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Abstract 

Weight loss due to poor nutrition in adult ewes over summer–autumn is economically expensive due 

to immediate costs such as feed and labour but also due to ongoing costs to reproductive success and 

ewe health. We predicted that adult Merino ewes with a higher proportion of fat would be more 

efficient, both through lower intake and reduced weight loss. Four-year-old Merino ewes (n = 64) 

were held in single pens and fed a chaff-based diet either ad libitum, with the aim of achieving 

liveweight maintenance, or a restricted amount to achieve liveweight loss of 100 g/day. Liveweight 

change and feed intake were measured, and residual liveweight change and residual feed intake were 

used to indicate efficiency. There was a difference of 2 MJ of metabolisable energy per day between 

the most efficient and least efficient ewes for residual feed intake, and a difference of 90 g per day 

between the most efficient and least efficient ewes for residual liveweight change. There was a 

significant association between blood plasma concentrations of leptin and both liveweight and feed 

efficiency, so that ewes with high concentrations of leptin had a lower daily intake, and/or lost less 

weight than did those with low concentrations of leptin. Managing adult Merino ewes to maximise 

fat-tissue accretion during spring via genetics and/or nutritional management could be a useful 



strategy to reduce feed requirements during summer–autumn because the ewes will be more efficient 

and have larger fat reserves to lose before achieving a lower critical limit. 

Additional keywords: composition, intake, leptin, nutrition, resilience. 

 

Introduction 

Seasonal fluctuations in pasture supply and quality in Mediterranean climates, together with the 

varying energy needs for reproductive processes, mean that the nutritional requirements of the mature 

ewe flock are not always matched with available pasture. Where nutritional requirements for 

maintenance are not met ewes will lose weight, and it is well recognised that variations in liveweight 

and condition score have important repercussions for ewe fertility, reproductive rate and weaning rate. 

Ewes that are in poorer condition at joining have reduced fertility and reproductive rate and those in 

poorer condition at lambing have higher rates of mortality for both ewes (Edwards et al. 2011) and 

lambs (Kelly 1992;Behrendt et al. 2011; Oldham et al. 2011). Liveweight change in adult sheep can 

largely be explained by environmental and management differences and the varying demands of 

reproduction (Walkom et al. 2014). However, there is also evidence for variation among individual 

Merino sheep in their ability to maintain liveweight and condition when nutrition is poor (Blumer et 

al. 2016). It may be possible to select animals that are genetically more resilient to periods of poor 

nutrition (Rose et al. 2013). Resilient sheep could potentially be managed at higher stocking rates, 

have reduced dependence on supplementary feeding and require less labour to feed over summer and 

autumn. However, improvements in profitability from selecting animals that are genetically more 

resilient will be greater if the reduction in weight loss is achieved via improved efficiency rather than 

through increased intake of low-quality feed (Young et al. 2011). It is, therefore, important to 

investigate the biological drivers of liveweight change in adult Merino ewes when consuming 

suboptimal diets. 



Efficiency is a function of intake and liveweight change, and differs for animals of different sizes and 

maturities. Koch et al. (1963) introduced the use of residuals to describe efficiency where these 

variables are accounted for in the model, and the error value then describes how the individual 

deviates from the population mean. Residual feed intake (RFI) has now been used to describe 

efficiency in most livestock species and is the difference between the actual feed intake of the 

individual and the expected feed intake (measured by the population mean), given a certain level of 

production, for example, liveweight gain, or milk yield. It has been shown to be independent from its 

component traits, liveweight and daily gain, although there is a positive correlation between RFI and 

dry matter intake (Arthur et al. 2001). Several studies have found that RFI is positively correlated 

with fat and have concluded that animals with more fat are less efficient (Arthur et al. 1996; Herd and 

Bishop 2000; Basarab et al. 2003). However, work by Blumer et al. (2016) demonstrated that sires 

with higher Australian sheep breeding values (ASBVs) for fat were associated with reduced 

liveweight loss in their adult ewe progeny during periods of poor nutrition, although the effect varied 

across environments. Most research concerning efficiency traits has focussed on young animals 

(Basarab et al. 2003; Knott et al. 2004; Kelly et al. 2010), or under conditions of increasing weight 

(Archer et al. 2002), rather than examining efficiency in adults at maintenance or when exposed to 

less than favourable nutrition. 

The maintenance requirements for immature versus mature animals are different and this has been 

demonstrated byGraham (1980) who showed that basal metabolism is higher in younger 

animals. Roux (2013) showed that maintenance requirements can be largely explained by differences 

in body composition and the energetic efficiency of protein versus fat synthesis, and Ball and 

Thompson (1995) showed that, at maturity, sheep selected to have more carcass fat had a lower intake 

requirement to maintain weight than did sheep from a random line. Richardson and Herd 

(2004) suggested that the combination of protein metabolism and stress accounted for 37% of the 

variation in RFI in beef cattle. Work in adult mice has shown that selection for lower heat production 

produced animals that consumed less, and had higher proportions of fat (Nielsen et al. 1997). Fatness 

in sheep is routinely measured on farms using condition scoring, a subjective measure of 



subcutaneous fat (Jefferies 1961), to provide an indication of the animal energy balance. 

Subcutaneous fat depth is also routinely measured objectively using ultrasound at the c-site 

(Gilmour et al. 1994). Another objective measure of fatness is the concentration of the hormone 

leptin, which has been demonstrated to be a good indicator of whole-body fatness in sheep (Blache et 

al. 2000). We, therefore, hypothesise that when adult Merino ewes are managed to maintain or lose 

weight, animals with higher measures of fatness will be more efficient, through both lower intake and 

reduced weight loss per unit of intake. In addition, the opposite will be true; animals with 

proportionally less fat will have higher maintenance costs and increased intake. 

 

Materials and methods 

Feed intake, liveweight change, condition score, ultrasound fat depth and plasma leptin concentration 

were measured for 64 adult Merino ewes held in single pens and fed a poor-quality chaff-based diet 

either ad libitum or below maintenance. All experimental work involving animals was conducted 

under the authority of the Animal Welfare Act of Australia and the experimental schedule received 

prior approval from the animal-ethics committees of the Department of Agriculture and Food Western 

Australia (DAFWA; Approval number 4-11-21) and Murdoch University (Approval number 

R2433/11). 

Experimental animals 
 

The ewes were sourced from the Information Nucleus Flocks based at Armidale, New South Wales, 

Turretfield, South Australia, and Katanning, Western Australia (Fogarty et al. 2007; van der Werf et 

al. 2010), and from the Maternal Efficiency Flock established in 2009 by DAFWA. Dams for the 

Maternal Efficiency Flock were sourced from two Merino studs in south-western Australia and 

industry sires were used, with a focus on increased growth, fat and muscle. The flock has been 

maintained at ~700 ewes as a self-replacing resource flock at Pingelly, Western Australia. Forty ewes 

were sourced from each of the four sites. 



All ewes in the current study were born in 2007 and, at the time of the experiment (2011–2012), were 

approaching 5 years old. The ewes had full pedigree information, including ASBVs, and recorded 

measurements for a wide range of wool, meat and reproductive traits. Ewes had been managed 

through at least two reproductive cycles and liveweight measurements were collected at regular 

intervals throughout. The ewes were by sires that encompassed a range of ASBVs for fat and muscle 

(Sheep Genetics) and, of the 35 Merino sires represented, 11 had progeny in both experimental 

treatment groups. 

The ewes (160) were transported to the Department of Agriculture and Food Western Australia 

research station at Medina, Perth (32°13ʹS, 115°48ʹE). They initially grazed as a group on poor-

quality winter pasture and were supplemented with pellets to maintain average liveweight for 30 days. 

Prior to allocation, ewes were treated with a broad-spectrum anthelmintic (Triton®; Merial, Sydney, 

NSW, Australia). Sixty-four ewes were then allocated into one of two groups and moved to an animal 

house. Selection for the experiment was balanced for ewe source, liveweight and condition score, and 

included a range of sire ASBVs for fat and muscle (Table 1). Ewes were maintained in individual 

pens (1.8 × 0.9 m) with a slatted concrete floor. The experiment was conducted during summer in an 

animal house with natural lighting and open ventilation, so as to resemble temperatures and 

daylengths experienced on farms when liveweight loss is common in Mediterranean climates. 

Diets and treatments 
 

During an introductory period (16 days), the ewes were fed a base ration consisting of ad 

libitum barley straw chaff. This was supplemented with whole lupins and a commercial mineral 

supplement (shipping mix, Macco Feeds, Williams, Western Australia) plus an additional 5 g of 

vitamin A (Advanced Feeds, Midland, Western Australia) given once weekly. The straw was mixed 

with urea to increase protein concentration, and with molasses to increase palatability (dry matter 

92.8%, metabolisable energy 5.1 MJ/kg dry matter). On Day 17 (6 January 2012), feeding was 

restricted in Group 2 to result in weight loss of ~100 g/day in a 50 kg sheep, or ~0.75 of a condition 

score (CS) over 54 days (1 CS = 7.5 kg in a 50 kg sheep; Freer et al. 1997). Grazfeed (Freer et al. 



1997) was used to calculate maintenance requirements for a 50 kg ewe and the feed deficit required to 

lose weight was then applied on an individual basis according to ewe liveweight, resulting in constant 

weight loss for the group across 54 days. Group 1 continued with ad libitum feeding of the base diet. 

Ewes were supplemented with lupins (8–20 g/kg metabolic liveweight per day) when required to 

maintain the expected average-liveweight profiles for each group until Day 71. During the course of 

the study, four ewes were removed, including one ewe due to poor adaptation to the concrete floor, 

one due to inappetence, and two ewes that were healthy and maintaining weight but had low intakes. 

An additional ewe had data excluded at analysis. 

Measurements 
 

Ewes were weighed twice weekly before feeding, and condition scored (on a subjective scale, where 

CS of 1 is very thin and 5 is very fat; Jefferies 1961) once weekly. Sheep were fed each day a 

weighed amount of feed according to treatment group. Sheep in Group 1 received the previous day’s 

intake of the chaff diet plus 30%, to ensure that ad libitum feeding levels were maintained. Chaff 

refusals were measured daily before re-feeding (no lupin seed or mineral powder was recovered for 

the 60 ewes remaining in the experiment). Ewes were measured for muscle and fat depth at the 

12/13th rib by using ultrasound by an accredited operator, before entry to the animal house (Day 0) 

and following their exit from the animal house (Day 73). 

Blood collection and plasma analysis 
 

Blood was collected (10 mL) via jugular venipuncture on the day before housing (Day –1), and on 

Days 35 and 71, 2 h after feeding. Blood samples were collected into heparinised blood tubes before 

being centrifuged and the plasma was stored at -20°C before it was assayed for leptin. Leptin was 

measured using the double-antibody RIA technique previously described in detail by Blache et al. 

(2000). The intra-assay coefficient of variation was 4.87%. Three control samples were included in 

the assay to determine the inter-assay CVs of 2.7%, 3.2% and 4.3% (low, medium and high 

respectively). The minimum detectable concentration was 0.079 ng/mL. 



Liveweight traits 
 

Liveweights were adjusted for wool weight, based on greasy fleece weights collected at shearing after 

the experiment and assuming linear wool growth. A linear regression of liveweight against time was 

used to eliminate noise in the weight data, and to predict weights at the start and finish of the 

measurement period (Days 18–71; SAS 2002). Daily liveweight change was derived from the 

predictions. Liveweight was also expressed as metabolic liveweight (liveweight0.75). Intake of 

metabolisable energy (ME) was calculated as the average of daily dry matter intake for each ewe over 

the 53-day treatment period and multiplied by the ME content of each feed. ME intake was also 

expressed as a percentage of liveweight (average dry matter intake/average liveweight), and as gross 

feed conversion efficiency (daily liveweight change/daily dry matter intake). 

Statistical analyses 
 

The restricted and ad libitum dietary groups were analysed separately (ad libitum, n = 29; 

restricted, n = 30) by using linear mixed-effects models in SAS (SAS 2002). For both groups, daily 

liveweight change was analysed as the dependent variable, with ewe source (flock of origin) tested as 

a fixed effect, starting liveweight and ME intake as covariates, and sire as a random term. All first-

order interactions were included, and removed in a stepwise fashion if not significant (P > 0.05). ME 

intake was also modelled, but only for the ad libitum group. Intake was not analysed for the restricted 

group, as the animals consumed all feed available; hence, intake was determined by the amount 

offered. These models are described as the base models. The residuals from the base models represent 

efficiency. When intake is the dependent variable, the error term is described as RFI and animals with 

lower or negative residuals are more efficient, requiring lower intake for similar liveweight 

performance. When liveweight change is the dependent variable, animals with higher or positive 

residual errors are more efficient, gaining more (or losing less) weight at similar intakes. This will be 

defined as residual liveweight change (RLWC). 

The residual efficiency indicators were then analysed as dependent variables in a combined dataset 

(i.e. ewes in both dietary groups). Covariates were starting CS, mean C-site fat (over the loin) and 



mean eye muscle depth, and sire ASBVs for fat, muscle and growth. The first-order interactions 

between each covariate and the fixed effects of diet and ewe source were tested, and removed in a 

stepwise fashion if not significant (P > 0.05). 

For leptin, the combined dataset was used, with fixed effects including diet, ewe source and bleed 

number (Day –1, Day 35 or Day 71). Sire and ID were included as random terms to account for 

repeated sires within groups and repeated samplings of the same animal. Following the establishment 

of the fixed-effect model, covariates were then included in separate models. Covariates tested were 

starting liveweight, and sire ASBVs for fat, muscle and growth. Sire ASBVs were tested both in 

separate models and as interacting terms, and with and without starting liveweight as an independent 

term. 

Finally, the residual efficiency indicators were analysed as dependent variables in a combined dataset 

to examine the effect of leptin. The first-order interactions between leptin and the fixed effects of diet 

and ewe source were also tested, and removed in a stepwise fashion if not significant (P > 0.05). 

Pearson correlation coefficients between the residual efficiency indicators, as well as gross-feed 

conversion, dry matter intake and intake as a percentage of liveweight were determined using the 

multivariate analysis of variance (MANOVA) procedure in SAS. Diet and ewe source were included 

in the multivariate model as fixed effects. 

 

Results 

Daily liveweight change and intake – base models 
 

At the start of the differential feeding period (Day 17), the ewes were on average 57.7 kg (s.e.m. 0.85) 

and had a CS of 2.8 (s.e.m. 0.04). The average liveweight of the restricted and ad libitum group is 

shown in Fig. 1. On average, ewes in the restricted group lost 95 g/day (±18 g s.d.) and this varied 



from 51 g/day (±12 g s.e.) for 40 kg ewes to 131 g/day (±10 g s.e.) for 70 kg ewes. Starting liveweight 

explained 34% of the variation in liveweight change. 

For ewes in the ad libitum group, liveweight change was predicted from both starting liveweight and 

ME intake. Ewes performed better than maintenance, gaining a predicted 21 g/day, with a standard 

deviation of 21 g. Ewes with a starting liveweight of 40 kg gained weight at 67 g/day (±19 g) and 70 

kg ewes lost weight at 25 g/day (±19 g; P = 0.06). For each 1 MJ increase in ME intake, there was a 

predicted 24 g/day increase in liveweight gain (or decrease in liveweight loss; P< 0.05). The base 

model for liveweight change in the ad libitum group described 42% of the variance for liveweight 

change. 

For ewes in the ad libitum group, ME intake was significantly affected by starting liveweight and 

liveweight change (Table 2). Ewes averaged 6.2 MJ of ME/day, with a standard deviation of 0.89 

MJ/day. Ewes with a starting liveweight of 40 kg consumed 4.9 MJ of ME/day (±0.35 MJ) and ewes 

at 70 kg consumed 7.5 MJ of ME/day (±0.34 MJ; P < 0.05). For each 10 g increase in daily 

liveweight change, there was a predicted 0.1 MJ/day increase in ME intake (P < 0.05). The base 

model for feed intake in the ad libitum group described 53% of the variance for intake. 

Residual efficiency models 
 

Residual liveweight change for ewes on the restricted diet ranged between –36 g/day and 56 g/day; so, 

at the same level of intake, there was a 92 g/day difference between the least efficient and the most 

efficient sheep on a daily basis. Similarly, for the ewes on the ad libitum diet, RLWC ranged between 

–51 g/day and 43 g/day, so there was a difference of 94 g/day between the least efficient and most 

efficient ewes. Ultrasound measurements for fat and muscle did not contribute significantly to the 

amount of variance explained by the liveweight-change base models, and sire ASBVs were also not 

significant. 

Residual feed intake for ewes on the ad libitum diet ranged between –1 MJ/day and 1.1 MJ/day, so 

that the least efficient ewes were consuming 2.1 MJ of ME more per day than were the most efficient 

ewes, to gain a similar liveweight. There was a negative association with subcutaneous fat (P < 0.05) 



so that ewes with more subcutaneous fat had lower feed requirements at a constant liveweight and 

level of liveweight change. ME intake was reduced by 0.31 MJ/day for each extra 1 mm of fat. The 

inclusion of subcutaneous fat in the model explained a further 11% of RFI. Mean CS was also 

assessed as a covariate, and there was a trend for it to be negatively associated with RFI. While not 

significant (P = 0.09), the inclusion of CS in the model explained 7% of the variance in RFI. 

Residual feed intake and RLWC were significantly and negatively correlated (r = –0.44, P < 

0.05; Table 2). RFI was positively correlated with ME intake (r = 0.75, P < 0.001), and with ME 

intake as a percentage of liveweight (r = 0.89, P < 0.001). RLWC was positively correlated with gross 

feed efficiency (r = 0.82, P < 0.001). 

Concentration of leptin in plasma 
 

Plasma leptin (P < 0.05) concentration increased across the three bleed time points (Days –1, 35 and 

71), and this was four times greater for ewes on the ad libitum diet than for ewes on the restricted diet 

(P < 0.01, Table 3). There was an effect of ewe source on leptin concentration, with the extremes 

being Turretfield and Katanning (1.28 ± 0.7 ng/mL and 0.96 ± 0.07 ng/mL, P < 0.001). The 

concentration of leptin was not significantly associated with liveweight, or with the sire ASBVs for 

fat, eye muscle depth or growth. 

Residual efficiency indicators and their association with the 

concentration of leptin in plasma  

Leptin was negatively associated with RFI (P < 0.05, Fig. 2). Ewes with higher concentrations of 

leptin had more negative values for RFI. Hence, ewes with leptin concentrations of 1.6 ng/mL 

required 0.8 MJ of ME per day less than those with concentrations of 0.8 ng/mL. Leptin explained 

27% of the variation in RFI. 

Leptin was also positively correlated with RLWC (P < 0.01, Fig. 2). Regardless of the diet group, 

ewes with leptin concentrations of 1.6 μg/mL were more liveweight efficient (gaining more weight, or 



losing less weight) by 28 g/day than were ewes with leptin concentrations of 0.8 μg/mL. Leptin 

explained 17% of the variation in RLWC. 

 

Discussion 

Adult Merino ewes with higher proportions of fat were more feed efficient and lost less weight than 

did leaner ewes when consuming a poor-quality diet. This was in agreement with our hypothesis that 

was based on evidence that ewes from sires with higher ASBVs for fat lost less weight in some areas 

of Australia, particularly in Mediterranean regions and especially where annual liveweight loss was 

greater than 10 kg (Blumer et al. 2016). In contrast to our results, Richardson et al. (2004) found a 

positive relationship between RFI and whole body fat in growing cattle and fatness explained 5% of 

the variance in RFI. Our results showed that fatness measured by ultrasound explained 11% of the 

variance in RFI and the relationship was negative. This relationship was confirmed through the 

measurement of plasma leptin concentration, which explained 27% of the variation in RFI and was 

significantly higher in sheep that were more efficient and required less feed than their cohort. Much of 

the published work concerning efficiency examines young, growing animals rather than adults. It is 

well established that accumulating fat is energy expensive (Roux 2013); so, in young animals gaining 

liveweight and fat, leaner animals are more efficient. However, adult metabolism is adapted towards 

maintenance of body tissues rather than growth (Graham 1980), and the maintenance of fat tissue is 

energetically inexpensive in comparison with the energy required to maintain protein synthesis 

(Graham 1980; Ball and Thompson 1995). Feed efficiency during growth and feed efficiency during 

adulthood must be considered as separate traits, and given that adult Merino ewes make up a large 

proportion of the Australian flock (~55%; Curtis 2009), adult efficiency traits should be given greater 

consideration in future work. 

Ultrasonic subcutaneous-fat measures, hormone levels and condition scoring were used in the current 

study to quantify the fat-tissue component of ewes. The measurement of leptin in blood plasma had a 

stronger association with the residual efficiencies than subcutaneous fat and CS. Leptin has been 



highly and positively correlated with whole-body fatness (Blache et al. 2000; Chilliard et al. 

2000; Delavaud et al. 2000) and is implicated in the regulation of energy balance (Ahima et al. 

2000; Delavaud et al. 2000) and feed intake (Ahima et al. 2000). Leptin inhibits feeding, andAhima et 

al. (2000) found that rats that were fasted but given an exogenous supply of leptin had a reduced 

intake on re-feeding, in comparison with rats that were fasted and not given leptin. Ahima et al. 

(2000) demonstrated that low concentrations of leptin stimulated food-seeking behaviour and this was 

further associated with an increase in the secretion of stress hormones. The effects of stress have been 

demonstrated to affect metabolic efficiency (Stratakis and Chrousos 1995). Grazing behaviour is also 

energy expensive and sheep in poor condition will also have to account for the added energy expense 

of the longer rumination time required for poor-quality feeds above that required for maintenance 

(Osuji 1974). Extrapolation of the findings of our pen experiment to a paddock situation suggested 

that extended periods of poor nutrition could favour lowered energy expenditure, and animals with 

more body fat would have a lower drive to eat, would conserve energy through reduced activity and 

would have more fat reserves available for mobilisation. 

The ultrasound measurement of subcutaneous fat was also a predictor of efficiency; however, the 

relationship was not as strong as that between leptin and efficiency. Subcutaneous fat is a labile fat 

depot (Little and Sandland 1975) and is rapidly depleted during nutritional restriction, while other fat 

depots are mobilised more slowly (Bocquier et al. 2000). Further, unlike the other fat measures 

examined (CS, ultrasound fat and leptin), sire ASBVs for fat were not associated with efficiency in 

the current study. This is possibly due to insufficient animal numbers in the present study to test the 

range of breeding values for fat; however, it could also indicate that a breeding value based on a 

single measurement of subcutaneous fat in a young animal is a relatively poor indicator of whole-

body fatness in adult ewes. This is supported by the results of Greeff et al. (2003) who concluded that 

ultrasonically measured fat and muscle measured on rams at 16 months were not good indicators of 

those tissues when measured again at slaughter, and also by the results ofThompson (2006) who 

demonstrated very large differences in whole-body fat measured by dual-energy X-ray absorptiometry 

in adult wethers that were not significantly different for subcutaneous-fat measurements. Hopkins et 



al. (2007) showed that estimated breeding values for fat based on ultrasound measurement of 

subcutaneous fat are a good indicator of whole-body fatness at slaughter; however, this has not been 

tested in adult sheep. If fatness in adult ewes is to be investigated as a useful tool for commercial 

practice, then additional tools for accurately assessing fat tissue may need to be explored. 

The efficiency measures for both intake and liveweight change for sheep on a poor-quality diet varied 

significantly among individual sheep. The least efficient sheep were eating ~2 MJ more than the most 

efficient sheep on a daily basis, to achieve the same change in liveweight. Similarly, the difference 

between the most efficient and least efficient sheep for liveweight change was more than 90 g per day 

at the same level of intake, and this was consistent regardless of the diet treatment. These are the 

extreme values; however, the sheep in the top 25% for feed efficiency were still consuming 0.6 MJ of 

ME/day less than the sheep in the bottom 25%, so as to maintain weight, and there was a difference of 

30 g per day between the top- and bottom-quartile groups for liveweight efficiency. The quartile 

differences would equate to a 3 kg reduction in liveweight loss over a 100-day period. Utilising the 

model of an integrated dryland agricultural system (MIDAS), Young et al. (2011) valued liveweight 

loss at AU$2.30/kg per ewe (derived from costs incurred through increased requirement for 

supplementary feeding, and deleterious effects on reproduction) in a whole-farm economic analysis, 

provided the differences in liveweight loss were due to differences in feed efficiency rather than 

appetite (Young et al. 2011). In the current study, as differences in efficiency were the key driver of 

liveweight loss, this suggests that ewes in the top 25% for liveweight efficiency could be AU$6.90 per 

head more profitable than ewes in the bottom 25%. Ewes that are more efficient and lose less weight 

when there is a shortage of paddock feed are potentially more profitable than ewes that lose more 

weight because they may require less supplementary feeding or could be grazed at higher stocking 

rates during autumn–winter, provided that these more efficient sheep can be easily identified. 

The models used to estimate RFI in the present paper accounted for 53% of the phenotypic variance in 

intake, which aligns with similar models described by Knott et al. (2008), where the models 

accounted for 56% of the intake for rams at 13 months of age. Knott et al. (2008) also utilised the 

model originally described by Koch et al. (1963) that uses liveweight change as the dependent 



variable. In our experiment, the models for RLWC in ewes on an ad libitum diet accounted for 42% of 

the variance in liveweight change, again being similar to Knott et al. (2008) where the variance 

described was 48%. The variance described for ewes on the restricted diet was lower (34%) and this 

will be due to the constraints of restricting intake according to liveweight. The base models for intake 

and for liveweight change contained the same three variables and, logically, the regression of feed 

intake adjusted for liveweight and gain should be highly correlated with the regression of gain 

adjusted for liveweight and intake. However, this was not the case (r2 = 0.6), and the discrepancy 

shown in our results has been previously described by Koch et al. (1963) who demonstrated that the 

correlation between the modelled results will be high only when the range of efficiency is small (and 

the measurement error is minimised). In our experiment, the opposite was true, with a wide range of 

intake required for liveweight maintenance. Knott et al. (2008) showed that the variance explained 

was generally higher for lambs at 6 months than those at 13 months and also suggested that animals 

may re-rank for efficiency as they age. The proportion of the variance explained in our work is 

generally slightly lower again. While residual efficiency measures will always include error generated 

during measurement, the alignment with previous research gives confidence that the current analysis 

and conclusions are robust. 

 

Conclusions 

The results of the present paper require testing under commercial conditions, across varied feed types 

and production systems, as well as further economic modelling, before recommendations can be made 

to sheep producers. Weight loss due to poor nutrition in adult ewes over summer–autumn in 

Mediterranean environments is economically expensive due to immediate costs such as feed and 

labour, but also due to ongoing costs to reproductive success and ewe health. Maximising the 

accretion of fat tissue during spring via genetics or nutritional management may be a useful strategy 

to reduce feed requirements during summer–autumn because the ewes will be more efficient and have 

larger fat reserves to lose before achieving a lower critical limit. 
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Table 1.  Parameters for liveweight, condition score and range of sire-estimated breeding values 

for Merino ewes from four different sources and allocated to one of two dietary groups 

LW, liveweight; CS, condition score; YFAT, Australian (estimated) sheep breeding value for yearling 

fat; YEMD, Australian (estimated) sheep breeding value for yearling eye muscle depth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.  Phenotypic correlations for residual feed intake (RFI), residual liveweight change 

(RLWC), metabolisable energy intake as a percentage of liveweight (ME%), gross feed 

efficiency (GFE) and metabolic energy intake (ME) 

*, P < 0.05; **, P < 0.01; ***, P < 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.  Predicted means (±s.e.) for leptin (ng/mL) on Days –1, 35 and 71 in adult Merino ewes 

sourced from four farms (Armidale, New South Wales, Turretfield, South Australa, and 

Katanning and Pingelly, Western Australia) and fed a poor-quality diet either at a restricted 

or ad libitum level 

Means in the same row with the same letters are not significantly different (P > 0.05) 

 

 

 

 

 

 

 

 

 

 

 



Fig. 1.  Liveweight (kg) change over the experimental period (days) in 4-year-old Merino ewes under 

two dietary treatments, with the aim of achieving maintenance (pale grey line) and liveweight loss 

(steel grey line). Bars represent s.e.m., and dietary treatments commenced on Day 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 2.  Residuals for (a) feed intake and (b) liveweight change derived from the base models, and 

their relationships with the raw average value for leptin in blood plasma collected at three points over 

71 days. The diamonds represent adult ewes on an ad libitum diet (n = 29). The open circles represent 

ewes on a restricted diet (n = 30). The solid lines represent predicted values from models, with 

residual values as the dependent variable. Dashed lines represent ± standard error. 

 

 

 

 

 

 


	Cover page author's version
	whole-body-fatness-good-predictor

