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Abstract

Network null-models are important for drawing conclusions about individual-

and population-(or graph) level metrics. While the null-models of binary net-

works are well-studied, recent literature on weighted networks suggests that:

i) many so-called �weighted metrics� do not actually depend on weights, and

ii) many metrics that supposedly measure higher-order social structure actu-

ally are highly correlated to individual-level attributes. This is important for

behavioural ecology studies where weighted network analyses predominate, but

there is no consensus on how null-models should be speci�ed. Using real social

networks, we developed 3 null-models that address two technical challenges in

the networks of social-animals: i) how to specify null-models that are suitable

for �proportion-weighted networks� based on indices such as the half-weight in-

dex; and ii) how to condition on the degree- and strength-sequence and both.
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We compared 11 metrics with each other and against null-model expectations

for 10 social networks of bottlenose dolphin (Tursiops aduncus) from Shark Bay,

Australia. Observed metric values were similar to null-model expectations for

some weighted metrics, such as centrality measures, disparity and connectivity,

whereas other metrics such as a�nity and clustering were informative about dol-

phin social structure. Because weighted metrics can di�er in their sensitivity to

the degree-sequence or strength-sequence, conditioning on both is a more reliable

and conservative null model than the more common strength-preserving null-

model for weighted networks. Other social structure analyses, such as commu-

nity partitioning by weighted Modularity optimisation, were much less sensitive

to the underlying null-model. Lastly, in contrast to results in other scienti�c

disciplines, we found that many weighted metrics do not depend trivially on

topology; rather, the weight distribution contains important information about

dolphin social structure.

Keywords: bias; bottlenose dolphin; community structure; maximum en-

tropy; network topology; social network

1. Introduction

The social network paradigm is increasingly being used to study the be-

havioural ecology of social animals. It holds the promise of expanding the �eld

from investigations about the presence and �tness consequences of associations

to understanding the pattern of associations, including how network structures

persist over time or serve ecological functions. For example, whereas researchers

have plenty of ideas why animals may be social (e.g. for anti-predator defence,

foraging) and can demonstrate that one's position in the network can lead to

higher �tness (Stanton & Mann, 2012), it is more controversial to posit func-

tional importance to structural properties of networks themselves. Consider

bottlenose dolphins Tursiops spp., where patterns such as triangle-closure, as-

sortativity by sociality, and the presence of �social brokers� between di�erent

subgroups, are features that are more than just individual-level tendencies to

have a certain number of associates. Hypotheses about the ecological function
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of such �social structure� are few and tentative (Pinter-Wollman et al., 2014),

such as facilitating information transmission (Lusseau, 2003; Allen et al., 2013).

Behavioural ecology remains signi�cantly challenged by the di�culty of de�ning

and measuring social structure. Here, we try to identify which network metrics

may be informative about dolphin social structure, and which are redundant to

individual-level di�erences in sociality, such as individual di�erences in �degree�

(number of associates) and �strength"' (sum of weights of associates).

We employ a null-model approach: to calculate expectations of weighted

network metrics while conditioning on individual-level properties, and compare

such expectations to observed metrics. For example, if we observe a network

and accept its empirical degree-sequence (the number of connections each indi-

vidual has in the network), then how are we to interpret other network metrics

and judge whether they provide evidence of an underlying organising structure?

What metric values are likely even when there are no true underlying struc-

tures like "clusters" or true organising principles like "assortativity"? It is by

comparing metric values to their null-model expectations that allows us to �nd

potentially meaningful metrics that actually measure aspects of higher-order

social structure, or whether metrics are merely redundant to individual-level

attributes.

Despite the simplicity of the null-model approach, there is little consensus

on how to calculate expectations of network metrics. Two challenges emerge:

i) one must decide what properties to condition upon (e.g. strength-sequence,

degree-sequence, both or others); and ii) one needs a way to calculate expec-

tations without biasing results. Behavioural ecologists primary address these

challenges by conditioning on aspects of survey design, observation error and

sociality (Whitehead, 2008), and primarily use permutation methods to cal-

culate expectations under random associations (Bejder et al., 1998). Outside

of behavioural ecology, there is a growing suite of �random-graph� algorithms

(Watts & Strogatz, 1998; Serrano et al., 2006; Leskovec et al., 2010; Ansmann

& Lehnertz, 2011; Prettejohn et al., 2011) which emphasise core properties such

as the degree-sequence, strength-sequence, network size and density; they have
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shown that unless such properties are held constant across random-graphs, then

any conclusions about network properties will just re�ect variation in the degree-

sequence, strength-sequence, network-size, etc. There is a near consensus about

the need to condition on the degree-sequence for binary-networks, but the matter

is more controversial for weighted-networks, and one's conclusions are sensitive

to such conditioning (Garlaschelli & Lo�redo, 2009; Mastrandrea et al., 2014).

This paper follows in the spirit of Garlaschelli & Lo�redo (2008), to calculate

metric expectations based on null-models that assume only basic individual-level

properties, and to do so by generating an �ensemble� of random networks based

on the Exponential Random Graph formulation. In contrast, our equations are

valid for proportion weighted-networks, wij ∈ [0, 1] used in behavioural ecol-

ogy (Cairns & Schwager, 1987). An advantage of this method is its principle

of �maximum entropy� to produce an ensemble of networks which makes the

fewest amount of assumptions, thereby ensuring that we have randomised all

other topological and weight patterns which could be misconstrued as social

structure. The method is similar to permutation-based and random-graph algo-

rithms in that they o�er null-models conditioned on simple assumptions. How-

ever, permutation-based and random-graph algorithms do not necessarily guar-

antee that their ensembles do not have structural correlations or biases that are

mere artefacts of the randomisation algorithm (Garlaschelli & Lo�redo, 2008).

We speci�ed three di�erent null-models that are constrained to the degree-

sequence (Topology Null Model, TNM), strength-sequence (Weighted Null

Model, WNM), and both (Mixed Null Model, MNM) for proportion-weighted

networks. We derive the probability distributions for the TNM, WNM and

MNM and apply them to 10 years of association data from a well-studied pop-

ulation of bottlenose dolphins Tursiops cf. aduncus in Shark Bay, Western

Australia (Mann et al., 2012).

Three aims of this study are:

1. to compare how well observed individual-level network metrics correspond

to null-model expectations, for three null-models;
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2. to compare averages of whole network metrics to their null-model expec-

tations, especially as a function of network size N (an ongoing controversy

in network science; e.g. see Anderson et al., 1999);

3. to compare how inferences about network community structure di�er ac-

cording to the null-model used via Modularity optimisation (Squartini &

Garlaschelli, 2011).

For aims 1 and 2, we focus on 11 popular node-level metrics used in anal-

yses of animal societies, such as clustering, a�nity, centrality, dispersion, and

connectivity.

The method of Garlaschelli & Lo�redo (2009) caused considerable upset in

other disciplines. For example, Garlaschelli & Lo�redo (2009) discovered that

some weighted measures "inherit" trivially from topological features and called

for "a systematic rede�nition of weighted network properties", while Mastran-

drea et al. (2014) noted that "the strength sequence is in general uninforma-

tive about the higher-order properties of the network". The implications for

behavioural ecologists are that: 1) many weighted-network metrics may not de-

pend on weights per se and actually depend on the underlying binary, topological

patterns; and 2) that many metrics of higher-order structure are not signi�cantly

di�erent from (and often highly corrected with) the values one would expect

from networks with only individual-level constraints (degree and/or strength).

The above claims were supported over a broad range of networks, such as

food-webs, online social networks, and �nancial/trading networks. If the conclu-

sions of Garlaschelli & Lo�redo (2009) and Mastrandrea et al. (2014) generalise

to animal social networks, then it would be a setback to behavioural ecology

studies based on network metrics. For example, if clustering and a�nity met-

rics were merely redundant to individual-level attributes, and did not measure

higher-order properties as intended, they would produce misleading conclusions

about �social structure�, as de�ned as higher-order structure that is more than

the sum of individuals (Holland & Leinhardt, 1979; Faust, 2006). However,

the methods and insights from integer-weighted networks cannot be accepted
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naively for proportion-weighted networks. We show that the eastern gulf Shark

Bay dolphins stand as a contrary case to the many and varied networks consid-

ered by Garlaschelli & Lo�redo (2009) and Mastrandrea et al. (2014).

2. Methods

2.1. Data

Our data source is a 31-year long-term study of over 1500 individually iden-

ti�ed bottlenose dolphins resident to the eastern gulf of Shark Bay, Western

Australia (Mann et al., 2012). Associations among individual dolphins were es-

timated from opportunistically encountered groups during boat-based surveys,

using a 10-meter chain rule to de�ne in-situ group membership (Smolker et al.,

1992). We truncated the data to include non-calf individuals encountered at

least �ve times each year within a constant spatial and temporal domain. The

constant space-time domain was evaluated in the following way: i) we included

surveys that occurred between May and November; ii) per year, we calculated

a minimum convex hull (MCH) which enveloped all geo-referenced encounters;

iii) we used the spatial intersection of all 10 per-year MCHs to de�ne a small

region of consistent spatial surveillance; iv) we smoothed the perimeter of the

constant spatial domain by adding a 2500m spatial bu�er. Annual pairwise

associations were estimated using the Half-weight index (Cairns & Schwager,

1987) to generate networks for each year between 2003 to 2012 (for a total of 10

networks). In total, 209 individuals were included. 41% of individuals occurred

in just one network and 4% occurred in all 10 networks. The number of nodes

N per year varied from 18 individuals in 2005, to 122 individuals in 2004 (mean

61.4, S.D. 32). The range of network sizes facilitated our study of the behaviour

of empirical and expected metrics under variable N. The number of survey-days

varied from 36 in 2005 to 98 in 2003 (mean 66.0, S.D. 19.5).

2.2. Null-Models

In the following description, we denote a weighted network as being fully

described by its weight matrix W with individual nodes i and the strength
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of association between nodes i and j denoted wij ∈ [0, 1]. It is symmetric and

undirected, wij = wji. Some key metrics are strength si =
∑n
i 6=j wij (the sum of

a node's weights given that a node has n neighbours) and the strength-sequence

~s = (s1, s2, ..., sN ), as well as degree ki =
∑n
i6=j I[wij > 0] (the sum of a node's

binary connections), and the degree-sequence ~k = (k1, k2, ..., kN ).

The goal of this paper is to calculate an unbiased expectation of a net-

work metric, ci (e.g. clustering coe�cient) here indexed to individual i, but

whose calculation may include all pairs or triplets in the network. To do this,

we need a method to generate the ensemble of networks W whose expected

strength- and/or degree-sequence are the same as our observed weighted net-

work, i.e. ~θobs = E[~θ]. The expectation E[ci] is calculated over the entire

ensemble, whereby each constituent network (W′) in the ensemble contributes

a value in proportion to its probability P (W′|~θ) conditional on property ~θ.

The ensemble is approximated by drawing a large number of random net-

works from P (W|~θ). The expected value of a metric value is approximated

by taking the average over the random draw of networks, denoted 〈ci〉; i.e.

E[ci] =
∑
W ′∈W p(W ′|~θ)ci(W ′) ≈ 〈ci〉.

The challenge is to de�ne P (W|~θ) and sample from it. The underlying as-

sumption of the distribution is that the initial cost of forming an association

is greater than maintaining an existing tie, as developed by Garlaschelli and

Lo�redo (2008; 2009), but unlike their work, our equations respect the [0, 1]

bound for weights in a proportion-weighted network. The mathematical details

are in the Appendix. The key point is that by specifying the probability distri-

bution according to the Exponential Random Graph model, we ensure that the

resulting ensemble of networks is maximally random in all regards aside from

the user-speci�ed constraints (e.g. ~s, ~k). For example, the topology (who is

connected to who) is maximally randomised, as well as the pattern of weights

on this topology.

Our analysis was repeated for 10 networks based on annual �eld surveys

conducted during the austral winter and spring (Fig 1). The steps of the anal-

yses were as follows. i) We derived the probability and expectation functions
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of weights for the three null-models (TNM, WNM and MNM; detailed in the

Appendix). ii) We speci�ed the maximum entropy ensemble of networks by

setting the ensemble average properties (strength- and/or degree-sequence) to

the observed values and solving node-speci�c parameters (known in the �eld

of constrained-optimisation as �Lagrangians�, also detailed in the Appendix).

Solving these parameters fully speci�es the ensemble and was repeated for each

observed network and each null-model. iii) We approximated the maximum en-

tropy ensemble for each empirical network by taking a large sample (1000) of

random networks drawn from P (W), using the probability distribution function

of weights from step ii. The construction of each ensemble was performed for

each year's empirical network and each null-model, for a total of 30 network

ensembles. iv) Metrics' expectations were calculated using the ensembles and

were compared to the observed networks' values; we also looked for patterns

among the di�erent metrics, their residuals, and by sex. The metric expecta-

tions were calculated per metric × per individual × per year × per null-model,

but we simpli�ed the comparison by looking for global patterns over all years,

by metric and null-model, resulting in the 11 × 3 scatter plots in Figures 2, 3,

and 4 and correlation coe�cients in Table 1. v) We calculated population-level

averages and intervals of metrics and compared these to the population averages

and intervals of the observed networks. vi) We compared the communities im-

plied by each null-model by performing community-partitioning by Modularity

optimisation, using the expectations of weights according each null-model. In-

ferred communities were compared within each year for all pairs of null-models.

2.3. Node-level metrics

For each node-per-year, we calculated 11 weighted metrics. We focused on

a�nity and clustering/transitivity metrics, which are intensely studied second-

and third-order properties (Barrat et al., 2004; Serrano et al., 2006; Garlaschelli

& Lo�redo, 2009; Mastrandrea et al., 2014). We also calculated some metrics

which are recommended for animal societies (Whitehead, 2008; Wey et al., 2008)

8



female
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HW=0.2

HW=0.5

HW=1.0

Figure 1: Example visualisation of the social network of eastern gulf Shark Bay bottlenose
dolphins for the year 2007. Associations are calculated from group encounters using the
Half-Weight index.

as well as weighted versions of Freeman's centrality indices (Freeman, 1979).

The expectations of the 11 di�erent metrics were calculated for each node-

per-year and per null-model (TNM, WNM, MNM). To simplify the compar-

isons of observed versus expected, we summarise our results by metric and
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null-model, according to: i) the Pearson's correlation coe�cient R0; and ii) the

partial-correlation coe�cient R1|year (Cohen et al., 2003), after removing varia-

tion explained by year (and therefore di�erent network sizes). In both cases, it

was individual dolphins (per year) which constitute individual data points for

the correlation statistics. The two R statistics helped contextualise the degree

to which the null-model expectations were similar to observed values across

all individual dolphins (i.e. high R0 and high R1|year) or just for population

averages (high R0 but lower R1|year).

We used the following weighted metrics:

Cc weighted closeness centrality, a measure of short paths to all other nodes

(Freeman, 1979; Opsahl et al., 2010). We predicted that all null-models

should be able to predict node-level values of Cc, inasmuch as individuals'

strength and degree are inversely related to the path-length to other nodes,

e.g, if high-degree and high-strength individuals have a greater tendency

to have short paths across the network.

Cb weighted betweenness centrality, how well an individual connects di�er-

ent subsets or clusters (Freeman, 1979; Opsahl et al., 2010). High Cb-

individuals may be important for global propagation of information, dis-

ease, etc. Because randomised graphs should not have substructures, Cb

is not expected to be well predicted by any null-model.

Ce eigenvector centrality, a measure of the centrality of a node's neighbours

(Butts, 2008). It is the most succinct representation of the total vari-

ation in a network along a single dimension (i.e. the dominant social

dimension). Inasmuch as a network's total variation is driven by individ-

uals' tendency to associate with others of a similar degree/strength (i.e.

degree/strength-assortativity) Ce should be fairly redundant to degree-

and strength-preserving null-models.

CL Laplacian centrality, a measure of the sensitivity of a network to node

deletions (Qi et al., 2012). It addresses an enduring interest in wildlife

conservation about the resilience of animal societies to targeted removal
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of important individuals (Williams & Lusseau, 2006). For example, odon-

tocetes societies may be particularly resilient to deletions because of the

peculiar degree-distribution (�at at small degrees and scale-free otherwise;

Lusseau 2003). If this is the case, then the degree-sequence may be su�-

cient to produce expected values of CL close to their observed values.

knn degree-a�nity, the weighted average nearest neighbour degree. It is a

second-order measure used to diagnose degree assortativity: whether in-

dividuals preferentially associate with those who have a similar degree.

snn strength-a�nity, a second-order measure similar to knn, but estimates

neighbours' strength instead of degree. It is the recommended a�nity

metric for animal societies (Whitehead, 2008; Kasper & Voelkl, 2009).

Mastrandrea et al. (2014) demonstrated the remarkable predictability of

knn and snn from degree- and strength-sequence null-models for a variety

of social and non-social networks, and we anticipated similar results.

cH Holme clustering coe�cient, a third-order measure of link transitivity, as

recommended byWhitehead (2008), which compares the number of closed-

triangles vs. triplets around a node. Null-models should have no great

ability to predict the presence of cliques, clustering, or the lack-thereof

(unlike the results of Mastrandrea et al., 2014).

cO Opsahl geometric-mean clustering coe�cient, another third-order measure

of transitivity. While similar to cH , it has a di�erent way to score the

number of triangles vs. triplets around a node, and was designed to serve

generally in weighted network analyses (Opsahl & Panzarasa, 2009).

T ∗ cost-integrated triangle count, another measure of transitivity and the sim-

plest third-order metric. T ∗ is simply the count of triangles around a

node, but is generalized for weighted networks via the technique of cost-

integration (Ginestet et al., 2011).

Y disparity, a measure of the dispersion of weights around a node. It helps

to contextualise whether an individual has just a few strong connections

or many weak connections (Barthélemy et al., 2005; Whitehead, 2008).

The metric compares an individual's strength metric to its degree, which
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for proportion-weighted weights are inherently related: si ≤ ki. There-

fore, disparity based on proportion-weights is expected to be predictable

when both strength- and degree-sequences are set, but not when either is

randomised.

rS reach, a measure of indirect correctness, calculated as the total strength

of a node's neighbours (Whitehead, 2008). Because the measure depends

heavily on the strength of individuals, it is expected to be well predicted

by the strength-preserving models, WNM and MNM, but not TNM.

2.4. Metric Correlations

Social structure is often identi�ed (and sometimes de�ned) by patterns

among network metrics, such as k vs. knn for degree-(dis)assortativity. We

compared network metrics pairs by inspecting plots and calculating a non-linear

metric of association, the Maximal Information Coe�cient (MIC; Reshef et al.,

2011) whereby MIC ∈ [0, 1] shows perfect agreement at 1. We also used metric

residuals (i.e. the di�erence between an observed metric and its null-model ex-

pectation) as another candidate for identifying structure. Such residuals may be

more informative than observed metrics in that they may partially standardise

metrics for di�erent network-size and densities. We also explored the distri-

butions of metrics by males and females. We computed the Jensen-Shannon

distance (DJS ∈ [0, 0.69]) to quantify which metric distributions were strongly

di�erent by males and females. We note that the residuals, MIC, and DJS are

not fundamental to the null-model approach. Rather, the null-model expecta-

tions can help uncover patterns which may be di�cult to discern among the raw

metrics.

Lastly, we also compared the network metrics to other non-network metrics

to probe for artefacts of the survey design or sampling procedure, such as com-

paring metrics to simple indices of over-representation of certain individuals in

the data. We used the number of surveys and years in which a dolphin was

encountered, isurvey and iyears respectively.
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2.5. Model Comparisons

We estimated null-model support by calculating likelihood values and AIC

weights (Mastrandrea et al., 2014). The comparisons were made among the three

null-models, per empirical network. The log-likelihood is conditional on dolphin-

speci�c parameters ~x, ~y, also called Lagrangian multipliers, which are used to

ensure that each dolphins' degree-/strength-sequence have equal values between

their observed and ensemble averages (see Appendix). The log-likelihood is:

logL(W|~x, ~y) = logP (W|~x, ~y) =
∑
i<j

log q(wij |~x, ~y) (1)

Calculation of the AIC is −2 logL(W|~x, ~y)+2k, where k is the number of model

parameters. For the TNM and WNM, there is one parameter for each individual

in the network (k = N), while there are two parameters for every individual

dolphin in the MNM (k = 2N). The AIC weights sum to 1 for each empirical

network, and high values suggest better agreement between model and observed

data, while penalising model complexity.

2.6. Community Structure

To assess how the di�erent null-models can in�uence inferences about fun-

damental network structure, such as clustering into communities, we performed

network partitioning by Modularity optimisation, per year, according to four

null-models: the TNM, WNM, MNM, plus the default "bi-linear" strength-

preserving model of Newman (2004). Modularity is a measure of fragmentation

of a network into densely-connected clusters with sparse connections between

clusters, and is a popular optimisation criterion for �nding discrete communities

(Whitehead, 2008). Weighted Modularity can be generalized for any null-model

by substituting the expected weights (E[wij ] ≈ 〈wij〉) into the Modularity score

Q = 1
2stot

∑
ij(w

obs
ij − 〈wij〉)δ(ci, cj) (Squartini & Garlaschelli, 2011), where

δ(ci, cj) = 1 if i and j are in the same community, c is a vector of community

membership, and stot is the total strength of observed network W. We used

the spectral optimisation techniques of Donetti & Muñoz (2004) and Simon-

sen (2005) for community partitioning. The number of communities (L) was
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inferred by optimising Q with respect to L. We also optimised over all algo-

rithm parameters such as: graph Laplacian (Donetti & Muñoz, 2004) vs. the

transfer matrix (Simonsen, 2005); the number of eigenvectors; and the cluster-

ing criterion (average, complete, McQuitty's, single, and Ward's criterion). The

general method is known to have good performance (Fortunato, 2010) and we

benchmarked it against exhaustive simulated annealing (Bélisle, 1992).

This analysis resulted in di�erent estimated communities per year and per

null-model, for a total of 40 di�erent community partitionings. To calculate

the similarity between two partitionings, we used the Corrected Rand Index,

which is useful when the number of communities may di�er (see R package fpc

Hennig, 2014). The statistic takes values 0 to 1, where 1 is perfect agreement

between communities. Only communities within each year are comparable to

each other.

3. Results

To examine the performance of the null models, we compared the expected

metrics they generated with the observed values (Figures 2, 3, 4). Null-models

that generate expected values that strongly correlate with observed metric val-

ues suggest that a lot of the variation is due to individual-level attributes.

Our general �nding is that MNMs, which conditions on both the degree- and

strength-sequence, performed best based on the high correlation between ob-

served and expected metric values and high AIC weights (Figure 2 and Table

1).

Across all null-models, some metrics were consistently more predictable than

others: Laplacian centrality, reach and disparity showed high predictability,

with R2
1 values >0.8 between observed and expected values across all models.

Of the other metrics, correlations were weaker, with non-uniform scattering of

residuals. For example, most observed a�nity values clustered along the 1:1 line

with a long-tailed distribution of lower-than-expected values. Likewise, most

clustering values were higher than expected, and rarely fell below the expected

values. This last pattern was only true when considering all years combined, and
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Figure 2: Network metrics of individual dolphins in Shark Bay, observed (x-axis) versus ex-
pected values (y-axis) according to the Mixed Null Model, conditioning on strength- and
degree-sequence. Cc closeness, Cb betweenness, CL Laplacian centrality, Ce eigenvector
centrality, cO Opsahl clustering, cH Holme clustering, rS reach, snn strength-a�nity, knn

degree-a�nity, Y disparity, T ∗ triangle-count. Di�erent colours and symbols represent di�er-
ent networks (i.e. metrics are calculated within the context of a single network).

did not hold within years. Within years, the correlation between observed and

expected clustering metrics was low, with R2
1 values <0.3, and the scatter-plots
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Figure 3: Network metrics of individual dolphins in Shark Bay, observed (x-axis) versus
expected values (y-axis) according to the Weighted Null Model, conditioning on strength-
sequence. Cc closeness, Cb betweenness, CL Laplacian centrality, Ce eigenvector centrality,
cO Opsahl clustering, cH Holme clustering, rS reach, snn strength-a�nity, knn degree-a�nity,
Y disparity, T ∗ triangle-count. Di�erent colours and symbols represent di�erent networks (i.e.
metrics are calculated within the context of a single network).

showed a near-�at relationship.

Overwhelmingly, the AIC weights suggested greatest support for the MNM.
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Figure 4: Network metrics of individual dolphins in Shark Bay, observed (x-axis) versus ex-
pected values (y-axis) according to the Topology Null Model, conditioning on degree-sequence.
Cc closeness, Cb betweenness, CL Laplacian centrality, Ce eigenvector centrality, cO Opsahl
clustering, cH Holme clustering, rS reach, snn strength-a�nity, knn degree-a�nity, Y dispar-
ity, T ∗ triangle-count. Di�erent colours and symbols represent di�erent networks (i.e. metrics
are calculated within the context of a single network).

The MNM had wAICMNM > 0.99 for nine out of ten networks. Only the smallest

network of N=18 individuals was supported by the TNM (wAICTNM = 0.784).
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Table 1: Correlations between observed and expected node-level metric values, by metric
and null-model

TNM WNM MNM

Node-level metric R2
0 R2

1|year R2
0 R2

1|year R2
0 R2

1|year
Laplacian centrality 0.633 0.435 0.985 0.979 0.983 0.976

reach 0.38 0.343 0.941 0.93 0.936 0.923

closeness centrality 0.921 0.724 0.937 0.74 0.925 0.612

disparity 0.845 0.836 0.682 0.704 0.874 0.865

eigenvector centrality 0.29 0.213 0.709 0.686 0.722 0.7

triangle count 0.664 0.753 0.295 0.288 0.674 0.702

strength-a�nity 0.153 0.017 0.421 0.281 0.346 0.034
betweenness centrality 0.081 0.045 0.317 0.287 0.302 0.27
degree-a�nity 0.169 0.156 0.161 0.204 0.204 0.017
clustering (Holme) 0.057 0.16 0.072 0.155 0.142 0.247
clustering (Opsahl) 0.114 0.184 0.078 0.104 0.114 0.181

R2
0 is the squared zero-order correlation pooled over 10 years of association data, per null-

model (TNM, WNM and MNM). R2
1|year is the squared partial-correlation, which removes

the trend over years and shows the within-year correlations. The TNM conditions on the

degree-sequence, the WNM conditions on the strength-sequence, and MNM conditions on

both. Value >0.6 are bold for emphasis.

3.1. Metrics Vs. Network Size

Figure 5 shows the robust trend lines regressing observed and MNM ex-

pected values versus network size, whereby each year had a di�erent network

size. Very similar results were obtained when comparing metrics to changes in

weighted density (but we omit the results because of the high correlation be-

tween N and weighted density, ρ̂Pearson > 0.95). Betweenness centrality, degree-

a�nity, strength-a�nity and reach all showed increasing values with increasing

network size, consistent between empirical and expected networks. Likewise,

closeness centrality, Laplacian centrality, eigenvector centrality and disparity

had decreasing values with increasing N, consistent between observed and ex-

pected networks. Even when the observed individual metric values were poorly

predicted, the MNM nonetheless made good approximations of the networks'

averages as well as the trend over N. In the case of a�nity, which was poorly

predicted at the individual level, the trend and intercept were nearly identical
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Figure 5: How per-year network averages of metrics vary by network size N, both empirically
and predicted by the Mixed Null Model. Cc closeness, Cb betweenness, CL Laplacian cen-
trality, Ce eigenvector centrality, cO Opsahl clustering, cH Holme clustering, rS reach, snn

strength-a�nity, knn degree-a�nity, Y disparity, T ∗ triangle-count.

at the population level. The trend in transitivity measures showed marked de-

viation from MNM expectations, whereby clustering and triangle counts were

higher than expected, and the disagreement between the observed and expected
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values increased as N increased.

3.2. Patterns Among Metrics

Inspecting metrics' residuals (i.e. the observed values minus the expected

values), and their relationship among other metrics can lead to insights into

social structure. We focused on those metrics that were least predictable

by strength and/or degree, such as the cluster coe�cients (cO, cH), strength-

and degree-a�nities (snn, knn), and eigenvector and betweenness centrality

(Ce, CB). Some residuals seemed to tightly cluster around 0, suggesting that the

majority of individuals had values which were predictable solely by degree and

strength-sequence alone, while o�-zero residuals had erratic patterns on either

side of the zero-line, such as for snn, knn, and especially CB . Those individuals

who strongly deviated from expectations could be worthy of further investiga-

tion. Considering only the MNM, the clustering coe�cients had residuals that

seemed to be distributed uniformly and randomly with respect to most other

metrics and were generally uncorrelated with other metrics, suggesting that

clustering uniquely measures some aspect of social-biology which all the other

metrics do not. For clustering, the largest association by MIC was between the

CB-residual and the cH -residuals with MIC=0.363 (where MIC is de�ned on

[0, 1]), which was likewise the largest MIC for CB , suggesting a weakly negative

relationship between clustering and betweenness, i.e. individuals who are high

social-brokers tend to cluster less than expected.

In contrast to clustering, the residuals of the a�nity metrics showed a strong

correlation with other metrics. We observed a concave positive relationship be-

tween pairs (s, snn) and (k, knn) which indicates strength/degree-assortativity,

whereby high-strength/degree individuals tend to associate with other high-

strength/degree individuals. However, this regression had a MIC of 0.516 and

conditional mutual information (CMI) of 0.701, and ranked lower than the pair

(Ce-residuals, snn-residuals), with MIC 0.644 and CMI 0.758. Together, the

residuals revealed a three-tine-star pattern, or three overlapping clusters (Fig-

ure 6): one cluster was a linear relationship between higher-than-expected snn
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and higher-than-expected-Ce individuals (i.e. they are the same individuals);

a second cluster included individuals with lower-than-expected snn, low-s, but

behaved as expected for Ce; a third cluster had lower-than-expected Ce, biased-

low snn values, and a range of s values. This pattern appeared for each year

and for both sexes, and was also evident in Ce-residuals vs. knn-residuals, albeit

with a weaker MIC of 0.327. If we recall that the �rst eigenvector is the best

single-dimension representation of the pattern of associations (e.g. the dominant

social dimension) then the appearance of strength-assortativity may actually be

due to the underlying community structure (as revealed by Ce), where one end

of the spectrum constitutes the well-connected, high-s individuals central to the

network, and the other end of the spectrum is more diverse, with two di�erent

clusters and a mixture of low and high-s individuals with low snn. Importantly,

this pattern was not related to artefacts of the sampling region as suggested by:

i) the low correlation with measures of preferential sampling (isurvey and iyears

with a maximum MIC of 0.177); and ii) the pattern was strongest for weighted

information (snn vs. s), rather than binary information (knn vs. k), i.e. weights

should be more robust to sampling artefacts than binary information (Farine,

2014).

Considering sex, few of the metrics showed strong di�erences between males

and females, e.g. the 5 largest Jensen-Shannon distances [0,0.693] between males

and females were 0.171, 0.150, 0.138, 0.128, and 0.121 for cH , Ce, Ce-residuals,

s and cH -residuals, respectively. Rather, it was only through pairwise bivariate

distributions that strong di�erences manifested between the sexes. The top �ve

bivariate JS-distances were higher at 0.411, 0.411, 0.410, 0.407, and 0.400, for the

pairs (cH , k), (cH , s), (cH , T ∗), (cH , snn-residuals), and (cH -residuals, k). Males

tended to cluster more, had slightly larger a�nity values and were slightly more

central to the network, but there was considerable overlap and a wide range of

values among the sexes.
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Table 2: Agreement between community partitionings implied by four null-models over 10
weighted networks.

bi-linear WNM MNM TNM
bi-linear -
WNM 0.95 -
MNM 0.95 1 -
TNM 0.55 0.54 0.54 -

Communities were inferred by optimising Modularity, based on the WNM, MNM, TNM, and

the original "bi-linear" strength-preserving model by Newman(2004). Values are corrected

Rand indices averaged over 10 networks.

3.3. Modularity

Modularity scores and community partitioning showed high agreement be-

tween the three strength-preserving null-models (bi-linear, WNM and MNM),

with 9 out of 10 years having identical community partitionings. All WNM and

MNM partitions were identical. Modularity scores varied by year more than

by null-model, with Q values in the range of 0.13 to 0.28 and averaged 0.21

over all years and methods (i.e. low fragmentation). The TNM resulted in very

di�erent communities, with a mean Corrected Rand Index of approximately

0.54 compared to the other three methods. The TNM estimated 145% more

communities on average than the other 3 methods.

4. Discussion

Network science has a growing in�uence on many �elds of biology, especially

behavioural ecology. As the strength of associations between animals is cen-

tral to theories of social evolution, weighted networks play an important role.

Outside of behavioural ecology, some researchers have dismissed weighted in-

formation as redundant to binary connections. Using a null-model approach to

compare observed weighted metrics versus null-model expectations, similar to

Garlaschelli & Lo�redo (2008, 2009) and Mastrandrea et al. (2014), we show

how weighted information reveals interesting insights into the social lives of

dolphins and the behaviour of certain weighted-network metrics.
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In behavioural ecology, the null-model approach typically involves applica-

tion of permutation-based algorithms to generate expectations of metric values

under a variety of constraints (Bejder et al., 1998). The contribution of this

paper is to focus on how to specify and sample from null-models, while meet-

ing three important criteria: i) the random networks are proportion-weighted

wij ∈ [0, 1]; ii) we can condition on di�erent individual-level properties, such

as degree ~k (sum of binary connections) and strength ~s (sum of weights of

connections) as well as size and density of an empirical network; and iii) we

ensure that all other properties are maximally randomised, like the topology

and weights on the topology, and thereby avoid the risk of confusing artefacts

of the randomisation algorithm for social structure.

Our analysis compared the null-models at three levels of network structure

(individual, population averages, and sub-communities) with di�erent insights

at each level:

1. Inferences about weighted networks depend on how one conditions a null-

model.

2. Higher-order network properties of dolphin networks di�er in their pre-

dictability compared to �agship examples used in other scienti�c disci-

plines, especially clustering and strength-assortativity.

3. While clustering and strength-a�nity were not trivially redundant to

individual-level properties, many other network metrics yielded little extra

information over their expectations from strength-preserving null-models.

4. For the eastern gulf Shark Bay bottlenose dolphins, males tend to cluster

more than females, and the dominant social dimension seems to be along

the lines of strength-assortativity, with high-strength and high-a�nity

males on one end, and a diverse constituency at the other.

5. Null-models can often make good predictions about the relationship be-

tween metrics values and network size N and network density, thus facil-

itating comparisons between networks across time and space.

These results would theoretically hold for any permutation or randomisation-
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based null-model that could likewise condition on the expected values of indi-

viduals' strength and degree. In other words, it is the conditioning that should

characterise the null-distribution of network metrics, analogous to how a Normal

distribution is fully speci�ed by its mean and variance. However, conditioning

on both strength and degree is technically di�cult, and other permutation or

random-graphs methods cannot necessarily guarantee that their algorithms do

not arti�cially induce structural correlations which can be confused for genuine

social structure. This is an important point, given the large body of network

literature devoted to new algorithms that condition on or reproduce certain

properties for inference about network structure and function (Watts & Stro-

gatz, 1998; Serrano et al., 2006; Leskovec et al., 2010; Ansmann & Lehnertz,

2011; Prettejohn et al., 2011). It is the principle of maximum entropy that

ensures that all other attributes such as the topology and topological-weight

correlations are maximally random.

4.1. Inferences based on null-models

Of the three null-models we studied (constraining the degree-sequence,

TNM; the strength-sequence, WNM; and both, MNM), the MNM had the most

support by AIC and gave expected values for individual-level metrics that were

most inline with observed values. Our results show an important di�erence to

the studies by Garlaschelli & Lo�redo (2009) and Mastrandrea et al. (2014),

who considered many other non-social integer-weighted networks. They empha-

sised the importance of the degree-sequence and challenged the importance of

weight information in weighted metrics. Our results were more equivocal: some

weighted metrics were more predictable according to the degree-sequence, while

other metrics were more predictable based on the strength-sequence. Therefore,

we emphasis that it is more conservative to base inferences on null-models which

incorporate both strength- and degree-sequences (i.e. the MNM). Conditioning

on both ensures that a larger set of possible metrics are genuinely informative

about structure beyond mere individual-level properties, and that our conclu-

sions are not due to an arbitrary decision of whether we conditioned on the
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strength- or degree-sequence.

Although it may seem obvious that a more complex model would better �t

observations than simpler ones, this does not mean that conditioning on more

properties is necessarily "better�. This way of thinking hails from the �generative

model� line of inquiry, such as regression analyses, which try to explain as-best-

as-possible how data arose. Instead, the null-model approach is to compare an

observed statistic to its expectation under "no e�ect", analogous to how one

compares t statistics to a null Student-t distribution. Here, we are interested

in network metrics that do not behave according to their expectations based

on individual-level properties. This line of inference is rooted in the notion

that social structure is a phenomena which is more than the sum of constituent

individuals (Holland & Leinhardt, 1979). Therefore, the question of including

degree-sequence, strength-sequence, or both is a question of conditioning: what

features do I want to measure given the values of another? For example, it

is well-known that network size and density explain the greatest amount of

variation in almost all network measurements (Anderson et al., 1999; van Wijk

et al., 2010), and therefore, one can only look for meaningful deviations in

network metrics if they are standardised for size and/or density.

Likewise, the degree-sequence has long been recognised as one such key-

property for binary networks which demands being conditioned upon. But for

weighted networks, serious questions have arisen about the appropriateness of

either the degree- or strength-sequence (or both) to serve this crucial condi-

tioning role (Newman, 2004; Garlaschelli & Lo�redo, 2009; Mastrandrea et al.,

2014). Our analyses suggest that both strength-sequence and degree-sequence

together are core properties for some metrics, but not all. For example, if we

were to condition on degree (TNM) and we compare dolphins' reach values

vs. their expectations, we would conclude that a persistent feature of dolphin

society is for individuals to have weaker connections among neighbours than ex-

pected based on their number of connections. Whereas, if we were to condition

on strength (WNM) we would conclude that they were behaving almost exactly

according to expectations. If one does not condition on both, then the infor-
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mation in some network measurements will just re�ect variations in strength

and/or degree-sequence, rather than meaningful higher-order structure.

One level of social structure which was not sensitive to the underlying

null-model was community partitioning by Modularity optimisation. For ex-

ample, all three strength-preserving models, the WNM, the MNM, and the

bilinear model of Newman (2004, which is known to be biased; Squartini &

Garlaschelli 2011) generally resulted in the same conclusions about community

structure. Large di�erences were only observed when comparing the strength-

preserving null-models vs. the degree-preserving model (TNM): the TNM pre-

dicted a greater number of communities and much smaller communities than

the WNM/MNM/bilinear models. In the case of the Shark Bay dolphins, we

are able to a priori motivate the appropriateness of the WNM/MNM/bilinear

model partitionings versus the TNM communities, because ��ssion-fusion� soci-

eties are likely to have many temporary encounters (and therefore a very dense

topology) but only a fraction of these putative connection will actually re�ect

long-term associations.

The community partitioning results underscore the utility of conditioning on

both the degree and strength sequence: we do not need to choose between two

competing null-models and two competing community structures (TNM versus

WNM), because the MNM recovers the �correct� structure by conditioning on

both. The MNM would be especially useful for researchers who cannot a pri-

ori motivate the use of either a strength- or degree-preserving null-model for

community partitioning.

4.2. Higher-order Network Properties

Another insight from our null-models is the lack of structural correlations

in higher-order network metrics reported in the statistical physics literature.

This contrasts sharply with the statements of Garlaschelli & Lo�redo (2009)

and Mastrandrea et al. (2014) who declared weighted information to be mostly

redundant to topology. In our case, the expectations from the WNM and MNM

were more similar than those of the TNM. Our �ndings are particularly strik-
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ing for proportion-weighted networks, which have a fundamental correlation

between strength and degree (si ≤ ki).

In particular, the second- and third-order properties were not reproduced

trivially by any of the null-models, unlike what was observed by the com-

prehensive analyses of Mastrandrea et al. (2014). Instead, clustering and

strength/degree-a�nity di�ered strongly from their null-model expectations and

provided rich information about the social structure of the eastern gulf Shark

Bay dolphins. Most simply, dolphins clustered more than expected and had

equal-or-lower a�nity values than expected. Males, in particular, cluster more

than females (Mann et al., 2012), which is likely due to their long-term pairs

and hierarchical alliances, whereas females may associate less strongly based

on factors unrelated to �friendship� (e.g. reproductive status, age of calves, or

coercion by other males; Smolker et al., 1992; Scott et al., 2005; Frere et al.,

2010; Mann et al., 2012). The information in a�nity metrics related strongly to

other metrics, especially eigenvector centrality, hinting at a more complex struc-

ture than simple strength/degree assortativity: the networks' high-strength in-

dividuals with high-strength neighbours constituted one end of the dominant

social dimension, and also tended to be male; while at the other end were the

low-a�nity individuals with diverse strength-values (Figure 6). This was the

dominant structure of the network, around which there was a diverse group of

individuals with lower-than-expected strength-a�nity and highly unpredictable

eigenvectors, who may be from other sub-communities which cannot be ade-

quately described by the leading eigenvector. Functionally, dolphins form asso-

ciations based on shared foraging tactics, sex and kinship (Mann et al., 2012);

these and other factors cannot be expressed by network-metrics, may be the

cause behind the null-models' inability to reproduce the seemingly simple rela-

tionship of strength/degree-assortativity.

It is not surprising that our results di�er from the comprehensive studies

of Mastrandrea et al. (2014), given the wealth of literature on dolphin social

alliances, sociality-�tness correlations and emergent network properties (Connor

et al., 2001; Lusseau, 2003; Krützen et al., 2004; Frere et al., 2010; Stanton &
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Mann, 2012). It nonetheless underscores the caution that behavioural ecologists

must exercise when interpreting the developments in network analysis from other

disciplines, whose subjects can span trophic webs to �nancial networks. Firstly,

there is likely a fundamental di�erence between social animals and the more

abstract networks from the physical sciences. Secondly, behavioural ecology

studies are probably more sensitive to observation error and the data-collection

process, which may mediate the importance of binary vs. weighted-information,

e.g. animal networks measured by group a�liation are more likely to have many

frivolous binary connections. It remains to be seen whether our conclusions

about the redundancy of certain metrics and the informativeness of higher-order

metrics will generalise to other taxa and societies.

4.3. Comparing networks

Our null-models potentially o�er a way to standardise metrics across net-

works of di�erent size and density. Because open populations of animals may

have year-to-year variation in N, the dependence of metric values on network

size and density hinders researchers' ability to compare network values over

time or across populations. It is especially problematic for researchers who wish

to monitor and estimate changes in animals' social lives over time and due to

di�erent treatments (e.g. changes in dolphin-watch tourism, resource extrac-

tion activities, conservation management, etc.), but who cannot hold popula-

tion and/or network size constant. This problem does not have a satisfactory

answer in general (Anderson et al., 1999), and less for weighted metrics (van

Wijk et al., 2010). Even seemingly simple metrics like centrality (where so-

lutions exist for binary measures) have no accepted standardisation candidate

for weighted metrics (Kasper & Voelkl, 2009). The null-models here provided

satisfactory per-year population-level summaries, and may o�er a possible stan-

dardisation technique via the di�erence between observed and expected values.

Unfortunately, this does not apply to clustering metrics.
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4.4. Limitations and future considerations

In the broader context of network analysis, the null-model approach has lim-

itations. In our case, its insights are limited to what individual-attributes may

be important to condition upon (especially strength) and what network met-

rics may be redundant to individual-attributes. We o�er no generative model

of the true underlying social process, nor do we specify how observation error

obfuscates the true social process. This is true of a lot of network analyses

using null-models and network metrics, whereby metrics are not necessarily

representative of the processes that animals in the network are in�uenced by,

nor are they necessarily functionally important. Furthermore, we are generally

unable to make conclusions about how network properties arise, such as being

the manifestation of many individual-based decisions, or whether there is some

higher-order feedback from patterns in the network itself.

Secondly, we do not handle confounding e�ects of space, time, artefacts of

the survey design or observation error, which are a major preoccupation in

others �elds of animal ecology. In our case, any spatial processes or observation

errors are taken as a given inasmuch as they manifest in individuals' degree

or strength. On this issue, permutation and random-graph algorithms may be

better able to account for observation error, survey design and inherent problems

with inferring associations from group-membership data. Investigators need to

judge what may be the greatest source of bias for their particular research

questions. Ultimately, the �eld needs better generative models, such as those

common to sociology (e.g. Exponential Random Graphs or Stochastic Actor-

Oriented Models, Pinter-Wollman et al. 2014), which can incorporate node-level

covariates, exogenous covariates and dynamic processes. While these techniques

are widely used for binary and integer-weighted networks, there is currently no

obvious formulation for proportion-weighted networks.

The insights from null-models can aide in the development of such gen-

erative models, especially in terms of �nding worthy summary statistics that

one may use within approximate-likelihood or simulation-based inference (see

for example Ratmann et al., 2007, who speci�ed a generative protein network
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model using simulation-based, likelihood-free inference). Our results suggest

that despite the overwhelming number of possible network metrics, many of

them, including reach, disparity, and various centrality measures, are highly re-

dundant to strength-, and/or degree-sequence. Therefore, researchers seeking

to develop complex generative models of network formation will likely need to

focus on higher-order properties such as betweenness and clustering. In fact,

Ratmann et al. (2007) found that using lower-level network metrics could even

lead to inconsistent estimates.

Until the time that generative models are developed, inference by null-models

will remain an important tool. Therefore, it is important for behavioural ecolo-

gists to understand how their conclusions depend on the assumptions and con-

straints of their null-models.

5. Acknowledgements

We are very grateful for the three reviewers and editor whose insights and

feedback greatly challenged and strengthened this paper.

6. References

Allen, J., Weinrich, M., Hoppitt, W., & Rendell, L. (2013). Network-based

di�usion analysis reveals cultural transmission of lobtail feeding in humpback

whales. Science, 340 , 485�488.

Anderson, B. S., Butts, C., & Carley, K. (1999). The interaction of size and

density with graph-level indices. Social Networks, 21 , 239�267. doi:10.1016/

S0378-8733(99)00011-8.

Ansmann, G., & Lehnertz, K. (2011). Constrained randomization of weighted

networks. Physical Review E , 84 , 026103. URL: http://link.aps.org/doi/

10.1103/PhysRevE.84.026103. doi:10.1103/PhysRevE.84.026103.

Barrat, A., Barthélemy, M., Pastor-Satorras, R., & Vespignani, A. (2004).

The architecture of complex weighted networks. Proceedings of the Na-

30

http://dx.doi.org/10.1016/S0378-8733(99)00011-8
http://dx.doi.org/10.1016/S0378-8733(99)00011-8
http://link.aps.org/doi/10.1103/PhysRevE.84.026103
http://link.aps.org/doi/10.1103/PhysRevE.84.026103
http://dx.doi.org/10.1103/PhysRevE.84.026103


tional Academy of Sciences of the United States of America, 101 , 3747�3752.

doi:10.1073/pnas.0400087101.

Barthélemy, M., Barrat, A., Pastor-Satorras, R., & Vespignani, A. (2005). Char-

acterization and modeling of weighted networks. Physica A: Statistical Me-

chanics and its Applications, 346 , 34�43. doi:10.1016/j.physa.2004.08.

047.

Bejder, L., Fletcher, D., & Bräger, S. (1998). A method for testing association

patterns of social animals. Animal Behaviour , 56 , 719�725. doi:10.1006/

anbe.1998.0802.

Butts, C. T. (2008). Social network analysis: A methodological introduction.

Asian Journal Of Social Psychology , 11 , 13�41. doi:10.1111/j.1467-839X.

2007.00241.x.

Bélisle, C. J. (1992). Convergence theorems for a class of simulated annealing

algorithms on Rd. Journal of Applied Probability , (pp. 885�895).

Cairns, S. J., & Schwager, S. J. (1987). A comparison of association indices.

Animal Behaviour , 35 , 1454�1469. doi:10.1016/S0003-3472(87)80018-0.

Cohen, J., West, S. G., Aiken, L. S., & Cohen, P. (2003). Applied Multiple Re-

gression/Correlation Anaysis for the Behavioral Sciences. (3rd ed.). Mahwah,

New Jersey, USA: Lawrence Erlbaum Associates.

Connor, R. C., Heithaus, M. R., & Barre, L. M. (2001). Complex social struc-

ture, alliance stability and mating access in a bottlenose dolphin `super-

alliance'. Proceedings of the Royal Society of London. Series B: Biological

Sciences, 268 , 263 �267. doi:10.1098/rspb.2000.1357.

Donetti, L., & Muñoz, M. A. (2004). Detecting network communities: a new

systematic and e�cient algorithm. Journal of Statistical Mechanics: Theory

and Experiment , 2004 , P10012. doi:10.1088/1742-5468/2004/10/P10012.

31

http://dx.doi.org/10.1073/pnas.0400087101
http://dx.doi.org/10.1016/j.physa.2004.08.047
http://dx.doi.org/10.1016/j.physa.2004.08.047
http://dx.doi.org/10.1006/anbe.1998.0802
http://dx.doi.org/10.1006/anbe.1998.0802
http://dx.doi.org/10.1111/j.1467-839X.2007.00241.x
http://dx.doi.org/10.1111/j.1467-839X.2007.00241.x
http://dx.doi.org/10.1016/S0003-3472(87)80018-0
http://dx.doi.org/10.1098/rspb.2000.1357
http://dx.doi.org/10.1088/1742-5468/2004/10/P10012


Farine, D. R. (2014). Measuring phenotypic assortment in animal social net-

works: weighted associations are more robust than binary edges. Animal

Behaviour , 89 , 141�153. doi:10.1016/j.anbehav.2014.01.001.

Faust, K. (2006). Comparing social networks: size, density, and local structure.

Metodolo²ki zvezki , 3 , 185�216.

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486 ,

75�174. doi:10.1016/j.physrep.2009.11.002.

Freeman, L. C. (1979). Centrality in social networks: conceptual clari�cation.

Social networks, 1 , 215�239.

Frere, C. H., Krutzen, M., Mann, J., Connor, R. C., Bejder, L., & Sherwin,

W. B. (2010). Social and genetic interactions drive �tness variation in a free-

living dolphin population. Proceedings of the National Academy of Sciences,

107 , 19949�19954. doi:10.1073/pnas.1007997107.

Garlaschelli, D., & Lo�redo, M. (2008). Maximum likelihood: extracting un-

biased information from complex networks. Physical Review E , 78 , 015101.

doi:10.1103/PhysRevE.78.015101.

Garlaschelli, D., & Lo�redo, M. I. (2009). Generalized Bose-Fermi statistics and

structural correlations in weighted networks. Physical Review Letters, 102 ,

038701. doi:10.1103/PhysRevLett.102.038701.

Ghalanos, A., & Theussl, S. (2012). Rsolnp: General Non-linear Optimization

Using Augmented Lagrange Multiplier Method.

Ginestet, C. E., Nichols, T. E., Bullmore, E. T., & Simmons, A. (2011). Brain

network analysis: separating cost from topology using cost-integration. PLoS

ONE , 6 , e21570. doi:10.1371/journal.pone.0021570.

Hennig, C. (2014). fpc: Flexible procedures for clustering . R package version

2.1-9.

32

http://dx.doi.org/10.1016/j.anbehav.2014.01.001
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1073/pnas.1007997107
http://dx.doi.org/10.1103/PhysRevE.78.015101
http://dx.doi.org/10.1103/PhysRevLett.102.038701
http://dx.doi.org/10.1371/journal.pone.0021570


Holland, P. W., & Leinhardt, S. (1979). Structural sociometry. In P. W. Holland,

& S. Leinhardt (Eds.), Perspectives on social network research (pp. 63�83).

New York, NY, USA: Academic Press.

Kasper, C., & Voelkl, B. (2009). A social network analysis of primate groups.

Primates, 50 , 343�356. doi:10.1007/s10329-009-0153-2.

Krützen, M., Barré, L. M., Connor, R. C., Mann, J., & Sherwin, W. B. (2004).

`o father: where art thou?'�paternity assessment in an open �ssion�fusion

society of wild bottlenose dolphins (<i>tursiops </i>sp.) in shark bay, west-

ern australia. Molecular Ecology , 13 , 1975�1990. doi:10.1111/j.1365-294X.

2004.02192.x.

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., & Ghahramani, Z.

(2010). Kronecker graphs: An approach to modeling networks. The Journal

of Machine Learning Research, 11 , 985�1042.

Lusseau, D. (2003). The emergent properties of a dolphin social network.

Proceedings of the Royal Society B: Biological Sciences, 270 , S186�S188.

doi:10.1098/rsbl.2003.0057.

Mann, J., Stanton, M. A., Patterson, E. M., Bienenstock, E. J., & Singh, L. O.

(2012). Social networks reveal cultural behaviour in tool-using using dolphins.

Nature Communications, 3 , 980. doi:10.1038/ncomms1983.

Mastrandrea, R., Squartini, T., Fagiolo, G., & Garlaschelli, D. (2014). Enhanced

reconstruction of weighted networks from strengths and degrees. New Journal

of Physics, 16 , 043022. doi:10.1088/1367-2630/16/4/043022.

Newman, M. E. (2004). Analysis of weighted networks. Physical Review E , 70 ,

056131. doi:10.1103/PhysRevE.70.056131.

Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted

networks: Generalizing degree and shortest paths. Social Networks, 32 , 245�

251. doi:10.1016/j.socnet.2010.03.006.

33

http://dx.doi.org/10.1007/s10329-009-0153-2
http://dx.doi.org/10.1111/j.1365-294X.2004.02192.x
http://dx.doi.org/10.1111/j.1365-294X.2004.02192.x
http://dx.doi.org/10.1098/rsbl.2003.0057
http://dx.doi.org/10.1038/ncomms1983
http://dx.doi.org/10.1088/1367-2630/16/4/043022
http://dx.doi.org/10.1103/PhysRevE.70.056131
http://dx.doi.org/10.1016/j.socnet.2010.03.006


Opsahl, T., & Panzarasa, P. (2009). Clustering in weighted networks. Social

Networks, 31 , 155�163. doi:10.1016/j.socnet.2009.02.002.

Pinter-Wollman, N., Hobson, E. A., Smith, J. E., Edelman, A. J., Shizuka, D.,

de Silva, S., Waters, J. S., Prager, S. D., Sasaki, T., Wittemyer, G., Fewell,

J., & McDonald, D. B. (2014). The dynamics of animal social networks:

analytical, conceptual, and theoretical advances. Behavioral Ecology , 25 ,

242�255. doi:10.1093/beheco/art047.

Prettejohn, B. J., Berryman, M. J., & McDonnell, M. D. (2011). Meth-

ods for generating complex networks with selected structural properties

for simulations: a review and tutorial for neuroscientists. Frontiers in

Computational Neuroscience, 5 . URL: http://www.frontiersin.org/

Computational_Neuroscience/10.3389/fncom.2011.00011/abstract.

doi:10.3389/fncom.2011.00011.

Qi, X., Fuller, E., Wu, Q., Wu, Y., & Zhang, C.-Q. (2012). Laplacian centrality:

A new centrality measure for weighted networks. Information Sciences, 194 ,

240�253. doi:10.1016/j.ins.2011.12.027.

R Core Team (2014). R: a language and environment for statistical computing.

URL: http://www.r-project.org/.

Ratmann, O., Jørgensen, O., Hinkley, T., Stumpf, M., Richardson, S., & Wiuf,

C. (2007). Using likelihood-free inference to compare evolutionary dynamics

of the protein networks of H. pylori and P. falciparum. PLoS Computational

Biology , 3 , e230. doi:10.1371/journal.pcbi.0030230.

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G.,

Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M., & Sabeti, P. C. (2011).

Detecting novel associations in large data sets. Science, 334 , 1518�1524.

doi:10.1126/science.1205438.

Scott, E. M., Mann, J., Watson-Capps, J. J., Sargeant, B. L., & Connor, R. C.

(2005). Aggression in bottlenose dolphins: Evidence for sexual coercion, male-

34

http://dx.doi.org/10.1016/j.socnet.2009.02.002
http://dx.doi.org/10.1093/beheco/art047
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2011.00011/abstract
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2011.00011/abstract
http://dx.doi.org/10.3389/fncom.2011.00011
http://dx.doi.org/10.1016/j.ins.2011.12.027
http://www.r-project.org/
http://dx.doi.org/10.1371/journal.pcbi.0030230
http://dx.doi.org/10.1126/science.1205438


male competition, and female tolerance through analysis of tooth-rake marks

and behaviour. Behaviour , 142 , 21. doi:10.1163/1568539053627712.

Serrano, M., Boguñá, M., & Pastor-Satorras, R. (2006). Correlations in weighted

networks. Physical Review E , 74 . doi:10.1103/PhysRevE.74.055101.

Simonsen, I. (2005). Di�usion and networks: A powerful combination! Physica

A: Statistical Mechanics and its Applications, 357 , 317 � 330. doi:10.1016/

j.physa.2005.06.032.

Smolker, R. A., Richards, A. F., Connor, R. C., & Pepper, J. W. (1992). Sex

di�erences in patterns of association among Indian Ocean bottlenose dolphins.

Behaviour , 123 , 38�69.

Squartini, T., & Garlaschelli, D. (2011). Analytical maximum-likelihood method

to detect patterns in real networks. New Journal of Physics, 13 , 083001.

doi:10.1088/1367-2630/13/8/083001.

Stanton, M. A., & Mann, J. (2012). Early social networks predict survival

in wild bottlenose dolphins. PLoS ONE , 7 , e47508. doi:10.1371/journal.

pone.0047508.

Watts, D., & Strogatz, S. (1998). Collective dynamics of 'small-world' networks.

Nature, 393 , 440�442. doi:10.1038/30918.

Wey, T., Blumstein, D. T., Shen, W., & Jordán, F. (2008). Social network

analysis of animal behaviour: a promising tool for the study of sociality.

Animal Behaviour , 75 , 333�344. doi:10.1016/j.anbehav.2007.06.020.

Whitehead, H. (2008). Analyzing animal societies: quantitative methods for

vertebrate social analysis. Chicago, IL: University of Chicago Press.

van Wijk, B. C. M., Stam, C. J., & Da�ertshofer, A. (2010). Comparing brain

networks of di�erent size and connectivity density using graph theory. PLoS

ONE , 5 , e13701. doi:10.1371/journal.pone.0013701.

35

http://dx.doi.org/10.1163/1568539053627712
http://dx.doi.org/10.1103/PhysRevE.74.055101
http://dx.doi.org/10.1016/j.physa.2005.06.032
http://dx.doi.org/10.1016/j.physa.2005.06.032
http://dx.doi.org/10.1088/1367-2630/13/8/083001
http://dx.doi.org/10.1371/journal.pone.0047508
http://dx.doi.org/10.1371/journal.pone.0047508
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1016/j.anbehav.2007.06.020
http://dx.doi.org/10.1371/journal.pone.0013701


Williams, R., & Lusseau, D. (2006). A killer whale social network is vulnerable

to targeted removals. Biology Letters, 2 , 497�500. doi:10.1098/rsbl.2006.

0510.

Ye, Y. (1987). Interior Algorithms for Linear, Quadratic, and Linearly Con-

strained Non-Linear Programming . Ph.D. Department of EES, Stanford Uni-

versity Stanford, CA.

7. Appendix

This appendix outlines the method for calculating the expectation of an indi-

vidual's network metric ci for an observed proportion-weighted metric network.

We denote an empirical weighted network interchangeably with its symmetric

weight matrix W, consisting of N nodes/individuals. Associations between in-

dividuals i and j are indexed by the elements wij ∈ [0, 1]. The empirical network

has properties ~θ that are used to constrain a null-model, such as the observed

degree-sequence ~k, strength-sequence ~s, or both.

To calculate a metric's expected value E[ci] =
∑
W ′∈W P (W′|~θ)ci(W′), the

challenge is specify the probability of a weighted-network P (W|~θ), conditioned

on ~θ, and to sample from it. To do so, we use the maximum entropy ensemble of

weighted networks,W, subject to constraints of ~θ, to de�ne this probability dis-

tribution. The Exponential Random Graph formulation allows us to specify the

�canonical� ensemble of networks for an empirical network (Garlaschelli & Lof-

fredo, 2008, 2009), whose expected values of θ are the empirical network's values,

i.e. E[~θ] = ~θ. In statistical mechanics, this contrasts with the �micro-canonical�

ensemble, whereby every constituent random-network W′ ∈ W has exactly the

same ~θ as observed empirically, which is most common among permutation-

based algorithms. Note, that the number of random-networks in the canoni-

cal ensemble is at least as great (and likely much greater) than the number of

random-networks in the micro-canonical ensemble, and therefore has greater en-

tropy, i.e. more randomness among all other topological and weight-distribution

characteristics.
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We approximate E[ci] with 〈ci〉, using a large sample of size m of random

networks Wm from the ensemble W, each drawn with probability P (W′|~θ).

E[ci] ≈ 〈ci〉 =
∑
W ′∈Wm

ci(W
′)

m
(2)

The probability of a proportion-weighted network P (W|~θ) under constraints

is formulated according to the Exponential Random Graph Model:

P (W|~θ) = e−H(W|~θ)∑
W e−H(W|~θ)

(3)

A realisation of a weighted network is proportional to e−H , the inverse of

the exponential of the Graph Hamiltonian H. The Graph Hamiltonian H spec-

i�es the conditioning on observed properties ~θ, i.e. it contains parameters ~a

and ~b which can be optimised so as to make the observed quantities ~θ match

the ensemble averages 〈~θ〉. According to Garlaschelli & Lo�redo (2009), the

Hamiltonian of the TNM, WNM and MNM are:

HTNM (W|~α) =
∑
i

αiki =
∑
i<j

(αi + αj) I(wij) (4)

HWNM (W|~β) =
∑
i

βisi =
∑
i<j

(βi + βj)wij (5)

HMNM (W|~α, ~β) =
∑
i

(αiki + βisi) =
∑
i<j

((αi + αj) I(wij) + (βi + βj)wij)

(6)

where I(w) is the indicator function (if w>0, then 1, otherwise 0), ki =∑
i 6=j I(wij) is the degree of node i, and si =

∑
i6=j wij is the strength of node

i. Often, it is easier to work with re-parametrised versions of the Hamilto-

nian parameters: xi = e−αi and yi = e−βi . The parameters ~x and ~y can be

related to the probability of a realisation of a weighted network W by consid-

ering the probability as the product of probabilities of individual edge weights:

P (W|x, y) =
∏
i<j q(wij |x, y), where q(wij) is the probability that the weight
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between nodes i and j is w. For the WNM and MNM null-models, we can there-

fore de�ne the probability of a weight wij as a function of the node parameters

xi,xj ,yi and yj :

q(wij |x, y) =
(xixj)

I(wij)(yiyj)
wij

1 + xixj
∫ 1

w∗>0
(yiyj)w

∗dw∗
=

(xixj)
I(wij)(yiyj)

wij log(yiyj)

xixjyiyj − xixj + log(yiyj)
(7)

The TNM is derived similarly from its Hamiltonian. The probability of a

non-zero link is therefore p(wij > 0) = 1− q(wij = 0).

The ensembles are de�ned by specifying the constraints and solving ~x and ~y.

For the WNM, this means setting the expected value of nodes' strength to their

observed values, 〈si〉 = sobsi , where 〈si〉 is the sum of the expected weights 〈wij〉.

For the TNM, we set the expected values of the nodes' degree to their observed

values, 〈ki〉 = kobsi , whereby 〈ki〉 is the sum of probabilities of a link. For the

MNM, we set the expected degree-sequence and the expected strength-sequence

to their observed values.

〈wij〉 =
∫ 1

w∗=0

w∗q(w∗|x, y)dw∗ = xixjyiyj log(yiyj)− xixjyiyj + xixj

log2(yiyj) + (xixjyiyj − xjxi) log(yiyj)
(8)

〈ki〉 =
∑
j 6=i

p(wij > 0|x, y) =
∑
j 6=i

(1− q(wij = 0|x, y)) = kobsi (9)

〈si〉 =
∑
j 6=i

〈wij〉 = sobsi (10)

Equations 9 and 10 constitute the system of equations speci�ed by the con-

straints 〈si〉 = sobsi and/or 〈ki〉 = kobsi with Lagrangian multipliers xi > 0

and/or yi > 0. We found fast and accurate solutions to our parameters using

the package Rsolnp (Ye, 1987; Ghalanos & Theussl, 2012) in the R program-

ming language and environment (R Core Team, 2014). For the MNM, there

are 2N parameters to solve, constrained by both strength and degree. For the

WNM, there are N parameters to solve, whereby strength is preserved by setting

~x = 1N and re-solving ~yMNM 6= ~yWNM . The TNM likewise has N parameters
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to solve ~xTNM 6= ~xMNM . In all cases, both topology and weights are maximally

randomised subject to these constraints.

The cumulative distribution function (CDF) can then be used to sample

weights wij from their appropriate distribution. By sampling wij for all i < j

from their appropriate distribution, we also sample random networks from their

appropriate distribution P (W). For the MNM and WNM, the CDF has the

form:

CDF (w∗|x, y) = q(0|x, y) +
xixj(y

w∗

i yw
∗

j − 1)

xixjyiyj − xixj + log(yiyj)
(11)

The analysis proceeds by: i) solving the Lagrangian multipliers ~x and ~y; ii)

sampling a large number networks from P (W|~x, ~y); iii) then calculating metric

expectations according to Equation 2.

39



−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

Residual strength−affinity

R
es

id
u

al
 e

ig
en

v
ec

to
r 

ce
n

tr
al

it
y

−9.06 −5.93 −2.8 0.32 3.45

male

female

unknown sex

strength=0.2

strength=6.4

strength=19.3

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

Figure 6: A �ve-way relationship among metric residuals and individual attributes: residual
strength-a�nity (x-axis), residual eigenvector centrality (y-axis), strength (size of symbols),
sex (shape of symbols) and per year (colours). Residuals are the observed values minus the
expected values from a null model (MNM) which conditions on both degree and strength.
Residual values around 0 show high concordance between observation and null-model expec-
tation.
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