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Abstract. Disordered packings of ellipsoidal particles are an important model for disordered granular matter. Here we report
a way to determine the average contact number of ellipsoid packings from tomographic analysis. Tomographic images of
jammed ellipsoid packings prepared by vertical shaking of loose con�gurations are recorded and the positions and orientations
of the ellipsoids are reconstructed. The average contact number can be extracted from a contact number scaling (CNS)
function. The size of the particles, that may vary due to production inaccuracies, can also be determined by this method.
Keywords: Granular matter, Ellipsoids, Tomography, Contact numbers
PACS: 45.70.-n, 45.70.Cc, 61.43.-j, 81.70.Tx

INTRODUCTION

Random packings of spheres are the subject of much past
and ongoing research [1], in particular with respect to the
existence and nature of the random close packing transi-
tion. Packings of ellipsoidal particles are an obvious gen-
eralization of the sphere packing problem, with interest-
ing properties [2, 3, 4, 5], and open questions; for ex-
ample, the nature of the random close packing transition
(which for spheres coincides with the onset of crystal-
lization [6, 7, 8]) may be more complex due to the possi-
bility of partial order, positional or orientational, as is for
example the case in nematic liquid crystalline phases. X-
ray tomography provides access to the 3D internal struc-
ture of experimental random packings; comprehensive
studies have been performed for packings of spheres [9]
and tetrahedra [10]. A simple order metric of granular
packings is the average contact number, i.e. the average
number of neighbors in contact with an object. As any in-
teraction and force is transmitted from particle to particle
throughmutual contacts, the contact number is conceptu-
ally important for the mechanical stability of a packing.
Therefore, the contact number of jammed ensembles is a
well-studied parameter in the literature [11, 12, 4, 10, 9].
Due to limited resolution in experimental data the con-
tact number is dif�cult to extract.

Tomography and Image Processing
Packings of ellipsoidal particles are imaged by X-Ray

tomography, and a 3D raster graphics grayscale image
is reconstructed from the projections (using the software
phoenix datos|x - reconstruction) resulting in an image
with a resolution of 0.064 mm/voxel.

FIGURE 1. (left) Loose jammed packings of frictional ellip-
soidal gypsum particles (5.3 × 6.6 × 6.6 mm) produced with a
3D printer are prepared in a cylindrical container with a diame-
ter of 104 mm. By periodic vertical tapping of the container, the
packing can be further compacti�ed. With this method pack-
ings of different packing fraction can be prepared by variation
of the number of taps. (right) Detected particles after imaging
by X-Ray tomography and reconstruction.

Most structural analyses of the grain packs, includ-
ing the contact number analysis, require a representa-
tion of the tomographic data where the individual par-
ticles have been identi�ed and given a unique label. This
is here achieved by a watershed algorithm (similar to
the description in [13]) combined with spatially variable
threshold segmentation. A �ow chart and an illustration
of the steps of the algorithm are provided in Fig. 2.
For the particle detection algorithm a binary image is

created by threshold segmentation with a radially vary-
ing segmentation threshold because in the reconstructed
grayscale images a lower intensity in the center of the
container and overexposures at the sides of the container
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FIGURE 2. Flow diagram of segmentation algorithm. Elliptical nodes describe the segmentation steps and rectangular ones
resulting data/images types. Examples of the different intermediate steps are shown on the right.

are commonly observed. The rotational symmetry of the
cylindrical container means that the intensity variation is
radially dependent.
By convention,we will refer to voxels representing the

particles as "white" and to those representing the void
space as "black".
Within the white ellipsoids of the binary image, often

some spurious black voxels remain. For the separation
process described below, these wrongly identi�ed voxels
have to be eliminated. To remove these holes, the Hoshen
Kopelmann cluster identi�cation algorithm [14] is used
to identify all black clusters. The biggest cluster is the
real air phase surrounding the particles and stays black.
All the other small clusters are set to white because they
are assumed to represent falsely identi�ed black voxels,
which can be caused, for example, by air bubbles in the
particles or experimental noise.
After the creation of the binary image, the actual iden-

ti�cation of the ellipsoids begins. First, the white phase
(ellipsoid phase) of the image is eroded [15] by a suit-
ably chosen erosion depth such the ellipsoids are sepa-
rated (that is, each ellipsoid is represented by a unique
cluster of white voxels), see below for the choice of the
erosion depth. A very effective method to calculate the
eroded image, is by thresholding the Euclidean distance
map (EDM) of the ellipsoid phase [16]. The EDM of the

white phase of a binary image labels each voxel with the
distance to the nearest black voxel. It can be calculated
effectively by solving a minimization problem [17].
After the erosion step, all ellipsoids are separated,

as shown in Fig. 2c. The remaining parts can again
be labeled and counted with the Hoshen Kopelmann
algorithm [14], see Fig. 2d. The number of clusters of the
eroded image is the number of ellipsoids in the analyzed
part of the cylinder.
The voxels, which were previously eroded, also need

to be labeled. For this step an EDM of the original
binary image is needed, see Fig. 2e. To avoid unwanted
artifacts in the next step, the EDM is smoothed by a
Gauss �lter. All white (ellipsoid) voxels that are not yet
labeled (those that were eroded in the previous step) are
now connected to the neighboring voxel, indicated by the
gradient of the EDM. Now the connections are resolved:
If a voxel is already labeled, all connected voxels are
labeled equivalently. White voxels that remain unlabeled
after this step are ignored: they are treated as wrongly
identi�ed white voxels that do not belong to an ellipsoid
(these wrongly identi�ed white voxels must represent
clusters that are signi�cantly smaller than the clusters
representing the ellipsoidal particles).
Every cluster should represent one ellipsoid and hence

all clusters should have approximately the same size in
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the end, corresponding roughly to the small degree of
polydispersity of the particles. Variations in cluster size
that are larger than what is compatible with the particle
polydispersity are an indication that some ellipsoids have
not been separated by the erosion process and hence of
a too small erosion depth. In this case the segmentation
process is repeated, for the whole sample, with a larger
erosion depth. The �nal result of the particle detection is
shown in Fig. 2f.
The sizes, positions and orientations of the ellipsoids

can be extracted from the volume, centers of mass and
the moment tensorsW 2,0

0 =
∫
grain�r⊗�r dV (similar to the

tensor of inertia) where �r is the position vector [18] of
the labelled clusters.

Contact Numbers

The local contact number of a given grain is the num-
ber of other grains with which it is in geometric (point)
contact. For experimental data, the contact numbers are
hard to determine, because the contact number depends
on the exact particle positions and their orientations. The
�nite accuracy of the X-Ray tomography and the recon-
struction as well as deviations of experimental particle
shape from perfect ellipsoids lead to small deviations
in position and orientations. Hence, a simple geomet-
ric “contact counting” would lead to incorrect or at least
very noise-sensitive estimates of the contact number. The
polydispersity of the particles does not affect the deter-
mination of the contact number, because the analysis pre-
sented here treats the ellipsoids as polydisperse objects.
To determine the average contact number of an ellip-

soid ensemble, an algorithm is needed to decide whether
two given ellipsoids are in touch or not. This can be
formulated as a constrained minimization, which can be
solved by the method of Lagrange multipliers [19] and
Newton’s method [14].
In order to extract the average contact number k

from the tomographic data, the method introduced by
Aste et al. for spheres [9] is improved and generalized
for ellipsoids.
A morphological scaling factor of the ellipsoids x is

introduced. The scaling factor x dilates the ellipsoids
with a sphere Bs of radius s, where s= x · 3

√
3Vav
4π and Vav

is the average Volume of the ellipsoids in the ensemble.
A negative x leads to an erosion of the ellipsoids. An
illustration can be seen in Fig. 3.
The average contact number of an ellipsoid ensemble

can be extracted from a contact number scaling function
(CNS function). The CNS function maps the morpholog-
ical scaling factor x onto the average contact number of
the ensemble. The CNS function is a sum of two parts
f1(x) and f2(x).
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FIGURE 3. (left) Model of the �tted contact number scaling
(CNS) function to extract the average contact number from
tomographic data; (blue) CNS function, (red) error function,
(dashed) step function. (right) Morphological dilation of the
ellipsoids by a sphere of radius s.

The �rst part of this sum f1(x) is represented by a
step function convoluted with a Gauss function. To un-
derstand this part, exact data of jammed hard ellipsoids
is assumed where no ellipsoids overlap and each ellip-
soid touches its neighbors at one single point. In this
case, if the dilated ellipsoids are smaller than their ac-
tual size (for x < b) there should be no contacts. When
the ellipsoids reach their actual size (for x= b), the func-
tion jumps to the average contact number a of the en-
semble. The morphological scaling factor at this point is
denoted by b. Hence, for exact data the �rst part of the
CNS function can be described by a step function h(x).
(The second part of the sum f2(x), relevant for the gradu-
ally increasing number of contact when the ellipsoids are
dilated beyond their original size for x > b, is dealt with
below).
For experimental data, the position, size and orienta-

tion of the ellipsoids are not exact. These errors are as-
sumed to be represented by the Gauss function

g(x) =
c√
π
e−(c·x)

2
, σ =

1√
2c

(1)

with width σ .
The �rst summand of the CNS function for experimental
data can be calculated as the convolution of the step
function h(x) and the Gauss function g(x):

f1(x) = h(x)∗ g(x) = a2 +
a
2
erf(c(x− b)) (2)

with the error function erf(x) = 2√
π

x∫
0
e−τ2dτ .

When the ellipsoids are dilated beyond their original
size (x> b), ellipsoids which have no physical contact
but are close to each other develop contact points. This
increase of the CNS function with x is, by lack of deeper
insight, assumed to be a linear function f2(x) with slope
d. The function f2(x) starts at the in�ection point of the
error function, and is de�ned by:

f2(x) = θ (x− b) ·d · (x− b) (3)
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FIGURE 4. Fit of the CNS function (blue) to the tomo-
graphic data (orange crosses). The inset shows the average con-
tact number as a function of the global packing fraction for
oblate ellipsoids with an aspect ratio of 0.80.

The size of the ellipsoids at the in�ection point b is the
actual size of the ellipsoids.
The combined CNS function for the analysis of the

tomographic data is the sum of the convolution of h(x)
and g(x) (equation (2)) and the linear increase f2(x):

CNS(x) =
a
2

(
1+ erf

(
c (x− b))

)
+θ (x− b) ·d · (x− b)

(4)
An illustration of the CNS function can be seen in Fig. 3.
The parameters of the CNS function can be tuned to

match the discrete CNS function which can be extracted
of the detected ellipsoids in a tomographic image. We �t
the CNS function to the data of the detected ellipsoids,
see Fig. 4. Finally, the �t parameter a represents the
average contact number of the data set.
The width of the error function σ is a good indicator

for the accuracy of the particle shapes. It is obvious that
the larger σ , the larger the ambiguity of the exact value
of the average contact number.
Beyond its use to determine average contact numbers,

the CNS function can also be used to determine the size
of the ellipsoids in the tomographic data, even if particles
are polydisperse. For calculating the packing fraction,
the ellipsoids are dilated to their actual size indicated by
the in�ection point of the CNS function.
For each jammed ellipsoid con�guration the average

contact number can be determined with this method. The
contact numbers are only calculated in the middle of
the container, excluding the outermost layers. Ellipsoids
closer than 2 cm to the container wall are ignored to re-
duce boundary effects. The inset in Fig. 4 shows the av-
erage contact number as a function of the global packing
fraction for packings of different global packing fractions
of oblate ellipsoids (axis lengths c : c : a) with aspect ratio

c/a = 0.80. The average contact numbers as a function
of the global packing fraction collapse to one line.

CONCLUSIONS

The determination of contact numbers by the contact
number scaling function approach seems to be feasible
for disordered packings of ellipsoids, imaged by tomog-
raphy. This tool can be applied to gain a better under-
standing of structure and mechanical stability of pack-
ings of aspherical particles.
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