View metadata, citation and similar papers at core.ac.uk

Hindawi Publishing Corporation

Mobile Information Systems

Volume 2015, Article ID 463791, 11 pages
http://dx.doi.org/10.1155/2015/463791

Research Article

brought to you by .{ CORE

provided by Research Repository

Hindawi

eMatch: An Android Application for Finding Friends in

Your Location

Georgia Athanasopoulou and Polychronis Koutsakis

School of Electronic and Computer Engineering, Technical University of Crete, 73100 Crete, Greece

Correspondence should be addressed to Polychronis Koutsakis; polk@telecom.tuc.gr

Received 16 August 2015; Revised 7 November 2015; Accepted 25 November 2015

Academic Editor: Salvatore Carta

Copyright © 2015 G. Athanasopoulou and P. Koutsakis. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The work presented in this paper is twofold. We first outline the architectural design, the functional requirements, and the user
interface of eMatch, an Android application which was inspired by the idea of fighting the loneliness we all witness in large
cities. eMatch has the goal of connecting people with common interests that happen to be in the same geographical area. We then
propose EgoSimilar, a new algorithm which computes the similarity between users and is implemented in eMatch. The algorithm
is compared against two other well-known and widely used similarity computation methods and is shown to outperform them in

terms of the most significant metrics used in our study.

1. Introduction

The majority of social media applications help people com-
municate, but only virtually, behind their computer screens.
Another very common image in large cities, besides the one of
people behind their screens, is that of people sitting alone in
restaurants, coffee shops, and public transportation. Hence,
although social networks offer the ability to socialize and
form “virtual” relationships, in real world people often stay
alone and distant from each other. Loneliness in our time has
grown as bad as becoming a “social disease” [1].

The above thoughts and observations motivated us
to design and develop an application, eMatch (electronic
Match), the goal of which is to fill the gap between the
virtual and the real world. Its purpose is to find people in the
same geographical area, compare their interests, and suggest
potential friends that the user can meet. This approach is
based on the fact that friends tend to share common interests
and activities, which has been shown in important research
work on personality similarities and friendship dating back to
the 70s [2, 3]. In the rest of the paper, when using the phrase
“finding friends” we are referring to people with common
interests, likes, and dislikes.

In eMatch, in order to compare people’s interests, users
rate a number of default interest categories, such as “Movies”
and “Sports,” while they can add and rate items to each one
of them. For example, a user could rate the category “Sports”
with “7” on a scale of 1 to 10 and add to this category the item
“football” with rating “9.” Based on this type of rating, the
application’s algorithm computes users’ matching in order to
suggest potential friends. Unlike other approaches in the liter-
ature, our algorithm, EgoSimilar, takes into account the pop-
ularity of the items that have been rated in its computations.

In the following section, we examine the related work in
applications supporting tracking of potential friends based on
common interests in the same geographical area. Section 3
analyzes the functional requirements of the application
describing the use cases in detail as well as the basic principles
of the user interface and the methods used in the design
process. We describe the architecture of eMatch in Section 4
together with the tools used. In Section 5, our matching algo-
rithm, EgoSimilar, is presented. In Section 6 we present and
discuss the comparison of the results when using eMatch with
EgoSimilar versus using it with other matching algorithms.
Finally, Section 7 presents the conclusions of our work and
our next steps in improving and evaluating eMatch.

https://core.ac.uk/display/77140607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Related Work

Although some applications related to eMatch have been
developed (e.g., [4-6]) they focus more on tracking existing
friends over a geographical map and less on finding and
suggesting friends based on common interests, located in
close geographical areas. The “Find my friends” application,
in particular, which is developed by Apple, is currently
installed automatically with iOS9. Facebook also added the
use of a map for locating friends but finally deactivated it for
security reasons [7, 8].

Two applications that are closer to eMatch in terms of
their goals are the Gourmet Groups application [9] and the
Youhoo application [10]. The Gourmet Groups application
aims at helping people with similar interests get together at
restaurants, lounges, and bars to enjoy food and drinks and
is combined with a ticketing application to book seats in the
specific venues and in significant events in the city. Therefore,
the application does not use the current location of the user,
but rather serves as a general application of connecting people
with similar interests and of promoting specific venues. The
Youhoo application is the closest to eMatch among all current
applications in iOS and Android that are related to finding
friends in an area near the user. Its goal is to create circles of
people with common interests in an area. However, Youhoo
profiles are created from Facebook; therefore, users who do
not use Facebook are excluded from using the application,
and users who wish to create a different profile or share
only specific information in their Youhoo profile cannot
do so. Additionally, the circles of people with common
interests created by the application are quite generic or one-
dimensional, for example, students in the same university,
people working in the same field, and fans of a specific
singer. On the contrary, eMatch computes the match between
users based on the whole profile that the users wish to share
through the application and of course allows users to create a
profile that is independent from any other application.

The information location is used in eMatch only for
practical reasons. In particular, eMatch uses the location
information in order to locate potential friends in the same
area (a 16 km radius is used as default for the city of Chania,
Crete, Greece, where we initially tested our application) and
not for tracking on the map and revealing the user’s location
as other applications do. The goal of eMatch is to facilitate
potential friends to meet and introduce themselves to each
other if they so wish. The user’s location is considered private
and sensitive information and is treated that way. In order
to minimize security risks we have taken the two following
measures: Firstly, we offer the choice of “Non-Visible” status
under which the user’s device will be invisible to the other
devices even though he/she uses the application. This means
that the “Non-Visible” option will hide the user from the
application’s matching results. Secondly, the user’s interests
and ratings are not visible to anyone except those users that
he/she has designated as friends in the application. The only
information that is public is the matching percentage for all
pairs of “Visible” users inside the geographical area. In this
way the individual’s privacy is preserved.

Mobile Information Systems

3. Functional Requirements and User Interface

In this section we describe the most basic features of eMatch
as well as the methods used during the user interface design
procedure.

3.1. Functional Requirements. The system’s functional re-
quirements are the following:

(1) user registration;

(2) creation and administration of a personal profile: in
order to introduce themselves to others, users create
a personal profile. The profile contains two basic types
of information:

(a) personal information such as name and sur-
name, professional or educational information,
or a profile photo,

(b) information about the user’s interests: this is
the fundamental type of information the users
of eMatch should provide. The interests are
divided into 9 basic categories: Movies, Music,
Books, Games, Sports, Science, Shopping, Food,
and Travel. The user rates each one of these
categories based on how much he/she likes it,
on a rating scale of 1 to 10, where 1 corresponds
to hate, 5 to indifference, and 10 to love. Sub-
sequently, for each one of the nine categories,
users can insert items for which they have a
strong opinion on (positive or negative) and rate
them accordingly. In each category there are also
default items inserted into the system, to ease
the users’ understanding of the application and
to help them point out their preferences without
having to type everything themselves. Users can
choose to rate some or all of the default items or
they can ignore them completely and rate only
their own entries;

(3) creation and administration of the social network:
every user creates a personal social network that
includes the people that the user connects with.
The network’s nature is like the ones known from
other social networks (Facebook, Twitter, etc.). A user
connects with friends with a first degree relationship,
with his friends of friends with a second degree and
so on. A first degree relationship is of course formed
only if both users agree.

(4

~

users matching: this functionality comprises the
ultimate purpose of our application which is the
recommendation of potential friends based on a best-
matching procedure of the application’s users with
respect to their geographical location. Matching is
based on user ratings; therefore, the more data users
decide to enter in their profile regarding their inter-
ests, hobbies, likes, and dislikes, the more accurate the
matching results will be;

(5

~—

searching users based on personal information (i.e.,
name, e-mail);

Mobile Information Systems

(6) communication with other users via personal mes-
sages;

(7) personal preferences configuration: a basic option
that this functionality offers is the choice of the
“Visible” and “Non-Visible” status we mentioned in
Section 2 where a “Non-Visible” status means that
the users can search for potential friends but their
profile will be excluded from the results of other users’
searches.

3.2. User Interface Design. Here, we describe the basic
methods and design principles followed for designing the
user interface. The main factor taken into consideration is
that the application’s target groups are smartphone users
who generally do not have the same level of expertise and
education. We designed the application considering the worst
case scenario, that is, users inexperienced in technological
aspects that have only elementary education. However, for the
proper use of the application it is necessary that the user has
basic knowledge of English.

Below are the basic rules followed when designing the
user interface [11].

(1) Template. The strict definition of the template is
essential for maintaining the rest of the rules and the
basis of a good user interface. The content of structure
and options is similar to that proposed to designers of
Android Applications [12]. More specifically, empha-
sis was given to place all menu options on a bar at
the top of the screen. The reason is that the mobile
screen is small and it must contain as much useful
information as possible.

As shown in Figure 1, the logo of eMatch is perma-
nently placed on the left of this bar. When clicking
on the logo, the action “back” is executed, in order
to return to the previous screen. Placing the logo
on the top left of the screen reminds users which
application they are running. The choice of that side
was made based on experiments which have shown
that when users see a page, they start to read/look
from the top left corner [11, 13]. Beside the logo, a
text appears that serves as a “path” which helps users
understand which functionality is being executed at
every moment. For example, when a user sees the
“personal profile” screen, then the text path is “My
Profile.” On the right corner of the bar an icon is
placed that is used as a menu. When clicking on the
icon, a pop-up window emerges which shows all the
menu options of the user at the moment. For example,
if the user is on the “personal profile” screen, then one
of the options is “Edit Interest Categories.” On the
left of that menu icon, a second static icon is placed
that serves to switch the user’s status from “Visible” to
“Non-Visible” and vice versa. The rest of the screen,
below the bar, is the “Active Region” which is used to
present nonstatic information.

(2) Informing Users. Informing the users about their
conceptual position in the application is equivalent

Active Region

F1GURre 1: Template.

to providing answers to the following two simple
questions, which all users have regardless of their
experience: “Where am I” and “What exactly has
happened.” The answer to the question “Where am I”
is given from the logo of the application and from the
“path,” which are placed permanently on the top of
the screen and inform users about which application
is used, as well as the kind of information presented in
the current screen. The answer to the question “What
exactly has happened” is given from informational
messages that the system displays every time a user
completes a specific action.

(3) Choosing Colors. The colors chosen for this particular
application are in blue hues, because the blue color
causes a sense of security, confidence, concentration,
and independence to users [14, 15]. The background
color is lilac, while the logo’s color is electric blue
in order to have a high contrast and be distinctive
from the other items displayed on screen. The color
of the text shown in the pages is black, with some
exceptions where the color is gray or blue in order
to distinguish them from the rest of the text (labels,
matching results). In case of error the colors used are
in red hues in order to create the sense of danger and
error [8].

(4) Consistency. Consistency is very important when
designing the user interface [16]. The entire appli-
cation was designed following the pattern presented
above. This helps users to avoid “getting lost” while
exploring the application. So the information is pre-
sented in the same way across all the screens; that
is, the same rules are followed when an error occurs,
when helping the user, when presenting nonstatic
information, and when displaying the menu.

The steps followed when designing the user interface are
as follows.

(a) Storyboards [17]. Storyboards are small predefined
“stories,” execution scenarios, as indicated by their

name. Basically each “story” corresponds to the steps
that should be followed to complete one of the func-
tional requirements of the application, from which
we choose the most representatives ones. We made
a rough design of the screens (each step/screen that
leads to the next) on paper to clarify the order that
should be followed in order to complete each story.
The use of Storyboards and the evaluation of them
are very important steps when designing a usable
application, because usability problems can be found
even during the simple design of the screens on paper.

(b) Pluralistic Walkthrough [18, 19]. Pluralistic walk-
through is a methodology where real users evaluate
Storyboards. This application is developed to be used
by a wide range of users, so the users we selected for
our evaluation (seven in total) had widely different
characteristics (i.e., age, educational level). Addition-
ally to the actual users, the evaluation involved one
human specialist who is an expert in HCI (Human
Computer Interaction).

(c) Implementation. When step (2) was completed, we
made the necessary changes to the user interface
design and moved on to its implementation using xml
for Android. So, for each functional requirement we
designed all the necessary xml files, since each one
corresponds to a different graphical interface in the
Smartphone.

4. Architectural Design and Tools

In order for an application such as eMatch to run, it is
necessary to use a central server which stores all users’ data
and executes certain algorithms. The architecture of eMatch is
divided into three layers as shown in Figure 2. Layer 1 is from
the Smartphone side and Layers 2 and 3 are from the server
side. Each layer communicates only with its adjacent layers.

First Layer. The first layer includes the interaction with users,
where all the useful information is presented and received
via the xml pages. Hence, any exchange of information with
the user is done only through these pages, the information
of which is managed from java classes, the Activities. The
Activities are responsible for managing all data between the
users and the application, and more specifically to present,
edit, add, and read dynamic information via the user’s screen
(i.e., username and ratings). The first layer also includes the
Services (also java classes) which represent services that are
not interactive with the user and operate in the background.
One example of such a service is the one which informs
the server about the user’s location at regular time intervals.
The Activities and the Services communicate with the server
through HTTP Requests and Responses. All information
between server and mobile device is coded in accordance to
the JSON standard [20].

Second Layer. The second layer of the architecture includes the
Controller and the Event Handlers which constitute the main
part of the application’s business logic. Event Handlers are

Mobile Information Systems

User h

| [

Android xml presentation files

| [

Java Activities

> Layer 1

Java Services

J

JSON JSON

HTTP client server
> Layer 2

DAO transfer
f—) s 4 —

— =

[Java Event Handlers }

- >

[Data Access Object (DAO) }

> Layer 3

FIGURE 2: eMatch architecture.

java classes, which may execute functional requirements or
other useful operations of application. The Controller is a java
class which handles the HTTP Requests and Responses and
triggers the corresponding Event Handler, for the operation
that should be executed.

Third Layer. The third layer of architecture includes the Data
Access Objects (DAOs) and the database which stores all the
necessary data of the application. DAOs are java classes used
to communicate with the database; actually DAOs contain the
appropriate functions for inserting, deleting, and editing the
database data. Communication between the Event Handlers
and DAOs is done through DAO Transfer, which are java
classes that only transfer data between these two layers.

The advantage of using this layer is that it separates the
business logic of the application and the database. Hence, if
the database is changed then the only thing that should also
change is the DAO:s.

The tools used to develop this application are Eclipse
IDE for implementing Android xml files, Java Activities, and
Java Services; Netbeans IDE for implementing java code of
Controller, Event Handlers, DAOs, and DAO transfer classes;
and MySql database.

Mobile Information Systems

5. Matching

In this section we describe and discuss our “matching”
algorithm, that is, our proposed algorithm for computing
the similarity between users based on their interests and
preferences. We also present, briefly, two other widely used
methods for assessing similarity, that is, the Pearson Corre-
lation and the Cosine Measure. All three approaches were
implemented in eMatch, in order to find potential friends
based on user ratings. These algorithms should run from
the server side; their running at the smartphone would be
uneconomic, and also battery and time consuming, since it
would constantly require data transfers via mobile internet
and many calculations to be executed.

For the matching algorithm to run at the server, the
mobile must have internet access and at least one location
provider activated. It should also store periodically (every 10
minutes is a reasonable interval) the geographical location of
the user.

5.1. EgoSimilar. EgoSimilar is our proposed algorithm. It
takes the following rationale into account:

(a) The matching is done in an “egocentric” way because
each user should search friends based on his/her own
criteria and interests. Thus, the matching percentage
between two users that will appear on each user’s
screen will most likely be different. This makes sense
in our view, given that in real life we operate in
the same way, choosing the people around us based
mainly on our own needs and interests, not on how
compatible we are with their needs. Hence, if, for
example, user X has one active category of interest
while user Y has five, the matching percentage (X,Y)
will be based on that one category, while the matching
percentage (Y, X) will be based on all five, leading to
different results showing on each user’s screen. The
two similarity measures against which EgoSimilar will
be compared are also computed in the same way.

(b) More popular items (popular in the sense that they are
rated positively or negatively by many users) should
not affect matching results as much as less popular
items do, if users “agree” on them. The reason is that
even if users share, for example, a favorable opinion
on very well-known band, book, movie, and so forth,
this does not really give a substantial hint that their
tastes match in general. A similar case regarding
relatively unknown band/book/movie gives a much
stronger indication of common interests.

(c) The rating choices of users are on a scale from 1 to 10.
Consequently the maximum rating difference will be
9 and the weight of one unit in rating difference will be
1/9=0.11. This weight should be included, in our view,
in the computation of the similarity between users.

The steps followed by eMatch in computing the matching
between users are described below. The first three steps are
followed regardless of the matching computation method,
which is implemented in step (4).

Let X be the user who runs the application; therefore, the
matching is done according to X’s tastes:

(1) Check if the user’s location is stored. If not, inform the
user; else go to the next step.

(2) Find users that are in close geographical proximity
with user X.

(3) Find all the active interest categories of user X.

(4) The matching in EgoSimilar is computed as follows:
for each user Y found in step (2), calculate the
Matching(X,Y) as follows:

— w, [1-0.11d; (X,Y,¢c)]
=1

w n;
+ =23 [1-0.11d, (X, Y,60)] |,
Xi=1

where ky is the number of active categories of user
X, kx € [1,9]. w, is the weight attributed to the
general rating of a category. In our case, w; = 0.25, as
we consider the “general” matching of users (e.g., both
of them loving movies), to be of smaller importance,
as their specific tastes in that category may differ
significantly or even completely. Experiments with
other values of w, are discussed in Section 6. w, is
the weight of the ratings of all individual items of a
category (in our case, w, = 0.75). n is the number of
items user X has inserted in category c. d,(X, Y, c) is
a function which computes the absolute difference in
ratings between users X and Y for the cth activated
category of user X. If user Y has deactivated the
specific category, then we set (1 — 0.11 - d,(X,Y,¢))
equal to zero. d,(X,Y,c,i) is associated with the ith
item inserted by user X in cth activated category
and denotes the distance of ratings between users
X and Y for the specific item. We set (1 — 0.11 -
d,(X,Y,c,i)) equal to zero if user Y has not rated this
item; otherwise, d,(X, Y, ¢, i) is calculated, taking into
account the popularity of the specific item, as follows:

(a) Initialize d,(X,Y, ¢, i) as the absolute difference
in ratings between users X and Y for this item.

(b) Let m be the number of users that have inserted
this item, and let n be the number of users that
have inserted items in the cth activated category
of user X. Then, the popularity weight of the
specific item is defined as W/ (X) = m/n. An
item is assumed to be popular if W/ (X) > 0.5,
which means that more than half of the users
that “voted” for this category have inserted the
specific item (with either negative or positive
rating).

(c) d,(X,Y, ¢, i) is adapted with respect to the pop-
ularity of the item and the rationale explained
above as follows.

If (Wi(X) > 05 and d,(X,Y,c,i) < 5),
then d,(X,Y,c,i) = dy(X,Y,¢,0) + Wipange -
d,(X,Y,c,i). This states that since this item is
popular and the ratings of users are close, then
this item should not affect matching results
as much as less popular items do. Therefore,
the distance of the ratings between users X
and Y must be increased in order to decrease
their matching. This increase is implemented via
the Wange weight, the value of which we will
discuss in Section 6.

If (WS(X) > 0.5 and d,(X,Y,c,i) > 5), then
d,(X,Y,c,i) does not change.

If (W (X) < 0.5and d,(X,Y,c,i) < 5), then
d,(X,Y,¢,i) = dy)(X, Y, c,i) - W, -dy(X,Y,
G, i).

hange

This indicates that since this item is not popular
and the ratings of users are close, then this item
should affect matching results more than the
popular items do. Accordingly, the distance of
the ratings between users X and Y must be
decreased in order to increase their matching.
This is implemented once again via the W,
weight.

If (Wi(X) < 05 and d,(X,Y,¢,i) > 5),
then dy(X,Y,c,i) = d)(X,Y,61) + Wange
d,(X,Y,c,i). Similarly, in the case where the
item is not popular and the ratings of users are
not close, we infer that this is an indication of
users that do not have common interests. So,
by increasing the distance of their ratings, their
matching is decreased.

The complexity of the algorithm is O(pqr), where p is the
number of the users, g is the number of categories (in our
case, nine), and r is the maximum number of items inserted
in one of the categories.

5.2. Pearson Correlation. The second approach for comput-
ing users similarity, which was implemented and tested
in eMatch, is the Pearson Correlation [21]. The Pearson
Correlation does not take item popularity into account, as
EgoSimilar does. A positive correlation shows similarities
between users, while a negative value shows that these users
are not similar and their interests are different. Below we
describe how the Pearson Correlation is computed.

Let X and Y be two users of eMatch. The steps followed
in order to compute their matching percentage are as follows:

(1) Find all the active interest categories of user X and
all the items that X has inserted to each category and
store the ratings of each element to a vector x (an
element is either a category or an item; a separate
vector is constructed for categories and another for
items).

(2) Create a vector y that has equal size with vector x. For
each element of the previous step check if user Y has
rated it. If yes, the corresponding position of vector y

Mobile Information Systems

is assigned with Y’s rating; otherwise, it is assigned a
zero value.

(3) Let n be the length of vectors x, y, and denote by X
the mean value of vector x and y the mean value of
vector y; then the Matching(X,Y) is computed as

Matching (X,Y)
_ YL -D (] -) ®)
VI &l -2 Y, (v [i] - 5)

In order to be able to make a meaningful comparison
between EgoSimilar and the Pearson Correlation, we have
computed the matching between categories and the matching
between items separately with the use of the Pearson Corre-
lation, using the same w; and w, weights (0.25, 0.75) as in the
EgoSimilar implementation. The same weights were chosen
when the Cosine Similarity (described below) was used as a
similarity computation method.

5.3. Cosine Similarity. Another well-known similarity mea-
sure between two vectors is the Cosine Similarity [21]. The
steps followed are exactly the same, as in the case of the
Pearson Correlation, for the construction of vectors x, y.
Then, the Matching(X, Y) is computed as follows:

Yrox[ilyli]
VEL xSy [

A disadvantage of using Cosine Similarity in eMatch is
that collinear vectors lead to 100% similarity. So, if x’s ratings
are 1 and y’s 10, then the matching result is 100% which is
a significant error, although in reality this scenario is rarely
encountered.

Matching (X,Y) = (3)

5.4. Clustering. In order to examine the results of the
above algorithms, users were separated into groups via the
well-known K-means clustering algorithm [22], using the
matching percentages derived by each of the three similarity
computation approaches. Letting K be the number of clusters,
the steps of the K-means algorithm are as follows:

(a) Create K initial centroids, one for each cluster. Initial-
ize the ratings of each centroid for all categories and
for all distinct items inserted in each category by the
users.

(b) Assign each user to the cluster with the closest
centroid. The distance of a user and a centroid
was computed, using one of the three algorithms
described above, as Matching(X,Y), where X is the
real user and Y is the centroid.

(c) When all users have been assigned to a cluster,
recalculate the ratings of the K centroids, by taking
for each element (item or category) the average rating
of real users’ in the group.

(d) Repeat steps (3) and (4) until the centroids’ ratings no
longer change.

Mobile Information Systems 7
TaBLE 1: Overall matching results. TABLE 2: Average friends’ placement.
Matching metrics Placement
AM AMC AMnC EgoSimilar (Wchamge =0.1) 20.12
EgoSimilar (W = 0.1) 48.8% 56.0% 48.5% EgoSimilar (W5 = 0.2) 20.04
EgoSimilar (W = 0.2) 48.1% 55.3% 47.8% EgoSimilar (W = 0.3) 19.91
EgoSimilar (W = 0.3) 475% 54.5% 472% Pearson 21.40
Pearson 8.3 11.9 8.2 Cosine 21.77
Cosine 68.3% 76.5% 68.0%

The procedure will always terminate, but K-means does not
necessarily find the optimal configuration. A disadvantage
of K-means is its sensitivity to the random initialization of
cluster centroids; generally initial centroids should be “far
apart.” We addressed this issue in our evaluation by using
different centroids and computing average results over 10
independent runs. Other clustering algorithms can also be
used, but their comparison with K-means is out of the scope
of this paper.

6. Evaluation

For the evaluation of the matching algorithms we collected
data from 57 users (ages 18-40) who are friends in real
life. The collected information consisted of the Activa-
tion/Deactivation of the 9 interest categories, the Ratings for
all active categories, and the Ratings for the individual items
in all the active categories. The items rated in each category
were either new insertions by the users or as many of the
default items as the users wished to rate. We collected data
from 57 users.

The reason we chose to collect data mainly from groups
of friends (still, some of the participants had no connection
to other users) was that in this way it would be feasible to

(a) evaluate whether the similarity computation methods
would be able to “discover,” through higher matching
values, existing friendships

(b) reveal which users that were currently unknown to
each other could potentially become friends.

In total, 43 of the 57 participants had at least one
connection. These 43 participants formed in total 64 first
level connections. The statistics of the ratings of all 57 users
were mean rating value 6.6 and standard deviation 2.7. These
statistics imply that users mainly rate items that they like,
instead of taking the time to state what their dislikes are as
well. To compare the results we ran the K-means clustering
algorithm, each time with a different similarity computation
approach (EgoSimilar, Pearson, and Cosine). We derived
results for a number of clusters K equal to 3, 5, 7, and 10,
respectively, in order to evaluate how (and if) the number of
clusters influences the user matching.

In Tables 1-7, where our results are presented, the
columns contain the metrics used in our study, which are the
following:

(a) id: cluster id where id € [1, K],

TaBLE 3: EgoSimilar (W,

hange

=0.1).

Matching metrics per cluster

i N1 N2 N3 AVC (%) AM (%) AMC (%) AMnC (%)
1 14 12 4 30.4 50.7 55.9 50.5
2 13 4 18.5 50.3 63.4 49.6
3 4 0 0.0 25.1 — 25.1
4 22 18 8 41.7 57.6 58.3 57.6
5 4 2 0 0.0 419 — 419
> 57 43 16
TaBLE 4: EgoSimilar (Wp,pee = 0.2).

d Matching metrics per cluster

N1 N2 N3 AVC (%) AM (%) AMC (%) AMnC (%)
1 8§ 7 1 9.5 30.7 33.4 30.6
2 19 14 5 32.7 53.4 55.0 53.4
3 0 0 0 — — — —
4 24 17 10 36.2 52.5 64.3 52.0
5 6 5 0 0.0 56.0 — 56.0
z 57 43 16

TasLE 5: EgoSimilar (W0 = 0.3).

d Matching metrics per cluster

N1 N2 N3 AVC (%) AM (%) AMC (%) AMnC (%)
1 2 16.4 477 531 475
2 — — 27.7 — 277
3 34 26 25 53.5 54.7 62.2 54.3
4 5 1 13.3 45.9 61.7 44.8
5 4 0 0.0 29.3 — 29.3
z 57 43 28

(b) N1: the number of users in the cluster,

(c) N2: the number of users in the cluster that have a
network (i.e., they are connected with at least one
other user, who may be in that cluster or in another

one),

(d) N3: the number of users in the cluster that are

connected in reality as friends,

(e) AVC (Average Valid Connections): for each user
in a cluster we computed the percentage of their
connections that are included in the specific cluster
and derived the average percentage,

TABLE 6: Pearson.

Matching metrics per cluster

i N1 N2 N3 AVC(%) AM AMC AMnC
1 22 16 6 278 10.1 25.5 9.7
2 6 5 1 12.9 21.3 24.7 211
3 13 10 3 16.5 14.6 14.6 14.6
4 6 0 0.0 17.0 — 17.0
5 10 3 375 10.8 7.9 11.0
z 57 43 13
TaBLE 7: Cosine.

) Matching metrics per cluster

N1 N2 N3 AVC (%) AM (%) AMC (%) AMnC (%)
1 3 2 0 0.0 471 — 471
2 25 18 15 51.0 70.5 74.6 70.3
3 4 3 0 0.0 61.7 — 61.7
4 12 11 6 36.4 83.8 87.2 83.5
5 3 9 1 3.7 57.9 86.6 575
z 57 43 22

(f) AM (average matching): this is the average matching
percentage of all users of the specific cluster,

(g) AMC (Average Matching of Connected users): this is
the average matching percentage of all the connected
users of the cluster,

(h) AMnC (Average Matching of not Connected users):
this is the average matching percentage of all the users
of the cluster who are not connected.

Considering the aforementioned mean and standard devi-
ation of the users’ ratings, we initialized the centroids’
ratings randomly in the interval from 4 to 10. The Pearson
Correlation and Cosine Similarity values range in the interval
[-1,1] (multiplied by 100 to be able to make comparisons
with EgoSimilar). However, matching values for the Cosine
Similarity are bounded in the interval [0, 100] because all the
rating values are positive. The matching values for EgoSimilar
are also bounded in the same interval. Table 1 presents the
average matching results between each user and all other
users, before any clustering is implemented.

The following initial conclusions can be derived by
studying the above results:

(1) In all five implementations the matching is higher
between connected users (i.e., users who have already
formed relationships with each other) than between
not connected users. This result is expected and
intuitively simple to understand.

(2) The Pearson Correlation achieves the worst results in
terms of distinguishing between connected and not
connected users, via the matching computation. The
difference between AMC and AMnC, with the use of
EgoSimilar, is around 7.5% regardless of the value of
W, , and with the use of the Cosine Similarity it

change

Mobile Information Systems

is 8.5%. When the Pearson Correlation is used this
difference is 3.7 in the [-100, 100] scale; therefore,
it would be 1.85% if the scales were normalized to
[0,100]. Therefore, the Pearson Correlation fails to
“discover” which users are already connected, a fact
that according to the psychology literature should
be evident from their preferences and hence their
matching.

(3) EgoSimilar leads to equal AMC matching results with
the Pearson Correlation, for Wy, = 0.1 and to
the smallest matching results for higher values of

Wihange- EgoSimilar also leads to the smallest average
matching results for not connected users, for all values
Of Whange- Additionally, the average matching for
both connected and not connected users decreases
when Wy, increases. The reason for these results
is that most users that took part in the evaluation
decided to rate most of the default items of the
application. This made the default items popular,
and popular items, in EgoSimilar, can either lead to
a decrease in matching (if users have significantly
different opinions on them) or to no change at all. The
decrease is obviously larger for larger Wy, values.
This explains the apparent “strictness” of EgoSimilar,
in comparison to the Pearson Correlation and the
Cosine Measures (which however carries the problem
of the collinear vectors, explained in Section 5). Based
on the observed behavior of independent users who
have downloaded the initial version of eMatch that is
already available in Google Play [23], we expect that
this strictness will be mitigated, as many users prefer
to enter their own items instead of rating the default
ones.

It should be emphasized, however, that the actual match-
ing percentage is of little value. The only substantial effect
that it might have, especially in the case of not connected
users, is that a quantitatively higher percentage might be more
intriguing for a user in order to decide to communicate with
another user. What is really substantial is the order in which
“matching users” appear on the user’s screen, in decreasing
percentages (high to low). A user X would obviously consider
first the users with whom he/she has the highest matching,
regardless of the actual matching percentage (unless the
matching percentage is very low even for the “top matched”
user, which would be discouraging). Also, in this matching
list we would expect existing friends to place high. Hence,
to evaluate the three similarity computation methods, we
located in each user’s matching list the position in which
their existing friends were placed. The results are presented
in Table 2, and they show that the best placement of existing
friends is clearly achieved by EgoSimilar. The fact that the
Pearson Correlation again exhibits worse performance than
EgoSimilar can be explained if we consider that it evaluates
how different the ratings of specific categories/item are, in
comparison to the ratings that the users give on average.
This makes it vulnerable when a few or even one extreme
value is included in the ratings that are being compared;
hence, for users with “outliers” in their ratings its results are

Mobile Information Systems

not consistent. On the other hand, both the Cosine Measure
and EgoSimilar only examine the current ratings of each
category/item, by each of the two users. EgoSimilar, however,
tries to be more sophisticated by using weights based on
the popularity of the rated items and on the rating scale.
For this reason, the Cosine Similarity is shown to perform
comparably to the Pearson Similarity and worse than all the
implementations of EgoSimilar.

Tables 3-7 present our results when using K-means
clustering with K = 5. Each row corresponds to one
cluster/group of users. Firstly, by comparing the sum of
the N3 columns, it is clear that the EgoSimilar algorithm
outperforms the Pearson Correlation approach regardless of
the W nge Value; that is, it manages to include in the same
cluster more people who are already connected as friends
prior to the use of eMatch. Also, the results presented in
Tables 3-7 show that EgoSimilar clearly outperforms the
Cosine Measure as well, in terms of N3, when W, is equal
to 0.3 (28 versus 22 users). We have ran our experiments
repeatedly, for various random initial centroids, and with 3
different values of W, 5t {0.1,0.2,0.3}. In each case there
was at least one value of W, .. which achieved much higher
N3 results than the Cosine Measure. The reason that the
value of W0 achieving the best results was not the same
in all the cases is the aforementioned sensitivity of the K-
means clustering algorithm to the random initialization of the
cluster centroids. If the centroids are adequately “far apart”
then even a small value of W, . is enough to take advantage
of the few nonpopular items, for which connected users share
an interest, and to place the connected users in the same
cluster. If, however, the centroids are not adequately “far
apart” and the users’ ratings contain outliers, then in order to
enforce the clustering of similar users a larger value of Wy,
is needed. In order to overcome this problem, an intuitively
simple solution would be to use default initial centroids,
adequately spaced. This solution, however, is not practical
because the choice of the default centroids would have to be
made based on the dataset, which is not static as was the case
with the 57 participants’ data; it changes in real-time for the
actual users of eMatch. Hence, this approach would require
constant recalculations at the server. Therefore, given the
results presented in Table 2, where EgoSimilar outperforms
the other approaches regardless of the W,,,.. value, and
assuming that the more users download and run eMatch the
more disparate the ratings will be, we use W, = 0.3.

Finally, the comparison of EgoSimilar with the two
other similarity computation methods in terms of the AVC,
AM, AMC, and AMnC metrics shows that EgoSimilar is
comparable with the Pearson Correlation for all values of
Wihange While it derives smaller matching percentages over
all metrics when compared with the Cosine Measure. The
Pearson Correlation once again fails to “discover” which users
are already connected in two of the 5 five clusters (AMC <
AMnC), as shown in Table 6.

In Section 5 we mentioned that we used different values
of w; and w, in our implementation. As expected, when using
lower values for w; (hence, larger for w, since w; + w, = 1)
the matching percentages decrease. The reason is that the
matching of users is easier in the categories’ field than it is in

the items’ field. Therefore, a smaller weight in the categories’
matching leads to a lower overall matching, and a higher w,
leads to higher overall matching, respectively. Indicatively, for
{w, = 0.15, w, = 0.85} the overall matching decreases by 3-
4%, for all similarity computation methods.

Also, as mentioned earlier in this section, we derived
results for a number of clusters K equal to 3, 5, 7, and 10,
respectively, in order to evaluate how (and if) the number of
clusters influences the user matching. Our results have shown
that there is no qualitative differentiation in the matching
results by changing the value of K. The only difference is
quantitative: for K = 7 and K = 10 all approaches are shown
to lead to smaller matching results than those achieved for
K = 5, due to the fact that 1-2 very large clusters and a few
very small or even empty ones were created. This is related, of
course, to the fact that the number of users in our study (57) is
not very large; therefore, a high number of clusters is useless.
The results for K = 3 present no substantial differences with
those for K = 5.

What is more important, however, is that EgoSimilar
continues to outperform for all values of K both the Pearson
Correlation and the Cosine Measure in terms of the N3
metric. The Cosine Measure continues to provide the highest
matching percentages within its clusters, both for connected
and for nonconnected users, for all values of K, while the
respective results of the Pearson Correlation (normalized in
the scale [0, 100]) are comparable to the EgoSimilar ones.

We should also mention that various approaches have
been used in information retrieval and collaborative filtering
which are relevant to our proposed algorithm. Clustering
techniques have long been used in information retrieval to
improve the performance of search engines [24]. However,
the use of clustering techniques (balanced clustering, single
link clustering, and group average clustering) to improve the
performance of people matching has been associated with
hierarchical agglomerative algorithms. Hierarchical cluster-
ing, however, is well known to underperform in comparison
to K-means in the case of large datasets, due to its signifi-
cantly increased execution time. Hence, in the case of a large
number of users simultaneously running eMatch, K-means is
the better choice.

The authors in [25] use ranking functions to propose a
method that represents people’s preferences in a metric space,
where it is possible to define a kernel based similarity func-
tion; they then use clustering to discover significant groups
with homogeneous states. The authors point out the success
of the Pearson Correlation and the Cosine Similarity in order
to make comparisons between the rating vectors of different
users; they also use Cosine Similarity in their work. Still, their
proposed class separation technique which utilizes Support
Vector Machines (SVMs) becomes computationally complex
and leads them to avoid using K-means, to decrease the
computational complexity of the combination of K-means
with their technique. Instead, they use a nonparametric
pairwise algorithm, which yields a bipartition of the dataset
into two clusters and then recursively proceeds to apply the
partition mechanism to each of the resulting clusters. In order
to ensure that only meaningful splits take place, the authors
utilize a cross validation method from [26] which measures

10

Matching with users in geographical

proximity.
Vicky
Matching: 55.35%
M Matching Travel: 94.5%
- Polychronis Koutsakis
Matching My Profile ‘ Matching: 51.05%
Matching Shopping: 86.39%
© - Elisavet
u @ ‘ Matching: 47.81%
R Matching Games: 74.56%
Search Messages Aleka
Matching: 47.18%
4 Matching Travel; 72.25%
Xy :
‘ v &_‘ Katia
Matching: 47.07%
My Netwark Requests Matching Shopping: 81.71%
Gina
5 Matching: 46.35%
(%9 a0 Matching Shapping: 72.64%
Gianna Ath
Settings Terms-FAQ Matching: 45.04%
Matching Games: 74.56%
Marina
Matching: 43.83%

(a) (b)

Georgia Athanasopoulou
Studied at TUC

About: Graduate Student
Interests

Wloves Movies
ahlikes Music
dilikes Books
®Dislikes Games

E indifferent Sports

W Loves Science
W Hates Shopping
(©

FIGURE 3: eMatch screenshots.

an index that can be read as a significance level; they then
accept only splits whose level is above a threshold value. It
is clear from the above that this method once again is much
more computationally complex then the algorithm running
on eMatch.

Figure 3 presents three screenshots from the use of
eMatch: (a) the initial screen, (b) the matching percentages
of a user X with users who are geographically close (overall
matching plus the “best match category” between X and the
other user), and (c) user X’s profile.

7. Conclusions and Future Work

We have designed and developed a new mobile application,
eMatch, which has the goal of helping users to find people
with similar interests who are in geographical proximity,
while respecting the users” privacy. The idea for eMatch was
created by the fact that the contemporary way of life leads
a large number of people to spend much time away from
home, often alone among strangers. Therefore, it makes sense
for them to connect right on the spot with someone close

Mobile Information Systems

by who shares their interests. This is a decision that can be
made quickly with the help of an intelligent application, as
opposed to decisions regarding finding possible life partners,
which would usually require much more thought and study
from the user (other applications focus on this area). Even
at home, however, users spend a large amount of time using
their mobile devices. Therefore, even users who want to
take their time with evaluating possible friends will have the
opportunity to do so.

Besides providing the details on the architectural design,
the functional requirements, and the user interface of eMatch,
we have proposed a new algorithm, EgoSimilar, which com-
putes the matching between users. Our algorithm clearly
outperforms two of the most well-known similarity measures,
the Pearson Correlation and the Cosine Measure, in regard
to the most significant metrics used in our study. The 57
users who volunteered for the evaluation of the algorithm
have been carefully monitored, stating their preferences and
pointing out their existing friendships; we would like to
thank them for their valuable help in the evaluation of the
EgoSimilar algorithm.

The present work describes the first step in the design
and evaluation of eMatch and our EgoSimilar algorithm. We
intend to expand the evaluation by using a much larger pool
of users. This is a time-consuming task, given that we need
to find a large number of users with existing friendships who
will be willing to use the application under our supervision,
so that the experiment is conducted without errors. This work
is currently under way.

In the second version of eMatch on Google Play, which
is currently being prepared, we will allow users to choose
between “seeing” only the users who belong in the same
cluster as them or all users, that is, even those with whom
they may have little or no common interests. The next step
of our work will be the incorporation of semantic similarity
computation algorithms into eMatch, to further improve the
clustering and the implicit (via the matching percentage)
friendship recommendations. The use of such algorithms is
important, so that relevant concepts, names, and items will
be linked automatically by the application (e.g., soccer and
football, or soccer and Manchester United). Additionally, we
plan on conducting a longitudinal study to examine when and
how people find matches in mobile situations.

We also believe that eMatch can evolve so that, addi-
tionally to serving as a friend recommender system, it will
function as an item recommender system as well, for items
that are highly recommended by users who share a high
matching percentage in specific categories.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J.T. Cacioppo and W. Patrick, Loneliness: Human Nature and the
Need for Social Connection, W. W. Norton & Company, 2009.

Mobile Information Systems

(2]

(3]

(9]
(10]
(11]

(12]

(13]

(16]

(17]

18]

(19]

(20]

(21]

[22]

(23]

S. W. Duck and G. Craig, “Personality similarity and the
development of friendship: a longitudinal study;” British Journal
of Social and Clinical Psychology, vol. 17, no. 3, pp. 237-242,1978.
C. Werner and P. Parmelee, “Similarity of activity preferences
among friends: those who play together stay together;” Social
Psychology Quarterly, vol. 42, no. 1, pp. 62-66, 1979.

Parashar, “Nearby friend finder,” https://play.google.com/store/
apps/details?id=com.fsp.android.friendlocator.

Sonar Media, Inc., “Sonar: Friends nearby”, https://play.google
.com/store/apps/details?id=com.valez.near.

https://itunes.apple.com/us/app/find-my-friends/id466122094.
http://www.wired.com/gadgetlab/2012/06/facebook-quietly-
releases-find-friends-nearby-then-quietly-pulls-it/.
http://www.dailymail.co.uk/sciencetech/article-2164366/Face-
book-kills-Find-Friends-Nearby-feature-stalking-fears-GPS-
app.html.

http://appcrawlr.com/android/gourmet-groups.
http://appcrawlr.com/android/youhoo.

W. O. Galitz, The Essential Guide to User Interface Design: An

Introduction to GUI Design Principles and Techniques, Wiley,
2007.

R. Meier, Professional Android 4 Application Development, John
Wiley & Sons, New York, NY, USA, 2012.

C. S. Campbell and P. P. Maglio, “Facilitating navigation in
information spaces: road-signs on the World Wide Web,
International Journal of Human-Computer Studies, vol. 50, no.
4, pp. 309-327,1999.

P. Russo and S. Boor, “How fluent is your interface?: designing
for international users,” in Proceedings of the INTERACT 93 and
CHI ’93 Conference on Human Factors in Computing Systems,
pp- 342-347, Amsterdam, The Netherlands, April 1993.

T. Soen, T. Shimada, and M. Akita, “Objective evaluation of
color design,” Color Research & Application, vol. 12, no. 4, pp.
187-195, 1987.

C. M. Brown, Human-Computer Interaction Design Guidelines,
Intellect Books, Bristol, UK, 1998.

K.N. Truong, G. R. Hayes, and G. D. Abowd, “Storyboarding: an
empirical determination of best practices and effective guide-
lines,” in Proceedings of the 6th ACM Conference on Designing
Interactive Systems (DIS "06), pp. 12-21, ACM, June 2006.

J. Nielsen, “Usability inspection methods,” in Proceedings of the
Conference on Human Factors in Computing Systems (CHI 94),
pp. 413-414, 1994,

J. Nielsen and R. Molich, “Heuristic evaluation of user inter-
faces,” in Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems, pp. 249-256, ACM, 1990.

N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Com-
parison of JSON and XML data interchange formats: a case
study;” in Proceedings of the 22nd International Conference on
Computer Applications in Industry and Engineering (CAINE
’09), pp- 157-162, San Francisco, Calif, USA, November 2009.
L. Mekouar, Y. Iraqi, and R. Boutaba, “An analysis of peer
similarity for recommendations in P2P systems,” Multimedia
Tools and Applications, vol. 60, no. 2, pp. 277-303, 2012.

K. Wagstaff, C. Cardie, S. Rogers, and S. Schrédl, “Constrained
k-means clustering with background knowledge,” in Proceed-
ings of the 18th International Conference on Machine Learning
(ICML °01), vol. 1, pp. 577-584, 2001.
https://play.google.com/store/apps/details?id=com.tuc
.eMatch&hl=en.

(24]

~
)

[26]

1

M. D. Dunlop, “Development and evaluation of clustering tech-
niques for finding people,” in Proceedings of the 3rd International
Conference on Practical Aspects of Knowledge Management
(PAKM °00), Basel, Switzerland, October 2000.

J. Diez, J. J. del Coz, O. Luaces, and A. Bahamonde, “Clustering
people according to their preference criteria,” Expert Systems
with Applications, vol. 34, no. 2, pp. 1274-1284, 2008.

S. Dubnov, R. El-Yaniv, Y. Gdalyahu, E. Schneidman, N.
Tishby, and G. Yona, “A new nonparametric pairwise clustering
algorithm based on iterative estimation of distance profiles,”
Machine Learning, vol. 47, no. 1, pp. 35-61, 2002.

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

