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I 

 

Abstract 

Solar power has become an increasing electricity resource in Australia’s electrical energy in 

recent years. The increase is due to the decrease in the cost of solar Photovoltaic (PV) 

systems and incentives provided by the Federal Government’s “Renewable Energy Target” 

scheme to offset carbon emissions. The existing electrical grid infrastructure was not 

originally designed to face high penetration levels of PV systems, so the growing embedded  

PV penetration levels has aroused various technical challenges and one of the key challenges 

is voltage rise. In order to provide methods to reduce technical barriers for achieving high 

penetration levels in Australian electricity networks, several approaches are studied in this 

report. The methods are studied with respect to prosumer (the combination of producer 

and consumer) aspect, utility aspect and a combination of these two aspects. The 

simulations were carried out using DIgSILENT PowerFactory software. Where possible, all 

designs and specifications are undertaken in accordance and in compliance with 

relevant standards and Western Power requirements and guidelines. 

Three prosumers’ methods which can be implemented in individual inverters are studied in 

chapter 6. They can be used to keep the voltage within the defined limits when the PV 

generation is 5kW/house, which is its assumed maximum value. But these technologies need 

to be upgraded to be more effective since the PV generation keeps climbing in Australian 

distribution networks. The utilities’ methods with additional devices implemented in the 

network are discussed in chapter 7. These control methods can effectively and efficiently 

control the voltage rise problem but one disadvantage is that they are all expensive and are 

not economically viable options. The combination of utilities’ method and prosumers’ 

method are introduced in this report as well. 

A recommendation for future studies that could be a continuation of this topic is provided at 

the end of the thesis report. 
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1 Introduction 

PV generation is a form of renewable energy generation; it is one of the most effective 

methods to produce electricity from solar energy. In Australia, the installation of PV systems 

has increased substantially in recent years. The existing electrical grid infrastructure was not 

originally designed to face high penetration levels of PV systems, so the growing size of 

embedded PV generation has led to some technical issues. Key issues like voltage rise on the 

network will result in various problems such as difficulty in demand-supply management, 

so it become more and more important to find methods to manage these issues.  

1.1 Aim of the project 

This project aims at giving readers an introduction to some of the key technical issues 

caused by increased PV generation, the research is focused on voltage variations and voltage 

rise. Approaches from both prosumer and utility aspects that can help reduce technical 

barriers for achieving high penetration levels in Australian electricity networks will be 

discussed. An example distribution feeder in an interconnected urban network with PV 

generation was modelled by using the power system modelling software DigSILENT 

PowerFactory, which can analyse methods to increase PV generation on the sample feeder. 

1.2 Thesis structure 

Chapter 2 in this thesis report gives a literature review of this project, which includes 

Australia’s solar resource and PV status, technical issues associated with the increased PV 

penetration and PV Inverters’ voltage control strategies. 

Chapter 3 presents the project methodology. A table will list the approaches that are used 

in this report to manage PV induced voltage rise on distribution feeders. A Gantt chart, 

which provides an overall timeline for the project schedule, is also discussed in this section. 

Chapter 4 defines the example feeder with distributed PV generation that will be used to 

analyse methods to increase PV generation on a network. A description introduction of the 

network components is also included. 

In Chapter 5, a base case and its variations are studied. Their simulation results and analyse 

are presented as well. 

Chapter 6 to Chapter 8 describe the methods to manage the voltage rise problem on 

distribution feeders. Chapter 6 is focused on prosumer aspects while Chapter 7 is focused on 

utility aspects and Chapter 8 introduces and analyses the combinations methods of the two 

aspects.    

Chapter 9 will conclude this project and give suggestions for future works. 
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2 Background 

2.1 Australia Solar Resource and PV status 

2.1.1 Australia Solar Resource 

The Australian continent has the highest solar radiation per square metre of any continent.  

Consequently, Australia has some of the best solar energy resources in the world. Australia 

receives an average of 58 million PJ of solar radiation per year, which is approximately 10000 

times larger than its total energy consumption [1].  

Take WA as an example. In Figure 1, it can be seen that in Murdoch University, the maximum 

monthly average solar radiation incident on a horizontal surface is 8.49 kW/   in December 

and the minimum is 2.54 kW/   in June. The annual average is 5.49 kW/  . These figures 

support the claim that WA has an excellent solar resource.  

 

 

Figure 1: Monthly average solar radiation incident on a horizontal surface (kW/m2/day) at 

Murdoch [2] 

2.1.2 Australia PV Status 

In recent years, unprecedented growth has been seen in the Australian PV market, especially 

in residential small-scale PV systems. One of the key drivers for high growth rates in PV 

installation is the decline in PV system prices.  

In Australia, PV systems are concentrated in major cities of each state and some rural areas, 

such as Alice Springs, solar resources, local industry capabilities, local government initiatives, 
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and income levels have been the factors that have driven the emergence of high PV 

penetrations. A number of isolated remote grids, such as the towns of Carnarvon and Alice 

Springs, have also seen significant household-driven PV system deployment [3]. The largest 

percentage of PV systems in Australia comes from small-scale rooftop installations.  

Table 1 shows a summary of small-scale PV generation in Australia in August 2015. It can be 

seen that Queensland has the most number of PV systems in Australia.  

Table 1: Small-scale PV generation in Australia in August 2015 [4] 

  Percentage of dwellings 
with a PV system by 
State/Territory (%) 

Installed PV 
generation capacity 
by State/Territory 
(MW) 

Annual energy 
generated from PV by 
State/Territory (MWh) 

QLD 27.9 1,294 1,790,958 

SA 27.6 535 737,156 

WA 20.90 439 607,320 

NSW 13.2 753 1,043,847 

VIC 13.1 714 856,365 

ACT 12.5 48 65,929 

TAS 11.4 76 90,197 

NT 7.3 15 24,118 

Total  3,874 5,215,890 

2.2 Technical issues associated with the increased PV penetration  

2.2.1 Voltage rise 

Power systems may experience over-voltage problems during the operation. The power flow 

on distribution feeders reverses when local PV generation is more than the local demand.  

This situation often manifests itself in voltage rises along the distribution feeders, since 

additional power will flow from the distribution system to the transmission system. The 

voltage rises can result in voltages exceeding normal operation values [5], which could cause 

different problems such as: damage to electrical/electronic equipment and causing solar 

inverters to trip when they exceed an acceptable voltage range, for example 270V, AC. 

Example from Carnarvon: 

Two instances have been reported where over voltages have caused multiple PV inverters to 

disconnect from the network. Aggregated effects of a cluster of PV systems and low loads on 

a distribution transformer have caused the network voltage levels to rise beyond inverter 

cutoff limits. One of the instances was on the Richardson 1 distribution transformer (17% 

nominal PV penetration of the capacity of the transformer), in which a load imbalance was 

identified where one phase had low load and a high amount of PV generation. This problem 

was rectified by switching customers to different phases to balance the load [6]. 
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2.2.2 Voltage Variations due to cloud fluctuations  

Since the solar resource is irregular, the changes in solar radiation can lead to the variability 

of PV systems’ output.  When a cloud is approaching the system, the solar irradiation will be 

increased by refraction and reflection from the cloud and this can increase the power output 

from PV. When the passing cloud has covered the system, this can lead to rapid decrease in 

PV system output. The combination of these effects can cause large output variations on the 

system.  

Example from Carnarvon: 

There are two examples of cloud shear that have been identified on the Carnarvon network. 

One of the instances was that a small cloud passed over when examining a 10 kW inverter 

during a survey of PV system installations, which caused the output of the inverter to 

decrease from 8kW to 2.2 kW in about 2 seconds as the cloud passed over resulting in a 72% 

change in PV output [6]. 

2.3 PV Inverters’ Voltage Control Strategies 

This section discusses some control strategies of LV inverters in order to keep the network 

voltages in a defined range. 

 Active power Curtailment 

The output active power will be limited when the inverter output terminal voltage has 

reached the over-voltage level. This is achieved by forcing operation from the maximum 

power point towards the open circuit voltage of the PV panel [7]. 

Prated

Output Power

MPPT

Mode

Curtailed energy

Power Curtalment

Over voltage

Time

 

Figure 2: Power curtailment after over voltage condition [7] 
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 Reactive power absorption/provision as a function of real power 

The German standard for low voltage, VDE-AR-N 4105, requires that PV generators operate 

within ±10% of the nominal voltage and up to 20% above of their maximum real power 

rating within the power factor ranges given in Table 2 [5] [8]: 

Table 2: System solutions for the new VDE code of practice (VDE-AR-N-4105) [8] 

Apparent Power S (kVA) Power Factor Set by network operator 

S<=3.86 0.95 absorbing to 0.95 
delivering 

No 

3.86<S<=13.8 Between 0.95 absorbing to 
0.95 delivering 

Yes, either by providing a fixed 
power factor pf or a function of 
P, pf(P) 

13.8<S Between 0.9 absorbing to 
0.9 delivering 

Yes, either by providing a fixed 
power factor pf or a function of 
P, pf(P) 

 

 Reactive Power Support 

PV inverters can contribute to lowering their impact (voltage rise) on the grid when solar 

irradiation is high, by using their reactive and active power control capabilities, without any 

additional grid reinforcement measures [9]. In order to keep network voltage in a regulated 

range, distributed PV based inverters can inject or absorb reactive power to control the 

voltage. 

 Relevant voltage and frequency ranges for PV inverters 

Table 3 shows the relevant voltage and frequency ranges for operation of PV inverters as 

given in the guidelines from AS4777 and Horizon Power. Keeping the values in these ranges 

can potentially reduce the number of inverter tripping instances. 

Table 3: Allowable voltage and frequency ranges as per AS4777 and Horizon Power connection 

guidelines [10] 

LV Parameter Minimum Maximum 

AS 4777 Voltage 200-230V 230-270V 

Horizon Power Voltage 225.6V 254.4V 

Default SMA Voltage protection set points in Australia 200V 270V 

AS 4777 Frequency 45-50Hz 50-55Hz 

Horizon Power Frequency 47.5Hz 52Hz 

Default SMA Frequency protection set points in Australia 45Hz 52Hz 
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3 Project methodology 

3.1 Project investigation approaches 

Table 4 shows the approaches that are used in this project to manage PV induced voltage 

rise on distribution feeders. This table was designed to make it easier for the readers to 

identify the tasks that have been carried out in this project. The details of the methods and 

the analysis of the simulation results are described in Chapters 5, 6 and 7.  

Table 4: The approaches to manage PV induced voltage rise on distribution feeder 

                                  Prosumer                                     
           Utility 

pf=1 pf=0.95 
leading 

Q(V) P(V) 

Do nothing  See Chapter 
5 

 See Chapter 
6.1 

 See 
Chapter 6.2 

 See Chapter 
6.3 

Implement line drop 
compensation in the substation 
transformer 

 See Chapter 
7.1 

 See Chapter 
8.1 

 See 
Chapter 8.2 

 

Implement On Load Tap 
Changer (OLTC) on distribution 
transformers 

See Chapter 
7.2  

   

Implement STATCOM devices See Chapter 
7.3 

  See Chapter 
8.3 

  

 

3.2  Gantt chart  

The Gantt chart shown in Appendix A provides an overall timeline for the project schedule. 

The Gantt chart was made using GanttProject and was used throughout the project as a 

project management tool. It was kept up to date to show the progress to date. There was a 

gap week from 28th September to 2nd October 2015, which delayed work due to personal 

circumstances.
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4 Define the example feeder 

This chapter describes the approaches taken to model the example feeder with distributed 

PV generation in order to analyse methods to increase PV generation on a network. 

DigSILENT PowerFactory version 15.2 was used for this task. For the purpose of building a 

reasonable example distribution feeder, the feeder modelling has taken into account 

AS3008 [11] for the LV cable data and applied cable data taken from Nexans Olex High 

Voltage Catalogue for HV cable [12]. 

The networks elements that were created within PowerFactory will be discussed briefly in 

this chapter. The details of the network data and PV systems outputs will be outlined as well.   

4.1 Description of the example feeder 

The distribution network is shown in Figure 3 and an enlarged diagram for the network in 

dashed line area is shown in Figure 4. All line and transformer impedances are expressed in 

per unit value on a 100MVA base. These impedances are listed in section 4.2.  

This system is a simulation of a residential area. This network consists of a slack generator 

behind a source impedance, representing the rest of the grid, which is connected to a 

132/22 kV substation via two 20MVA 132/22 kV transformers in parallel. 

A 22kV feeder has been modeled using 50     aluminum 22kV cables and with six 630 kVA 

22kV/415V distribution transformers connected on the 22kV side at distances of 0.5 km, 1 

km, 1.5 km, 2 km, 2.5 km and 3 km from the substation. Two LV feeders have been modeled 

using 95     aluminum 415V cables connected to each 630 kVA 22kV/415V transformer. 

Each LV feeder has three “20 house clusters” at distances of 25m, 125m and 205m from the 

22kV/415V transformer.  

In this project, the system is assumed to be balanced, but this would not necessarily be the 

case in practice. Sometimes if a load imbalance occurs, where one phase had low load and a 

high PV generation. The voltage rise problems on the LV feeders will be worse than for the 

balanced scenario. This can be rectified by switching customers to different phases so that 

the load becomes more balanced refer to the previous reference on page 3. This issue will 

not be discussed in detail in this project but may be the subject of studies in the future. 
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Figure 3: Example feeder modelled by PowerFactory
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Figure 4: Enlarged diagram for the feeder 
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4.2 Network components 

4.2.1 LV cables 

Table 5 is the summary of LV line impedances of the example feeder. The rated voltage of 

the feeder is 0.415kV. Table 5 uses the 415V feeder in figure 4 as an example. 

Table 5: LV transmission lines data 

From 

bus 

To bus Rated voltage Length Material Resistance Reactance System 

type 

29 30 415V 25m Aluminum 0.372 ohm/km 0.0766 ohm/km AC 

30 31 415V 80m Aluminum 0.372 ohm/km 0.0766 ohm/km AC 

31 32 415V 80m Aluminum 0.372 ohm/km 0.0766 ohm/km AC 

 

4.2.2 HV cables 

The rated voltage of the HV feeder is 22kV, and the line impedances are summarised in 

Table 6.  

Table 6: HV transmission lines data 

From bus To bus Rated voltage Length Material Resistance Reactance System 

type 

2 3 22kV 500m Aluminum 0.821 ohm/km 0.134 ohm/km AC 

3 8 22kV 500m Aluminum 0.821 ohm/km 0.134 ohm/km AC 

8 13 22kV 500m Aluminum 0.821 ohm/km 0.134 ohm/km AC 

13 18 22kV 500m Aluminum 0.821 ohm/km 0.134 ohm/km AC 

18 23 22kV 500m Aluminum 0.821 ohm/km 0.134 ohm/km AC 

23 28 22kV 500m Aluminum 0.821 ohm/km 0.134 ohm/km AC 

 

4.2.3 Two winding transformers 

Two winding transformers can be inserted as voltage regulators on long rural power 

distribution lines, to keep voltages within a range. The key parameters for the transformers 

are listed in Table 7. The 132kV/22kV transformer model including winding configuration is 

shown in Figure 5, the 22kV/415V transformer model is shown in Figure 6.  

 

Figure 5: 132kV/22kV transformer model 
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Figure 6: 22kV/415V transformer model 

The 132kV/22kV Transformer is connected between buses 1 and 2, while the 22kV/415V 

transformers are connected between buses 3 and 4, buses 8 and 9, buses 13 and 14, buses 

18 and 19, buses 23 and 24, buses 28 and 29.  

Table 7: Transformer data 

 132kV/22kV Transformer 22kV/415V Transformer 

Rated Power 20MVA 0.63MVA 

Positive Sequence 
Impedance 

0.1+j0.5 0.01+j0.06 

Tap Position 11 3 

Additional Voltage Per Tap 1.4% 2.5% 

Voltage Set Point 1.02  

Neutral Position 11 3 

Min Position 1 1 

Max Position 21 5 

Tap Changer Delay (s) 60 60 
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5 Base case and its variations  

5.1 Base case 

A base case scenario was built for this project task and other study scenarios are specified 

variations of this case.  

In the base case, each LV feeder has three “20-house clusters” at distances of 25m, 80m and 

80m from the substation. Each cluster has 20 houses and the load for each house is 4kVA, 

which is the maximum daytime load and there is no PV generation in this case. 

The data in PowerFactory for base case scenario is shown in Table 8. 

Table 8: Base case scenario data 

Names Apparent Power Power Factor PV generation 

Cluster 1 0.08MVA 0.85 None 

Cluster 2 0.08MVA 0.85 None 

Cluster 3 0.08MVA 0.85 None 

Cluster 4 0.08MVA 0.85 None 

Cluster 5 0.08MVA 0.85 None 

Cluster 6 0.08MVA 0.85 None 

The voltage profile for the base case scenario is shown in Figure 7. The conducting of the 

voltage profile is taken along the red path shown in Figure 3.  

The positive sequence voltage magnitudes are expressed in p.u., starting from the 132kV 

‘grid’ bus. In accordance with Clause 2.2.2 of Western Power Technical Rules, for those parts 

of the distribution system operating below voltages of 6kV, the steady state voltage must be 

within +/- 6 % of the nominal voltage during normal operating state [13]. The voltage profile 

of the base case has a voltage at the end of the LV feeder connected to the furthest 

22kV/415V transformer of around 0.95 p.u.. This is because a fully loaded feeder would have 

LV voltages at its end around 5% below nominal so that the houses connected to the end of 

the feeder are supplied with voltage no lower than 6% below nominal, which allows for a +/-

1% voltage variation along the LV connection from the LV cable between the street to the 

houses’ LV switchboards. So in this project, the network is required to operate within 

voltage limits of +/- 5% of the nominal network voltage, which is 0.95p.u.to 1.05p.u.  
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Figure 7: Base case scenario voltage profile 

5.2   Minimum daytime load cases 

In order to determine the impact on the voltage at the end of the LV feeder by an increase in 

PV penetration, the following cases are studied. The minimum daytime load is assumed to 

be 2kVA per house, or 0.04MVA per load cluster. The purpose of studying the following 

cases is to find out the voltage at the end of the LV feeder for the worst case scenario.  

5.2.1  Minimum daytime load with no solar generation 

The data in PowerFactory for minimum daytime load with no solar generation scenario is 

shown in Table 9. 

Table 9: Minimum daytime load with no solar data 

Names Apparent Power Power Factor PV generation 

Cluster 1 0.04MVA 0.85 None 

Cluster 2 0.04MVA 0.85 None 

Cluster 3 0.04MVA 0.85 None 

Cluster 4 0.04MVA 0.85 None 

Cluster 5 0.04MVA 0.85 None 

Cluster 6 0.04MVA 0.85 None 

 

The voltage profile for this case is given in Figure 8. 
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Figure 8: Minimum day time load, no solar voltage profile 

5.2.2 Minimum daytime load with 1kW solar/house generation 

The data in PowerFactory for minimum daytime load with 1kW solar/house generation 

scenario is shown in Table 10. 

Table 10: Minimum daytime load with 1kW solar/house data 

Names Apparent Power Power Factor PV generation PV Power Factor 

Cluster 1 0.04MVA 0.85 20kW 1 

Cluster 2 0.04MVA 0.85 20kW 1 

Cluster 3 0.04MVA 0.85 20kW 1 

Cluster 4 0.04MVA 0.85 20kW 1 

Cluster 5 0.04MVA 0.85 20kW 1 

Cluster 6 0.04MVA 0.85 20kW 1 

The voltage profile for this case is given in Figure 9. 

 

Figure 9: Minimum daytime load, 1kW solar/house voltage profile 
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5.2.3 Minimum daytime load with 2kW solar/house generation 

The data in PowerFactory for minimum daytime load with 2kW solar/house generation 

scenario is shown in Table 11. 

Table 11: Minimum daytime load with 2kW solar/house data 

Names Apparent Power Power Factor PV generation PV Power Factor 

Cluster 1 0.04MVA 0.85 40kW 1 

Cluster 2 0.04MVA 0.85 40kW 1 

Cluster 3 0.04MVA 0.85 40kW 1 

Cluster 4 0.04MVA 0.85 40kW 1 

Cluster 5 0.04MVA 0.85 40kW 1 

Cluster 6 0.04MVA 0.85 40kW 1 

 

The voltage profile for this case is given in Figure 10. 

 

Figure 10: Minimum daytime load, 2kW solar/house voltage profile 
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5.2.4 Minimum daytime load with 3kW solar/house generation 

The data in PowerFactory for minimum daytime load with 3kW solar/house generation 

scenario is shown in Table 12. 

Table 12: Minimum daytime load with 3kW solar/house data 

Names Apparent Power Power Factor PV generation PV Power Factor 

Cluster 1 0.04MVA 0.85 60kW 1 

Cluster 2 0.04MVA 0.85 60kW 1 

Cluster 3 0.04MVA 0.85 60kW 1 

Cluster 4 0.04MVA 0.85 60kW 1 

Cluster 5 0.04MVA 0.85 60kW 1 

Cluster 6 0.04MVA 0.85 60kW 1 

 

The voltage profile for this case is given in Figure 11. 

 

Figure 11: Minimum daytime load, 3kW solar/house voltage profile 
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5.2.5 Minimum daytime load with maximum PV generation 

The maximum PV generation for per house is assumed to be 5kW since most of the 

residential systems’ sizes are under 5 kW.  

The data in PowerFactory for minimum daytime load with maximum PV generation scenario 

is shown in Table 13. 

Table 13: Minimum daytime load with 5kW solar/house data 

Names Apparent Power Power Factor PV generation PV Power Factor 

Cluster 1 0.04MVA 0.85 100kW 1 

Cluster 2 0.04MVA 0.85 100kW 1 

Cluster 3 0.04MVA 0.85 100kW 1 

Cluster 4 0.04MVA 0.85 100kW 1 

Cluster 5 0.04MVA 0.85 100kW 1 

Cluster 6 0.04MVA 0.85 100kW 1 

 

The voltage profile for this case is given in Figure 12. 

 

Figure 12: Minimum daytime load, 5kW solar/house voltage profile 
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5.3 Discussion 

Figure 13 shows the combination of the voltage profiles for the different scenarios listed 

above. As mentioned earlier, the voltage at the end of the LV feeder (20 houses in cluster 3) 

connected to the furthest 22kV/415V transformer should not be outside the range: 0.95 

p.u.- 1.05 p.u. It can be seen from figure 14 that the voltage at the end of the LV feeder (20 

houses cluster 3) has reached the upper limit value, when the PV generation is increased to 

3kW/house. In order to keep the voltage in the defined range at the maximum PV 

penetration of 5kW/house case, some form of compensation will need to be considered.  

Different methods will be introduced and discussed in the next chapter.   

 

Figure 13: Combination of the voltage profiles 

Figure 14 shows the voltages at “20 houses cluster 3” for the different scenarios.  

 

Figure 14: Voltages at “20 houses cluster 3” 
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6 The approaches to manage voltage rise on distribution 

feeders using PV inverters (prosumer aspect) 

The penetration of grid-connected PV systems tends to raise the voltage in the LV network. 

As noted in the previous chapters, this could become a problem, since over voltages on the 

network can have an impact on utility regulatory compliance, and could lead to increases in 

equipment power consumption and cause the disconnection of PV inverters [6]. The 

purpose of this chapter is to list the approaches prosumers can take to manage the voltage 

rise on distribution feeders by using PV inverters with different reactive power 

characteristics. Also, different levels of PV penetration are applied in the example model and 

the simulation results of different scenarios will be discussed as well.  

In this chapter, the minimum daytime load is assumed to be 2kVA/house and this minimum 

load is applied to all the simulation cases.  

The approaches that will be discussed are: 

 Change the power factor of PV inverter from 1 to 0.95 leading 

Use the Q (V) voltage control function of the PV inverter  

Use the P (V) voltage control function of the PV inverter  

6.1 Change the power factor of PV inverter from 1 to 0.95 leading 

Fixed power factor operation could be a simple and low cost method of managing voltage. 

Operators often use non-unity power factor to achieve system requirements where a system 

voltage is affected by the variability of the inverter real power output.   

In this case, the load for each house is 2kVA at 0.85 pf. So the load for each cluster is 

0.04MVA. In PowerFactory simulation, the PV generation increases from no solar to 5kW 

solar/house, in order to see the impact on the voltage at cluster 3 with the increased PV 

generation.  

Scenarios Apparent Power 
(per cluster) 

Power Factor PV Generation  
(per cluster) 

PV Power 
Factor 

0kW solar/house 0.04MVA 0.85 0kW 0.95leading 

1kW solar/house 0.04MVA 0.85 20kW 0.95leading 

2kW solar/house 0.04MVA 0.85 40kW 0.95leading 

3kW solar/house 0.04MVA 0.85 60kW 0.95leading 

4kW solar/house 0.04MVA 0.85 80kW 0.95leading 

5kW solar/house 0.04MVA 0.85 100kW 0.95leading 

Figure 15: 0.95 pf scenario data 
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6.1.1 Simulation results 

Table 14: 0.95 pf scenario simulation results 

  0kW Solar 1kW Solar 2kW Solar 3kW Solar 4kW Solar 5kW Solar 

132kV Bus 1 1 1 1 1 1 1 

22kV Bus 2 1.019 1.019 1.019 1.019 1.019 1.02 

Bus 3 1.018 1.019 1.019 1.02 1.0201 1.021 

Bus 8 1.017 1.018 1.019 1.02 1.021 1.022 

Bus 13 1.016 1.018 1.019 1.02 1.0217 1.024 

Bus 18 1.016 1.017 1.019 1.021 1.0222 1.024 

Bus 23 1.015 1.017 1.019 1.021 1.0225 1.025 

Bus 28 1.015 1.017 1.019 1.021 1.0227 1.025 

Bus 29 1.024 1.025 1.025 1.025 1.0242 1.024 

20 Houses Cluster 1 1.018 1.022 1.025 1.027 1.0297 1.032 

20 Houses Cluster 2 1.005 1.015 1.024 1.033 1.0414 1.05 

23 Houses Cluster 3 0.998 1.012 1.024 1.036 1.0473 1.059 

 

The voltage profile is shown in Figure 16. 

 

Figure 16: 0.95 pf scenario simulation result 
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6.1.2 Discussion 

Figure 17 shows the voltages at cluster 3 for the cases of different PV penetration.  

 

Figure 17: Voltages at cluster 3 
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6.2 Use the Q (V) voltage control function of PV inverters  

Reactive power control is important in electrical systems. Through controlling the 

production, absorption, and flow of reactive power at all levels in the system, voltage/Var 

control can maintain the voltage profile within acceptable limits and reduce the transmission 

losses [14]. 

In this case, the load for each house is 2kVA at 0.85 pf. So the load for each cluster is 

0.04MVA. In PowerFactory simulation, the PV generation increases from no solar to 5kW 

solar/house. The data for each scenario is shown at Table 15. 
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Factor 
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4kW solar/house 0.04MVA 0.85 80kW 1 

5kW solar/house 0.04MVA 0.85 100kW 1 
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In accordance with Clause 6.3.2.3 of Draft AS/NZ4777:2015, the volt-VAr response mode 

varies the reactive power output of the inverter in response to the voltage at its grid-

interactive port. The response curve required for the volt-VAr response is defined by the volt 

response reference values specified in Table 16 and corresponding VAr levels. These are 

listed in Table 17 and shown in Figure 18 [15].  

Table 16: Volt response reference values [15] 

Reference Aus. default value (volts) NZ default value (volts) Range (volts) 
V1 207 207 Not applicable 

V2 220 220 216 to 230 

V3 250 240 240 to 255 

V4 265 255 253 to 265 

Table 17: Volt-var response set-point values for reference voltages [15] 

Reference Default values for VAr level (% rated VA) Range 
V1 30% leading 0 to 60% leading 
V2 0% 0% 
V3 0% 0% 
V4 30% lagging 0 to 60% lagging 

NOTE: The percentage VAr/VA level leading is supplying VArs to the grid, whereas the 

percentage VAr/VA level lagging is drawing VAr from the grid. 
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Figure 18: Example curve for a possible volt-Var control mode (Australia) [15] 

In this control method, the inverter operates as a voltage regulator. If the measured voltage 

is below the limit, the inverter supplies reactive power to boost the voltage. If the measured 

voltage is above the limit, the inverter absorbs reactive power to reduce the voltage to keep 

it in the defined range.  
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6.2.1 Simulation results 

 Without a deadband 

The Q (V) characteristics data is shown in Table 18 

Table 18: Q (V) characteristics data (without a deadband) 

Voltage Droop Lower Voltage Limit of 
deadband 

Upper Voltage Limit of 
deadband 

5% 1 p.u. 1 p.u. 

The simulation results are shown in Table 19.  

Table 19: Q (V) method scenario simulation results (without a deadband) 

 0kW 

Solar 

1kW 

Solar 

2kW Solar 3kW Solar 4kW Solar 5kW Solar 

132kV Bus 1 1 1 1 1 1 1 

22kV Bus 2 1.02 1.019 1.02 1.019 1.019 1.019 

Bus 3 1.018 1.019 1.02 1.02 1.02 1.021 

Bus 8 1.018 1.018 1.02 1.02 1.021 1.022 

Bus 13 1.017 1.018 1.02 1.021 1.022 1.023 

Bus 18 1.016 1.017 1.02 1.021 1.023 1.024 

Bus 23 1.016 1.017 1.02 1.021 1.023 1.024 

Bus 28 1.016 1.017 1.02 1.021 1.023 1.025 

Bus 29 1.025 1.027 1.027 1.025 1.023 1.02 

20 Houses Cluster 1 1.019 1.024 1.027 1.028 1.028 1.028 

20 Houses Cluster 2 1.006 1.017 1.027 1.034 1.04 1.044 

20 Houses Cluster 3 0.999 1.014 1.027 1.037 1.045 1.053 
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The voltage profile for this case is given in Figure 19. 

 

Figure 19: Q (V) method scenario simulation results (without a deadband) 

 With a deadband 

Figure 20 shows the Q (V) control curve, which is also called deadband control.  
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Figure 20: Q (V) control curve 

The Q (V) characteristics data is shown in Table 20. 

Table 20: Q (V) characteristics data (with a deadband) 

Voltage Droop Lower Voltage Limit Upper Voltage Limit 

2% 0.97 p.u. 1.03 p.u. 
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The deadband control only starts above or below a certain voltage limit and the reactive 

power is only used when grid voltage shifts significantly from the setpoint. Deadband is an 

interval where no action occurs. In this range of voltages, no changes are made. 

The simulation results are shown in Table 21. 

Table 21: Q (V) method scenario simulation results (with a deadband) 

  0kW 

Solar 

1kW 

Solar 

2kW Solar 3kW Solar 4kW Solar 

132kV Bus 1 1 1 1 1 1 

22kV Bus 2 1.019 1.019 1.019 1.019 1.019 

Bus 3 1.018 1.019 1.019 1.02 1.021 

Bus 8 1.017 1.018 1.019 1.021 1.021 

Bus 13 1.016 1.018 1.019 1.021 1.022 

Bus 18 1.016 1.018 1.019 1.021 1.023 

Bus 23 1.015 1.017 1.019 1.022 1.023 

Bus 28 1.015 1.017 1.019 1.022 1.023 

Bus 29 1.024 1.029 1.032 1.03 1.027 

20 Houses Cluster 1 1.018 1.026 1.032 1.033 1.032 

20 Houses Cluster 2 1.005 1.02 1.032 1.039 1.044 

23 Houses Cluster 3 0.998 1.017 1.032 1.042 1.049 

 

The voltage profile for this case is given in Figure 21. 

 

Figure 21: Q (V) method scenario simulation results (with a deadband) 
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6.2.2 Discussion 

Figure 22 and Figure 23 show the voltages at the end of LV feeder for the two cases with Q(V) 

control and different PV penetrations. 

 

Figure 22： Voltages at cluster 3 (without a deadband) 

 

Figure 23: Voltages at cluster 3 (with a deadband) 

It can be seen from Figure 22 that the voltage at cluster 3 does not reach the limit until the 

PV generation increases to about 5 kW per house. Compared with the minimum load cases 

in section 5.2, the overvoltage problem has been reduced.  
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6.3 Use P (V) voltage control function of PV inverter 

Fixed Active power curtailment (APC) is an easy and quick way to solve the overvoltage 

problems on feeders and the unbalanced phase problem can be improved as well.  

Curtailment or droop is a method to force evaluation parameters within their set boundaries, 

which is to keep the voltage under 1.05 p.u. in this project. In order to reduce the voltage at 

a given location, the power injected at that location will be decreased. Due to its fixed 

character, the method requires no communication and is easy to implement on inverters. 

This method is also called a ‘fixed droop’ scheme since the droop set point (the minimum 

voltage where the algorithm starts regulating) does not change at any time [16].  

The Volt-watt response mode in a PV inverter can vary the output power of the inverter in 

response to the voltage at its terminal. 

In accordance with Clause 6.3.2.2 of Draft AS/NZ4777:2015, the response curve required for 

the volt-watt response mode is defined by the volt response reference values in Table 16 

and the corresponding power levels. These are listed in Table 22 and shown in Figure 24. 

Table 22: Volt-watt response maximum set-point values for reference voltages [15] 

Reference Maximum value (P/Prated%) 

V1 100% 
V2 100% 
V3 100% 
V4 20% 

After a volt-watt response, the inverter shall power rate limit for any required decrease in 

output power. 
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Figure 24: Example curve for a volt-watt response mode (Australia) [15] 

This method is not simulated in this project as it defeats the purpose of trying to increase 

the amount of solar PV power that can be injected.   
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7 The approaches to manage voltage rise on distribution 

feeders using PV inverters (utility aspect) 

In this task, the focus will now turn to the methods available to utilities for managing the 

voltage rise on distribution feeders. The methods are listed below: 

Implement line drop compensation in the substation transformer 

Implement On Load Tap Changer (OLTC) on distribution transformers 

Implement STATCOM devices  

In this chapter, the minimum daytime load is assumed to be 2kVA/house and this minimum 

load is applied to all the simulation cases. 

7.1 Implement line drop compensation (LDC) in the substation transformers 

The purpose of using LDC is to allow a constant voltage to be maintained at a point along the 

feeder remote from the transformer [17]. With LDC, the transformer increases its output 

voltage as the load increases to maintain acceptable voltages at the end of the feeder. The 

LDC devices are installed in the 132kV/22kV transformers between bus 1 and bus 2.  
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Figure 25: Line Drop Compensation Diagram adapted from Copper Power System [17] 

Figure 25 shows a LDC model diagram. In this model, a reactive and resistive element can 

simulate the reactance and resistance of the line from the substation transformers to about 

50% along the line to the next voltage regulator. The regulated voltage sensed by the 

sensing circuit can be reduced by the additional voltage drop in the LDC and the increased 

voltage can let the tap change controller to tap up the output of transformer [17].  

The data being used in this case is shown below: 

Table 23: 132kV/22kV Transformer data 

Voltage set point Rset Xset 

1.00 p.u. 7 1.4 
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Table 24: Line drop compensation scenario data 

Scenarios Apparent Power 
(per cluster) 

Power Factor PV Generation  
(per cluster) 

PV Power 
Factor 

0kW solar/house 0.04MVA 0.85 0kW 1 

1kW solar/house 0.04MVA 0.85 20kW 1 

2kW solar/house 0.04MVA 0.85 40kW 1 

3kW solar/house 0.04MVA 0.85 60kW 1 

4kW solar/house 0.04MVA 0.85 80kW 1 

5kW solar/house 0.04MVA 0.85 100kW 1 

 

7.1.1 Simulation results 

Table 25: Line drop compensation scenario simulation results 

  0kW 

Solar 

1kW Solar 2kW Solar 3kW Solar 4kW Solar 5kW Solar 

132kV Bus 1 1 1 1 1 1 1 

22kV Bus 2 1.01 1.004 0.999 0.994 0.99 0.985 

Bus 3 1.008 1.004 0.999 0.994 0.991 0.987 

Bus 8 1.007 1.003 0.999 0.995 0.992 0.989 

Bus 13 1.007 1.003 0.999 0.995 0.993 0.99 

Bus 18 1.006 1.003 0.999 0.996 0.994 0.991 

Bus 23 1.006 1.003 0.999 0.996 0.994 0.991 

Bus 28 1.005 1.002 0.999 0.996 0.995 0.992 

Bus 29 1.014 1.014 1.012 1.011 1.011 1.009 

20 Houses Cluster 1 1.008 1.011 1.012 1.014 1.017 1.019 

20 Houses Cluster 2 0.995 1.004 1.013 1.021 1.031 1.039 

20 Houses Cluster 3 0.988 1.001 1.013 1.025 1.038 1.049 

The voltage profile for this case is given in Figure 26. 

Figure 26: Line drop compensation scenario simulation result 
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7.1.2 Discussion 

Figure 27 shows the voltages at the end of LV feeder for the cases with different PV 

penetration. 

 

Figure 27: Voltages at cluster 3 (with LDC) 

It can be seen from Figure 27 that the voltage at cluster 3 is still within the voltage limit 

when the solar generation increases to 5kW, which indicates that implementing the LDC 

device can help to regulate the voltage at a load center on a feeder remote from the 

transformer. 

7.2 Implement On Load Tap Changer (OLTC) on distribution transformers 

A tap changer along a power transformer can allow different turns to be selected in separate 

steps. OLTC is usually done on the HV winding. “The OLTC changes the ratio of a transformer 

by adding or subtracting turns from either the primary or the secondary winding. The 

transformer is therefore equipped with a regulating or tap winding which is connected to 

the OLTC.” [18] 

When the network voltage increases, the OLTC now has to adjust the voltage level to 

maintain it in the defined range. A switching pulse will be released if the voltage level has 

been exceeded its limitation for a long period, which means a mechanical switching process 

to be activated. The transformer’s windings are set to a new transmission ratio in order to 

control the voltage level [19].  

In this project, the OLTC device is not simulated because of its complexity and high cost. 

However this is still a good solution and worth doing more simulation studies in the future.    
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7.3 Implement STATCOM devices 

The static synchronous compensator (STATCOM) is a shunt connected device which 

generates a balanced set of three-phase sinusoidal voltages at the fundamental frequency, 

with rapidly controllable amplitude and phase angle [20]. It is used for voltage control and 

reactive power compensation on the grid. The STATCOM uses self-commutated power 

electronics to synthesize the reactive power output rather than using conventional 

capacitors and inductors combined with thyristors [13].  

The advantage of using a device like STATCOM is that it can provide a very fast solution, by 

providing dynamic voltage control. It is an effective method to maintain the steady state 

voltage profile of the network.  

The STATCOM device will not be used alone in this project but it will be used with the fixed 

power control method which is discussed in section 8.4.  
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8 Different combinations of the methods 

8.1 Combination one 

The first combination is to implement line drop compensation devices in the substation 

transformer and change the power factor of the PV inverters from 1 to 0.95 leading. 

In PowerFactory simulation, the PV generation increases from no solar to 9kW solar/house 

(the highest PV generation in this case that keeps the voltage under 1.05 p.u). The load for 

per house is 0.02kVA at 0.85 pf. The data for each scenario is shown in Table 26. 

Table 26: Combination one scenario data 

Scenarios Apparent Power 
(per cluster) 

Power Factor PV Generation  
(per cluster) 

PV Power 
Factor 

0kW solar/house 0.04MVA 0.85 0kW 0.95 

1kW solar/house 0.04MVA 0.85 20kW 0.95 

2kW solar/house 0.04MVA 0.85 40kW 0.95 

3kW solar/house 0.04MVA 0.85 60kW 0.95 

4kW solar/house 0.04MVA 0.85 80kW 0.95 

5kW solar/house 0.04MVA 0.85 100kW 0.95 

6kW solar/house 0.04MVA 0.85 120kW 0.95 

7kW solar/house 0.04MVA 0.85 140kW 0.95 

8kW solar/house 0.04MVA 0.85 160kW 0.95 

9kW solar/house 0.04MVA 0.85 180kW 0.95 

8.1.1 Simulation results 

Table 27: Combination one scenario simulation results 

  0kW  1kW  2kW  3kW  4kW  5kW  6kW  7kW  8kW  9kW 

132kV Bus 1 1 1 1 1 1 1 1 1 1 1 

22kV Bus 2 1.01 1.005 1 0.995 0.991 0.986 0.982 0.978 0.974 0.97 

Bus 3 1.008 1.004 1 0.995 0.992 0.988 0.984 0.98 0.977 0.973 

Bus 8 1.007 1.004 1 0.996 0.993 0.989 0.986 0.982 0.979 0.976 

Bus 13 1.007 1.003 1 0.996 0.994 0.99 0.987 0.984 0.981 0.979 

Bus 18 1.006 1.003 1 0.996 0.994 0.991 0.988 0.986 0.983 0.98 

Bus 23 1.006 1.003 1 0.997 0.995 0.991 0.989 0.986 0.984 0.982 

Bus 28 1.005 1.003 1 0.997 0.995 0.992 0.989 0.987 0.984 0.982 

Bus 29 1.014 1.01 1.005 0.999 0.995 0.989 0.983 0.977 0.971 0.965 

20 Houses Cluster 1 1.008 1.007 1.005 1.002 1 0.997 0.995 0.992 0.988 0.985 

20 Houses Cluster 2 0.995 1 1.004 1.008 1.012 1.016 1.019 1.022 1.025 1.027 

23 Houses Cluster 3 0.988 0.996 1.004 1.011 1.019 1.025 1.031 1.037 1.043 1.048 
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The voltage profile for this case is given in Figure 28. 

 

Figure 28: Combination one scenario simulation result 

8.1.2 Discussion 

 

Figure 29: Voltages at cluster 3  

Figure 29 shows that, with the LDC device in combination with the fixed power factor control 

method, the voltages at cluster 3 are within the limit even when the solar generation has 

increased to 9kW per house, which is a very high penetration level. The combination of 

these two methods is an effective and efficient way to manage the voltage rise in 

distribution feeders.  
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As we can seen from the voltage profiles in Figure 28, there is a voltage drop at bus 29 while 

linked to the LV feeder along the circuit going to the house loads, when the PV generation is 

lower than or equal to 2kW/house. And there is a voltage rise at bus 29 when the PV 

generation increases, which is because with each house generating more and more solar PV 

(for example at 5kW/house), the net power flow is in the opposite direction and this leads to 

a voltage rise.   

This can be explained by the equation below [21]: 

△V = (PR+QX)/V 

Where P is real power injected;  

Q is reactive power injected;  

R is line resistance;  

X is line reactance;  

V is (nominal) voltage.  

8.2 Combination two 

The second combination is to implement line drop compensation devices in the substation 

transformer and use the Q (V) voltage control function of the PV inverter. 

In PowerFactory simulation, the PV generation increases from no solar to 7kW solar/house 

(the highest PV generation in this case that keeps the voltage under 1.05 p.u). The data for 

each scenario is shown at Table 28. 

Table 28: Combination two scenario data 

Scenarios Apparent Power 
(per cluster) 

Power Factor PV Generation  
(per cluster) 

PV Power 
Factor 

0kW solar/house 0.04MVA 0.85 0kW 1 

1kW solar/house 0.04MVA 0.85 20kW 1 

2kW solar/house 0.04MVA 0.85 40kW 1 

3kW solar/house 0.04MVA 0.85 60kW 1 

4kW solar/house 0.04MVA 0.85 80kW 1 

5kW solar/house 0.04MVA 0.85 100kW 1 

6kW solar/house 0.04MVA 0.85 120kW 1 

7kW solar/house 0.04MVA 0.85 140kW 1 
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8.2.1 Simulation results 

 Without a deadband 

Table 29: Combination two scenario simulation results (without a deadband) 

  0kW 
Solar 

1kW 
Solar 

2kW 
Solar 

3kW 
Solar 

4kW 
Solar 

5kW 
Solar 

6kW 
solar 

7kW 
solar 

132kV Bus 1 1 1 1 1 1 1 1 1 

22kV Bus 2 1.01 1.005 0.999 0.995 0.989 0.985 0.981 0.977 

Bus 3 1.008 1.004 0.999 0.996 0.99 0.987 0.983 0.979 

Bus 8 1.007 1.003 0.999 0.996 0.991 0.988 0.985 0.982 

Bus 13 1.007 1.003 0.999 0.996 0.992 0.989 0.987 0.983 

Bus 18 1.006 1.003 0.999 0.997 0.993 0.99 0.988 0.985 

Bus 23 1.006 1.003 0.999 0.997 0.993 0.991 0.988 0.986 

Bus 28 1.005 1.003 0.999 0.997 0.993 0.991 0.989 0.986 

Bus 29 1.014 1.013 1.01 1.006 1.001 0.996 0.991 0.985 

20 Houses Cluster 1 1.008 1.01 1.01 1.01 1.007 1.005 1.003 1 

20 Houses Cluster 2 0.995 1.004 1.01 1.016 1.02 1.024 1.027 1.029 

23 Houses Cluster 3 0.988 1.001 1.01 1.019 1.026 1.033 1.039 1.044 

The voltage profile is shown in figure 30. 

 

Figure 30: Combination two scenario simulation result (without a deadband)
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 With a deadband 

Table 30: Combination two scenario simulation results (with a deadband) 

  0kW 

Solar 

1kW Solar 2kW Solar 3kW Solar 4kW Solar 5kW Solar 6kW 

Solar 

132kV Bus 1 1 1 1 1 1 1 1 

22kV Bus 2 1.01 1.004 0.999 0.994 0.99 0.985 0.98 

Bus 3 1.009 1.004 0.999 0.994 0.991 0.987 0.982 

Bus 8 1.008 1.003 0.999 0.995 0.992 0.99 0.984 

Bus 13 1.007 1.003 0.999 0.995 0.993 0.99 0.986 

Bus 18 1.007 1.003 0.999 0.996 0.993 0.99 0.987 

Bus 23 1.006 1.003 0.999 0.996 0.994 0.991 0.988 

Bus 28 1.006 1.002 0.999 0.996 0.994 0.991 0.988 

Bus 29 1.015 1.014 1.012 1.011 1.008 1.003 0.996 

20 Houses Cluster 1 1.009 1.011 1.012 1.014 1.015 1.012 1.008 

20 Houses Cluster 2 0.995 1.004 1.013 1.021 1.028 1.031 1.033 

23 Houses Cluster 3 0.989 1.001 1.013 1.025 1.035 1.041 1.045 

 

The voltage profile is shown in figure 31. 

 

Figure 31: Combination two scenario simulation result (with a deadband) 
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8.2.2 Discussion 

Figure 32 and Figure 33 shows the voltages at the end of LV feeder for the cases with 

different PV penetration. 

 

Figure 32: Voltages at cluster 3 (without a deadband) 

 

Figure 33: Voltages at cluster 3 (with a deadband) 

It can be seen from Figure 32 and 33 that, with the Q (V) method and the fixed power factor 

control method, the voltages at cluster 3 are within the limit even when the solar generation 

has increased to 7kW per house (without a deadband); 6kW per house (with a deadband). 

This indicates that the combination of these two methods is also an effective way to manage 

the voltage rise in the network.  
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8.3 Combination three 

The third combination is to implement a STATCOM device and change the power factor of 

the PV inverter from 1 to 0.95 leading. In this case, in order to compare the results with the 

fixed power factor control scenario in section 6.1, the simulation was only carried out on the 

5kW case, which is the maximum solar generation per house for the fixed power factor 

scenario. The STATCOM device has been installed in two separate locations (bus 28 and 

bus 32) to see their effects respectively. The network diagram for this case is shown in 

Appendix B.  

The data being used in this case is shown in Table 31. 

Table 31: Combination three scenario data 

Scenarios Apparent Power 
(per cluster) 

Power Factor PV Generation  
(per cluster) 

PV Power 
Factor 

5kW solar/house 0.04MVA 0.85 100kW 0.95 absorbing 

8.3.1 Simulation results 

 Implement STATCOM at cluster 3 

The voltage profiles for implementing STATCOM at cluster 3 with a fixed power factor case, 

and the 0.95 pf absorbing case (5kW solar/house) are shown in Figure 34. 

 

Figure 34: STATCOM at cluster 3 VS 0.95 pf absorbing 
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Figure 35 shows the comparison between the voltages along the red path in figure 3 and the 

voltages along clusters 4, 5 and 6.  

 

Figure 35: Voltages along the red path in Figure 3 and the voltages along clusters 4, 5 and 6 

 Implement STATCOM at bus 28 

The voltage profiles for implementing STATCOM at bus 28 with a fixed power factor case, 

and the 0.95 pf absorbing case (5kW solar/house) are shown in Figure 36. 

 

Figure 36: STATCOM at bus 28 VS 0.95 pf absorbing 
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8.3.2 Discussion 

As it is shown in Figure 34, the STATCOM implementing at cluster 3 can have an obvious 

effect in regulating the voltage at the last bus compared with the method of using only the a 

fixed power factor control. STATCOM can have the remarkable impact on the place where it 

is implemented, not on the whole system. It can be seen from Figure 35 that the voltage rise 

problem improvement on cluster 6 in Figure 4 is less than the cluster 3 when the STATCOM 

is implemented at cluster 3. Although STATCOM can manage the voltage rise problem 

effectively, the major disadvantage of it is that it is too expensive for a household PV system 

so it is not an economical option.  
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9 Conclusion 

Penetrations of PV systems within distribution networks has been growing in recent years 

and this has come with various technical challenges like voltage rise and voltage variations. 

The purpose of this thesis is to provide approaches to reduce technical barriers for achieving 

high PV penetration levels in Australian electricity networks. The investigation was 

supported by using the DIgSILENT Power Factory software version 15.2. 

The thesis starts with a literature review that included Australian solar resources and PV 

status, technical issues associated with the increased PV penetration and PV Inverters’ 

Voltage Control Strategies. After that, the project methodology is described in chapter 3. 

Chapter 4 defines an example feeder built in PowerFactory and the base case and its 

variations are analysed in chapter 5. Chapter 6 to chapter 8 describes methods to manage 

voltage the rise problem on distribution feeders. Chapter 6 is focused on prosumer aspects 

while chapter 7 is focused on utility aspects and chapter 8 introduces and analyses three 

combinations of the methods.   

Table 32 shows the methods that have been studied in this report and also shows the 

amount of solar per house that can be accommodated for each prosumer, utility or 

combined method before the voltage exceeds 1.05 p.u.. 

Table 32: The amount of solar per house that can be accommodated before the voltage exceeds 

1.05 p.u. 

            Prosumer    
Utility                                                           

pf=1 pf=0.95 
leading 

Q(V) P(V) 

Do nothing 3 kW 4-5kW 5kW  

Implement line drop 
compensation in the substation 
transformer 

5kW 9kW 8kW  

Implement On Load Tap 
Changer (OLTC) on distribution 
transformers 

    

Implement STATCOM devices     

The results for prosumer’s methods show that these methods can basically be used to keep 

the voltage within the defined limits when the PV generation is 5kW/house, which is its 

assumed maximum value. But as PV penetrations climb in Australian distribution networks, 

it will be important that these technologies are upgraded to effectively manage the issues.  
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From the simulation results of the remaining cases, it can be concluded that all these control 

methods can effectively and efficiently control the voltage rise problem at cluster 3. But one 

disadvantage is that the LDC, OLTC and STATCOM devices are all expensive, and are not 

economically viable options.  
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10 Future work 

 Harmonics problem 

From the harmonics point of view, each inverter which is interfaced to the public LV network 

is considered as an electronic equipment [22]. A parallel resonance might be triggered by 

clustered PV inverters due to capacitance of residential units, interaction between 

equivalent line inductance and injected harmonic currents [23]. Further research can be 

carried out on the issues associated with this problem and the approaches to solve it. 

 Single phase PV system installations in three phase supply 

High neutral currents and nuisance tripping of the inverter can an issue associated with 

single phase PV system connections for three phase customers. According to Western 

Power’s Technical Rules [13], the single phase PV systems that can be installed on a LV 

distribution grid cannot exceed 10kW. With the growing embedded PV generation in recent 

years, customers may require larger PV systems than the limit specified. This could be the 

next study aspect of interest in how to improve this situation.  

 PV system islanding 

Table 3 in section 2.3 has shown the relevant voltage and frequency ranges for PV inverters 

as the guidelines from AS4777 and Horizon Power. However, care needs to be taken to 

ensure that the limits, including the network parameters, are appropriate to avoid the 

situation when the main supply is disconnected while PV system stay connected to the 

network, and also when there is a void in the manufacturer’s warranty [6]. Different 

protection methods to solve this problem should be studied.  
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12 Appendices 

12.1 Appendix A: Gantt chart 
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12.2 Appendix B: Network components data and diagram in PowerFactory 

 HV cable 

General table from database in PowerFactory: 
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 LV cable 

General table from database in PowerFactory: 
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 MV transformer 

General tables from database in PowerFactory: 
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 LV transformer 

General tables from database in PowerFactory: 
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 STATCOM network diagram 

 

 STATCOM transformer 

General table from database in PowerFactory: 
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12.3 Appendix C: 12.7/22kV Three Core Ind. Screened & PVC Sheathed Aluminium conductors [12] 
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12.4 Appendix D: LV cable data [15] 
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