

MURDOCH RESEARCH REPOSITORY

This is the author’s final version of the work, as accepted for publication
following peer review but without the publisher’s layout or pagination.

The definitive version is available at :

http://dx.doi.org/10.1007/s11277-014-1732-0

Liagouras, G-A, Sayegh, A.A. and Koutsakis, P. (2014) A new location-aware
calendar-based application for dynamic minimum path trip planning. Wireless

Personal Communications, 78 (1). pp. 29-44.

http://researchrepository.murdoch.edu.a/31007/

Copyright: © 2014 Springer US
It is posted here for your personal use. No further distribution is permitted.

http://dx.doi.org/10.1007/s11277-014-1732-0
http://researchrepository.murdoch.edu.a/31007/

1

A new location-aware calendar-based application for dynamic

minimum path trip planning

Georgios-Andreas Liagouras
a
, Amir A. Sayegh

b
 and Polychronis Koutsakis

a

a
Department of Electronic and Computer Engineering, Technical University of Crete, Greece

b
TELUS Canada

Email: liagouras.georgios@gmail.com, amirsayegh@gmail.com, polk@telecom.tuc.gr

Abstract— The convergence of several trends, including the proliferation of mobile, cloud technologies,

social media, and socio-economic trends such as bring your own device (BYOD), have led to not only the

democratization of computing but also to information overload. This creates an opportunity for pattern

recognition and ‘Big Data’ technologies to support mobile ‘context-aware’ computing where technology

understands human intentions, and effectively ‘disappears’. In this short paper we explore, through the

development of an Android-based test application, one of the capabilities of this computing paradigm,

which to the best of our knowledge has not been explored. Namely, we explore the complexity of dynamic

calendar based minimum path computing.

Keywords: context-aware computing; dynamic calendar; minimum path; time-saving application.

I. INTRODUCTION AND MOTIVATION

Since the beginning of the new millennium, cell phones have emerged as an important part of our daily

life, changing the way we live and work. These significant technological advances have led to the

inclusion of new and elaborate features in cell phones, turning them into a mini computer, a mailing

system, a text messenger, a video camera, even a game console.

A recent major breakthrough is that the development of mobile applications, which was once a

prerogative of cell phone manufacturers, has been made available to developers for further

improvements and innovation. This move marked the beginning of a new era for cell phones, the era of

smartphones. Mobile applications with access to smartphones‟ hardware such as 3G/Wi-Fi, GPS,

camera, offer services that have a great impact on the way we perform our daily tasks. The idea that

devices can both sense and react to their environment according to specific rules, in order to increase

this impact, is defined in computer science as context awareness. Given that almost all modern

smartphones have GPS, accelerometers, gyroscopes and altimeters, many new possibilities arise, such

2

as location-aware advertisements, information and services (transportation, entertainment, etc.). Recent

examples of context-aware applications include „Apple Siri‟,„Google Now‟, „Blackberry Hub‟,

„OnTime‟, „Sherpa (Osito)‟, „Tempo‟, etc.

For the interested reader, the survey presented in [9] is one of the most cited surveys of context aware

computing systems. The taxonomy considers several aspects of the mobile applications space,

including context awareness, highlighting functional, architectural, technological, and implementation

issues. In [10], the authors survey existing research and approaches towards realization of opportunistic

user context recognition with mobile phones. They introduce the typical architecture of a mobile-

centric user context recognition system as a sequential process of sensing, preprocessing, and context

recognition. In [11], the authors present an overview of the current state-of-the-art work in predictive

mobile computing. They present a survey of phenomena that mobile phones can infer and predict,

along with a description of machine learning techniques used for such predictions. In [12], the authors

present a location-aware call handling assistant as a dynamic solution. The assistant runs on mobile

devices and enables users to manage calls based on their current context (in particular, their location

and activity, the date and time, and the caller and caller‟s group). This system exploits Bluetooth

technology for location determination and for user modelling. In [13], the authors present their work on

the Zonezz platform. The platform identifies meaningful locations such as 'home' or 'work'. It provides

an easy to understand context modeling and fully runs on a mobile device without the need for a central

service. Other applications can use this platform to create context-awareness. They conclude the paper

by showing the benefits of this platform with the help of a context-aware calendar tool.

Motivated by this general concept, we built the first part of our proposed Business-Life

Synchronization (BLS) application, the goal of which is to make users‟ life easier by helping them take

care of everyday tasks in the minimum possible time. To achieve this, we proposed the concept of a

location- aware calendar, that the user would utilize as his daily agenda. This calendar will dynamically

indicate to the user the optimal route to visit all of his destinations in the minimum time, thus saving

3

time and money. We also added extra functionalities by changing the route according to users' needs,

showing the address of every location on the map and associating specific locations with messages

which will appear when the users arrive at those locations. BLS extracts from the user's default

calendar the locations that the user needs to visit within the day. The crux of our contribution is that the

route gets updated as the calendar entries evolve in real-time. Practically, our biggest challenge is that

although smartphone compute power has evolved significantly, we must balance run-time delay, phone

energy consumption, and network delay over the mobile network. From a mathematical modeling

perspective, the "network" consisting of the locations and the paths that the user will follow forms an

undirected weighted graph, in which the locations are the graph's vertices, paths are the graph's edges,

and a path's distance is the edge's length. We attempt to find –in near real-time- the optimal route from

the perspective of minimum delay in order to visit all locations starting from our current one, which is

the only constant in the studied problem. This problem is similar in nature with the Traveling Salesman

Problem, but the major difference is that the final destination is not the initial location. To solve the

problem in real-time, we use three algorithms to find the optimal route: an exhaustive algorithm that

computes all the possible permutations in order to serve as upper bound on complexity, the heuristic

Tabu Search algorithm and one method of Simulated Annealing-based neighborhood search. We then

compare the algorithms in terms of their discovered route duration and the computational load they

incur. Additionally, we implement user-centric features such as early-warning notifications, route

modification, location-aware messages, and view toggling.

For the development of our application we used the Android platform. Android is a Linux-based

operating system for mobile devices such as smartphones and tablet computers, developed by Google

in conjunction with the Open Handset Alliance[1]. Google releases the Android code as open-source,

under the Apache License. Additionally, Android has a large community of developers writing

applications ("apps") that extend the functionality of devices. Developers write primarily in a

customized version of Java, and apps can be downloaded from online stores such as Google Play

4

(formerly Android Market), the app store run by Google, or third-party sites. The key issue for BLS,

besides the proper programming of the application (in Android 2.3 Gingerbread [2])
1
, is to use an

algorithm that will incur the minimum possible computational complexity while finding the optimal

route (in terms of minimum delay) for the user to follow.

In our work, we perform extensive evaluations to demonstrate the advantages and weaknesses of the

studied algorithms and examine how their performance affects the application‟s efficiency.

This paper is organized as follows. In section II we present the basic model and some additional

features supported by BLS. In section III we explain the problem of finding the optimal route and

present the algorithms used to solve it. In section IV we evaluate the performance of the algorithms in

terms of computational load and accuracy of results and compare them against each other.

II. PROGRAMMING CALENDAR FUNCTION IN BLS

The application consists of components that are loosely bound to each other and each one is specified

by an Activity. An Activity is an application component that provides a screen with which users can

interact. Each Activity is given a window in which to draw its user interface. The window typically fills

the screen, but may be smaller than the screen and float on top of other windows [3]. Inside the

Activities we implement our algorithms and the rest of the application's features. Our application is

characterized by two Activities, the Calendar Activity and the Maps Activity.

A. Calendar Activity

This Activity is used for the application‟s launch. It contains methods that are used to populate the

initial screen with image objects, button assignments that make the transitions to the user‟s calendar or

the Maps Activity, and algorithms that display pop-up messages based on the network status and the

calendar events.

More specifically, the user is notified for the following:

1
 Please note that the challenges described in this paper still apply with recent versions of Android.

5

1) A pop-up message is displayed for the network status when the user touches the viewMap button

and there is no active network connection (Figure 2). It should be noted that, below the selected date,

which appears in English, the name of the month appears by default in the language associated with the

country where the user is located (in this case, Greece). For the same reason, in Figures 3-6 the street

and city names appear again in Greek, while the rest of the message appears in English (the whole

message can appear in Greek as well, but this choice was obviously not made here in order to make the

paper easy to understand).

2)A pop-up message is displayed with the number of events scheduled on a user selected date (Figure

1).

3)A pop-up message is displayed that reminds the user to select a date before using any of the BLS

features such as inserting an event, modifying an event, viewing events or calculating the optimal route.

4) A pop-up message is displayed that asks for user verification in case of application exit.

Figure 1. Total number of events notification Figure 2. Network notification

6

 Figure 3. Arrival notification Figure 4. Message notification

Figure 5. Number of remaining events notification Figure 6. Urgency notification

 Figure 7. Menu Figure 8. GPS notification

7

B. Maps Activity

This Activity is launched when the user clicks the viewMap Button. It displays the map that

contains the optimal route. Moreover in this activity there are algorithms that:

1) Calculate the optimal route.

2) Track the user‟s current position every 15 seconds.

3) Offer the user the option to change the order of events (Figure 7).

4) Toggle between satellite and street view (Figure 7).

5) Recalculate the optimal route if an error occurs or if the user wishes so (Figure 7).

6) Offer the user the option to view messages that correspond to specific locations on the map

(Figure 7).

7) Display the address of selected locations (Figure 7).

8) Check the GPS status and alert the user if it is turned off (Figure 8).

9) Based on the user‟s scheduled appointments, his current location and the other locations‟ distance

from it, BLS notifies the user 10, 5 and 0 minutes before his needed time of departure, respectively, in

order to ensure that the user will not be late (Figure 6).

10) Inform the user about his arrival at a destination point, when he is at a radius of 120 metres

around this point (Figure 3).

11) Inform the user about his route‟s end when he has visited all the locations (Figure 5).

12) For every location visited, display the message that corresponds to that event (Figure 4).

III. EXHAUSTIVE AND HEURISTIC ALGORITHMS

A. Problem modeling

The "network" consisting of the locations and the paths that the user will follow forms an undirected

weighted graph. The following are the key elements of our model:

8

a. Locations. The locations are the graph's vertices and can be extracted from the events of the

default calendar application.

b. Paths. These are the graph's edges and on the map are represented by the route that connects the

locations.

c. Distance. This is the path‟s distance, between two locations.

d. Current location. The current location is the starting point of our algorithms and is essential for

their functionality.

Therefore, we need to solve the problem of finding the shortest route between locations i and j, with

specific stops in-between the start and end locations. This is a minimization problem of starting at a

specified vertex and ending after having visited each vertex exactly once. It is an NP-hard problem,

very similar to the travelling salesman problem (TSP) [4], as also mentioned in the Introduction, with

the major difference that we do not return to the starting location when we have visited all our

destinations. However, in our case there are additional limitations, because of the type of the

application. Besides finding the optimal route, it is also of major importance to keep the network delay

(requests to Google Maps servers for geographical data) and the run-time delay (running the iterations)

within reasonable values, as a large delay would discourage mobile users from utilizing BLS and would

also result in increased energy consumption at the smartphone.

B. Algorithms' Descriptions

To solve the problem in real-time, we have used and evaluated three algorithms: an exhaustive

algorithm that computes almost all of the possible permutations, as well as the heuristic algorithm Tabu

Search and one method of Simulated Annealing-based neighborhood search. All of our results have

been derived for 95% t-confidence intervals (constructed in the usual way [8]).

9

B.1 Permutation Algorithm

B.1.1. Description

The permutation algorithm guarantees a global optimum solution therefore it was the obvious choice

from the beginning in order to use it as a base for our comparisons (effectively acting as the

computational delay bound). The algorithm reads the addresses from the calendar application and

computes all the possible permutations. For each permutation we find the total route duration and then

we choose the permutation with the shortest duration. The terms "addresses" and "locations" will be

used interchangeably in the rest of the paper.

B.1.2. Complexity

As expected by its exhaustive nature, the permutation algorithm incurs a very high computational load.

For n addresses there are (n-1)! different permutations (since the initial address is constant), which

constitute the run-time delay "burden" of the system. There are also (n-1)*(n-1)! server requests

(network delay) because for each permutation we need (n-1) requests to find the distances among all

locations. In order to improve the algorithm's response time we make two simple improvements:

a) we keep in memory all the route times that have already been computed at the server in previous

iterations so that we don't have to resend the same request repeatedly, and

b) we assume that the route time between two locations is the same regardless of the direction the user

is headed. This assumption is reasonably accurate, although there are cases where the route from

location A to location B is non-negligibly different from the respective route from B to A.

These improvements help to significantly decrease the complexity associated with the network delay

and allow us to use a n
2
 array, as the complexity becomes equal to (n

2
-n)/2 (number of routes to send

requests for, minus the elements of the diagonal which are equal to zero (distance to self), divided by

two because we do not consider the user's direction as explained above).

The pseudo-code for the permutation algorithm is presented below, in Figure 9.

10

Input: Locations‟ names from the Android calendar app

Output: Optimal Route

For i=0 to n do

Retract location[i]

End for

For i=0 to n

 For j=0 to n

If Distance_Matrix[i][j] exists

time_to_destination=time_to_destination+ Distance_Matrix[i][j]

else

time_to_destination=time_to_destination+ Distance[i][j]

Distance_Matrix[i][j]=Distance[i][j]

 End if

 End for

End for

 Find Minimum(time_to_destination)

Draw Route(Minimum(time_to_destination))

Figure 9. Pseudo-Code for the Permutation Algorithm

B.2 Tabu Search Algorithm

B.2.1. Description

Tabu Search [5] is an improvement over basic local search that attempts to overcome local search

problems by not being stuck in a local minimum. This is accomplished by allowing the acceptance of

non-improving moves, in order to not be stuck in a locally optimum solution, and in the hope of finding

the global best. Tabu Search also allows us to escape from sub-optimal solutions by the use of a tabu

list. A tabu list is a list of possible moves that could be performed on a solution. These moves could be

swap operations (as in TSP) or subtractions and additions in case of dealing with numerical

optimization problems. If a move is accepted (new best solution is found), its move is made tabu for a

certain number of iterations, i.e. we cannot perform the same move for a certain number of iterations.

When a move is made tabu, it is added to the tabu list with a certain value called the Tabu Tenure (tabu

length). With each iteration, the tabu tenure is decremented. Only when the tabu tenure of a certain

move is 0, can the move be performed and accepted.

To allow a tabu move, we need to apply aspiration criteria [7]. Aspiration criteria allow a tabu move to

be selected based on certain constraints. Tabu Search performs the following steps:

11

1. Create an initial solution (in our case the initial solution is the order in which the user inserted the

events), and call it the current solution.

2. Find the best neighbor of the current solution by applying certain moves.

3. If the best neighbor is reached by performing a non-tabu move,

 accept this as the new current solution,

 else

find another neighbor (best non-tabu neighbor).

4. If the maximum number of iterations is reached (or any other stopping condition)

go to step 5, else go to step 2.

5. The globally best solution is the best solution found throughout the iterations.

B.2.2. Complexity

The complexity of the Tabu Search algorithm is significantly smaller than that of the permutation

algorithm. The reason is that it searches for local optimums. The impact of the network delay on this

algorithm is the same (complexity equal to (n
2
-n)/2) but there is a big improvement in terms of the run-

time delay, for which the computational complexity is equal to k*n
2

,

where k is a variable defined by the BLS programmer (it has been chosen to be equal to 30 in our

system because in almost all cases studied the use of larger values did not render any significant

improvements), k*n is the number of iterations and n is the number of accesses in the tabulist and the

distance matrix in each iteration.

The pseudo-code for the Tabu Search algorithm is presented below, in Figure 10.

12

Input: Locations‟ names from the Android calendar app

Output: Optimal Route

For i=0 to n do

Retract location[i]

End for

For i=0 to n

 For j=i to n

 Distance_Matrix[i][j] =Distance[i][j]

Distance_Matrix[j][i] =Distance[j][i]

 End for

End for

For i=0 to n iterations

currSolution =getBestNeighbor(tabuList, Distance_Matrix, currSolution)

currCost=getCost(currSolution)

if (currCost<bestCost)

bestCost=CurrCost

bestSol=CurrSolution

End if

End For

Draw_Route(bestSol)

Figure 10. Pseudo-Code for the Tabu Search Algorithm

B.3 Simulated Annealing (SA) Algorithm

B.3.1 Description

This algorithm is a Simulated Annealing-based neighborhood search. We implement SA using pairwise

interchange [6], and we make certain important additions to the general logic of the algorithm, as

explained below.

Following the same approach as before, we create a distance matrix where we store the time distances

between locations. Next we create an initial solution based on the array‟s data by sorting the distances

from the initial location in ascending order. Then we apply the pairwise interchange method based on

the initial solution in two ways. First we apply the pairwise interchange on the initial solution, similarly

to the logic of the algorithm in [6]. Then, we add an equal number of solutions to the pool of solutions

found via the first approach, by randomly producing exactly one more solution for each solution of that

13

pool. This is done by using each solution of the pool as a seed in order to perform one more pairwise

interchange at random. Among all the produced solutions, the solution with the minimum delay is the

one chosen as the best.

B.3.2 Complexity

The impact of the network delay remains the same (complexity equal to (n
2
-n)/2). The run-time delay is

a combination of the sorting algorithms and pairwise interchanging. We use the default sorting

algorithm in Java, which is currently Timsort, a hybrid algorithm of merge sort and insertion sort. Its

complexity is O(nlogn). The complexity of the two methods of pairwise interchange is n(n-1)+2

because each one generates n(n-1)/2 solutions plus the initial solution that is used twice.

The pseudo-code for our Simulated Annealing algorithm is presented below, in Figure 11.

Input: Locations‟ names from the Android calendar app

Output: Optimal Route

For i=0 to n do

Retract location[i]

End for

For i=0 to n

 For j=i to n

Distance_Matrix[i][j] =Distance[i][j]

Distance_Matrix[j][i] =Distance[j][i]

 End for

End for

InitialSol=Sort(Distance_Matrix[0])

For i=1 to n

For j=i to n

PairwiseInterchange(InitialSol)

tempTime=calculate_time(Distance_Matrix, InitialSol);

End for

End for

Find_best(tempTime)

Draw_Route

Figure 11. Pseudo-Code for the Simulated Annealing Algorithm.

14

IV. EVALUATION

We used two different methods to evaluate the performance of each algorithm. Both methods receive

as input n addresses (1<n≤10). While n<10, new addresses can be added in order to reflect dynamic

changes in a user‟s schedule. We do not consider higher values of n, mainly because we assume that it

is unlikely that a user will need to visit more than 10 locations within a day, but also because the

permutation algorithm leads to unacceptably high delays when the number of locations increases,

therefore it would not make sense to include it in further comparisons. We comment on this problem of

the permutation algorithm below.

For each method we perform 10 executions for every input of n addresses and we compare the

algorithms in terms of the average durations of the "optimal" routes that they generate and in terms of

their average total execution time (i.e., network delay+run-time delay).

For the first method, in every run we test a different order of the same n addresses whereas in the

second method, in every run we test n different addresses. Due to the great number of permutations that

the permutation algorithm runs and due to the smartphone's hardware limitations, the algorithm can not

be tested for n>7. Please note that for a large n (which is impractical, since it implies a user has more

than 7 places to go to, and even in that case he/she can use the app for the most time-pressuring 7 and

then use it again) we would be able to extend the processing through the use of a cloud-based server.

The results of the first method indicate the expected excellence of the permutation algorithm in terms

of the optimal route‟s duration. Figure 12 shows that the permutation algorithm almost always finds the

global optimum for n<8 (this is the reason why only two algorithms are mainly shown in the results,

i.e., that the permutation algorithm‟s route has zero difference from the optimal route and therefore no

such difference exists; the same explanation stands for Figures 14 and 16, below). This accuracy

however comes with the price of the very high complexity of the algorithm, causing its execution time

to be by far the worst in comparison to the other two algorithms, as shown in Figure 13. As we can see

from the results for 6 addresses, the permutation algorithm requires approximately triple execution time

15

in comparison to Tabu Search and Simulated Annealing, and for seven addresses this gap grows to over

a minute. Therefore its use for over 6 addresses is not recommended because such high delays are most

likely not tolerable by the average mobile user.

The other two algorithms display similar behavior both in terms of execution time and route‟s duration.

The results indicate that both algorithms are significantly faster in execution time than the permutation

algorithm. Regarding the route‟s duration, both algorithms present excellent results for small inputs

(n<4), as shown in Figure 12. For larger values of n the performance of the Tabu Search algorithm

deteriorates fast; its "optimal" routes are ≥40% longer in comparison to the actual optimal ones when

n>5, and more than 50% longer than the actual optimal ones for n≥10. The Simulated Annealing

algorithm shows a slower performance deterioration but it also leads to more than 50% larger route

durations, for n=10.

Figure 12. Comparison of the three algorithms in terms of their efficiency in finding the shortest route.

Figure 13. Comparison of the three algorithms in terms of their execution time.

Difference from optimal route

(different order)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Number of addresses

D
iff

er
en

ce
 in

 %

permutation

Tabu Search

Simulated Annealing

16

In conclusion, the accuracy of the permutation algorithm can not compensate for the tradeoff of

exceeding delays. The other two algorithms, which attempt to find local minima and extract the best

route among them, offer much lower execution times due to their lower complexity at the cost of being

unable to find the global optimum. Additionally, it needs to be emphasized that the ordering of the

addresses affects the Tabu Search algorithm because in every run new local searches must be made.

Our proposed variant of the Simulated Annealing algorithm offers better results than Tabu Search for

n<8 and comparable results for larger values of n. The reason is the sorting at the beginning of the

algorithm and the added solutions to the basic ones from the pairwise interchange.

The results of the second method were almost identical to the ones extracted from the first method. The

permutation algorithm is still the most accurate and the one with the largest execution time, whereas

the other two algorithms are significantly faster (Figure 15). Both algorithms find "optimal” solutions

that lead to route durations longer than the truly optimal ones by more than 40%, for n>5 (Tabu Search)

and n>7 (for our Simulated Annealing algorithm, which outperforms Tabu Search, as shown in Figure

14). It should be noted that the app can also work by adding time constraints for the visit to each

address, associated with the visit to each address. However, this addition does not alter the nature of

our results in terms of the comparison of the three algorithms, which is the focus of this paper.

Finally, we studied the case where the addresses entered by the user are within a short range (largest

distance between addresses was 500m). Although the performance of the Tabu Search algorithm was

not affected by this change, our Simulated Annealing algorithm displayed significant improvements:

the difference between its computed “optimal” routes and the actual optimal ones dropped on average

to under 10% (Figure 16). The proposed sorting at the beginning of the SA algorithm contributes to this

improvement.

17

 Figure 14. Comparison of the three algorithms in terms of their efficiency in finding the shortest route.

Figure 15. Comparison of the three algorithms in terms of their execution time.

Figure 16. Comparison of the three algorithms in the case of short-range addresses.

Finally, Figure 17 shows an example of the differences in the shortest route computed by the three

algorithms when given the same input of addresses (in this case, our example is from the city of Athens

whereas the former examples and results were from the city of Chania, in Crete). It is clear from Figure

17 that the three solutions are different.

Difference from optimal route-Short

Range addresses(Different

Addresses)

0

10

20

30

40

50

60

Number of addresses

Di
ffe

re
nc

e
in

 %

Tabu Search

permutation

Simulated Annealing

18

Figure 17. Left to right: Permutation Algorithm, Simulated Annealing, Tabu Search solutions for the shortest route using

the same input of addresses.

V. FINAL COMMENTS, CONCLUSION AND FUTURE WORK

In this short paper we presented our effort to create a new mobile application that aims to relieve part

of the burden of the complexity of daily life. We evaluated the performance of three algorithms on

problems related to finding shortest routes, and we discussed the algorithms' advantages and

weaknesses. Our evaluations have shown that an excellent solution in terms of both execution time and

accuracy of results is difficult to find, which is why certain compromises have to be made to achieve a

balance between computational load and accuracy in results. Our application, BLS, also includes

functionalities that further improve user experience.

We have evaluated BLS on a home Wi-Fi network which provided stable speed and good accuracy of

acquiring our current position. On a 3G network our experiments have shown that users should expect

on average a 50% increase in network delay and a significant offset on the estimate of their current

19

position. Therefore it is strongly advised that GPS should be enabled in such a case, despite being

energy-consuming. The above remark, of course, is not valid for phones that support offline map

services. These phones are still a minority, but even when/if phones with this capability prevail, the

impact in our application will only be the minimization of network delay. Hence, once again this does

not alter the nature of our results regarding the computational complexity of the three algorithms used

in our work.

Our future work involves the evaluation of the performance of more algorithms such as genetic

algorithms and hybrid solutions in order to improve the accuracy of our results in finding the shortest

route without compromising, via additional delays, the user‟s experience. BLS will soon be available in

Google Play, with the use of the permutation algorithm for n≤4 and our SA algorithm for n>4.

REFERENCES

1.[Online]: http://www.openhandsetalliance.com/android_overview.html

2.[Online]:http://developer.android.com/about/versions/android-2.3-highlights.html

3.[Online]: http://developer.android.com/guide/components/activities.html#StartingAnActivity

4.M. R. Garey, D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-

Completeness", W.H. Freeman Eds, 1979.

5.F. Glover, "Tabu Search - Part I", ORSA Journal on Computing, Vol. 1, No. 2, 1989, pp. 190-206.

6. K. Boloor, R. Chirkova, T. Salo and Y. Viniotis, “Heuristic-based request scheduling subject to a

percentile time SLA in a distributed cloud”, in Proc. of the IEEE Globecom 2010, Miami, USA.

7.[Online]: http://voidexception.weebly.com/simple-tabu-search-using-java---traveling-sales-man-tsp.html

8. A. M. Law and W. D. Kelton, "Simulation modeling &analysis" (2nd ed.), 1991, McGraw Hill Inc.

9. G. Chen and D. Kotz, “A survey of context-aware mobile computing research”, Technical Report,

Dartmouth College, 2000, [Online]: http://www.cs.dartmouth.edu/reports/TR2000-381.pdf

10. S. Tabatabaei, A. Gluhak and R. Tafazolli, “A Survey on Smartphone-Based Systems for

Opportunistic User Context Recognition”, ACM Computing Surveys, Vol. 45, No. 3., 2013.

11. V. Pejovic and M. Musolesi, “Anticipatory Mobile Computing: A Survey of the State of the Art and

Research Challenges”, University of Birmingham Technical Report CSR-13-02, December 2013.

http://www.openhandsetalliance.com/android_overview.html
http://www.cs.dartmouth.edu/reports/TR2000-381.pdf

20

12. I. Bokharouss, W. Wobcke, C. Yiu-Wa, A. Limaru and A. Wong, "A Location-Aware Mobile Call

Handling Assistant," in Proc. of the 21
st
 IEEE International Conference on Advanced Information

Networking and Applications Workshops (AINAW), 2007, Vol.2, 2007, pp. 282-289.

13. J. Roth, “Context-aware apps with the Zonezz platform”, in Proceedings of the 3rd ACM SOSP

Workshop on Networking, Systems, and Applications on Mobile Handhelds (MobiHeld ‟11).

