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The microscopic structure of mono-disperse
granular heaps and sediments of particles on
inclined surfaces

Nikola Topic,a Fabian M. Schaller,b Gerd E. Schröder-Turkbc and Thorsten Pöschel*a

Granular heaps of particles created by deposition of mono-disperse particles raining from an extended

source of finite size are characterized by a non-homogeneous field of density. It was speculated that this

inhomogeneity is due to the transient shape of the sediment during the process of construction of the

heap, thus reflecting the history of the creation of the heap. By comparison of structural characteristics of

the heap with sediments created on top of inclined planes exploiting the method of Minkowski tensors,

we provide further evidence to support this hypothesis. Moreover, for the case of sediments generated by

homogeneous rain on surfaces, we provide relationships between the inclination of the surface and the

Minkowski measures characterizing the isotropy of local particle environments.

1 Introduction

Structural properties of mono-disperse packings belong to the
most intensively investigated systems, starting with Kepler’s
conjecture of 1611,1 concerning the maximal packing density of
an assembly of equal spheres. Packings of hard particles have
been the focus of a large number of studies, and a large variety
of phenomena were described in the literature, see e.g. ref. 2–5
and many references therein.

The structural properties of packings are intimately related
to certain macroscopic properties of granular matter such as sound
propagation,6 thermal conductivity,7 permeability,8 reactivity,9

tensile strength,9 dilation10 and others. Of particular recent
interest is the relationship of the microstructure of packings in
the jammed state and the process of jamming in granular
dynamics, e.g. ref. 5 and 11–17.

The microscopic structure of a sediment and, thus, its
macroscopic characteristics depend, of course, on geometric factors
such as sizes, size distribution and shapes of the particles. But,
moreover, they depend on mechanical factors,18,19 that is, the
conditions under which the packing is formed. That is, the
macroscopic characteristics of a granular packing depend on
the history of the packing process, see e.g. ref. 20.

A prominent example where the history of the packing process
leaves its fingerprint on the microstructure of the sediment is a
monodisperse heap of spheres created on a horizontal plane due to
a homogeneous rain of particles from a circular area source with
steepest descent relaxation.21 During the creation process, the
particles are dropped sequentially from random positions in the
source area and follow the steepest descent of energy in the potential
landscape formed by previously deposited particles until the particle
reaches a local minimum or touches the bottom plane, where it is
immobilized. The described paradigm specifies the protocol of the
dynamics employed in the present article. The described dynamics
can be formulated by an efficient event-driven algorithm22,23 which
allows for the simulation of very large sediments exceeding 107

particles. Initially due to the homogeneous rain of particles, only the
region under the source is covered by sediment. As the heap grows,
the sediment assumes the shape of a frustum of a cone with a
horizontal top surface and finally it turns into a cone, see Fig. 1 and
ref. 24 for a detailed description of the process.

By analysis of the local packing density and the field of
contact numbers it was found recently that such a heap has a
complex internal structure.24 It was argued that this structure is
due to the different types of motion of particles during the
process of sedimentation: type (a) – outside the dropping zone
(the dropping zone is defined as the volume below the source area),
only such local minima can become occupied by a particle which
are terminal points of a uninterrupted path of steepest descent,
starting at some point in the source area. Type (b): inside the source
region all local minima may become populated, either by steepest
descent motion or by randomly directly dropping into the basin of
attraction of the local minimum. Thus, there are local minima
which can be populated by the process of type (b) but not of type (a)
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leading to a slightly higher density in regions where historically the
heap was built due to type (b). Consequently, these mechanisms
result in 3 regions of different densities: region (B) outside the
dropping zone (type (a)), region (A) under the dropping zone where
historically the sediment was horizontal (type (b)), and region (C)
under the dropping zone where historically the surface was inclined
by the angle of repose, see Fig. 2.

2 Characterization of the structure of
the sediment

In this paper, by means of Minkowski tensors, we quantify the
micro-structural properties of the heap sediment. By comparison
with sediments built on an inclined plane we will show that because
of the process of construction, regions A and C are fundamentally

different from region B. We will demonstrate that Minkowski
tensors can be used to reveal the history of the formation of a
sediment by analyzing its final structure.

A recently developed way to quantify the structure of granular
packings are Minkowski tensors.25,26 Minkowski tensors are a
generalization of the Minkowski functionals, which are the
volume, the surface area, the mean curvature integrated over
the surface and the Euler-Poincaré index of a body. Every
additive tensorial functional of a body can be written as a finite
sum of the Minkowski tensors.27 For three-dimensional bodies,
there are 10 Minkowski tensors of rank two. A detailed explana-
tion is given in ref. 28. Here we apply these tensors to the
particles Voronoı̈ cells. We focus on the volume moment tensor
of rank two

W20
0 �

ð
K
~r�~rdV ; (1)

where the integral is performed over the volume V of the body K
(the Voronoı̈ cell) and the tensor product is defined as

~a� ~b
� �

ij
� 1

2
aibj þ ajbi
� �

. Note that W20
0 is related to the tensor

of inertia of the body.29 It depends on the choosen origin, which
is in our case the center of the containing particle of the cell,
see below.

In order to characterize the anisotropy of a packing, first we
compute its Voronoı̈ tessellation. Then, for each Voronoı̈ cell
the tensor W20

0 is calculated with respect to the center of the
sphere to which the Voronoı̈ volume corresponds. We consider
two measures derived from the tensors W20

0 , namely the iso-
tropy, defined as the ratio

b � jmminj
jmmaxj

(2)

of the smallest and the largest eigenvalue of W20
0 (note that the

eigenvalues are positive). b has theoretical values between 0
(the limit of an extremly anisotropic cell) and 1 (isotropic cell),
although in random sphere packs b varies from approximately
0.67 to 0.80.25,26 The second quantity is the angle of isotropy,
yiso, defined as the angle between the positive direction of the
vertical z axis (the direction of gravity) and the eigenvector
corresponding to the largest eigenvalue of the tensor W0

20. yiso

has theoretical values between 01 and 901. A packing fraction
(or density), r, corresponding to the particle and its Voronoı̈
cell is calculated by dividing the particle’s volume by the
volume of the cell.

For the characterization of a heap created by dropping 2.5 �
107 monodisperse particles homogeneously from a circular
source with diameter S = 80 measured in units of particle
diameters, we use cylindrical coordinates. Both quantities,
b and yiso, are thus fields of the cylindrical coordinates. Due
to the symmetry in the horizontal coordinates, we average over
the angular coordinate such that hbi(r,h) and hyisoi(r,h) are the
fields of isotropy and the angle of isotropy averaged over all
particles whose centers are located in small intervals of height,
h, and the distance from the vertical symmetry axis, r, see Fig. 2.

Fig. 1 Heap created by sequentially dropping particles from a circular
area source. The width of the source is shaded gray.

Fig. 2 (top) Both quantities are averaged with respect to the cylinder
symmetry of the system. The field of isotropy (left) and the angle of
isotropy (right) for a heap of 2.5 � 107 particles. The bin widths are Dh =
Dr = 5. Note that bins with larger r values include more particles. Well
separated zones of hbi(r,h) and hyisoi(r,h) are identical to zones of density
described in ref. 24. (bottom) hbi(r) and hyisoi(r) profiles for two different
horizontal cuts with h1 = 75 and h2 = 125. All units are in particle diameters.
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The field of packing fraction hri(r,h) was calculated in an
analogous way.

As Fig. 2 clearly shows, the heap reveals three well separated
zones for both isotropy characteristics, b and yiso, denoted A, B,
and C. These zones are identical to the zones of different
densities identified in ref. 24 for the same system. A fourth zone
(D) described in ref. 24 is not discussed here since its volume is
rather small and unlike the other zones it does not scale with the
volume of the heap which is problematic for averaging and
results in large fluctuations. Zone averages are defined as e.g.
bA = hbisphereAA, see Table 1. The width of the distributions
within the zones is given by e.g. s(b). As shown in Table 1, the
values of the angle of isotropy yiso are widely distributed but,
however, statistical averages of this parameter are able to point
out significant structural differences in the zones.

In the following, we consider the relation of hbi and hyisoi as
a function of packing density.

3 Isotropy and angle of isotropy as a
function of density

When a heap is deposited from particle rain due to a circular
homogeneous area source, it initially grows with a horizontal
top surface, i.e. it is frustum of a cone whose inclination is the
angle of repose, arep, which for our model fluctuates in the
range arep E 541, regardless of the size of the source, S,30 being
the only parameter of the system. Consequently, the surface of
the heap assumes only the two extremal values of inclination,
a = 01 in the region under the source and a = arep, corres-
ponding to low and high values of density, respectively.

In order to study the relationship between surface inclination, a,
and density, r, in more detail, we performed simulations where 106

particles of diameter 1 are deposited on an inclined plane. The
projection of the plane to horizontal is of size L� L = 1002 and it is

inclined by a = 01. . .arep with periodic boundary conditions in the
lateral direction, see Fig. 3.

Values of packing fraction, r, isotropy, b, and angle of
isotropy, yiso, are averaged over particles inside the packing.
We neglect particles closer than 10 diameters to the incline to
avoid the influence of ordered structures imposed by the vicinity
of the flat wall as well as particles closer than 10 diameters to the
top of the packing. Fig. 4a shows the packing fraction as a
function of inclination. The increase of packing fraction with the
tilt has been noted before in ref. 31. Obviously, the range of
inclination is limited by the angle of repose, arep, since for
steeper tilt the particles would not reach a stable position. In
our simulations we found reliable results for a t 521. Note that
this value is somewhat smaller than arep due to the fact that on a
finite surface with periodic boundary conditions there may
occasionally exist continuous paths of steepest descent even
for inclinations less than the angle of repose, such that the
system would not find a stable position.

The isotropy as a function of the inclination is an increasing
function as well which at first glance may appear counter-
intuitive, Fig. 4b. The result becomes clear when we note that
the only source of anisotropy is the direction of gravity. For
a = 0, the surface of the sediment is perpendicular to gravity
such that one direction is preferred over the others. For larger
inclination, this effect is much less pronounced, leading to
larger values of the isotropy characteristics. Finally, the angle of
isotropy, Fig. 4c, as a function of inclination angle shows a
similar behavior as isotropy.

For a quantitative comparison of the packings we plot the
isotropy characteristics as a function of density, hbi(r) and
hyisoi(r), Fig. 5. For sediments created on inclines (bullets),
both functions are approximately linear in the entire range of
density corresponding to the interval of inclination, 0 r a t
arep. Looking to the data points for the heap, we find that the
points for areas A and C agree with the data for the tilted plane.
This is consistent with the inclination of the historical surface

Table 1 Mean values and standard deviations of r, b and yiso of the
different zones

Zone hri s(r) hbi s(b) hyisoi (1) s(yiso) (1)

A 0.5813 0.0325 0.717 0.086 62.72 20.10
B 0.5832 0.0319 0.727 0.088 64.85 19.58
C 0.5874 0.0296 0.740 0.082 64.29 19.61

Fig. 3 Sediments due to a homogeneous rain of 8000 particles on
inclined planes. The horizontal plane is shown in gray.

Fig. 4 Average packing fraction (a), isotropy (b), and the angle of isotropy
(c) of a sediment of particles deposited on an inclined plane as a function
of the angle of inclination, a.
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of the heap during construction, a = 0 in region A and a = arep in
region C. Thus, the sediments on the incline and in the heap
regions A and C may be considered as packings of the same type.

In contrast, the data for area B are distinctly different to the
other data, indicating a distinct structure which can be under-
stood from the history of the heap: stable sites on the heap’s
surface that are not below the source of particles (region B) can
only be reached by particles travelling along paths of steepest
descent. Sites which are not terminal points of steepest descent
paths cannot be populated. In contrast, stable sites under the
source (regions A and C) can be occupied by particles traveling
along steepest descent paths and by particles dropping from the
source and landing in the vicinity (in the basin of attraction) of
the stable site. This way, stable sites can be populated which are
unaccessible by steepest descent motion. The different mecha-
nism of growth, thus, causes differences in the microstructure of
packings. Our analysis shows that Minkowski tensors are suita-
ble to identify such subtle differences in growth mechanisms
which indeed cause differences of the structure.

4 Conclusion

We have characterized sediments of monodisperse particles
created by random deposition and steepest descent relaxation
for two different cases: (a) particles raining from a homoge-
neous circular area source to a horizontal plane forming a
conical heap and (b) sedimentation from a homogeneous rain
onto a tilted plane with periodic lateral boundary conditions.

The packings were characterized using measures derived from
Minkowski tensors of Voronoı̈ cells corresponding to particles in
the packing, namely the isotropy, b, and the angle of isotropy, yiso.
We found that regions of the packing of the heap below the source
of particles reveal the same structure as packings due to deposition
of particles onto a tilted plane but are structurally different from
packings generated outside the source region.

Consequently, based on Minkowski tensors we can identify
the origin of different structures of sand heaps generated by
particles raining from an extended source.24 Functional depen-
dences hbi(r) and hyisoi(r), of the type shown in Fig. 5, may be
applied to infer information about the history of a packing only
based on the structure of the sediment, even when the process
of its formation is not known.

In granular materials, different formation mechanisms can
lead to relatively subtle structural differences in the resulting
packing, which in turn affect its physical properties. Our results
highlight the Minkowski tensor approach as a robust quanti-
tative method to detect subtle but important structural differ-
ences. This is particularly relevant for systems, such as the one
investigated here, where structural differences are only evident
in averaged quantities, with large spatial fluctuations and
broad distributions of the quantities themselves.

The investigated sediments result from a sequential random
deposition with the steepest relaxation model as specified in
Section 1. We wish to point out that this model and the corres-
ponding dynamics is not a universal simulation method for
granular matter dynamics for two reasons: (a) the particles are
sedimented sequentially, that is, at any time only one particle is in
motion, and (b) once a particle found its stable position it is
immobilized and cannot leave this position under the action of
later sedimented particles. This specific dynamics does, e.g., not
allow for steady flow or avalanches. However, under certain condi-
tions this model for the dynamics may be appropriate, for instance,
in viscous fluids when we can neglect inertia of the particles or in
the case of adhesive particles when acceleration due to gravity can
be neglected and the particles perform a creeping motion. For a full
discussion of the properties of the model see ref. 30. Insofar, the
results presented here may be specific for this type of dynamics and
their possible generalization was not investigated. Clearly, a full size
DEM or molecular dynamics investigation of the systems consid-
ered here, including the necessary repetition for averaging is
certainly not feasible, at the present time.
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109, 128001.
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28 G. E. Schröder-Turk, W. Mickel, S. C. Kapfer, F. M. Schaller,

B. Breidenbach, D. Hug and K. Mecke, New J. Phys., 2013,
15, 083028.
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93, 4090–4107.

31 A. Higgins, J. Phys. A: Math. Gen., 1996, 29, 2373–2377.

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
3 

Fe
br

ua
ry

 2
01

6.
 D

ow
nl

oa
de

d 
by

 M
U

R
D

O
C

H
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 o

n 
31

/0
3/

20
16

 0
9:

22
:2

5.
 

View Article Online

http://dx.doi.org/10.1039/C5SM03114A



