintelligenceȱthroughȱworkingȱmemoryȱtraining?ȱ
ȱ ȱ
Yourȱ responseȱ inȱ supportȱofȱ theȱaboveȱprojectȱwasȱ reviewedȱbyȱ theȱMurdochȱUniversityȱResearchȱEthicsȱ
Officeȱandȱwas;ȱ
ȱ

APPROVEDȱȱ
ȱ
ȱ
ȱ
Approvalȱ isȱgrantedȱonȱ theȱunderstandingȱ thatȱresearchȱwillȱbeȱconductedȱaccordingȱ theȱstandardsȱofȱ theȱ
NationalȱStatementȱonȱEthicalȱConductȱinȱHumanȱResearchȱ(2007),ȱtheȱAustralianȱCodeȱforȱtheȱResponsibleȱConductȱ
ofȱResearchȱ(2007)ȱandȱMurdochȱUniversityȱpoliciesȱatȱallȱtimes.ȱȱYouȱmustȱalsoȱabideȱbyȱtheȱHumanȱResearchȱ
EthicsȱCommittee’sȱstandardȱconditionsȱofȱapprovalȱ(seeȱattached).ȱȱAllȱreportingȱformsȱareȱavailableȱonȱtheȱ
ResearchȱEthicsȱwebȬsite.ȱ
ȱ
Iȱwishȱyouȱeveryȱsuccessȱforȱyourȱresearch. 
ȱ
ȱ

Pleaseȱquoteȱyourȱethicsȱprojectȱnumberȱinȱallȱcorrespondence.ȱ
ȱ
KindȱRegards,ȱ
ȱ
ȱ
ȱ
ȱ
Dr.ȱErichȱvonȱDietzeȱ
ManagerȱofȱResearchȱEthicsȱȱ
ȱ
cc:ȱ HelenȱKoȱ

ȱ
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