

School of Engineering and Information Technology

Electrical Power and Industrial Computer System Engineering

Interactive Gesture Controller for a
Motorised Wheelchair

This report is submitted to the school of Engineering and Information Technology at Murdoch

University, in partial fulfilment for an honours degree in Engineering.

2015

Author: Jade Sciberras

Supervisor: Dr David Parlevliet

 i

Abstract

This paper explores in great detail the design and testing of a gesture controller for a motorised

wheelchair. For some, motorised wheelchairs are part of their everyday life. Those individuals who

depend on their motorised wheelchair do so for a vast range of reasons; therefore, it is reasonable

to assume that modifying and improving upon the standard joystick controller for a motorised

wheelchair can benefit a person’s way of life significantly.

The design of the gesture controller is heavily based around the user’s needs so as to benefit them

and compliment their strengths to give them more control. For individuals with limited movement

and dexterity, the user interface, system responsiveness, ergonomics and safety were considered

when engineering a system that is intended for people to use.

A device capable of recognising a hand gesture was carefully chosen. The technology that is readily

available for this application is relatively new and not extensively documented. The LEAP motion

sensor was chosen as the hand gesture recognition device to be the controller for a wheelchair. This

device has hand recognition software but the device’s software lacks the predictability and accuracy

required for a motorised wheelchair controller. Through testing, the controller accuracy improved.

Although this controller is adequate for a laboratory environment, further testing and development

will be required for this alternative wheelchair controller to evolve into a commercial product.

The gesture triggered controller was designed around the capabilities of the developer’s hand; but

the method outlined in this paper is transferable to any individual hand size and more importantly

the limitations of their hand gestures. The outcome of this thesis is a customised, non-invasive hand

gesture controller for a motorised wheelchair that is able to be fully tailored to a person’s capability

without losing it responsiveness or accuracy.

ii

Abbreviations

● EPW - electric-powered wheelchairs

● WEKA - Waikato Environment for Knowledge Analysis

● PWM - Pulse Width Modulation

● FPS - Frames per second

● ROC - Receiver Operating Characteristic

● SDK – Software Development Kit

● GUI – Graphical User Interface

● API – Application Programming Interface

● UDP – User Datagram Protocol

● PCB - Printed Circuit Board

iii

Table of Contents

Interactive Gesture Controller for a Motorised Wheelchair ... i

Abstract .. i

Abbreviations .. ii

Table of Contents ... iii

Student Declaration .. 1

Acknowledgments ... 1

1. Introduction .. 2

2. Wheelchairs .. 3

2.2 Controlling the Movement of a Wheelchair ... 5

2.3 Research Analysis for alternative control methods for a Motorised Wheelchair 7

3. Selecting a Device for Detecting Hand Gestures .. 8

3.1 HOVER ... 11

3.2 GestIC® Technology ... 12

3.3 LEAP Motion Controller Justification .. 14

4. Leap Motion .. 15

4.1 Hardware .. 16

4.2 Software .. 16

4.3 Application Programming Interface [API] Structure Overview ... 17

4.3.1 Vector Class .. 18

4.3.2 Finger Class .. 18

4.3.3 Hand Class .. 21

4.3.4 Frame Class .. 22

4.3.5 Listener Class and Controller Class .. 22

4.4 Online Reviews .. 23

5. Machine Learning .. 24

5.1 Data mining ... 24

5.2 Waikato Environment for Knowledge Analysis [WEKA] ... 25

5.3 Decision Trees ... 25

6. Ergonomics and User Experience .. 26

6.1 Easy Gestures .. 26

6.2 Exaggerated Responses and Dynamic Feedback .. 27

6.3 Intuition ... 27

iv

6.4 Resources .. 27

7. Project Design ... 28

7.1 Hand gesture Controller Design .. 29

7.1.1 Leap Data Sampling Application: LEAP Listener... 32

7.1.2 WEKA Results ... 33

7.1.3 Conclusion of Hand Gesture Design Process ... 38

7.2 Server Application Description ... 39

7.3 Controller Function Program Design... 39

7.4 Robotic Testing Platform .. 45

8. Test Result ... 49

9. Problems Encountered.. 51

9.1 LEAP motion Connectivity ... 51

9.2 Robot Test platform Troubleshooting .. 52

9.3 Latency Issues ... 52

10. Future Improvements ... 53

11. Conclusion ... 55

12. References .. 56

Appendices .. 63

Appendix A .. 63

LEAP Data Sampling Application ... 63

Appendix B .. 65

WEKA Data File .. 65

Learned Predictive Model ... 69

Appendix C .. 73

Server Application Program .. 73

Appendix D .. 78

Appendix E .. 81

Full Bridge Motor Driver L298N .. 81

 Raspberry Pi 2 Specs .. 81

Bill of Materials [BOM] .. 82

v

List of Figures

 5 Figure 1: Typical Motorised Wheelchair Controller- Creative Commons (Wikipedia 2015)

Figure 2: Microsoft Kinect (Dev.windows.com 2016) ... 9

Figure 3: Intel Perceptual Computing: Intel RealSense Camera (Software.intel.com 2016) 9

Figure 4: DUO3D-DUO mini MLX (Duo3d.com 2015) ... 9

Figure 5: LEAP Motion (Motion 2016) .. 9

Figure 6: HOVER board (Hover Labs Co 2015) .. 11

Figure 7: Leap Motion Controller .. 15

Figure 8: Diagnostic Visualiser Images of Different Sphere Radius’ ... 21

Figure 9: Overall System Flow Diagram. ... 39

Figure 10: Gesture Controller Procedure Diagram ... 40

Figure 11: Drive Engine Procedure Logic Diagram .. 41

Figure 12: Index and Thumb and Index and Middle Flowchart procedure Representation................. 42

Figure 13: Thumb and Pinky Gesture Flowchart Procedure ... 43

Figure 14: Engine Equalisation Procedure for Motor Speed Stabilisation .. 44

Figure 15: Diagram Representation of Test Robot Motor Rotation Direction 46

Figure 16: Robot Test Platform ... 46

Figure 17: Wiring Diagram of Robot Test platform .. 46

Figure 18: LEAP motion Troubleshooting Tab in Settings- Recalibration ... 51

Figure 19: L298N Stepper Motor Driver Controller Board for Arduino .. 81

Figure 20: Image of a Raspberry Pi Model 2.0 .. 81

List of Tables

Table 1: Alternative Wheelchair Controllers... 6

Table 2: Comparison of Depth-Sensing Cameras and Tracking devices. .. 10

Table 3: Finger Name Code Representation ... 19

file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612398
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612403
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612404
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612405
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612406
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612407
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612408
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612409
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612410
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612411
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612412
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612413
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612414
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612415
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612416
file:///E:/Corrections_Interactive%20Hand%20Gesture%20Controller_SciberrasJ_2015.docx%23_Toc440612417

vi

Table 4: Bone Name Code Representation ... 19

Table 5: Joint Name Code representation .. 20

Table 6: Hand Gesture Representation... 30

Table 7: Confusion Matrix for all Hand Gestures generated from WEKA ... 34

Table 8: Detailed Accuracy by Gesture Type .. 35

Table 9: Summary of Total data accuracy results formulated from WEKA J48 Algorithm 35

Table 10: New Detailed Accuracy of Gesture: Generated from more collected Data 36

Table 11: Confusion Matrix for Selected Hand Gestures generated from WEKA 37

Table 12: Hand Gesture Wheelchair Function Task Allocation ... 38

Table 13: Results If the tasks were able to be completed .. 50

Table 14: Robot Platform GPIO to L298N Arduino Motor Driver Board Pin Connections 82

Table 15: BOM for Robot Platform Base ... 82

Table 16: Expendable materials list for Robot Platform ... 84

 1

Student Declaration

Unless referenced, I declare that the following report is my own work.

Acknowledgments

 I acknowledge my supervisor, David Parlevliet, for seeing me through this project. His expertise

and knowledge has helped keep this project on track.

I would like to thank my peers and long term friends, Ben Pattimore, Adam Gioffri, Michael

Colson, Jordan Goodchild, Frederick Gao, Richard Lee and Alex Pechkov. I would also like to

acknowledge my partner, Jake Alamdar, his love, support and understanding has made this

project a pleasant experience. A warm thankyou goes towards my parents, Anthony Sciberras and

Maria Concetta Sciberras.

Lastly, I would like to acknowledge the companies and online communities that keep their

products and software resources open source. Without the aid of free software developing

environments, there would be little motivation for future innovations.

2

1. Introduction

Sensing and tracking technology is a fairly new area of the consumer market that has taken off in

recent years. Depth and tracking sensors have been widely used for gaming and other computer

‘app based’ application. An example is the popular Xbox Kinect (Support.xbox.com). This device is

able to map out the human body and track its movements. The moves are displayed on a screen

or television as an interactive way to play games. Similar devices provide recognition and tracking

for facial features and some devices are accurate enough to track hand gestures. These cameras

and sensors are starting to be incorporated into laptops, desktops and keyboards. They are

rumoured to take over and replace computer mouses, track pads and touch screens as these

devices Pick up gesture recognition that will zoom, minimise and swipe without physically

touching a device.

Although many reviews about these products point out that they are not suitable for commercial

use (Engadget 2016), projects have emerged where they are being used for precision (Visnjic

2016). Robotic control and drone control are examples of laboratory based experiments that have

the potential of becoming commercialised.

The aim of this thesis project is to design an interactive hand gesture controller to manoeuvre a

wheelchair. An elegant solution is required to cater for the requirements of the users. An

emphasis on user safety has been incorporated into the final product. This project ultimately

explores the capabilities of a hand gesture controller device and explores its accuracy. The project

aims to provide awareness of different technologies currently employed by wheelchairs and

provides a comparison of the different tracking and body recognition devices.

3

2. Wheelchairs

The purpose of wheelchairs are to help the physically disabled, elderly or people who suffer from

extreme fatigue and short to long term injury where walking is difficult or impossible. According

to past studies, approximately 5 million people in the European Union, 2.8 million people in the

United States, and 2.2 million people in Australia are wheelchair users (Newdisability.com 2015).

Approximately there are ten times more wheelchair users in Australia per capita compared to the

United States and European Countries, therefore providing reason for this projects objectives.

With the number of wheelchair users predicted to increase, it makes sense that the design of a

wheelchair will improve with technology.

Two different types of wheelchair classes are the manually propelled and the electrically power.

More extreme versions have been made for competitive sport and all terrain purposes. There

have been many advances to the standard wheelchair. Improvements have been made to the

design and quality of materials; gyroscopic technology and various sensors have been

incorporated to increase the functionality and sustainability of the common wheelchair

(Hiremath, Ding and Cooper 2013).

Motorised Wheelchair or electric-powered wheelchairs (EPW), are propelled by electric motors

rather than manually moving the wheels in order to commune and manoeuvre. EPW’S are used

be people who are physically unable to manually propel a manual wheelchair over any distance

due to a physical impairment or disability. Individuals who suffer from fatigue and cardiovascular

stress benefit from EPW’s to provide them with a better quality of life.

Smart Wheelchairs (Simpson 2008) are improved variations on the standard EPW that assist

individuals that are physically disabled. Smart wheelchairs differ from general motorized

wheelchairs by their in-built control system. The intention is to supplement the user’s task of

driving and manoeuvring the motorized wheelchair and to optimise safety. Unlike the regular

4

motorized wheelchair that are controlled by a joystick (switch, potentiometer or touch sensitive

device); a smart wheelchair will have a computer and a range of sensors, like proximity sensors,

that work together to analyse feedback information to drive the motorized wheelchair.

Adding collision-avoidance to a smart wheelchair offers a marketable feature. One advantage of

Smart Wheelchairs is that they are more customisable, and therefore can be tailored and or

designed to suit a variety of user types. Some Smart Wheelchair platforms are designed for users

with cognitive impairment. Collision avoidance technologies (Lopresti EF 2016) ensure the safety

of the user in the event the wrong command is given that may result in a collision. Cerebral Palsy

and Quadriplegia require different platforms that will cater for the users which have severe motor

disabilities. The Smart wheelchair may have smart technologies to distinguish between accidental

command executions (Kouroupetroglou) in the event of random muscle activation. Path-planning

is an artificial intelligent technique incorporated into smart wheelchairs to aid users with severe

motor skills (Lopresti EF 2016).

There are a wide range of technological improvements to wheelchairs; these include an EPW’s

motor controller.

5

2.2 Controlling the Movement of a Wheelchair
The most common mounted controller

for motorised wheelchairs is in the form

of a joystick as shown in Figure 1. The

joystick functionality is similar to the

Atari joystick controller that was

popular in the 1980’s. Its use is

simplistic and effective as pushing the

joystick forward will make the

wheelchair move in a forward direction.

Wheelchair controllers can be

programmed to be proportional or non-proportional (Doherty 2012). Proportional controllers will

make adjustments to speed depending on how much the user deflects the joystick controller in a

particular direction. Non-proportional controllers does not allow the user to have much control

over speed, making these controllers more suitable for users who have less control over their

body movements. Some controllers are supplemented with additional buttons that allow the user

to switch between multiple control modes.

The normal EPW needs to be operated through a joystick by hand. However, the hand

functionality of an individual may be limited or even not available in some patients with severe

disabilities. The idea of the alternative wheelchair control is to use other parts of the body rather

than hand to operate some sort of a proportional control joystick (Atwiki.assistivetech.net 2015).

The alternative wheelchair control includes sip-n-puff control, chin control, head control, speech

control and tongue-operated solution. These controllers are available on the market as a viable

Figure 1: Typical Motorised Wheelchair Controller-

Creative Commons (Wikipedia 2015)

6

replacement option for the joystick controller. A brief description of alternative wheelchair

controllers is provided in

Table 1.

Table 1: Alternative Wheelchair Controllers

Alternative
Motorised
Wheelchair
control

Description Advantages/Disadvantages/Facts

Sip-n-Puff Provides a wheelchair user full
control of the motors by inhaling and
then exhaling into a pneumatic tube.
The pressure applied by the sips and
huffs control the speed direction of
the motors. Lower level sips and
puffs are used for steering.
(Atwiki.assistivetech.net 2015)

Uncomfortable and invasive
Expensive
Fairly intuitive to use but takes
practice

Head Control Various switches are mounted into
the headrests. The switches are
activated through head movements.
A common design is that left and
right wheelchair movement is
activated through the left and right
side headrests respectively.
(Atwiki.assistivetech.net 2015)

Most common amongst wheelchair
users that have good head mobility
Non-invasive.
Advances: research institutions have
begun to incorporate ultrasonic
transducers and accelerometers
instead of switches.

Chin Control A joystick is mounted in close
proximity to the chin for activated
control of a wheelchair. Neck
movements, such as flexing,
extension and rotation, activated the
cup shaped chin joystick.
(Atwiki.assistivetech.net 2015)

Designed for individuals with good
neck and head movement

Speech
control

These types of controllers are high
level speech recognition systems.
Common vocabulary words will
prompt the motors to carry out an
action that intern controls the
direction of the motors.
(Atwiki.assistivetech.net 2015)

Most popular for spinal injury
patients.
User Friendliness

Tongue
Operated
Controller

This is a dental mouth Piece that is
situated on the roof of an
individual’s mouth. The device
consists of nine switches. The
switches are activated by the tongue.
Generally the rear switches are the
go slower and the front switches are
to go fasted hence speed control.

Only one commercially available
product: Tongue Touch Pad
Invasive
Uncomfortable

7

(Atwiki.assistivetech.net 2015)

2.3 Research Analysis for alternative control methods for a

Motorised Wheelchair
There are many different types of alternative wheelchair controllers that have been designed and

tested under laboratory conditions, yet most have not been refined into marketable products.

When conducting research, it was noticeable that there were more academic papers on ‘brain

controlled’ wheelchairs than any other type of controller. The use of accelerometers to measure

the Pitch, roll and yaw of head movement is a fast developing area for motor control. Pajkanovic

et al. explores the use of a microcontroller and accelerometer system for motion control of a

wheelchair for quadriplegics (Pajkanovic and Dokic 2013). The experiments showed good overall

results with a 94.16% success rate for correct commands and a 13.66% error rate where the

system recognises a command that was not intended by the user (Pajkanovic and Dokic 2013).

Relating to the specific topic of hand gesture recognition controllers for motorised wheelchairs,

there are several papers that have explored the possibilities and limitations in this area. In the

article by Nguyen Kim-Tien et al. the authors presents an approach for controlling wheelchair

movement using hand gesture recognition (Kim-Tien, Truong-Thinh and Cuong 2013). Their

method is able to recognize 5 different hand gestures for five status movements of wheelchair:

forward, reverse, left, right and stop. In the article by Pande et al. acceleration technology is used

to detect hand gestures (Pande et al. 2014). The software interprets the motion intended by user

and moves accordingly (Pande et al. 2014). Depending on the direction of the Acceleration, the

microcontroller controls the wheelchair directions: forward, reverse, left, right. These research

articles do not give abundant information regarding the accuracy and reliability of their system.

8

3. Selecting a Device for Detecting
Hand Gestures

There are many different approaches when it comes to designing the best solution for this

project. From the background literature review, two completely different approaches were

discussed: one solution experimented with an accelerometer system and the other relied upon an

algorithm that detects hand gesture through changes in the curvature of the hand.

A new approach is to select a device that already has hand gesture and motion tracking capability.

There are a number of products which have these features that are readily available on the

market. For economic reasons and time restrictions, research into these products was conducted

and the most appropriate selected.

The strengths and weaknesses of four devices are compared to establish the best device for this

project. The devices are the Microsoft Kinect (Dev.windows.com 2015), Intel RealSense Camera

(Intel 2015), DUO3d (Duo3d.com 2015) and LEAP Motion (Motion 2015). These devices have

similar features but all vary on different levels. The advantages and disadvantages of each

controller are outlined and compared in Table 2. Throughout the project, two other alternative

devices were researched: they are the MG3030/3130 Microchip GestIC technology ("Introducing

the World's First E-Field Based 3D Gesture Controller" 2016) and the HOVER board (Hover Labs Co

2015). Although they also have gesture recognition and development capabilities, their usefulness

in achieving the aims of this thesis project varies greatly.

9

Figure 2: Microsoft Kinect (Dev.windows.com 2016)

Figure 3: Intel Perceptual Computing: Intel
RealSense Camera (Software.intel.com 2016)

Figure 4: DUO3D-DUO mini MLX (Duo3d.com 2015)

Figure 5: LEAP Motion (Motion 2016)

Microsoft Kinect (Dev.windows.com 2016) is used for gaming and applications that require

skeleton tracking. It has problems with distinguishing between hands and fingers, and it requires a

large power adapter. It has good depth sensing with a clean depth image, and it can track up to 6

skeletons and 25 joints per skeleton. DUO3D-DUO (Duo3d.com 2015) is a Kickstarter project that

is under active development. It will be best utilised in projects that require high range and mid-

range depth. Intel Perceptual Computing device (Software.intel.com 2016) is not recommended

for applications that require high precision and accuracy. It is built for close range tracking, has

built in gesture recognition, and it has face tracking and face recognition capabilities. The LEAP

Motion sensor (Motion 2016) has limited sensing range and cannot track faces. It has gesture

recognition, and it is very fast and claims to have accurate finger tracking capabilities.

10

Table 2: Comparison of Depth-Sensing Cameras and Tracking devices.

 Type

Information

Microsoft Kinect DUO3D-DUO mini
MLX

Intel Perpetual
Computing/ Intel
RealSense Camera

LEAP Motion

What is it used
for?

● Xbox gaming
● Applications

requiring
skeleton
tracking at mid-
range.

● High-speed,
mid-range depth
sensing

● Portable and
outdoor projects

● Desktop/laptop
applications

● Close range
applications

● Desktop
applications

● Close range
applications

● High speed
applications

Advantages ● Good depth
sensing with a
clean depth
image

● High resolution:
Depth stream is
512x424
16bits/Pixel

● Skeleton
tracking: up to 6
skeletons and
25
joints/skeleton

● Kinect SDK raw
depth data from
sensors and IR
images

● Embedded
stereo imaging
for high
performance 3D
sensing

(Duo3d.com
2015)

● Ideal for small
spaces and
mobile projects.

● High image rate
at 360FPS

● Includes
gyroscope,
temperature
and
accelerometer

● Powered by
USB and
smaller that
Kinect

● Built for close
range tracking
and has built in
gesture
recognition like
“grab and
release”

● Face tracking
and face
recognition
capabilities

● Developers
have access to
raw data.

● Gesture
recognition

● Very fast and
accurate finger
tracking

● Calibrate and map
fingertip and
finger joint
positions with
high accuracy.

● Developer
friendly with
room to make
apps

● Compatible with
MAC OS and
Windows

Disadvantages ● Large power
adapter needed
and dedicated
power cord.

● Cannot easily
distinguish
between hands
and fingers

● Can only
recognise large
gestures.

● Kick-starter
project that is
continuously
under
development

● Young product
with not much
support

● Product API
doesn’t provide
depth data.

● Not
recommended
for applications
that need high
precision and
accuracy.

● Limited sensing
range

● Can only track
fingers (no
skeleton or face
tracking/
recognition)

● No access to
depth data.

Developer
Capabilities

Yes- free Yes- $95/year

(Duo3d.com 2015)

Yes- free Yes- free

Elegance Not discrete. Large
Rectangle structure

Not in a sturdy casing
but small and
discrete.

Small Robust/ Sturdy/ Small

Cost? $149.99 $695.00

(Duo3d.com 2015)
$99.00 $79.99

11

Figure 6: HOVER board (Hover Labs Co 2015)

3.1 HOVER
The HOVER board shown in Figure 6, is a hand gesture sensor development kit that detects hand

gesture movements and has touch sensitive features. HOVER technology is similar to the standard

capacitive screens used for tablets and

smartphones. The screen generated an electric field;

when a conductive element touches the screen, a

distortion in the electric field occurs and triggers an

event (Brown 2015). The actual ‘hover’ feature of

the board is produced by a grid of capacitive

electrodes that create an electric field that expands

in an upward direction from the boards face;

similarly, when you move an electrically conductive body through the field, the electrodes will

pick up the distortion.

This device is compatible with low voltage applications and works with any Arduino or Raspberry

Pi. Some noteworthy features are listed:

1. Up to 13cm hand gesture detection range.

2. Currently recognisable hand gestures: Swipe Up, Down, Left and Right.

3. 5 electrodes for touch sensitive inputs (touchpad capabilities); double taps and

simultaneous taps on multiple areas can also be detected.

4. I2C slave (multi master bus, therefore more than one chip can be connected to the same

bus)

5. Powered by 3.3V

This device retails for approximately $50. Although the HOVER is a fun and interesting hardware

device, it does not accommodate for a wide range of hand gestures and therefore limits the

design of the wheelchair controller significantly for this project.

12

3.2 GestIC® Technology

GestIC Technology is a world-first technology integrated circuit from Motorola that may be

utilised as a 3D Gesture Controller (Microchip.com 2015). The MGC3030 and MGC3130 Motorola

integrated circuits sense and track hand gestures through an electrical field (E-Field measurement

principles) in real time (Cardinal 2012). The microchips patented GestIC technology allows

developers to enable user command inputs with natural hand and finger movements. These

microchips are for embedded usage applications and have a sophisticated on-chip gesture library.

Hand gestures such as ‘wave’, ‘hold’, ‘flick’, ‘air wheel’, are readily available gesture features of

the MGC3030 and MGC3130 microchip. Other features such as detecting hand presence, sensor

touch ability and hand position tracking, can be enabled through GestIC technology. Some Typical

applications include home automation, PC peripheral devices, audio products, industrial and

medical switches and game controllers.

GestIC technology MGC chips do not need a host processor, therefore making interaction

between intuitive hand gestures and devices simple (Microchip.com 2015). Other features

include:

1. Low power design

2. GPIO interface

1. No ambient influences

2. Noise handling

3. Proximity Detection

4. 0 - 15 cm detection range

5. Accurate and reliable gesture detection every use

6. No housing requirements

13

7. MGS setup uses thin, low-cost sensing electrodes like a standard PCB.

8. Communication be configurable I/O ports of I2C bus

The MGC microchips work on a wide range of interfaces. The free development software (SDK)

also provides a graphical user interface (GUI). This real- time gesture processing microchip

technology is a robust and advanced solution gesture controlled systems.

A development board with MGC3130 GestIC 3D Gesture Recognition and tracking, proximity and

touch sending capabilities cost an average of $179.00 Australian dollars from various vendors

(Microchipdirect.com 2015). The SDK, GUI and GestIC library allow for great versatility for

projects.

This technology would have been a useful tool for this project but the LEAP motion controller was

purchased weeks in advance. If the time frame for this project was of no issue, the change from

the LEAP Motion controller to the MGC3130 development Board would be recommended. The

main notable advantage that the GestIC technology chip has over the LEAP motion controller is

that it does not require host processing therefore eliminating the need for the chip to be

constantly bridged through a computer. This means that in future, integration into a motorised

wheelchair is seemingly more plausible.

14

3.3 LEAP Motion Controller Justification
The leap controller is the best motion sensor (Learn.sparkfun.com 2016) available because it

satisfies the objective for a non-invasive and cheap alternative controller for a motorised

wheelchair. Research into the technical specifications of this product proves that it is a cheap and

reliable off- the- shelf option. It is an open source device that is compatible with many

programming languages including Java, C+, C#, Unity and Python. Each language has its own LEAP

SDK library (Developer.leapmotion.com 2016). The development software is a free download with

easy installation. The relevant data collected from the LEAP sensor is certainly accessible and can

be fed into different engineering programs such as LabVIEW (Ni.com 2016). The LEAP sensor is

also compatible with Raspberry Pi (Raspberry Pi 2016) and Arduino which is convenient for

project expansion purposes.

The LEAP sensor has USB connectivity and can operate on Windows 7/8 or MAC OSX 10.7 with an

AMD Phenom II or an Intel i3, i5, i7 processor. As the LEAP sensor does need a processor and a

graphics card, it does limit the direct application use and cannot be directly integrated with a

standard motorized wheelchair. However this sensor is designed to map out the human hand in

detail that exceeds the capabilities of other previous discussed devices in section 3, 3.1 and 3.2.

The LEAP sensor is capable of recognising any hand gesture. This means the user is not limited by

their hand size, shape or finger movement capabilities. The sensor has background image

cancelation features that filter out any face or body images in the LEAP sensors range of view.

This inbuilt feature makes this sensor unique from the other devices discussed and minimises any

errors that may occur from accidental body movement seen by the LEAP motion sensor. For these

reasons, this sensor is the best suited option to achieve the objectives for this project.

15

4. Leap Motion

The LEAP motion control sensor, seen in Figure 7, is

able to recognise and track the position of a hand. It is

a tool that is able to display the track movements of

fingers and finger shaped objects. The sensors and

software motion tracking capabilities include hand

recognition, hand direction (palm facing up, down, left,

right), forearm, fingers and hand gestures. There have been many projects that use the

functionality of the LEAP motion sensor since its release in 2013. Robotic arm control

(Instructables.com 2016), 3D printer control (Abarca and Abarca 2014), gaming controllers

(Motion 2016) and music synthesisers (Hantrakul 2014) are a couple of examples where a LEAP

sensor has been incorporated into a project as a way of controlling the functionality of the

system. Although the LEAP sensor is not recommended for industrial use, researchers in medicine

and engineering are pushing the sensor’s capabilities to achieve more than it was designed for.

Figure 7: Leap Motion Controller

16

4.1 Hardware
The Leap motion sensor controller consists of two small optical sensors (small cameras) as well as

three infrared light emitting diodes. The sensors are fixed and pointed in the y-axis direction. The

infrared LEDs within the LEAP sensor are able Pick up light that is not within the visible light

spectrum. Infrared light has a wavelength between 750 nm and 1 mm (Nave 2015). Both cameras

have wide angle lenses. This enables the LEAP sensor to have a wide interactive area. This

interactive space takes the form of an upside down pyramid. The interactive range is

approximately 0.25 cm to 60 cm directly above the controller device. The range is limited by the

infrared LEDs ability to pick up infrared light. As distance between a hand and the infrared LED

sensor increases, it becomes harder to gather accurate information to determine hand position

(Colgan 2014). The cameras and the infrared LEDs are the main hardware components and

together they form the basis of the compact tracking device. The LEAP sensor is connected to

other smart devices using a USB connection. The LEAP sensors inbuilt USB controller reads the

data collected from the optical sensors and infrared LEDs. The data is stored within the device’s

local memory and is able to be accessed by using the LEAP motion software.

4.2 Software
 The LEAP Motion software is a free service that enables the computer to process the raw sensor

data images through advanced algorithms to produce a reconstructed image of the user’s hand

that the device sees in real time. The software uses tracking algorithms that use the information

provided in the data to represent finger movement (Colgan 2014). Background objects such as

heads, bodies and lights are excluded and filtering techniques are applied to improve the accuracy

of a finger’s inferred position.

The LEAP is able to be programmed using programming languages such as C#, Unity, C+, Java and

Python. There are a number of attractive advantages from using Python over the other

programming languages.

17

● Python is a robust language. It is used as a primary programming language in high

demanding critical systems (Levin 2011). Dropbox, Reddit and Youtube all use Python.

It is used to solve complex problems and has fast execution rates.

● Python provides programmers with a flexible and scalable language. Python is not

driven by premade templates or generic APIs (Levin 2011). Therefore this language is

more suited for rapid development for a large range of applications.

● Python is user friendly. With simple syntax and debugging, Python is an ideal language

as the project is over a restricted time period. (Levin 2011)

● Python is free and has a large standard library.

The decision to use Python means that it is easy for any new student that has minimum

programming experience to carry on the project and understand and develop good programming

skills.

4.3 Application Programming Interface [API] Structure Overview
The LEAP Motion software uses an algorithm that maps out an internal model of a human hand

that then provides predictive modelling and tracking. The algorithm software uses the visible

parts of the hand and its past observations to calculate the most likely positions for the parts of

the hand that are not currently visible (Developer.leapmotion.com 2015). Hand information in for

form of data, is required for processing the position of the hand. Some of this information is given

in the form of vector co-ordinates.

The LEAP motion sensor uses a right- handed Cartesian co-ordinate system. The Cartesian plane is

centred in the middle of the LEAP controller device and the y-axis is vertical pointing in the same

direction as the sensors, therefore giving positive values for hand placement on this axis. The x

axis and z axis lie on the horizontal plane. The z axis values will increase when the user places

their hand close to their body and will become negative values when hand placement goes

beyond the device (Developer.leapmotion.com 2015).

18

The API system also employs physical measure values. Distance is given in mm, time in 𝜇𝑠, speed

in 𝑚𝑚𝑠−1and angle in radians (Developer.leapmotion.com 2015).

The LEAP motion API provides access to all the available tracking information through different

classes. Currently there are 29 different classes that the API reference provides

(Developer.leapmotion.com 2015). The following sections provide a short description of the

different classes utilised in this project.

4.3.1 Vector Class
The vector class is a functional class that is utilised for testing and research steps for this thesis

project. As the name suggests, this class consists of x, y and z coordinates. Most classes in Leap

Motions API make use of the vector class as the co-ordinates are utilized for developer projects

and GUI applications. The vector class itself concentrates on the backward tilt (Pitch), left and

right rotation (yaw) and left and right tilt (roll) of the hand or hands that the controller sees. Other

properties that make up the vector class is the magnitude, magnitude squared, backward, down,

forward, left, etc. There are also many methods on how the vector data can be displayed; for

example, the angle of two specified vectors can be given in radians or a cross-product of two

vectors with give the vector that is orthogonal to the two original vectors

(Developer.leapmotion.com 2015).

4.3.2 Finger Class
Fingers are numerically classified by the leap motion software. The finger class data represents a

tracked finger location inside the LEAP’s field of view. This class, similar to the vector class,

contains several coordinates that make up a vector. The class also contains information such as

which hand the fingers belong to, the current position of the fingertip and which direction it is

pointing. Each finger is permanently identified to a particular hand, therefore the angular order

of the fingers will determine its identification (Developer.leapmotion.com 2015). As a hand and its

fingers move in and out of the LEAP’s range of view, it is possible but the fingers can be identified

incorrectly. As a result the finger ID may be exchanged. Quantities that are derived from the API

19

output will have discrepancies and will not be uniform with finger ID and history of positions. The

tracking properties such as velocity will be continuous and uniform.

The classification for the finger class is extensive but is simplified by categorizing each finger, the

bones that make up each finger and the joint position between each bone. The class methods for

fingers are classified by integers. The following integer code (Table 3) corresponds to the

following generic finger names:

Table 3: Finger Name Code Representation

Integer Finger Name

0 THUMB

1 INDEX

2 MIDDLE

3 RING

4 PINKY

The index, middle, ring and pinky fingers all have four bones and the thumb has only three bones.

The finger bone index is referenced in a similar way using integers. The code for identifying the

bone type is provided in Table 4.

Table 4: Bone Name Code Representation

Integer Bone Name

0 METACARPAL

1 PROXIMAL

2 INTERMEDIATE

3 DISTAL

20

The joint positions are specified in mm from the Leap Motion Cartesian Plane origin. The code

identifying the joint position is given in Table 5.

Table 5: Joint Name Code representation

Integer Joint Description LOCATION

0 JOINT_MCP Metatarsophalangeal joint (knuckle of the finger)

1 JOINT_PIP Proximal interphalangeal joint- middle joint of

the finger

2 JOINT_DIP Distal interphalangeal joint of the finger - joint

closest to the tip of the finer

3 JOINT_TIP The tip of the finger

The fingertip position and the Direction of the vectors give the Cartesian position of the fingertip

and the general direction in which a finger is pointing. As mentioned previously, all fingers contain

four bones that are ordered from the base to the tip. The standard anatomical naming system

described above does not apply to the thumb as a real thumb has one less bone. For easy

programming, the LEAP API models the thumb by including the zero-length metacarpal bone;

therefore the thumb has the same number of bones as a finger. The thumb is labelled as a

proximal phalanx (the third bone from the tip of the finger) and the anatomical proximal phalanx

is labelled as the intermediate phalanx (the second bone from the tip of the finger) in the leap

motion finger bone model.

21

4.3.3 Hand Class
The Hand class provides additional information about the

identification of the hand position of a detected hand as well as

that hand’s arm and associated fingers.

The Hand class is similar to the finger class but has a few

additional data attributes. The Sphere Radius and the Palm

position are two attributes that were used for this thesis project

(Developer.leapmotion.com 2015). Other attributes include

Palm velocity, palm width, Pinch strength, sphere centre,

identification, etc. The Sphere radius is a float data type that

represents the radius of the sphere that fits the curvature of the

hand detected (Developer.leapmotion.com 2015). The Sphere

radius variable has two main advantages:

1. It is useful in estimating how far each finger is spread

apart (although it is not effective in gauging what the

overall size of the hand is) and

2. The curvature of the fingers can be estimated from

this data.

The sphere is placed roughly in the palm of the hand as if it were lightly holding a ball. Therefore,

the radius of the sphere decreases when the fingers curl in towards the palm of the hand. An

example of different sphere radii can be seen in Figure 8. This makes programming a script easier

when distinguishing between an open fingered gesture and a fully closed fist gesture.

The Palm Position is the x, y and z Cartesian co-ordinates of the hand’s palm. The palm position is

hence represented in a vector format. The centre of the palms position is given in millimetre in

reference to the LEAP motion controller origin (Developer.leapmotion.com 2015).

Figure 8: Diagnostic Visualiser Images of
Different Sphere Radius’

22

4.3.4 Frame Class
The LEAP motion controller works using frames of information that are processed as soon as they

are received from the LEAP controller (Developer.leapmotion.com 2015). The LEAP motion

software has a fluctuating frame rate depending on processing power of the computer being

used, the activity within the LEAP controller’s field of view, the software tracking settings as well

as other factors. A single frame represents a set of data that contains the complete set of hand

and finger tracking information (Developer.leapmotion.com 2015). Fingers, tools, gestures and

any other movement within the LEAP controllers field of view are represented by the frame class.

The LEAP motion API allows a user to look at this data and retrieve the frames of data and even

look at specific frames of data. The Frame object is essentially the root of the Leap Motion data

model.

4.3.5 Listener Class and Controller Class
The Listener class is an ‘event-driven’ class that is registered with the Controller class. The listener

class responds to various changes to the data seen by the leap controller and uses call-back

functions that are used the override subclasses to respond to events that are defined in the

controller class (Developer.leapmotion.com 2015).

23

4.4 Online Reviews
To give you, the reader and developer, a general feel for the Leap Motion as an overall general

product, a handful of online review are listed below. These reviews are from users and developers

who give their honest opinion.

“All in all, the Leap Motion controller is more about potential than anything else. While it provides

a new means for computational control unlike anything else we've seen, it's clear that it's not cut

out to replace a touchscreen or mouse as a primary input device. Not yet, anyway. Some

developer may well figure out a way to take full advantage of the Leap's capabilities with a novel

UI, but for now, it's best suited for creative pursuits, not productivity.” (Gorman 2015)

 -engadget

“Intriguing, Unessential, but Promising. Leap Motion's Kinect-like PC motion controller has its

moments of magic, but right now it's more toy than productivity tool.” (Stein 2013)

-C|net

“The Leap Motion Controller is a Piece of sci-fi futurism available today, and it's cheaper than you

think. But while it's magic when it works right, it's maddening when it (frequently) doesn't.”

(PCMag Australia 2013)

 -PC

From these reviews and from personal usage, it can be concluded that the Leap Motion sensor is

a good device but has not been perfected for precision applications. This is a primary concern as

the controller is desired to be reliable and accurate. Considering that the controller is for a

wheelchair and intended for individuals with limited dexterity and capabilities, safety and user

experience is crucial for the design and dictates the engineering methods employed.

24

5. Machine Learning

Machine learning (Schapire 2008) is a subclass of computer science that is linked to artificial

intelligence. By definition, machine learning is the study of pattern recognition (Bishop 2016) and

computational learning (WhatIs.com 2015); in other words, it has the ability to learn and evolve

without being explicitly programmed. Machine learning software is able to learn autonomously

with the aim being to improve the development of computer programs. This is achieved through

analysing data in order to construct an algorithm that can learn and make predictions. When

these algorithms are exposed to new data, they are able to change and grow, formulating new

predictions and algorithms based on the static or dynamically fed data. Machine learning is used

mainly for optimisation and, in industrial scenarios, used for predictive modelling. There are many

applications of machine learning including, adaptive websites, game playing, handwriting

recognition, internet fraud detection (Quora.com 2016), search engines and software

engineering.

5.1 Data mining
Similar to machine learning is data mining. Both machine learning and data mining methods

analyse sets of data for patterns that can be applied to optimisation or predictive algorithms

(Docs.oracle.com 2015). The difference between data mining and machine learning is that data

mining software applications analyse data collected from a device and present the patterns in a

way that is understandable for human comprehension; while machine learning uses the collected

data to improve the software programs own understanding (Quora.com 2015). For example,

advertisements online change to what the user’s interests are through machine learning.

Generally the mathematics involved in data mining software programs are decision trees

(Saedsayad.com 2016), cluster analysis (Learn Data Mining 2016) and various classification and

regression analysis techniques (Docs.oracle.com 2016). There are many data mining open source

25

software programs available that include the following: H2O, Yooreeka, WEKA. Other data mining

software that is commercial software include: MATLAB, IBM SPSS Modeler, Oracle Data Mining.

5.2 Waikato Environment for Knowledge Analysis [WEKA]
WEKA is a machine learning software developed at the University of Waikato in New Zealand. It is

an open source software that is able to discover patterns in large data sets as well as being able to

extract all the information and represent it in a useful way (Community.pentaho.com 2015). The

software provides large selection of mathematical models for data analysis and predictive

modelling. WEKA supports an array of data mining tasks such as clustering, regression,

visualization and data processing. The machine learning techniques utilised by WEKA are based

upon the assumption that the available data is of a single flat line or relational format. These

formats describe each data point by a fixed number of attributes, normally numeric methods are

utilised.

There are many algorithms implemented in WEKA: linear regression, model trees, decision trees,

support vector machines, neural networks, and other. Most of them produce complicated models

that are hard to translate into code. A very simple model is produced by decision trees. The

classification accuracy of the decision trees generated by the WEKA implementation is very high.

For this reason, this project will only use this algorithm.

5.3 Decision Trees
One of the most famous machine learning algorithm is Quinlan’s C4.5 (Quinlan 2014) for

generating a pruned or unpruned decision tree (Quinlan 2014). The WEKA software’s version of

this algorithm is called J48 (Facweb.cs.depaul.edu 2016). The decision trees generated by J48 are

used for classification.

The algorithm works by examining the normalized information gain that results from choosing an

attribute for splitting the data. The attribute with the highest normalized information gain is used.

26

The splitting procedure stops if all instances in a subset belong to the same class (Quinlan 2014)

and a leaf node is created in the decision tree associated with that class. It can also happen that

none of the features give any information gain. In this case J48 creates a decision node higher up

in the tree using the expected value of the class.

The algorithm also performs pruning of the generated tree. The pruning is carried out from the

leaves to the root. If the estimated error of a subtree is comparable with just using a leaf instead,

then the tree is pruned at that branch.

6. Ergonomics and User Experience

This project aims to accommodate the user’s needs. If the user is not able to adapt and benefit

from a gesture control system because it is too difficult and unpredictable to use, then the system

becomes useless and unnecessary. The LEAP motion controller prides itself on being a more

natural and intuitive way for people to interact with computers (Sanders and Flowers). With that

in mind, controlling something with subtle finger and hand movements in a 3 Dimensional space

is still a foreign concept and may not be intuitive for a user to learn.

Like other household motion control devices (for example the Xbox Kinect), interacting in a new

way will require practice and an understanding of how to interact with the hardware system for a

new user.

The project design has a few rules of thumb when considering the user experience for the LEAP

enabled application to be easy to learn and use.

6.1 Easy Gestures
The symbology must be intuitive, easy to learn and memorise. Complex hand gestures that are

physically difficult can be discouraging for the user. Physically inspired gestures from real world

behaviours that are more natural means less training to learn individual needs.

27

6.2 Exaggerated Responses and Dynamic Feedback
The response to a gesture should be exaggerated as the user should feel as if their intent is

amplified for an even more positive result; for example, the small movement of a physical

computer mouse should significantly move the computer cursor (Sanders and Flowers).

The more responsive feedback given to the user, the better interaction experience they will have

as they will be able to interact more with the LEAP system.

6.3 Intuition
A user should be able to start to operate the system with little or no instruction. Intuitive guesses

and common sense tie in to natural human behaviour, therefore using gestures that will come to

the user naturally are important. Confusing logic will only discourage an individual from

progressing and using the device controller.

Simple things like making all the gestures have the same orientation to the device make a

significant difference to a new user as it keeps uniformity.

6.4 Resources
Any good product is accompanied by a set of clear instructions as well as online help and

information. Products that are transparent yield the most positive feedback. A working

knowledge of the overall system benefits the user as they will be able to operate the controller to

its full capability and be able to troubleshoot errors that may occur.

28

7. Project Design

This project aims to control the basic functionality of a motorised wheelchair through hand

gesture recognition techniques. The basic driving commands of a wheelchair include forward,

reverse, left turn, right turn and stop. Being able to perform a 90° or 180° rotation to the left or

right as well as a 360° turn, is also a standard feature. As well as these basic functions, the user of

a wheelchair is able to change the speed at any given time. These combined features make up the

basic command set of a wheelchair, therefore this project aims to distinguish a sufficient set of

gestures to provide full control of a wheelchair.

The overall project design can be split into three separate areas:

1. Hand gesture controller design interface

2. Controller function and program design, and

3. Robotic testing platform

Each area requires a design that will be robust and have accuracy and precision. Safety

considerations and features must be included at each stage of the project.

This project will not go to the extent of implementing the system on a wheelchair as this will be

too costly, therefore this project is a proof of concept.

29

7.1 Hand gesture Controller Design
There are five general functions that are performed by a wheelchair, hence there will need to be

five or more separate hand gestures that will represent each different function. As the LEAP

controller is for a wheelchair, it is assumed that the controller is to be used by a person who has

very limited shoulder, arm and hand dexterity and is prone to fatigue. Big gestures that involve

movement and tracking (such as a swipe, circle or flick gesture) will be hard to manage, hence the

use of these gestures in this project is eliminated. The hand gestures used will be mostly based

around different finger positions.

As only one hand is needed to operate the controller, there is no need for the program to be able

to distinguish between the right hand and the left hand. A flaw with the LEAP motion sensor is

that it sometimes struggles to distinguish between right and left hands. Robust hand gestures are

better suited to eliminate as much unpredictability as possible, hence symmetrical hand gestures

are preferable as they eliminate the possibility of the LEAP motion sensor confusing the left hand

as the right hand and vice versa. Choosing gestures that eliminate this confusion was essential for

safety reasons and reliability as it decreases the risk that the LEAP motion sensor will mistake a

right hand for a left hand gesture and carry out an undesirable wheelchair command.

 Above all, the gestures have to be user friendly and memorable. Gestures that are hard to

perform will discourage people from using the controller.

With the above factors in mind, the following eight gestures were chosen; their names and

representation are illustrated by photos in Table 6. The gestures are described by their finger

position. The LEAP motion sensor is placed in a neutral position with the sensors facing directly

upwards. Each hand gesture is placed approximately 15 cm or more directly about the LEAP

sensor in a central location.

30

Table 6: Hand Gesture Representation

Hand Gesture
Name

Photo Leap Sensor Skelton Image: TOP View

Open Arm- Palm
facing the LEAP.
All fingers and
Thumb are fully
extended and
separated

Full Fist- Palm
facing the LEAP.
All fingers and
thumb are
curled

Thumb and
Pinky- Palm
facing the LEAP.
Thumb and
Pinky finger are
extended and
three middle
fingers are
curled

Thumb and
Index- Palm
facing the LEAP.
Thumb and
Index finger
only are
extended and
separate. The
other fingers
are curled

Index and
Middle- Palm
facing the LEAP.
Index and
Middle finger
are extended
and separate.
Other fingers
are curled.

31

Thumb, Index
and Middle-
Palm facing the
LEAP. Thumb,
Index and
Middle fingers
are extended
and separate.
Other fingers
are curled.

Thumb Only-
Palm facing the
LEAP. Only the
thumb is
extended. All
fingers are
curled.

Axe- Palm
facing towards
the left (x- axis).
Fingers slightly
curled in
comfortable
position. Slight
finger
separation.

Each hand gesture has their own unique Cartesian and vector representation when placed inside

the LEAP motions range of view. To accurately define each gesture, access to the LEAP sensor

data is needed so that it can be analysed. Sections 6.1.1 and 6.1.2 detail how the data is

represented, how it was collected, how it was processed and the concluding results from the

testing of gestures.

32

7.1.1 Leap Data Sampling Application: LEAP Listener
As part of the hand gesture background research for the controller, numerous tests were done to

collect data. The LEAP controller works by taking a pre-existing model of the human hand and

compares this model with the data points collected from the sensors and updates in real time.

The data is analysed frame by frame by the LEAP Motion software. The LEAP motion software

SKD files provided a basic LEAP Listener application program located in the LEAP sample folder.

This program was used as a template and then modified to collect the required hand frame data

and export it as a text file. The vector, finger and hand classes discussed earlier were required to

be added to the LEAP listener to collect the data from the LEAP motion sensor. Each frame of data

consists of the roll, Pitch and yaw angles of the hand as well as the bone direction vector

coordinate data points for five fingers. The index, middle, ring and pinky fingers have four bones

each and the thumb has three bones. Each bone will have three co-ordinates, therefore, there is a

total of fifty seven (57) data points. Overall, including the Pitch roll and yaw angles, there will be

sixty data points per frame of data. An example of a single frame of data is given in Appendix B.

The modified Leap Listener program was used to conduct batch and continuous testing for each

hand gesture. Over one hundred tests were conducted for each gesture with the same right hand.

The test data was then organised into a singular data document with separate documents for

each gesture. These test data files are available upon request. The number of collected data

points was too large to visually interpolate any useful information, thus a data mining and

machine learning analytic program called WEKA is employed and its results discussed in the

following section.

The modified Leap listener program application is provided in Appendix A.

33

7.1.2 WEKA Results
The LEAP controller is to be used to drive a wheelchair, which means safety is a top concern,

therefore, it is desirable to make the LEAP controller system perform as accurately as possible.

The high level of accuracy is only achievable through testing, collecting the frames of data,

analysing it and then using the outcome in the software that will predict the hand gestures to

drive the motors.

WEKA consolidated and analysed all the frame data using the J48 decision tree algorithm. It was

able to handle the large amounts of data as well as the large classification range that the LEAP

listener sample program was instructed to print. Using the WEKA program provided a more

structured approach for analysing the LEAP data, yielded better results and was more systematic

than a mere trial and error method.

WEKA produced a classifier model from the data. This model provided information about every

arm and bone direction. This information was used to classify the structure of each hand gesture.

The testing segment of this thesis project, discussion in section 7.1, has been instrumental in

understanding how each gesture is classified.

Initially, a model that will classify all eight gestures as described in Table 6 was generated using

WEKA. WEKA provided statistics on each gesture. The classification matrix is given in the following

table (Table 7). This model yielded 81.67% classification accuracy.

34

Table 7: Confusion Matrix for all Hand Gestures generated from WEKA

open
arm

full

fist

index

and

thumb

index

and

middle

index and

thumb and

middle

thumb
only

axe thumb

and

Pinky

classified as

5528 11 0 1 21 1351 967 0 open arm

0 2629 19 0 7 0 1 2 full fist

0 1 2693 0 14 0 0 0 index and

thumb

0 0 21 2571 4 0 0 1 index and

middle

1921 11 0 0 1267 0 0 0 index and

thumb and

middle

5 21 2 0 0 3270 0 0 thumb only

707 6 0 0 0 0 2086 0 axe

0 7 1 0 0 0 0 2694 thumb and

Pinky

Three of the gestures are most frequently misclassified: Axe was sometimes classified as open

arm, the index, thumb and middle gesture was misclassified also as open arm, and the open arm

gesture was misclassified as the thumb only gesture. Table 8 contains the detailed accuracy by

gesture. As we can see the axe and the index, thumb and middle are the two gestures that have

the lowest classification accuracy. Each hand gesture has a true positive (TP) percentage,

identifying the percentage of hand gestures that were identified correctly, and a false positive (FP)

percentage that shows how many times the correct hand gesture was identified as incorrect.

Because we are interested in robust gestures, these two gestures were removed. More data was

collected using only the open arm, fill fist, index and thumb, index and middle, thumb and pinky

and thumb only gestures. The precision column shows the fraction of the total correctly retrieved

35

identified hand gestures to the actual relevant correctly identified hand gesture. The receiver

operating characteristic (ROC) percentage is an indication of how well the decision tree classified

each hand gesture.

Table 8: Detailed Accuracy by Gesture Type

Hand Gesture TP % FP % Precision % ROC %

Open_Arm 70.2 13.2 67.7 92.0

Full_Fist 98.9 0.2 97.9 99.9

Index_and_Thumb 99.4 0.2 98.4 100

Index_and_Middle 99.0 0 100 100

Thumb_Only 99.2 0.2 98.6 100

Thumb_and_Pinky 99.7 0 99.9 97.7

Thumb_Index_and_Middle 39.6 5.5 48.4 93.2

Axe 74.6 0 99.9 100

Table 9 shows a summary of results that give the total number of data sets provided to WEKA and

the amount of times the J48 algorithm was able to correctly or incorrectly classify the data. The

percentage of correctly classified instances was 97.16%. Ideally, the greater the correctly

classified instances, the better the LEAP controller system will operate.

Table 9: Summary of Total data accuracy results formulated from WEKA J48 Algorithm

Total Number of Instances 112388

Correctly Classified Instances 109198 97.16%

Incorrectly Classified Instances 3190 2.84%

A ROC value is also shown in Table 10 for each hand gesture. The ROC value represents the

probability of a positive instance occurring more often that a negative one. The ROC values for

36

each gesture are very high, indicating that, from the data collected, there is a greater chance of

the gesture being identified correctly.

Table 10: New Detailed Accuracy of Gesture: Generated from more collected Data

Hand Gesture TP FP Precision ROC

Open_Arm 0.984 0.007 0.976 0.998

Full_Fist 0.973 0.012 0.957 0.996

Index_and_Thumb 0.982 0.004 0.979 0.998

Index_and_Middle 0.98 0.002 0.992 0.998

Thumb_Only 0.924 0.007 0.942 0.994

Thumb_and_Pinky 0.964 0.003 0.978 0.998

A confusion matrix provides a visualization of the performance of the J48 algorithm for the

selected gestures. The confusion matrix in Table 11 shows the actual number of instances that a

hand gesture was confused with a different hand gesture. The columns are the classified hand

gestures and the rows are the actual hand gestures. As a general overview, most hand gestures

had been confused with two or more different hand gestures on more than one occasion. The

thumb only gesture and the full fist gesture are the most likely to get confused with one another.

37

Table 11: Confusion Matrix for Selected Hand Gestures generated from WEKA

Open

Arm

Full Fist Index and

Thumb

Index and

Middle

Thumb

Only

Thumb and

Pinky

23179 127 52 5 114 75 Open Arm

145 23493 38 6 393 60 Full Fist

18 146 18622 24 78 71 Index and

Thumb

67 168 107 20150 70 0 Index and

Middle

193 474 146 122 12079 54 Thumb

Only

15 129 63 0 88 11675 Thumb and

Pinky

The results determine what type of gesture will be used to drive the wheelchair. When WEKA

generated desirable statistics, the more robust the gesture was and the less chance the program

would mistake a gesture and carry out an undesired and potentially dangerous function. In

summary, the axe gesture and the thumb, index and middle gesture did not have good results;

therefore the use of these gesture are no longer justifiable.

This testing and data results are a key outcome of this thesis. It not only determined which hand

gestures to use but also confirmed that the LEAP motion sensor was a viable option as the hand

gesture device used for this application.

38

7.1.3 Conclusion of Hand Gesture Design Process
After the testing and analysing of results, a total of six gestures were chosen. These gestures were

then allocated a task (see Table 12 for details) that represents the functions of a standard

motorized wheelchair. The tasks allocated, are aimed to match intuitively and logically to a

gesture. For example, the index finger can be assumed to be a Pivotal finger as the addition of a

thumb or middle finger will indicate a left or right turn respectively.

Table 12: Hand Gesture Wheelchair Function Task Allocation

Description Application Task

Open_Arm Start, forward, Incrementally increase
speed.

Thumb Only Reverse

Index and Middle Right Turn

Index and Thumb Left Turn

Thumb and Pinky Stop Immediately

Full_Fist Controlled Stop

Although the chosen gestures seemed suitable for the accuracy needs of the controller, each still

had wild variations from one trial to the next, which were visible through the LEAP diagnostic

visualizer as well as WEKA statistics. Although the gesture tests were conducted under the same

conditions, the sensor was not completely accurate 100% of the time.

39

Figure 9: Overall System Flow Diagram.

7.2 Server Application Description
The complete server application code is provided in Appendix C. The application is built on top on

the LEAP listener sample (Developer.leapmotion.com 2016) provided by the Leap Motion API as it

has predefined call back functions that are used to respond to events dispatched by the LEAP

controller. First a native listener for the LEAP motion sensor is initialized. Then, just like in the

data sampling process, the server application collects all the measurements that the sensor

produces. The Server Application stores these measurements, and then passes this information to

a predictive function. This function is generated from the WEKA J48 algorithm. The tree that the

algorithm produces is translated into if-then-else statements. This gives a very fast predictive

function since the tree has very small depth of less than 20 nested if statements.

The predicted hand gesture, (one of the following gestures: open arm, full fist, index and thumb,

index and middle, thumb and pinky and only thumb), is then sent as a UDP packet to the receiving

end of the test platform. The leap driver application that runs on the Raspberry Pi interprets the

data packet, reads the gesture being sent from the server application and then drives the motors

accordingly.

7.3 Controller Function Program Design
The aim of the controller function programs are to respond to hand

gestures and move the wheelchair motors appropriately.

The diagram shown in Figure 9 gives an overall representation of how the

program is intended to operate. When the server application program

recognises a gesture, an event will start. The event will then go through a

gesture control procedure to determine what action the wheelchair motors

should take. After the gesture control procedure, a wheelchair ‘engine

equalization’ procedure will start as a way to keep extra control on the

40

Figure 10: Gesture Controller Procedure Diagram

wheelchair’s movements (stop it from Spinning out of control). The controller function program

will continuously be on standby waiting to register the next gesture until the program is told to

end.

 The gesture controller procedure is illustrated using a

diagram as shown by Figure 10. When the program starts, it

will continuously wait for a packet of data to be received. A

hand gesture will by seen by the LEAP motion sensor and

the frame data will be passed through the network socket.

When the program receives an available network packet it

will match the data with a defined gesture. The program

will then proceed to carry out the intended actions using

the motors.

If the same hand gesture information is being provided

continuously through the LEAP sensor, then the program

will persist to carry out the same action. For example, if a

person were to steadily hold the same index and thumb

gesture in the LEAP controller’s range of view, the

wheelchair will continue to turn to the left. The same

applies for all other gestures.

The open arm gesture will execute a procedure that will

gradually increase the duty cycle of the PWM switching

signals. The longer the open arm gesture is held, the

greater the speed of the wheelchair. When the open arm

41

gesture is removed and no other gesture is registered, the wheelchair motors will continue to

operate at that speed.

The speed of each motor of the wheelchair is limited. The restricted maximum speed limit is a

safety technique so that the person using the wheelchair is safe, comfortable with the speed and

the motors of the wheelchair are protected from potential damage.

The Drive Engines procedure is briefly illustrated by a diagram in Figure 11. This procedure

dictates the speed and direction of the motors when a hand gesture event is registered. When no

hand gesture is being recorded, no PWM signal will be sent to the motors and both motors will be

off. When a hand gesture starts an event, and the speed of one or both of the motors will

increase. The rotation of the motor shaft will be in a clockwise or anticlockwise direction

indicating forward and reverse movement respectively.

Figure 11: Drive Engine Procedure Logic Diagram

42

Figure 12: Index and Thumb and Index and Middle Flowchart
procedure Representation

The left and right procedures (Figure 12) shows how the two different motors will react when and

Index and middle or Index and thumb gesture

is seen by the LEAP controller. It is desired for

the wheelchair to turn on the spot. In

general, depending on which direction to

turn, one motor will speed up in a clockwise

direction to move forward and the other

motor will speed up, but in the opposite anti-

clockwise direction. The speed of the motors

are increased so that turning will be more

efficient.

 The Slow Down Fast Procedure given in Figure 13 is a diagram representing the thumb and Piny

hand gesture triggered event. For an abrupt or emergency stop, the speeds of the motors are

decreased incrementally.

43

Figure 13: Thumb and Pinky Gesture Flowchart Procedure

44

The Engine Equalization Procedure is aimed at

stabilizing both the motors speed. The

procedure diagram shown in Figure 14, is a

comparison method that compares the speed of

the two motors against each other. After a

turning gesture, the motors are receiving two

different PWM frequency and are rotation in

opposite directions. If no gesture command is

being received once the turning gesture has

ceased, then the motors speed will gradually

start to equalise. For example, the index and

thumb gesture is used to turn left. To turn left,

the speed of motor one will increase in speed

and the speed of the second motor decrease

and then speed up again in the opposite

direction. When LEAP controller stops receiving

the index and thumb hand gesture, and no other hand gesture is registered, it is desirable for the

wheelchair to continue forward in a straight direction. Therefore, once the turn has been made

the motors’ speeds are compared and are incrementally changed so that they rotating at the

same speed in the same direction.

The motor driver program is provided in Appendix D.

Figure 14: Engine Equalisation Procedure for Motor Speed
Stabilisation

45

7.4 Robotic Testing Platform
There were many ways to test working code. The following are some options that were

considered:

● Simple breadboard with LEDs for indications

● Graphical User Interface (GUI) application

● Robot

All the individual options would have been effective visual aids, but to illustrate the controller’s

capability, a working robot was best suited considering it was for a wheelchair application. One of

the main reasons behind this decision was that the speed variations and control of the motors of

a robot mimicked that of a motorised wheelchair, making it easier to visualise in comparison to a

GUI or through mere static indication methods.

Design possibilities for the robot were limited by the following factors:

1. External power source: it is desirable to have to robot mobile; therefore the battery

source had to be reasonably light weight and therefore slightly limited the range of

electronics that could be used. and

2. Wireless communication: the LEAP controller will only work on a computer with an

Intel i3, i5, i7 or AMD processor and a graphics card, therefore the commands will

have to be communicated to the robot through radio or Wi-Fi.

It was required to control two separate low voltage DC motors to drive the robot and make it

perform different functions exactly like one would see a standard motorised wheelchair perform.

However, a two wheeled robot base large enough to hold two batteries and a controller was not

available, so a standard 4 motor robot base development kit was purchased. The four motors will

act as two units, meaning the two left side motors will receive the same commands and similarly

with the two right side motors.

46

Using a Raspberry Pi, USB wireless dongle, L298N Arduino motor driver shield (Geekonfire.com

2015) and four motors, the test product was complete. The directional spin of the motors is

indicated in Figure 15. A photo of the final test robot platform is shown in Figure 16 and

representation of this circuit is illustrated in Figure 17. The Pin allocation is provided in Appendix

E.

Figure 16: Robot Test Platform

Figure 17: Wiring Diagram of Robot Test platform

Figure 15: Diagram Representation of Test Robot Motor Rotation Direction

47

Take note that the Raspberry Pi was version 2.0, as the Pin configuration will vary in different Pi

models (Raspberry Pi 2015). The Raspberry Pi needs its own 5V, 1A power supply, so a mobile

battery bank with a USB to micro USB connection cable was used as it was relatively compact and

convenient to recharge. The Raspberry Pi communicated to the host computer through Wi-Fi. A

Wi-Fi USB dongle (Dlink.com.au 2016) was inserted in one of four USB ports readily available on

the Raspberry Pi. The dongle was configured and given an IP address so that it could receive

packets of data from the host computer. The Raspberry Pi has a microSD port which is used for

loading the Wi-Fi dongle configuration code and motor driver code to the Pi as well as storing

data.

The Arduino motor driver PCB is supplied with 7.6V DC from two 3.8V Lithium Ion batteries in

series. The power from these batteries will be used to drive the four 3V rated DC motors. The

board has a L298N motor driver chip (Dual Full-Bridge Driver 2000) commonly used for controlling

48

robotics and other mechanics. The L298N chip is a high voltage, high current dual full H bridge

driver capable of driving brushed DC motors or a four wire, two phase stepper motor as well as

other inductive loads such as relays (L298N et al. 2015). This motor driver shield was selected for

this project for numerous reasons. The L298N chip is pre-mounted onto a shield with its input

going out to terminals on the shield which made it simple to change or troubleshoot when

needed. The shield has an on-board voltage regulator and indication LED for each input

(Geekonfire.com 2015). The main feature is that it is able to drive motors simultaneously while

the motors are receiving commands to go at a different speed or change rotational direction.

Additional specifications for the Arduino motor driver shield are provided Appendix E.

The code that is responsible for driving the motors and determining their rotation direction and

speed is provided in Appendix D. This code defines the functionality of the robot (turn left, turn

right, forward and reverse) by setting specifically allocated Raspberry Pi general input/output to

the motors true or false. Pulse Width modulation (PWM) has been included allowing the duty

cycle to change which in turn determines the speed of the motors.

To recreate the robot testing platform, a bill of materials (BOM) is provided in Appendix E.

Figure SEQ Figure * ARABIC 6: Flow Diagram representation of overall System Design

49

8. Test Result

The testing of the overall system was relatively conventional and consisted of carrying out a series

of repetitive tests. As this project did not have ethics approval from the required organisation, the

tests were limited to a few willing participants. An explanation of how the controller works was

verbally communicated to the participant before commencing any testing. The participants were

asked to test the controller system's usability by means of some simple tests and a general free

run of the controller so that the general feel for the controller could be assessed.

There were two main categories that the gesture controller system was being marked against:

accuracy and user friendliness.

User friendliness was given through general feedback from individuals. In summary, the leap

gestures were intuitive but it took practice to grasp the responsiveness of the system. It was not

easy to navigate the test robot straight away on the first try. The novelty of a gesture recognition

controller wore off as some individuals became frustrated with the lack of controller sensitivity.

The participants involved captured a large age group as the age range was started from 8 years

old to 69 years. All participants were asked to try and complete the following instructions:

- Test 1: move forward

- Test 2: Stop: gesture of your choice

- Test 3: reverse

- Test 4: turn left or turn right 90 degrees and continue with straight forward movement :

participant's choice of left or right turn

- Test 5: complete a full circle on the spot then stop: direction is participants choice

Each participant was given three attempts to compete the task. The results are shown in Table 13

that indicate if the participant was able to complete the task in one of the three attempts.

50

Table 13: Results if the tasks were able to be completed

Participant Test 1 Test 2 Test 3 Test 4 Test 5
1 Yes Yes Yes Yes No
2 Yes Yes Yes No No
3 Yes Yes Yes Yes No
4 Yes Yes Yes Yes No
5 Yes Yes No No No
6 Yes Yes Yes Yes Yes
7 Yes Yes Yes No No
8 Yes Yes Yes Yes No
9 Yes Yes Yes Yes Yes
10 Yes Yes Yes No No
11 Yes Yes Yes No Yes
12 Yes Yes Yes No No
Percentage 100% 100% 91.67% 41.67% 25%

It is clear from the participant testing that harder tasks are not easily achievable straight away as

the rate of correct movements decline as difficulty rate increases.

Almost all participants were able to complete the first three simple tests, start, stop and reverse.

Turning required more skill. As there was a small amount of latency and the testing platform was

not build to turn easily, turning left or right required some practice and guess work as to when

would be the best moment to release the hand gesture making the robot motor equalisation

sequence take over.

51

9. Problems Encountered

Each stage of this thesis project encountered some minor problems that initially cause some

setbacks. Through further development and troubleshooting all of the problems were resolved.

Noteworthy problems that were encountered are briefly discussed and the ways these issues can

be resolved.

9.1 LEAP motion Connectivity
Problem: The LEAP motion sensor would not register hand gestures. It was observed that the

LEAP motion was receiving power from the computer as the green power light was on, but the

small infrared sensors were not observed to be on. The LEAP motion diagnostic visualizer would

not display any hand skeletons, hand tracking or photo captures. The cause of this re-occurring

error was unknown and would happen on any computer.

Solution: Disconnecting and reconnecting

the LEAP motion sensor did not resolve the

issue. The LEAP Motion control Panel offers

some troubleshooting techniques. When

this problem occurred, recalibrating the

device through the ‘Re-calibration Device’

option located in the LEAP motion settings,

would force the infrared sensors on. The

diagnostic tool would then give instruction on how to recalibrate the LEAP sensor. Further

troubleshooting techniques for the LEAP motion controller can be found on the frequently asked

questions section of the LEAP motion Support web page (Leap Motion Support 2015).

 Restarting the host processor was the most reliable option.

Figure 18: LEAP motion Troubleshooting Tab in Settings-
Recalibration

52

9.2 Robot Test platform Troubleshooting
Problem: Initially there were minor issues with the robot car testing platform. For example the

motors would not rotate in the required direction or not rotate at all. There were also instances

where the Raspberry Pi would appear not to be communicating with the server application.

Solution: Physical layer troubleshooting fixed most problems. Checking the wiring found that

sometimes the female to male connection would be accidentally pulled apart. The battery supply

may also be causing issues is it is running low on power. For any other problems, a ‘test motors’

program was created to individually test the clockwise and anticlockwise rotation of each motor

in sequence. This was extremely useful for troubleshooting errors.

9.3 Latency Issues
Problem: On occasion, latency of controller system was noticeable. The frame rate per second of

the LEAP motion sensor was very low and as a result the controller system became unresponsive.

Solution: This is an unfortunate flaw of the LEAP motion sensor. The frame rate per second of the

LEAP motion sensor cannot to be set manually or to poll the LEAP motion for frame data as the

programs would be alternately tested on desktop computer and laptops with different

capabilities. Polling for frames of data risks receiving the same frame twice consecutively if the

application frame rate exceeds the LEAP frame rate. The frame rate of the LEAP controller can be

anywhere from 20 to 200 fps depending on the user's settings and available computing power

(Developer.leapmotion.com 2015). The LEAP software is open source, making the latency issue a

possible future work for students.

53

10. Future Improvements

There will always be room for improvement on this particular thesis project as it is easy to want to

strive for excellence. There are numerous areas that need improving: Gesture recognition

accuracy, user friendly interface and better communication between software and hardware

interfaces are a few examples.

The follow list potential future improvements that can be made for this project:

Additional Mode Settings: Most new EPW’s have a joystick controller as well as additional buttons

and a LCD screen. The buttons allow the user to change mode settings. The modes are changed

when the wheelchair changes terrain, like going up a small hill, or changes if a different speed

setting is required. The LEAP controlled wheelchair is programmed to change the PWM frequency

increasingly the longer the forward hand gesture is held for. The option for having different set

speed modes would potentially be more desirable for market use.

Real time feedback/ new testing platform: A GUI would be beneficial to implement for testing

and debugging new code. A simple indication method for correct hand gestures or a more

elaborate wheelchair driving simulator can be made for better visualization. A GUI will also

provide additional information regarding the controller interface and performance to the user.

Another advantage is that participants testing out new systems would be more comfortable

watching their gestures control a virtual indication method on a screen. This a highly

recommended future improvement.

Additional sensors: Additional proximity sensors would assist in the user friendliness and overall

navigation of the wheelchair. The proximity sensors could be ultrasonic sensors that will

collectively act as collision avoidance system. A GPS system can also be implemented for

54

autonomous navigation. This would work in coincide with the proximity sensors to ensure the

user reaches the destination and that the wheelchair is protected from potential collisions.

Addition of accelerometers, encoders and gyroscopes could also be considered.

WEKA Data/Larger testing sample: Collecting and analysing more hand gesture data of different

types of gestures would complement and improve the research on this paper. As all the data was

collected from the same right hand from the same person. It would be beneficial to obtain data

for the same hand gesture from a large number of participants, therefore WEKA would produce

an algorithm that would potentially better suited as a general template to suit any person’s

individual interpretation and physical capability of the same gesture.

Alternative Gesture Controllers: There were notable disadvantages with the LEAP controller. The

LEAP device needs a graphics card as well as a minimum of an i3 processor. Extra development

would be required to accommodate the LEAP motion device if it were to be implemented and

tested in a working motorised wheelchair. It is opined that the GestIC technology be used if this

project were to be restarted as it has a good development system with GUI interface and would

proceed to be able to evolve and integrate into a smart wheelchair system.

This project provides a basic platform for hand gesture recognition controllers. A continuation of

this project would result in further tests and eventually an implementation of the controller on a

motorized wheelchair. Implementation on an actual motorised wheelchair or mobility scooter

would be the final finishing and testing stage of this project before making this alternative

controller a commercial product.

55

11. Conclusion

This thesis project aimed to design an alternative controller for a wheelchair for people with

limited arm and hand dexterity. An interactive hand gesture controller system was designed and

tested. The LEAP motion sensor was the hand recognition device used, and although its online

review forewarned of the flaws of the controller, the overall accuracy of the hand gesture

recognition system was satisfactory. The hand gesture recognition testing showed that 97.16% of

the hand gestures selected for this thesis were correctly identified. In comparison to other

alternative wheelchair controller research articles available online, 97.16% accuracy for this

gesture controller is on par, exceeding the reliability of other alternative controllers.

The controller is a non-invasive, discrete and accurate, but there are hurdles to cross when it

comes to the user ergonomics and user experience. Elderly users who rarely use computers or

smart phones, found the gesture controller less intuitive to use than that of other participants.

Although the gesture controller is designed so that a gesture is only required to be held in the

LEAP motion range of view for a short time, the hand gestures are still hard to manage. The

positive side is that the controller can be customised to have any robust gesture that better suits

the user.

In conclusion, this project has been a proof of the concept that an interactive hand gesture

controller can be designed and programmed to be an accurate and reliable alternative controller

for a motorised wheelchair. There are many improvements to be made to the system architecture

of this project and this gesture recognition controller is not a commercially viable solution for an

alternative wheelchair controller.

56

12. References

Abarca, Edwin.2014. "Decoding 3D Printing: Sculpteo @ Autodesk". Leap Motion Blog.

http://blog.leapmotion.com/decoding-3d-printing-sculpteo-autodesk/. (Accessed: 14/01/2016)

Atwiki.assistivetech.net,. 2015. 'Alternative Wheelchair Control - Atwiki'.

http://atwiki.assistivetech.net/index.php/Alternative_wheelchair_control. (Accessed:

04/09/2015)

Bishop, Christopher. 2016. "Christopher M. Bishop | PRML". Research.Microsoft.Com.

http://research.microsoft.com/en-us/um/people/cmbishop/PRML/. (Accessed: 14/01/2016)

Brown, Paul. 2015. 'Hover Board » Raspberry Pi Geek'. Raspberry Pi Geek. http://www.Raspberry-

Pi-geek.com/Archive/2014/07/Using-the-Hover. (Accessed: 11/09/2015)

Cardinal, David. 2012. 'Gestic Brings 3D, Camera-Free Gesture Recognition To Low-Cost Devices |

Extremetech'. Extremetech. http://www.extremetech.com/extreme/140286-gestic-brings-

3d-camera-free-gesture-recognition-to-low-cost-devices. (Accessed: 15/09/2015)

Colgan, Alex. 2014. 'How Does The Leap Motion Controller Work?'. Leap Motion Blog.

http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-

work/. (Accessed: 11/10/2015)

Commons.wikimedia.org,. 2011. 'File:Xbox-360-Kinect-Standalone.Png - Wikimedia Commons'.

https://commons.wikimedia.org/wiki/File%3AXbox-360-Kinect-Standalone.png. (Accessed:

13/09/2015)

Community.pentaho.com,. 2015. 'Weka | Pentaho Community'.

http://community.pentaho.com/projects/data-mining/. (Accessed: 14/01/2016)

Corp., Origin. 2015. 'Sip/Puff Switch'. Orin.Com. http://www.orin.com/access/sip_puff/.

(Accessed: 04/10/2015)

Dlink.com.au,. 2016. "Wireless AC1200 Dual Band USB Adapter". http://www.dlink.com.au/home-

solutions/wireless-ac1200-dual-band-usb-adapter. (Accessed: 14/01/2016)

Dev.windows.com,. 2015. 'Kinect - Windows App Development'. https://dev.windows.com/en-

us/kinect. (Accessed: 14/01/2016)

http://blog.leapmotion.com/decoding-3d-printing-sculpteo-autodesk/
http://atwiki.assistivetech.net/index.php/Alternative_wheelchair_control
http://www.orin.com/access/sip_puff/
http://www.dlink.com.au/home-solutions/wireless-ac1200-dual-band-usb-adapter
http://www.dlink.com.au/home-solutions/wireless-ac1200-dual-band-usb-adapter
https://dev.windows.com/en-us/kinect
https://dev.windows.com/en-us/kinect

57

Developer.leapmotion.com,. 2016. "Listener — Leap Motion Python SDK V2.3 Documentation".

https://developer.leapmotion.com/documentation/python/api/Leap.Listener.html. (Accessed:

14/01/2016)

Developer.leapmotion.com. 2015. 'API Overview ” Leap Motion Python SDK V2.3 Documentation'.

https://developer.leapmotion.com/documentation/python/devguide/Leap_Overview.html.

(Accessed: 06/10/2015)

Developer.leapmotion.com. 2015. 'API Reference ” Leap Motion Python SDK V2.3

Documentation'.

https://developer.leapmotion.com/documentation/python/aPi/Leap_Classes.html.

(Accessed: 12/10/2015)

Developer.leapmotion.com. 2015. 'Vector ” Leap Motion Python SDK V2.3 Documentation'.

https://developer.leapmotion.com/documentation/python/aPi/Leap.Vector.html.

(Accessed: 12/10/2015)

Developer.leapmotion.com. 2015. 'Finger ” Leap Motion Python SDK V2.3 Documentation'.

https://developer.leapmotion.com/documentation/python/aPi/Leap.Finger.html.

(Accessed: 23/09/2015)

Developer.leapmotion.com. 2015. 'Hand ” Leap Motion Python SDK V2.3 Documentation'.

https://developer.leapmotion.com/documentation/python/aPi/Leap.Hand.html. (Accessed:

20/10/2015)

Developer.leapmotion.com. 2015. 'Frame ” Leap Motion Python SDK V2.3 Documentation'.

https://developer.leapmotion.com/documentation/python/aPi/Leap.Frame.html.

(Accessed: 15/09/2015)

Developer.leapmotion.com. 2015. 'Listener ” Leap Motion Python SDK V2.3 Documentation'.

https://developer.leapmotion.com/documentation/python/aPi/Leap.Listener.html.

(Accessed: 21/09/2015)

Developer.leapmotion.com. 2016. "Skeletal Tracking | Leap Motion Developers".

https://developer.leapmotion.com/. (Accessed: 22/09/2015)

Dev.windows.com. 2016. "Kinect - Windows App Development". https://dev.windows.com/en-

us/kinect. (Accessed: 14/09/2015)

Dictionary.com. 2015. 'The Definition Of Data-Mining'.

https://developer.leapmotion.com/documentation/python/api/Leap.Listener.html
https://developer.leapmotion.com/

58

http://dictionary.reference.com/browse/data-mining. (Accessed: 14/01/2016)

Docs.oracle.com. 2015. 'What Is Data Mining?'.

http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/process.htm. (Accessed:

14/01/2016)

Docs.oracle.com. 2016. "Regression".

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/regress.htm. (Accessed:

14/01/2016)

Doherty, Jay. 2012. "Drive Controls & Programming A Power Chair -- Mobility Management".

Mobilitymgmt.Com. https://mobilitymgmt.com/Articles/2012/11/01/Drive-Controls.aspx.

(Accessed: 14/01/2016)

Dual Full-Bridge Driver. 2000. Ebook. 1st ed. STM Microelectronics.

http://www.st.com/web/en/resource/technical/document/datasheet/CD00000240.pdf.

(Accessed: 14/01/2016)

Duo3d.com. 2015. 'DUO - A Compact USB Camera For Sensing Space.'. https://duo3d.com/.

(Accessed: 04/09/2015)

Duo3d.com. 2015. 'DUO Comparison'. https://duo3d.com/compare. (Accessed: 05/09/2015)

Engadget. 2016. "Leap Motion Controller Review". http://www.engadget.com/2013/07/22/leap-

motion-controller-review/. (Accessed: 14/01/2016)

Facweb.cs.depaul.edu. 2016. "Classification Via Decision Trees In WEKA".

http://facweb.cs.depaul.edu/mobasher/classes/ect584/WEKA/classify.html. (Accessed:

14/01/2016)

Geekonfire.com. 2015. 'Dual H-Bridge Motor Driver - GOF_Wikidual H-Bridge Motor Driver - Open

Source,Open Minded'. http://www.geekonfire.com/wiki/index.php?title=Dual_H-

Bridge_Motor_Driver. (Accessed: 16/10/2015)

Gorman, Michael. 2015. 'Leap Motion Controller Review'. Engadget.

http://www.engadget.com/2013/07/22/leap-motion-controller-review/. (Accessed:

02/10/2015)

Hantrakul, Lamtharn. 2014. "Organically Creating Music With Your Hands And Fingers". Leap

Motion Blog. http://blog.leapmotion.com/organically-creating-music-with-your-hands-and-

fingers/. (Accessed: 17/10/2015)

Hiremath, Shivayogi V., Dan Ding, and Rory A. Cooper. 2013. 'Development And Evaluation Of A

http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/process.htm
https://mobilitymgmt.com/Articles/2012/11/01/Drive-Controls.aspx
https://duo3d.com/compare
http://www.engadget.com/2013/07/22/leap-motion-controller-review/
http://www.engadget.com/2013/07/22/leap-motion-controller-review/
http://facweb.cs.depaul.edu/mobasher/classes/ect584/WEKA/classify.html
http://www.engadget.com/2013/07/22/leap-motion-controller-review/

59

Gyroscope-Based Wheel Rotation Monitor For Manual Wheelchair Users'. The Journal Of

SPinal Cord Medicine 36 (4): 347-356. doi:10.1179/2045772313y.0000000113. (Accessed:

03/10/2015)

Hover Labs Co. 2015. 'HOME'. http://www.hoverlabs.co/#shop. (Accessed: 19/10/2015)

Instructables.com. 2016. "Robotic Hand Controlled By Gesture With Arduino + Leap Motion".

http://www.instructables.com/id/Robotic-Hand-controlled-by-Gesture-with-Arduino-Le/.

(Accessed: 14/01/2016)

"Introducing The World's First E Field Based 3D Gesture Controller". 2016.

http://ww1.microchip.com/downloads/en/DeviceDoc/41660a.pdf (Accessed: 14/01/2016)

Intel. 2015. 'Intel Realsense Camera'. http://www.intel.com/content/www/us/en/architecture-

and-technology/realsense-depth-camera.html. (Accessed: 04/10/2015)

Kim-Tien, Nguyen, Nguyen Truong-Thinh, and Trinh Duc Cuong. 2013. 'A Method For Controlling

Wheelchair Using Hand Gesture Recognition'. Advances In Intelligent Systems And

Computing, 961-970. doi:10.1007/978-3-642-37374-9_93. (Accessed: 17/09/2015)

Kouroupetroglou, Christos. Enhancing The Human Experience Through Assistive Technologies And

E-Accessibility. (Accessed: 14/01/2016)

Kyrnin, Mark. 2013. 'Leap Motion Controller Adds Motion Controls To Any Mac Or Windows

Computer - Tech For Anyone'. Tech For Anyone. http://www.techforanyone.com/leap-

motion-controller-adds-motion-controls-mac-windows-computer/ (Accessed: 16/10/2015)

L298N, Full-Bridge, SparkFun Shield, SparkFun Kit, Motor IRF7862PBF, Motor H-Bridge, SparkFun

Driver, Heatsink TO-220, and SparkFun L298N. 2015. 'Full-Bridge Motor Driver Dual - L298N -

COM-09479 - Sparkfun Electronics'. Sparkfun.Com.

https://www.sparkfun.com/products/9479. (Accessed: 26/09/2015)

Leap Motion Support. 2015. https://support.leapmotion.com/home. (Accessed: 14/01/2016)

Learn.sparkfun.com. 2016. "Leap Motion Teardown - Learn.Sparkfun.Com".

https://learn.sparkfun.com/tutorials/leap-motion-teardown. (Accessed: 16/09/2015)

Levin, Mike. 2011. 'Python Programming Language Advantages And Disadvantages (My Love

Letter To Python)... - Mike Levin SEO Consultant NYC'. Mike Levin SEO Consultant NYC.

http://www.hoverlabs.co/#shop
http://www.instructables.com/id/Robotic-Hand-controlled-by-Gesture-with-Arduino-Le/
http://ww1.microchip.com/downloads/en/DeviceDoc/41660a.pdf
http://www.techforanyone.com/leap-motion-controller-adds-motion-controls-mac-windows-computer/
http://www.techforanyone.com/leap-motion-controller-adds-motion-controls-mac-windows-computer/
https://www.sparkfun.com/products/9479
https://support.leapmotion.com/home
https://learn.sparkfun.com/tutorials/leap-motion-teardown

60

http://mikelev.in/2011/01/python-programming-language-advantages/. (Accessed:

19/10/2015)

Lopresti EF, et al. 2016. "Performance Testing Of Collision-Avoidance System For Power

Wheelchairs. - Pubmed - NCBI". Ncbi.Nlm.Nih.Gov.

http://www.ncbi.nlm.nih.gov/pubmed/21674403. (Accessed: 25/09/2015)

Microchip.com. 2015. 'Gestic Technology - Touch And Input Sensing | Microchip Technology Inc.'.

http://www.microchip.com/pagehandler/en_us/technology/gestic. (Accessed: 16/09/2015)

Microchip.com. 2015. 'MGC3130 - Capacitive Touch Sensors'.

http://www.microchip.com/wwwproducts/Devices.aspx?product=MGC3130. (Accessed:

18/10/2015)

Microchipdirect.com. 2015. 'Product Search'.

http://www.microchipdirect.com/ProductSearch.aspx?Keywords=dm160226. (Accessed:

14/09/2015)

Motion, Leap. 2015. 'Leap Motion'. Leapmotion.Com. https://www.leapmotion.com/. (Accessed:

23/09/2015)

Motion, Leap. 2016. "Leap Motion App Store | Apps For The Leap Motion Controller".

Apps.Leapmotion.Com. https://apps.leapmotion.com/categories/games. (Accessed: 04/10/2015)

Motion, Leap. 2016. "Leap Motion". Leapmotion.Com. https://www.leapmotion.com/(Accessed:

14/01/2016)

Nave, R. 2015. 'Electromagnetic Spectrum'. Hyperphysics.Phy-Astr.Gsu.Edu.

http://hyperphysics.phy-astr.gsu.edu/hbase/ems3.html. (Accessed: 20/10/2015)

Newdisability.com,. 2015. 'WHEELCHAIR: Wheelchair Accessories: Innovative And Cool

Wheelchair Accessories By Rehadesign.'.

http://www.newdisability.com/wheelchairstatistics.htm. (Accessed: 27/09/2015)

Ni.com,. 2016. "Labview System Design Software - National Instruments".

http://www.ni.com/labview/. (Accessed: 14/01/2016)

Pajkanovic, Aleksandar, and Branko Dokic. 2013. 'Wheelchair Control By Head Motion'. Serb J

Electr Eng 10 (1): 135-151. doi:10.2298/sjee1301135p. (Accessed: 26/09/2015)

http://mikelev.in/2011/01/python-programming-language-advantages/
http://www.ncbi.nlm.nih.gov/pubmed/21674403
https://www.leapmotion.com/
https://apps.leapmotion.com/categories/games
http://www.newdisability.com/wheelchairstatistics.htm
http://www.ni.com/labview/

61

Pande, Vishal V, Nikita S Ubale, Darshana P Masurkar, Nikita R Ingole, and Pragati P Mane. 2014.

Hand Gesture Based Wheelchair Movement Control For Disabled Person Using MEMS..

Ebook. 4th ed. Thane: Mumbai University.

http://www.ijera.com/papers/Vol4_issue4/Version%204/Y04404152158.pdf. (Accessed:

09/09/2015)

PCMag Australia,. 2013. 'Leap Motion Controller'. http://au.pcmag.com/leap-motion-

controller/5086/review/leap-motion-controller. (Accessed: 07/09/2015)

Quinlan, J. Ross. 2014. C4.5: Programs For Machine Learning. Ebook. 1st ed. San Mateo California:

Morgan Kaufmann Publishers.

https://books.google.com.au/books?id=b3ujBQAAQBAJ&printsec=frontcover&source=gbs_g

e_summary_r&cad=0#v=onepage&q&f=false. (Accessed: 05/10/2015)

Quora.com,. 2015. 'What Is The Difference Between Data Analytics, Data Analysis, Data Mining,

Data Science, Machine Learning, And Big Data? - Quora'. https://www.quora.com/What-is-

the-difference-between-Data-Analytics-Data-Analysis-Data-Mining-Data-Science-Machine-

Learning-and-Big-Data-1. (Accessed: 14/01/2016)

Quora.com,. 2016. "What Are Some Interesting Possible Applications Of Machine Learning? -

Quora". https://www.quora.com/What-are-some-interesting-possible-applications-of-machine-

learning. (Accessed: 14/01/2016)

Raspberry Pi,. 2015. 'Raspberry Pi 2 Model B'. https://www.RaspberryPi.org/products/Raspberry-

Pi-2-model-b/. (Accessed: 20/08/2015)

Raspberry Pi,. 2016. "Raspberry Pi - Teach, Learn, And Make With Raspberry Pi".

https://www.raspberrypi.org/. (Accessed: 29/08/2015)

Realsense, Intel. 2013. 'INTEL REALSENSE'. Intelrealsense.Bemyapp.Com.

http://intelrealsense.bemyapp.com/. (Accessed: 23/09/2015)

Saedsayad.com. 2016. "Decision Tree". http://www.saedsayad.com/decision_tree.htm.

(Accessed: 14/01/2016)

Sanders, Brandon, and Woodie Flowers. Mastering Leap Motion. (Accessed: 01/09/2015)

Schapire, Rob. 2008. Theoretical Machine Learing. Ebook. 1st ed.

http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0204.pdf. (Accessed:

14/01/2016)

https://www.quora.com/What-is-the-difference-between-Data-Analytics-Data-Analysis-Data-Mining-Data-Science-Machine-Learning-and-Big-Data-1
https://www.quora.com/What-is-the-difference-between-Data-Analytics-Data-Analysis-Data-Mining-Data-Science-Machine-Learning-and-Big-Data-1
https://www.quora.com/What-is-the-difference-between-Data-Analytics-Data-Analysis-Data-Mining-Data-Science-Machine-Learning-and-Big-Data-1
https://www.raspberrypi.org/products/Raspberry-Pi-2-model-b/
https://www.raspberrypi.org/products/Raspberry-Pi-2-model-b/
http://intelrealsense.bemyapp.com/

62

Stein, Scott. 2013. 'Leap Motion Controller Review: Waving Your Hands At The Future'. CNET.

http://www.cnet.com/au/products/leap-motion-controller/. (Accessed: 15/10/2015)

Simpson, Richard C. 2008. How Many People Would Benefit From A Smart Wheelchair?. Ebook. 1st

ed. Journal of Rehabilitation Research and Development.

http://www.rehab.research.va.gov/JOUR/08/45/1/pdf/simpson.pdf. (Accessed:

14/01/2016)

Software.intel.com,. 2016. "Overview Of Intel® Realsense™ SDK | Intel® Developer Zone".

https://software.intel.com/en-us/intel-realsense-sdk. (Accessed: 11/09/2015)

Support.xbox.com,. "Kinect Components | Xbox 360". N.p., 2016. Web. (Accessed: 14/01/2016)

Upfront Analytics,. 2015. 'Data Mining Vs Artificial Intelligence Vs Machine Learning - Upfront

Analytics'. http://upfrontanalytics.com/data-mining-vs-artificial-intelligence-vs-machine-

learning/. (Accessed: 17/10/2015)

Visnjic, Filip. 2016. "10 Most Exciting New Experiments With Leap Motion".

Creativeapplications.Net. http://www.creativeapplications.net/processing/10-most-exciting-

new-experiments-with-leap-motion/. (Accessed: 29/09/2015)

WhatIs.com,. 2015. 'What Is Machine Learning? - Definition From Whatis.Com'.

http://whatis.techtarget.com/definition/machine-learning. (Accessed: 14/09/2015)

Wikipedia,. 2015. 'Motorized Wheelchair'.

https://en.wikipedia.org/wiki/Motorized_wheelchair#/media/File:Electric-

powered_wheelchair_Belize2.jpg. (Accessed: 14/09/2015)

www.tutorialspoint.com,. 2016. "Data Mining Cluster Analysis". Learn Data Mining. Data Pattern

Evaluation. http://www.tutorialspoint.com/data_mining/dm_cluster_analysis.htm. (Accessed:

14/01/2016)

http://www.cnet.com/au/products/leap-motion-controller/
http://www.rehab.research.va.gov/JOUR/08/45/1/pdf/simpson.pdf
https://software.intel.com/en-us/intel-realsense-sdk
http://upfrontanalytics.com/data-mining-vs-artificial-intelligence-vs-machine-learning/
http://upfrontanalytics.com/data-mining-vs-artificial-intelligence-vs-machine-learning/
http://www.creativeapplications.net/processing/10-most-exciting-new-experiments-with-leap-motion/
http://www.creativeapplications.net/processing/10-most-exciting-new-experiments-with-leap-motion/

63

Appendices

Appendix A

LEAP Data Sampling Application

The python code for the data sampling application:

import sys

import Leap, thread, time

from Leap import CircleGesture, KeyTapGesture, ScreenTapGesture,

SwipeGesture

class SampleListener(Leap.Listener):

 finger_names = ['Thumb', 'Index', 'Middle', 'Ring', 'Pinky']

 bone_names = ['Metacarpal', 'Proximal', 'Intermediate', 'Distal']

 def on_init(self, controller):

 print "Initialized"

 def on_connect(self, controller):

 print "Connected"

 def on_disconnect(self, controller):

 print "Disconnected"

 def on_exit(self, controller):

 print "Exited"

 # Code that I wrote to collect the data

 def on_frame(self, controller):

 # Get the most recent frame and report some basic information

 frame = controller.frame()

 # Get hands

 for hand in frame.hands:

 #handType = "Left hand" if hand.is_left else "Right hand"

 #print " %s, id %d, position: %s" % (handType, hand.id,

hand.palm_position)

 # Get the hand's normal vector and direction

 normal = hand.palm_normal

 direction = hand.direction

 # Get arm bone

 arm = hand.arm

 # Calculate the hand's Pitch, roll, and yaw angles

 if len(hand.fingers) == 5:

64

 # If the sensor sees all 5 fingers then we are sure that

the whole hand is there, and we can collect the sample. The first part of

the sample consist of the palm normal (go check leap sensor page ref

here), then hand direction, and arm position.

 print round(direction.Pitch * Leap.RAD_TO_DEG,2),

round(normal.roll * Leap.RAD_TO_DEG,2), round(direction.yaw *

Leap.RAD_TO_DEG,2),

 print round(arm.direction[0],2),

round(arm.direction[1],2), round(arm.direction[2],2), arm.wrist_position,

arm.elbow_position,

 # Get fingers

 mystr = ""

 for finger in hand.fingers:

 for b in range(0, 4):

 bone = finger.bone(b)

 # For each finger, for each bone get the bone

direction (5 fingers, 4 bones, 3 coordinates per direction = 60 values)

 mystr += str(round(bone.direction[0],2)) + " "

+str(round(bone.direction[1],2)) + " " +str(round(bone.direction[2],2)

)+ " "

 print mystr

def main():

 # Create a sample listener and controller

 listener = SampleListener()

 controller = Leap.Controller()

 # Have the sample listener receive events from the controller

 controller.add_listener(listener)

 # Keep this process running until Enter is pressed

 print "Press Enter to quit..."

 try:

 sys.stdin.readline()

 except KeyboardInterrupt:

 pass

 finally:

 # Remove the sample listener when done

 controller.remove_listener(listener)

if __name__ == "__main__":

 main()

65

Appendix B

 WEKA Data File

An example of the data that is being collected from the LEAP sensor using the data sampling

application is provided below. First attributes are the Pitch, roll, and yaw of the arm, then the arm

direction, the wrist and the elbow position and finally the fingers. Each finger is described by 4

bones and each bone by its angular direction. The last attribute is the event - the position that our

arm was in that produced this data values. This data is then fed to a machine learning algorithm

that will try to predict the event from the data values. The resulting model is transformed into

code that predicts the event in real time using values that come from the LEAP sensor.

@RELATION leap

@ATTRIBUTE Pitch NUMERIC
@ATTRIBUTE roll NUMERIC
@ATTRIBUTE yaw NUMERIC
@ATTRIBUTE arm_direction0 NUMERIC
@ATTRIBUTE arm_direction1 NUMERIC
@ATTRIBUTE arm_direction2 NUMERIC
@ATTRIBUTE arm_wrist_position0 NUMERIC
@ATTRIBUTE arm_wrist_position1 NUMERIC
@ATTRIBUTE arm_wrist_position2 NUMERIC
@ATTRIBUTE arm_elbow_position0 NUMERIC
@ATTRIBUTE arm_elbow_position1 NUMERIC
@ATTRIBUTE arm_elbow_position2 NUMERIC
finger id, bone id, three coordinate point
@ATTRIBUTE bone_direction_0_0_0 NUMERIC
@ATTRIBUTE bone_direction_0_0_1 NUMERIC
@ATTRIBUTE bone_direction_0_0_2 NUMERIC
@ATTRIBUTE bone_direction_0_1_0 NUMERIC
@ATTRIBUTE bone_direction_0_1_1 NUMERIC
@ATTRIBUTE bone_direction_0_1_2 NUMERIC
@ATTRIBUTE bone_direction_0_2_0 NUMERIC
@ATTRIBUTE bone_direction_0_2_1 NUMERIC
@ATTRIBUTE bone_direction_0_2_2 NUMERIC
@ATTRIBUTE bone_direction_0_3_0 NUMERIC
@ATTRIBUTE bone_direction_0_3_1 NUMERIC
@ATTRIBUTE bone_direction_0_3_2 NUMERIC
@ATTRIBUTE bone_direction_1_0_0 NUMERIC
@ATTRIBUTE bone_direction_1_0_1 NUMERIC
@ATTRIBUTE bone_direction_1_0_2 NUMERIC
@ATTRIBUTE bone_direction_1_1_0 NUMERIC
@ATTRIBUTE bone_direction_1_1_1 NUMERIC
@ATTRIBUTE bone_direction_1_1_2 NUMERIC
@ATTRIBUTE bone_direction_1_2_0 NUMERIC
@ATTRIBUTE bone_direction_1_2_1 NUMERIC
@ATTRIBUTE bone_direction_1_2_2 NUMERIC

66

@ATTRIBUTE bone_direction_1_3_0 NUMERIC
@ATTRIBUTE bone_direction_1_3_1 NUMERIC
@ATTRIBUTE bone_direction_1_3_2 NUMERIC
@ATTRIBUTE bone_direction_2_0_0 NUMERIC
@ATTRIBUTE bone_direction_2_0_1 NUMERIC
@ATTRIBUTE bone_direction_2_0_2 NUMERIC
@ATTRIBUTE bone_direction_2_1_0 NUMERIC
@ATTRIBUTE bone_direction_2_1_1 NUMERIC
@ATTRIBUTE bone_direction_2_1_2 NUMERIC
@ATTRIBUTE bone_direction_2_2_0 NUMERIC
@ATTRIBUTE bone_direction_2_2_1 NUMERIC
@ATTRIBUTE bone_direction_2_2_2 NUMERIC
@ATTRIBUTE bone_direction_2_3_0 NUMERIC
@ATTRIBUTE bone_direction_2_3_1 NUMERIC
@ATTRIBUTE bone_direction_2_3_2 NUMERIC
@ATTRIBUTE bone_direction_3_0_0 NUMERIC
@ATTRIBUTE bone_direction_3_0_1 NUMERIC
@ATTRIBUTE bone_direction_3_0_2 NUMERIC
@ATTRIBUTE bone_direction_3_1_0 NUMERIC
@ATTRIBUTE bone_direction_3_1_1 NUMERIC
@ATTRIBUTE bone_direction_3_1_2 NUMERIC
@ATTRIBUTE bone_direction_3_2_0 NUMERIC
@ATTRIBUTE bone_direction_3_2_1 NUMERIC
@ATTRIBUTE bone_direction_3_2_2 NUMERIC
@ATTRIBUTE bone_direction_3_3_0 NUMERIC
@ATTRIBUTE bone_direction_3_3_1 NUMERIC
@ATTRIBUTE bone_direction_3_3_2 NUMERIC
@ATTRIBUTE bone_direction_4_0_0 NUMERIC
@ATTRIBUTE bone_direction_4_0_1 NUMERIC
@ATTRIBUTE bone_direction_4_0_2 NUMERIC
@ATTRIBUTE bone_direction_4_1_0 NUMERIC
@ATTRIBUTE bone_direction_4_1_1 NUMERIC
@ATTRIBUTE bone_direction_4_1_2 NUMERIC
@ATTRIBUTE bone_direction_4_2_0 NUMERIC
@ATTRIBUTE bone_direction_4_2_1 NUMERIC
@ATTRIBUTE bone_direction_4_2_2 NUMERIC
@ATTRIBUTE bone_direction_4_3_0 NUMERIC
@ATTRIBUTE bone_direction_4_3_1 NUMERIC
@ATTRIBUTE bone_direction_4_3_2 NUMERIC

@ATTRIBUTE event

{open_arm,full_fist,index_and_thumb,index_and_middle,index_and_thumb_and_middle,thumb_only,axe,thumb_and_Pi

nky}

@data
-0.0,-1.47,6.0,0.15,-0.47,-0.87,-10.9301,121.59,97.0169,-46.3337,230.104,295.776,0.0,0.0,0.0,0.56,-

0.02,0.83,0.45,0.05,0.89,0.65,-0.08,0.75,0.07,0.14,0.99,0.19,0.14,0.97,0.19,0.2,0.96,0.19,0.25,0.95,-0.07,0.15,0.99,-

0.04,0.1,0.99,-0.03,0.18,0.98,-0.02,0.24,0.97,-0.22,0.15,0.96,-0.17,0.05,0.99,-0.12,0.22,0.97,-0.08,0.36,0.93,-

0.36,0.11,0.93,-0.54,0.09,0.84,-0.48,0.23,0.85,-0.43,0.35,0.84,open_arm
-0.01,-6.5,3.16,0.07,-0.5,-0.86,-14.4209,117.234,90.3736,-31.2888,231.197,288.52,0.0,0.0,0.0,0.63,-

0.03,0.78,0.58,0.01,0.81,0.72,-0.11,0.69,0.13,0.13,0.98,0.26,0.09,0.96,0.26,0.16,0.95,0.27,0.22,0.94,-0.01,0.14,0.99,-

0.02,0.07,1.0,-0.0,0.14,0.99,0.02,0.2,0.98,-0.16,0.16,0.97,-0.15,0.04,0.99,-0.12,0.11,0.99,-0.11,0.16,0.98,-0.3,0.13,0.94,-

0.5,0.07,0.86,-0.49,0.11,0.87,-0.47,0.15,0.87,open_arm
-0.01,-72.86,1.72,-0.43,0.48,-0.76,-9.47284,175.887,40.9209,83.311,74.124,204.328,0.0,0.0,0.0,0.15,-0.77,0.63,0.19,-

0.67,0.72,0.28,-0.23,0.93,0.16,-0.11,0.98,0.24,-0.21,0.95,0.34,-0.18,0.92,0.42,-0.15,0.9,0.12,0.02,0.99,0.21,-

0.06,0.98,0.34,-0.04,0.94,0.43,-0.02,0.9,0.08,0.16,0.98,0.18,0.06,0.98,0.31,0.07,0.95,0.4,0.08,0.91,-

0.0,0.28,0.96,0.09,0.06,0.99,0.23,0.05,0.97,0.33,0.04,0.94,open_arm

67

-0.02,-1.48,6.02,0.15,-0.47,-0.87,-10.9451,121.609,97.0155,-46.3382,230.188,295.741,0.0,0.0,0.0,0.56,-

0.02,0.83,0.45,0.05,0.89,0.65,-0.08,0.75,0.07,0.14,0.99,0.19,0.14,0.97,0.19,0.2,0.96,0.19,0.25,0.95,-0.07,0.15,0.99,-

0.04,0.1,0.99,-0.03,0.18,0.98,-0.02,0.24,0.97,-0.22,0.15,0.96,-0.17,0.05,0.99,-0.12,0.22,0.97,-0.08,0.36,0.93,-

0.36,0.11,0.93,-0.54,0.09,0.84,-0.48,0.23,0.85,-0.42,0.35,0.84,open_arm
-0.02,-72.52,1.72,-0.44,0.48,-0.76,-9.51658,175.901,41.0012,83.5612,74.1046,204.22,0.0,0.0,0.0,0.16,-0.76,0.63,0.19,-

0.68,0.71,0.28,-0.3,0.91,0.16,-0.11,0.98,0.24,-0.21,0.95,0.34,-0.17,0.92,0.42,-0.14,0.9,0.12,0.02,0.99,0.21,-

0.05,0.98,0.34,-0.03,0.94,0.43,-0.02,0.9,0.08,0.16,0.98,0.18,0.06,0.98,0.31,0.07,0.95,0.4,0.08,0.91,-

0.01,0.28,0.96,0.1,0.07,0.99,0.23,0.06,0.97,0.34,0.05,0.94,open_arm
-0.03,-1.48,6.04,0.15,-0.47,-0.87,-10.9597,121.628,97.014,-46.3423,230.271,295.706,0.0,0.0,0.0,0.56,-

0.02,0.83,0.45,0.05,0.89,0.66,-0.08,0.75,0.07,0.14,0.99,0.19,0.14,0.97,0.19,0.2,0.96,0.19,0.25,0.95,-0.07,0.15,0.99,-

0.04,0.1,0.99,-0.03,0.18,0.98,-0.02,0.24,0.97,-0.22,0.15,0.96,-0.17,0.05,0.99,-0.12,0.22,0.97,-0.08,0.36,0.93,-

0.36,0.11,0.93,-0.54,0.09,0.84,-0.48,0.23,0.85,-0.42,0.35,0.84,open_arm
-0.03,-6.53,3.16,0.07,-0.5,-0.86,-14.4228,117.241,90.3678,-31.2952,231.202,288.515,0.0,0.0,0.0,0.63,-

0.03,0.78,0.58,0.01,0.81,0.72,-0.11,0.69,0.13,0.13,0.98,0.26,0.09,0.96,0.26,0.16,0.95,0.27,0.22,0.94,-0.01,0.14,0.99,-

0.02,0.07,1.0,-0.0,0.14,0.99,0.02,0.2,0.98,-0.16,0.16,0.97,-0.15,0.04,0.99,-0.13,0.1,0.99,-0.11,0.16,0.98,-0.3,0.14,0.94,-

0.5,0.07,0.86,-0.49,0.11,0.87,-0.47,0.15,0.87,open_arm
-0.04,-1.49,6.06,0.15,-0.47,-0.87,-10.9742,121.647,97.012,-46.3455,230.355,295.671,0.0,0.0,0.0,0.56,-

0.02,0.83,0.45,0.06,0.89,0.66,-0.08,0.75,0.07,0.14,0.99,0.19,0.14,0.97,0.19,0.2,0.96,0.19,0.25,0.95,-0.07,0.15,0.99,-

0.04,0.11,0.99,-0.03,0.18,0.98,-0.02,0.24,0.97,-0.22,0.15,0.96,-0.17,0.05,0.99,-0.12,0.22,0.97,-0.08,0.36,0.93,-

0.36,0.11,0.93,-0.54,0.09,0.84,-0.48,0.23,0.85,-0.42,0.35,0.84,open_arm
-0.04,-72.83,1.71,-0.43,0.48,-0.76,-9.46689,175.888,40.9251,83.3139,74.0771,204.304,0.0,0.0,0.0,0.16,-0.77,0.62,0.19,-

0.68,0.71,0.28,-0.26,0.92,0.16,-0.11,0.98,0.24,-0.21,0.95,0.34,-0.17,0.92,0.42,-0.14,0.9,0.12,0.02,0.99,0.22,-

0.06,0.97,0.34,-0.04,0.94,0.43,-0.02,0.9,0.08,0.16,0.98,0.18,0.06,0.98,0.31,0.07,0.95,0.4,0.08,0.91,-

0.0,0.28,0.96,0.09,0.06,0.99,0.23,0.05,0.97,0.33,0.04,0.94,open_arm
-0.05,-6.35,3.22,0.07,-0.5,-0.87,-14.539,117.38,90.3421,-31.1154,231.067,288.671,0.0,0.0,0.0,0.62,-

0.03,0.78,0.58,0.01,0.81,0.72,-0.12,0.68,0.13,0.13,0.98,0.26,0.1,0.96,0.26,0.17,0.95,0.27,0.22,0.94,-0.01,0.14,0.99,-

0.02,0.07,1.0,-0.0,0.15,0.99,0.02,0.21,0.98,-0.16,0.16,0.97,-0.15,0.05,0.99,-0.13,0.12,0.99,-0.11,0.17,0.98,-

0.3,0.13,0.94,-0.51,0.07,0.86,-0.49,0.11,0.87,-0.47,0.14,0.87,open_arm
-0.05,-6.55,3.16,0.07,-0.5,-0.86,-14.4249,117.247,90.362,-31.3017,231.206,288.51,0.0,0.0,0.0,0.63,-

0.03,0.78,0.58,0.01,0.81,0.72,-0.11,0.69,0.13,0.13,0.98,0.26,0.09,0.96,0.26,0.16,0.95,0.27,0.22,0.94,-0.01,0.14,0.99,-

0.02,0.06,1.0,-0.0,0.14,0.99,0.02,0.2,0.98,-0.16,0.16,0.97,-0.15,0.04,0.99,-0.13,0.1,0.99,-0.11,0.16,0.98,-0.3,0.14,0.94,-

0.5,0.07,0.86,-0.49,0.11,0.87,-0.47,0.15,0.87,open_arm
-0.05,-72.76,1.7,-0.43,0.48,-0.76,-9.46533,175.891,40.9371,83.3624,74.0433,204.266,0.0,0.0,0.0,0.16,-0.77,0.62,0.19,-

0.68,0.71,0.28,-0.28,0.92,0.16,-0.11,0.98,0.24,-0.21,0.95,0.34,-0.17,0.92,0.42,-0.14,0.9,0.12,0.02,0.99,0.22,-

0.06,0.97,0.34,-0.04,0.94,0.43,-0.02,0.9,0.08,0.16,0.98,0.18,0.06,0.98,0.31,0.07,0.95,0.4,0.08,0.91,-

0.0,0.28,0.96,0.1,0.06,0.99,0.23,0.05,0.97,0.33,0.05,0.94,open_arm
-0.06,-1.5,6.09,0.15,-0.47,-0.87,-10.9881,121.665,97.0105,-46.3476,230.432,295.639,0.0,0.0,0.0,0.56,-

0.02,0.83,0.45,0.06,0.89,0.66,-0.08,0.75,0.07,0.14,0.99,0.19,0.14,0.97,0.19,0.2,0.96,0.19,0.25,0.95,-0.07,0.15,0.99,-

0.04,0.11,0.99,-0.03,0.18,0.98,-0.02,0.24,0.97,-0.22,0.15,0.96,-0.17,0.05,0.99,-0.12,0.22,0.97,-0.08,0.37,0.93,-

0.36,0.11,0.93,-0.54,0.09,0.84,-0.48,0.23,0.85,-0.42,0.35,0.84,open_arm
-0.07,-1.52,6.11,0.15,-0.47,-0.87,-11.003,121.669,97.0058,-46.3454,230.493,295.606,0.0,0.0,0.0,0.56,-

0.02,0.83,0.45,0.06,0.89,0.65,-0.08,0.75,0.07,0.15,0.99,0.19,0.14,0.97,0.19,0.2,0.96,0.19,0.25,0.95,-0.07,0.15,0.99,-

0.04,0.11,0.99,-0.03,0.18,0.98,-0.02,0.24,0.97,-0.22,0.15,0.96,-0.17,0.05,0.99,-0.12,0.23,0.97,-0.08,0.37,0.93,-

0.36,0.11,0.93,-0.54,0.09,0.84,-0.48,0.23,0.85,-0.42,0.35,0.84,open_arm
-0.07,-6.59,3.15,0.07,-0.5,-0.86,-14.427,117.253,90.3553,-31.3085,231.211,288.503,0.0,0.0,0.0,0.63,-

0.03,0.78,0.58,0.01,0.81,0.72,-0.11,0.69,0.13,0.13,0.98,0.26,0.09,0.96,0.26,0.16,0.95,0.27,0.22,0.94,-0.01,0.15,0.99,-

0.02,0.06,1.0,-0.0,0.14,0.99,0.02,0.2,0.98,-0.16,0.16,0.97,-0.15,0.04,0.99,-0.13,0.1,0.99,-0.11,0.16,0.98,-0.3,0.14,0.94,-

0.5,0.07,0.86,-0.49,0.11,0.87,-0.47,0.15,0.87,open_arm
-0.07,-72.53,1.71,-0.44,0.48,-0.76,-9.51279,175.901,41.0241,83.7155,74.2601,204.254,0.0,0.0,0.0,0.12,-0.75,0.65,0.14,-

0.67,0.73,0.23,-0.27,0.93,0.16,-0.11,0.98,0.24,-0.2,0.95,0.34,-0.17,0.92,0.42,-0.14,0.9,0.12,0.02,0.99,0.22,-

0.05,0.98,0.34,-0.03,0.94,0.43,-0.02,0.9,0.08,0.16,0.98,0.18,0.07,0.98,0.31,0.08,0.95,0.4,0.08,0.91,-

0.01,0.28,0.96,0.1,0.07,0.99,0.23,0.06,0.97,0.34,0.05,0.94,open_arm
-0.08,-1.53,6.12,0.15,-0.47,-0.87,-11.0146,121.678,97.0018,-46.3417,230.542,295.583,0.0,0.0,0.0,0.56,-

0.02,0.83,0.45,0.06,0.89,0.65,-0.08,0.75,0.07,0.15,0.99,0.19,0.14,0.97,0.19,0.2,0.96,0.19,0.25,0.95,-0.07,0.15,0.99,-

0.04,0.11,0.99,-0.03,0.18,0.98,-0.02,0.24,0.97,-0.22,0.15,0.96,-0.17,0.05,0.99,-0.12,0.23,0.97,-0.08,0.37,0.93,-

0.36,0.11,0.93,-0.54,0.09,0.84,-0.48,0.23,0.85,-0.42,0.35,0.84,open_arm
-0.09,-1.54,6.14,0.15,-0.48,-0.87,-11.0279,121.691,96.9972,-46.3362,230.6,295.557,0.0,0.0,0.0,0.56,-

0.02,0.83,0.45,0.06,0.89,0.65,-0.08,0.76,0.06,0.15,0.99,0.19,0.14,0.97,0.19,0.2,0.96,0.19,0.25,0.95,-0.07,0.15,0.99,-

68

0.04,0.11,0.99,-0.03,0.18,0.98,-0.02,0.24,0.97,-0.22,0.15,0.96,-0.17,0.05,0.99,-0.12,0.23,0.97,-0.08,0.37,0.93,-

0.36,0.11,0.93,-0.54,0.09,0.84,-0.48,0.23,0.85,-0.42,0.35,0.84,open_arm
-0.1,-6.62,3.15,0.07,-0.5,-0.86,-14.4275,117.257,90.3491,-31.318,231.216,288.496,0.0,0.0,0.0,0.63,-

0.03,0.78,0.58,0.01,0.81,0.72,-0.11,0.69,0.13,0.13,0.98,0.26,0.09,0.96,0.26,0.16,0.95,0.27,0.22,0.94,-0.01,0.15,0.99,-

0.02,0.06,1.0,-0.0,0.14,0.99,0.02,0.2,0.98,-0.16,0.16,0.97,-0.15,0.04,0.99,-0.13,0.1,0.99,-0.11,0.16,0.98,-0.3,0.14,0.94,-

0.5,0.07,0.86,-0.48,0.11,0.87,-0.47,0.15,0.87,open_arm

69

Learned Predictive Model

This is the model generated by J48 classification algorithm. The algorithm is implemented in weka.

Actual WEKA output from the J48 classification algorithm:

=== Run information ===

Scheme:weka.classifiers.trees.J48 -C 0.25 -M 150
Relation: leap
Instances: 112388
Attributes: 73

Test mode:10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

bone_direction_1_3_2 <= 0.49
| bone_direction_2_3_2 <= 0.72
| | bone_direction_4_2_2 <= 0.54
| | | bone_direction_0_3_1 <= 0
| | | | arm_elbow_position0 <= 48.0034
| | | | | bone_direction_2_3_0 <= 0.75
| | | | | | bone_direction_4_2_2 <= 0.09
| | | | | | | bone_direction_0_1_1 <= 0.18
| | | | | | | | bone_direction_2_3_2 <= -0.52
| | | | | | | | | bone_direction_2_1_0 <= -0.35: full_fist (248.0/74.0) #
| | | | | | | | | bone_direction_2_1_0 > -0.35
| | | | | | | | | | roll <= -56.78: full_fist (157.0/35.0)
| | | | | | | | | | roll > -56.78
| | | | | | | | | | | arm_elbow_position1 <= 152.298
| | | | | | | | | | | | bone_direction_0_2_1 <= -0.13: thumb_only (228.0/8.0)
| | | | | | | | | | | | bone_direction_0_2_1 > -0.13: full_fist (314.0/4.0)
| | | | | | | | | | | arm_elbow_position1 > 152.298: thumb_only (7589.0/353.0)
| | | | | | | | bone_direction_2_3_2 > -0.52: full_fist (384.0/55.0)
| | | | | | | bone_direction_0_1_1 > 0.18: full_fist (930.0/52.0)
| | | | | | bone_direction_4_2_2 > 0.09
| | | | | | | bone_direction_1_2_2 <= -0.23: thumb_and_Pinky (421.0/4.0)
| | | | | | | bone_direction_1_2_2 > -0.23: full_fist (257.0/59.0)
| | | | | bone_direction_2_3_0 > 0.75
| | | | | | bone_direction_4_1_0 <= -0.51: thumb_and_Pinky (257.0)
| | | | | | bone_direction_4_1_0 > -0.51: index_and_thumb (151.0/29.0)
| | | | arm_elbow_position0 > 48.0034
| | | | | bone_direction_2_2_1 <= 0.5
| | | | | | bone_direction_0_2_1 <= -0.4: open_arm (157.0/65.0)
| | | | | | bone_direction_0_2_1 > -0.4: thumb_only (997.0/44.0)
| | | | | bone_direction_2_2_1 > 0.5
| | | | | | bone_direction_0_2_1 <= -0.18
| | | | | | | arm_wrist_position2 <= 80.48: open_arm (2512.0/36.0)
| | | | | | | arm_wrist_position2 > 80.48: thumb_only (162.0/5.0)
| | | | | | bone_direction_0_2_1 > -0.18: full_fist (231.0/62.0)
| | | bone_direction_0_3_1 > 0
| | | | bone_direction_0_2_0 <= -0.65: thumb_only (1201.0/45.0)

70

| | | | bone_direction_0_2_0 > -0.65
| | | | | bone_direction_2_2_2 <= 0.7
| | | | | | bone_direction_3_1_0 <= -0.46
| | | | | | | bone_direction_2_2_0 <= -0.29: full_fist (401.0/3.0)
| | | | | | | bone_direction_2_2_0 > -0.29: thumb_and_Pinky (273.0/15.0)
| | | | | | bone_direction_3_1_0 > -0.46
| | | | | | | bone_direction_1_1_0 <= -0.47: thumb_and_Pinky (147.0/79.0)
| | | | | | | bone_direction_1_1_0 > -0.47
| | | | | | | | bone_direction_0_2_0 <= 0.77
| | | | | | | | | arm_wrist_position0 <= 127.004: full_fist (18139.0/342.0)
| | | | | | | | | arm_wrist_position0 > 127.004: thumb_only (55.0/12.0)
| | | | | | | | bone_direction_0_2_0 > 0.77
| | | | | | | | | bone_direction_4_0_0 <= 0.46: thumb_only (565.0/5.0)
| | | | | | | | | bone_direction_4_0_0 > 0.46
| | | | | | | | | | bone_direction_0_1_2 <= 0.08: thumb_only (209.0/48.0)
| | | | | | | | | | bone_direction_0_1_2 > 0.08: full_fist (1087.0/5.0)
| | | | | bone_direction_2_2_2 > 0.7: index_and_thumb (206.0/26.0)
| | bone_direction_4_2_2 > 0.54
| | | bone_direction_3_2_2 <= 0.06
| | | | arm_elbow_position0 <= 73.5734: thumb_and_Pinky (10595.0/153.0)
| | | | arm_elbow_position0 > 73.5734: open_arm (150.0/26.0)
| | | bone_direction_3_2_2 > 0.06
| | | | bone_direction_3_3_1 <= -0.04: index_and_thumb (244.0/115.0)
| | | | bone_direction_3_3_1 > -0.04
| | | | | bone_direction_2_2_1 <= 0.36: open_arm (560.0/4.0)
| | | | | bone_direction_2_2_1 > 0.36
| | | | | | bone_direction_4_1_1 <= -0.04: open_arm (292.0/120.0)
| | | | | | bone_direction_4_1_1 > -0.04
| | | | | | | bone_direction_0_1_1 <= -0.24: open_arm (228.0/107.0)
| | | | | | | bone_direction_0_1_1 > -0.24: full_fist (1823.0/103.0)
| bone_direction_2_3_2 > 0.72
| | bone_direction_3_2_2 <= 0.86: index_and_thumb (2174.0/20.0)
| | bone_direction_3_2_2 > 0.86
| | | arm_direction2 <= -0.93: index_and_middle (691.0)
| | | arm_direction2 > -0.93: open_arm (202.0/1.0)
bone_direction_1_3_2 > 0.49
| bone_direction_2_2_2 <= 0.31
| | bone_direction_1_0_1 <= -0.4: full_fist (73.0)
| | bone_direction_1_0_1 > -0.4
| | | bone_direction_4_1_1 <= -0.24: open_arm (47.0)
| | | bone_direction_4_1_1 > -0.24: index_and_thumb (14371.0/25.0)
| bone_direction_2_2_2 > 0.31
| | bone_direction_3_3_2 <= 0.26
| | | bone_direction_3_3_0 <= -0.68: open_arm (274.0/106.0)
| | | bone_direction_3_3_0 > -0.68
| | | | bone_direction_4_2_2 <= 0.44
| | | | | bone_direction_2_3_2 <= 0.44: index_and_thumb (347.0/52.0)
| | | | | bone_direction_2_3_2 > 0.44
| | | | | | bone_direction_4_1_2 <= 0.8
| | | | | | | arm_elbow_position1 <= 82.7269
| | | | | | | | arm_direction2 <= -0.89: thumb_only (634.0)
| | | | | | | | arm_direction2 > -0.89: index_and_middle (171.0/70.0)
| | | | | | | arm_elbow_position1 > 82.7269
| | | | | | | | bone_direction_0_1_0 <= 0.68
| | | | | | | | | bone_direction_0_1_1 <= -0.09
| | | | | | | | | | bone_direction_2_3_0 <= -0.37: thumb_only (460.0/4.0)
| | | | | | | | | | bone_direction_2_3_0 > -0.37: index_and_middle (1012.0/7.0)
| | | | | | | | | bone_direction_0_1_1 > -0.09

71

| | | | | | | | | | bone_direction_1_2_0 <= -0.59: index_and_thumb (50.0/3.0)
| | | | | | | | | | bone_direction_1_2_0 > -0.59: index_and_middle (16855.0/22.0)
| | | | | | | | bone_direction_0_1_0 > 0.68
| | | | | | | | | bone_direction_1_1_2 <= 0.82: thumb_only (259.0)
| | | | | | | | | bone_direction_1_1_2 > 0.82
| | | | | | | | | | bone_direction_2_2_2 <= 0.98: index_and_thumb (319.0)
| | | | | | | | | | bone_direction_2_2_2 > 0.98: index_and_middle (205.0/1.0)
| | | | | | bone_direction_4_1_2 > 0.8: index_and_thumb (452.0/91.0)
| | | | bone_direction_4_2_2 > 0.44
| | | | | bone_direction_0_2_0 <= 0: thumb_only (160.0/73.0)
| | | | | bone_direction_0_2_0 > 0: index_and_thumb (716.0/18.0)
| | bone_direction_3_3_2 > 0.26
| | | bone_direction_4_1_1 <= 0.64
| | | | bone_direction_4_0_0 <= 0.53
| | | | | bone_direction_3_2_1 <= 0.5
| | | | | | bone_direction_0_1_0 <= -0.52
| | | | | | | bone_direction_0_3_2 <= 0.64: thumb_only (204.0)
| | | | | | | bone_direction_0_3_2 > 0.64: open_arm (183.0)
| | | | | | bone_direction_0_1_0 > -0.52
| | | | | | | bone_direction_4_2_0 <= 0.37: open_arm (18468.0/58.0)
| | | | | | | bone_direction_4_2_0 > 0.37
| | | | | | | | bone_direction_1_0_0 <= -0.1: thumb_and_Pinky (159.0/1.0)
| | | | | | | | bone_direction_1_0_0 > -0.1: open_arm (373.0/14.0)
| | | | | bone_direction_3_2_1 > 0.5
| | | | | | bone_direction_2_3_1 <= 0.31: index_and_middle (151.0/10.0)
| | | | | | bone_direction_2_3_1 > 0.31
| | | | | | | bone_direction_1_0_1 <= 0.07: full_fist (191.0)
| | | | | | | bone_direction_1_0_1 > 0.07: open_arm (182.0/5.0)
| | | | bone_direction_4_0_0 > 0.53
| | | | | bone_direction_1_2_2 <= 0.92: full_fist (215.0/63.0)
| | | | | bone_direction_1_2_2 > 0.92
| | | | | | bone_direction_3_1_1 <= 0.07: index_and_middle (359.0)
| | | | | | bone_direction_3_1_1 > 0.07: open_arm (201.0/87.0)
| | | bone_direction_4_1_1 > 0.64
| | | | arm_elbow_position2 <= 298.214: index_and_middle (910.0)
| | | | arm_elbow_position2 > 298.214: thumb_only (150.0/66.0)

Number of Leaves : 66

Size of the tree : 131

Time taken to build model: 26.05 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 109198 97.1616 % #with cross validation
Incorrectly Classified Instances 3190 2.8384 %
Kappa statistic 0.9655
Mean absolute error 0.0113
Root mean squared error 0.0758
Relative absolute error 5.4846 %
Root relative squared error 23.6409 %
Total Number of Instances 112388 #number of data points

72

=== Detailed Accuracy By Class === #the accuracy for each class

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class
 0.984 0.007 0.976 0.984 0.98 0.998 open_arm
 0.973 0.012 0.957 0.973 0.965 0.996 full_fist
 0.982 0.004 0.979 0.982 0.98 0.998 index_and_thumb
 0.98 0.002 0.992 0.98 0.986 0.998 index_and_middle
 0.924 0.007 0.942 0.924 0.933 0.994 thumb_only
 0.964 0.003 0.978 0.964 0.971 0.998 thumb_and_Pinky
Weighted Avg. 0.972 0.006 0.972 0.972 0.972 0.997

=== Confusion Matrix ===

 a b c d e f | <-- classified as
 23179 127 52 5 114 75 | a = open_arm
 145 23493 38 6 393 60 | b = full_fist
 18 146 18622 24 78 71 | c = index_and_thumb
 67 168 107 20150 70 0 | d = index_and_middle
 193 474 146 122 12079 54 | e = thumb_only
 157 129 63 0 88 11675 | f = thumb_and_Pinky

73

Appendix C

 Server Application Program

import sys

import Leap, thread, time

from Leap import CircleGesture, KeyTapGesture, ScreenTapGesture, SwipeGesture

import socket

def sendUdpMsg(ip, port, msg):

 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 sock.sendto(msg, (ip, port))

 sock.close()

class SampleListener(Leap.Listener):

 def on_init(self, controller):

 print "Initialized"

 def on_connect(self, controller):

 print "Connected"

 def on_disconnect(self, controller):

 print "Disconnected"

 def on_exit(self, controller):

 print "Exited"

 def on_frame(self, controller):

 # Get the most recent frame and report some basic information

 frame = controller.frame()

 # Get hands

 for hand in frame.hands:

 normal = hand.palm_normal

 direction = hand.direction

 # Get arm bone

 arm = hand.arm

 completestr = ""

 if len(hand.fingers) == 5:

 # Calculate the hand's Pitch, roll, and yaw angles

 completestr = str((round(direction.Pitch * Leap.RAD_TO_DEG,2), round(normal.roll *

Leap.RAD_TO_DEG,2), round(direction.yaw * Leap.RAD_TO_DEG,2), round(arm.direction[0],2),

round(arm.direction[1],2), round(arm.direction[2],2), str(arm.wrist_position), str(arm.elbow_position)))+" "

 # Get fingers

 mystr = ""

 for finger in hand.fingers:

 # Get bones

 for b in range(0, 4):

 bone = finger.bone(b)

 mystr += str(round(bone.direction[0],2)) + " " +str(round(bone.direction[1],2)) + " "

+str(round(bone.direction[2],2))+ " "

 completestr += mystr

 # The variable completestr has all the measurements just like in the sampling process. This measurements are

passed to the predictive function generated from the WEKA J48 algorithm that will give us the event gesture. This

gesture is then send with a udp message to the Raspberry Pi. The listener there will interpret it and drive the motors

accordingly.

 pred = predictPosition(completestr)

 print pred

 sendUdpMsg("192.168.10.30", 10000, pred)

74

def predictPosition(x):

 x = x.replace(")", " ").replace("(", " ").replace("'", " ").strip().replace(" ", ",").replace(",,", ",").replace(",,",

",").replace(",,", ",").replace(",,", ",")

 #print x

 values = x.split(",")

Pitch,roll,yaw,arm_direction0,arm_direction1,arm_direction2,arm_wrist_position0,arm_wrist_position1,arm_wrist_positi

on2,arm_elbow_position0,arm_elbow_position1,arm_elbow_position2,bone_direction_0_0_0,bone_direction_0_0_1,bon

e_direction_0_0_2,bone_direction_0_1_0,bone_direction_0_1_1,bone_direction_0_1_2,bone_direction_0_2_0,bone_dire

ction_0_2_1,bone_direction_0_2_2,bone_direction_0_3_0,bone_direction_0_3_1,bone_direction_0_3_2,bone_direction_

1_0_0,bone_direction_1_0_1,bone_direction_1_0_2,bone_direction_1_1_0,bone_direction_1_1_1,bone_direction_1_1_2

,bone_direction_1_2_0,bone_direction_1_2_1,bone_direction_1_2_2,bone_direction_1_3_0,bone_direction_1_3_1,bone

_direction_1_3_2,bone_direction_2_0_0,bone_direction_2_0_1,bone_direction_2_0_2,bone_direction_2_1_0,bone_direc

tion_2_1_1,bone_direction_2_1_2,bone_direction_2_2_0,bone_direction_2_2_1,bone_direction_2_2_2,bone_direction_2

_3_0,bone_direction_2_3_1,bone_direction_2_3_2,bone_direction_3_0_0,bone_direction_3_0_1,bone_direction_3_0_2,

bone_direction_3_1_0,bone_direction_3_1_1,bone_direction_3_1_2,bone_direction_3_2_0,bone_direction_3_2_1,bone_

direction_3_2_2,bone_direction_3_3_0,bone_direction_3_3_1,bone_direction_3_3_2,bone_direction_4_0_0,bone_directi

on_4_0_1,bone_direction_4_0_2,bone_direction_4_1_0,bone_direction_4_1_1,bone_direction_4_1_2,bone_direction_4_

2_0,bone_direction_4_2_1,bone_direction_4_2_2,bone_direction_4_3_0,bone_direction_4_3_1,bone_direction_4_3_2 =

tuple([float(myval) for myval in values])

 if bone_direction_2_3_2 <= 0.64:

if bone_direction_2_3_2 <= 0.41:

 if bone_direction_1_3_2 <= 0.52:

 if bone_direction_4_2_2 <= 0.54:

 if bone_direction_0_3_1 <= 0:

 if arm_elbow_position0 <= 48.0034:

 if bone_direction_2_3_0 <= 0.75:

 if bone_direction_1_2_2 <= -0.21:

 if bone_direction_4_2_2 <= 0.09:

 if arm_wrist_position1 <= 115.574: r="full_fist"

 else:

 if bone_direction_1_1_0 <= -0.54: r = "thumb_and_Pinky"

 else:

 if arm_elbow_position1 <= 159.182:

 if bone_direction_0_3_2 <= 0.73: r="thumb_only"

 else: r="full_fist"

 else:

 if bone_direction_1_1_1 <= -0.31: r="open_arm"

 else:

 if arm_elbow_position2 <= 413.745:

 if arm_direction1 <= 0.14:

 if bone_direction_3_2_2 <= -0.11:

 if bone_direction_0_1_1 <= -0.5:

 if bone_direction_1_1_1 <= 0.88: r="thumb_only"

 else: r="thumb_and_Pinky"

 else: r="thumb_only"

 else: r="thumb_and_Pinky"

 else:

 if bone_direction_4_1_2 <= 0.56: r="thumb_only"

 else: r="open_arm"

 else: r="thumb_and_Pinky"

 else: r="thumb_and_Pinky"

 else:

 if bone_direction_0_2_2 <= 0.58: r="thumb_only"

 else:

 if bone_direction_0_1_1 <= -0.13: r="index_and_thumb"

 else: r="full_fist"

 else:

 if bone_direction_1_1_1 <= 0.3: r="index_and_thumb"

 else: r="thumb_and_Pinky"

 else:

 if bone_direction_2_2_1 <= 0.5:

 if arm_direction1 <= 0.27: r="thumb_only"

 else:

 if arm_wrist_position2 <= 42.9115: r="open_arm"

75

 else: r="thumb_only"

 else:

 if bone_direction_0_1_1 <= -0.04:

 if bone_direction_0_2_2 <= 0.87:

 if arm_wrist_position2 <= 80.48:

 if bone_direction_0_3_2 <= 0.02: r="thumb_only"

 else: r="open_arm"

 else: r="thumb_only"

 else: r="full_fist"

 else: r="full_fist"

 else:

 if bone_direction_0_2_0 <= -0.65: r="thumb_only"

 else:

 if bone_direction_0_3_0 <= 0.67:

 if arm_elbow_position1 <= 234.934:

 if bone_direction_2_1_1 <= -0.21: r="index_and_thumb"

 else:

 if arm_wrist_position0 <= 48.5787:

 if arm_elbow_position2 <= 385.774:

 if bone_direction_0_2_2 <= 0.2: r="thumb_only"

 else:

 if bone_direction_3_2_1 <= 0.15:

 if bone_direction_1_0_1 <= 0.38: r="thumb_and_Pinky"

 else: r="full_fist"

 else:

 if arm_direction2 <= -0.83:

 if bone_direction_1_2_2 <= -0.92:

 if bone_direction_0_2_1 <= 0.23: r="thumb_only"

 else: r="full_fist"

 else:

 if bone_direction_4_0_2 <= 0.97: r="full_fist"

 else:

 if bone_direction_0_1_2 <= 0.84: r="thumb_only"

 else: r="full_fist"

 else:

 if bone_direction_3_2_2 <= -0.41: r="thumb_only"

 else: r="full_fist"

 else:

 if arm_elbow_position1 <= 176.617: r="full_fist"

 else: r="index_and_thumb"

 else:

 if arm_direction2 <= -0.96: r="thumb_only"

 else: r="full_fist"

 else: r = "thumb_and_Pinky"

 else:

 if bone_direction_1_1_2 <= 0.92:

 if bone_direction_1_3_1 <= 0.5:

 if arm_elbow_position0 <= -18.4167: r = "thumb_and_Pinky"

 else: r = "thumb_only"

 else: r = "full_fist"

 else: r = "index_and_thumb"

 else:

 if bone_direction_3_2_2 <= 0.06:

 if arm_elbow_position0 <= 81.6317:

 if bone_direction_0_1_0 <= -0.66: r = "index_and_thumb"

 else:

 if bone_direction_0_3_1 <= 0.6: r = "thumb_and_Pinky"

 else:

 if bone_direction_1_1_0 <= -0.62: r = "thumb_and_Pinky"

 else: r = "open_arm"

 else: r = "open_arm"

 else:

 if arm_direction0 <= -0.26:

 if bone_direction_3_1_1 <= 0.72: r = "open_arm"

 else: r = "thumb_and_Pinky"

 else:

 if bone_direction_3_2_1 <= -0.15: r = "index_and_thumb"

76

 else:

 if bone_direction_1_1_0 <= -0.46: r = "thumb_and_Pinky"

 else:

 if bone_direction_0_3_1 <= -0.22: r = "thumb_and_Pinky"

 else: r = "full_fist"

 else:

 if yaw <= -53.78: r = "full_fist"

 else:

 if bone_direction_3_3_2 <= 0.01: r = "index_and_thumb"

 else: r = "open_arm"

else:

 if bone_direction_3_3_2 <= 0.26:

 if bone_direction_1_3_2 <= 0.5: r = "index_and_thumb"

 else:

 if bone_direction_4_2_2 <= 0.47:

 if bone_direction_2_2_1 <= -0.2:

 if bone_direction_1_2_0 <= 0.16: r = "index_and_thumb"

 else: r = "index_and_middle"

 else:

 if bone_direction_3_1_2 <= 0.75:

 if arm_elbow_position1 <= 82.7269:

 if arm_direction2 <= -0.88: r = "thumb_only"

 else: r = "index_and_middle"

 else:

 if bone_direction_0_1_2 <= 0.56:

 if bone_direction_1_1_2 <= 0.79: r = "thumb_only"

 else: r = "index_and_middle"

 else:

 if bone_direction_3_3_0 <= 0.6:

 if bone_direction_0_1_1 <= -0.24:

 if bone_direction_2_3_2 <= 0.92: r = "thumb_only"

 else: r = "index_and_middle"

 else:

 if bone_direction_0_1_0 <= 0.68:

 if bone_direction_4_1_2 <= 0.83:

 if arm_wrist_position1 <= 148.039:

 if bone_direction_1_2_2 <= 0.98: r = "index_and_middle"

 else: r = "thumb_only"

 else: r = "index_and_middle"

 else: r = "index_and_thumb"

 else:

 if bone_direction_1_1_0 <= 0.18: r = "index_and_thumb"

 else: r = "index_and_middle"

 else:

 if arm_direction2 <= -0.92:

 if bone_direction_1_3_2 <= 0.83: r = "index_and_thumb"

 else: r = "index_and_middle"

 else: r = "thumb_only"

 else:

 if bone_direction_1_0_0 <= 0.06:

 if arm_direction2 <= -0.86: r = "thumb_only"

 else: r = "open_arm"

 else:

 if bone_direction_3_1_0 <= 0.19: r = "index_and_middle"

 else: r = "index_and_thumb"

 else:

 if bone_direction_1_1_2 <= 0.85: r = "thumb_only"

 else: r = "index_and_thumb"

 else:

 if bone_direction_4_1_1 <= 0.64:

 if bone_direction_1_2_2 <= 0.27:

 if bone_direction_4_1_2 <= 0.97:

 if bone_direction_2_2_2 <= 0.81: r = "thumb_only"

 else: r = "index_and_thumb"

 else: r = "index_and_middle"

 else:

 if bone_direction_4_0_0 <= 0.53:

77

 if bone_direction_3_2_1 <= 0.5:

 if bone_direction_0_1_0 <= -0.52:

 if bone_direction_0_1_1 <= -0.13: r = "thumb_only"

 else: r = "open_arm"

 else:

 if arm_wrist_position2 <= 120.873:

 if arm_elbow_position1 <= 234.957: r = "open_arm"

 else:

 if bone_direction_1_0_1 <= 0.08: r = "index_and_middle"

 else: r = "open_arm"

 else:

 if bone_direction_4_0_0 <= 0.02: r = "open_arm"

 else: r = "thumb_and_Pinky"

 else:

 if bone_direction_2_3_2 <= 0.95:

 if bone_direction_4_1_0 <= -0.15:

 if bone_direction_1_2_2 <= 0.7: r = "full_fist"

 else: r = "open_arm"

 else: r = "full_fist"

 else: r = "index_and_middle"

 else:

 if bone_direction_1_2_2 <= 0.92:

 if arm_direction0 <= -0.33: r = "index_and_thumb"

 else: r = "full_fist"

 else:

 if bone_direction_3_2_2 <= 0.82: r = "thumb_only"

 else:

 if arm_direction2 <= -0.99: r = "open_arm"

 else: r = "index_and_middle"

 else:

 if bone_direction_2_22 <= 0.71:

 if bone_direction_2_2_2 <= 0.64: r = "full_fist"

 else: r = "open_arm"

 else:

 if arm_direction2 <= -0.99: r = "thumb_only"

 else: r = "index_and_middle"

return r

def main():

 # Create a sample listener and controller

 listener = SampleListener()

 controller = Leap.Controller()

 # Have the sample listener receive events from the controller

 controller.add_listener(listener)

 # Keep this process running until Enter is pressed

 print "Press Enter to quit..."

 try:

 sys.stdin.readline()

 except KeyboardInterrupt:

 pass
 finally:

 # Remove the sample listener when done

 controller.remove_listener(listener)

if __name__ == "__main__":

 main()

78

Appendix D

LEAP Driver Application Program

79

80

81

Figure 19: L298N Stepper Motor Driver
Controller Board for Arduino

Figure 20: Image of a Raspberry Pi
Model 2.0

Appendix E

Full Bridge Motor Driver L298N

L298N Motor Driver Board Features:

- High Voltage High Current capability
- Heavy Load Heat Sink protection
- 4 x Pullup switches

- Motor Driver Indication LEDs and 5V power indicator LED
- Screw Terminals for Motors
- Light Weight
- Small Dimentions

L298N Motor Driver Board Specifications:

- Driver Chip: L298N
- Input Voltage Range: 6V to 35V
- Peak Current: 2A
- Logic Voltage: 5V to 7V
- Logic Current: 0.36 mA
- Max Driver Power: 25W at 70℃

 Raspberry Pi 2 Specs

82

Raspberry Pi 2.0 Specifications:

- 1 GB RAM

- 900MHz quad core ARM CPU

- 40 GPIO Pins

- 4 USB ports

- HDMI and Ethernet port

- Micro SD card slot

- Input Voltage 5V

- Input Current 1A

Table 14: Robot Platform GPIO to L298N Arduino Motor Driver Board Pin Connections

Raspberry Pi connections Raspberry Pi 2 Pins L298N motor driver full H Bridge Pins

+5V 40 EN1

+5V 39 EN2

Ground 38 GND

GPIO 23 33 IN4

GPIO 24 34 IN3

GPIO 22 8 IN2

GPIO 27 7 IN1

Bill of Materials [BOM]

Table 15: BOM for Robot Platform Base

Item Description Cost Quantity Total Cost

LEAP Motion Sensor Controller used for project 1 $79.99 $79.99

83

Laptop with

processor and

graphics card

Essential for the LEAP motion sensor to

work efficiently

1 - -

Raspberry Pi 2.0 1 $49.99 $49.99

L298N Motor Driver

PCB Board

contains motor driver chip L298N 1 $13.99 $13.99

Robot Base hold the Raspberry Pi and is the receiving

and responsive end test product

1 $49.99 $49.99

Small DC Motors 3V 4 $2.95 $11.80

Ribbon Cable jumper cable for clean and easy

development

1 $3 $3

2600mAh Lithium

Batteries

Supply the motors with 2 - 4 Amps 2 $19.95 $39.90

Battery Bank 5V 1A Power to the Raspberry Pi 1 $15.00 $15.00

Wi-Fi Dongle communication between the Raspberry

Pi and the laptop with Leap motion

Sensor

1 $30.00 $30.00

SD card For Raspberry Pi; contains the motor

driver code

1 $15.90 $15.90

Camera monitoring system 2 $3.00 $6.00

Total

84

Table 16: Expendable materials list for Robot Platform

Expendable items/ Tools required Description

Screw Driver and various tools assembling the robot base

Thin Solder securing connections on the robot base

Soldering Iron Raspberry Pi shield development

stackable headers Raspberry Pi shield and Motor Driver board

connection

USB connectors Battery bank to Raspberry Pi connection

Wire motors and battery connection leads

