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ABSTRACT
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A high resolution (5 km), single initialisation, 30 year (1970-1999) Weather

Research and Forecast regional climate model (RCM) ensemble for south-

west Western Australia (SWWA) is evaluated. The paper focuses on the abil-

ity of the RCM to simulate winter cold fronts, which are the main source of

rainfall for the region, and assesses the spatial and temporal characteristics of

climate extremes within the region’s cereal crop growing season. To explore

uncertainty, a 4-member ensemble was run, using lateral boundary conditions

from general circulation models (GCMs) of the Coupled Model Intercompar-

ison Project Phase 3; ECHAM5, MIROC 3.2, CCSM3 and CSIRO mk3.5.

Simulations are evaluated against gridded observations of temperature and

precipitation and atmospheric conditions are compared to a simulation using

ERA-Interim reanalysis boundary conditions, which is used as a surrogate

truth. Results show that generally, the RCM simulations were able to repre-

sent the climatology of SWWA well however differences in the positioning of

the subtropical high pressure belt were apparent which influenced the number

of fronts traversing the region and hence winter precipitation biases. Sys-

tematic temperature biases were present in some ensemble members and the

RCM was found to be colder than the driving GCM in all simulations. Biases

impacted model skill in representing temperature extremes and this was par-

ticularly apparent in the MIROC forced simulation, which was the worst per-

forming RCM for both temperature and precipitation. The dynamical causes

of the biases are explored and findings show that nonetheless, the RCM pro-

vides added value, particularly in the spatio-temporal representation of wet

season rainfall.
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1. Introduction41

General circulation models (GCMs) remain the primary source of information for projections42

of future climate change. While undeniably valuable, the coarse resolution of GCMs (100 to43

250 km) limits their usefulness for assessing climate change at local and regional scales (1 to 1044

km). Climate projections at this high resolution are important for assisting in the development of45

adaptation strategies; planning needed by industries such as agriculture and forestry to respond to46

the challenges faced by a changing climate.47

In the context of climate information that is of value to agriculture, such as rain-fed cereal crop-48

ping, changes in extreme temperatures and precipitation patterns are of paramount importance.49

For example, screen temperatures of less than 2oC and greater than 34oC can have significant50

impacts on harvest yield and overall crop viability at the farm scale (Zheng et al., 2012), while51

shifting rainfall regimes may affect the future feasibility of marginal crop lands at a landscape52

scale (Ludwig et al., 2008). In southwest Western Australia (SWWA), cereal crops represent53

the majority (more than 60%) of the land use and contribute significantly to the regional econ-54

omy (Varnas, 2014). The rain fed, winter growing croplands of SWWA have already experienced55

marked changes in climate, with an observed 30% decline in mean winter rainfall over the period56

1970-2000 relative to the previous three decades (Bates et al., 2008). This reduction in rainfall57

has been attributed to a southward migration of storm tracks (Frederiksen and Frederiksen, 2007).58

Because this decline has predominantly impacted precipitation in July and August, when rainfall59

exceeds requirements, crop yields in SWWA have not deteriorated as a consequence (Turner and60

Asseng, 2005) although its negative impact on the region’s native ecology is apparent (Brouwers61

et al., 2012). While agriculture has been able to adapt to the changes in the hydrological regime to62

date, marginal croplands in the east of SWWA face the prospect of becoming unviable if rainfall63
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continues to decline. Therefore, future predictions of climate change are a critical component of64

adaptation strategies.65

High resolution climate projections can be obtained through the use of regional climate mod-66

els (RCMs), which account for regional influences on climate such as topography and land use,67

improving the modeling of mesoscale weather systems (Feser et al., 2011). Using GCMs or re-68

analysis as lateral boundary conditions, RCMs add value to these global models by improving the69

spatial representation of rainfall (Feldmann et al., 2008) and extreme events, such as heat waves70

(Gao et al., 2012). The ability of RCMs to add value to GCMs has been extensively evaluated. For71

example, Xue et al. (2007) showed that the choice of domain position and horizontal resolution72

had a significant impact on the utility of the RCM. This result was reinforced by Evans and Mc-73

Cabe (2013) who found that, in the southeast of Australia, increasing the resolution of the RCM74

improved model performance, particularly in coastal and mountainous regions. Song et al. (2008)75

undertook a RCM study for Australia at a 20 km resolution and were able to represent the seasonal76

distribution of rainfall, however at this scale, the influence of many topographical features was not77

represented. It is apparent that not all RCMs provide results of the same caliber and factors that78

have a substantial impact on the utility of a RCM include the dynamical core of the model itself,79

the choice of physical parameterisations, the capacity of the RCM to accurately represent the re-80

gional climatology when driven with reanalysis and finally, the performance of the RCM when81

GCMs are used as lateral boundary conditions (Xue et al., 2014).82

Given the known sensitivity of RCMs to different physics and geographic regions, Kala et al.83

(2014) conducted an extensive sensitivity analysis using the Weather Research and Forecast Model84

Advanced Research core (WRF) to determine the most appropriate model physical parameterisa-85

tions for SWWA. Following on from the work of Kala et al. (2014), the ability of WRF to simulate86

the historical climatology of SWWA using reanalysis data as lateral boundary conditions was87
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evaluated by Andrys et al. (2015), who found that a 5 km horizontal resolution produced a skill-88

ful representation of the climate. This paper further extends on the work of Andrys et al. (2015)89

and Kala et al. (2014) by evaluating the capability of WRF to simulate the historical climate of90

SWWA using boundary conditions from four GCMs of the third Coupled Model Intercomparison91

Project (CMIP3). It is the final step in the validation of WRF for use in future climate projec-92

tions in SWWA. In addition to examining the model’s ability to represent the mean climatological93

conditions of the region, our analysis focuses on metrics that are of importance to cereal farming,94

including precipitation patterns and climatic extremes occurring in crop growth cycles.95

2. Methods96

a. The southwest of Western Australia (SWWA)97

Typical of its mid-latitude location, the climate of SWWA is highly seasonal. The transition from98

cool wet winters to hot, dry summers is driven by the position of the subtropical high pressure99

belt, or subtropical ridge (SR), (Gentilli, 1971) which controls the passage of rain bearing cold100

fronts over the region in the winter. These frontal systems are the primary source of rain for101

much of SWWA and the region features a strong precipitation gradient, with rainfall declining102

from west to east. Summer rainfall is generally caused by surface convection however infrequent,103

large scale rain events do occur every 3 to 5 years when meriodonal troughs interact with tropical104

disturbances in the north of Western Australia (Wright, 1974). While SWWA is generally an area105

of low relief, topography still has a discernible influence on the region’s climatology, particularly106

coastal precipitation. The Darling Scarp is an escarpment that produces a rapid change in elevation107

of approximately 300 m over 3 km and runs parallel to the coast, 25 km inland. The feature is108

apparent in the topographical map of the region shown in Figure 1(b) to the east of the city of109
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Perth. The escarpment results in a narrow band of elevated rainfall on the windward side which110

is challenging for mesoscale models to represent at moderate resolutions of approximately 10 km111

(Andrys et al., 2015), requiring instead a horizontal resolution closer to 0.5 km to comprehensively112

capture air flow across the escarpment and its associated turbulence (Pitts and Lyons, 1990). Most113

of the agricultural production in SWWA takes place inland of the Darling Scarp and the growing114

season for these croplands is in the cooler months of May to October.115

b. Model Configuration116

Employing the model configuration used by Andrys et al. (2015), a single initialisation, 30 year117

(with two month model spin up) regional climate simulation from 1970-1999 was conducted us-118

ing WRF3.3 and lateral boundary conditions from four CMIP3 GCMs. The authors note that119

GCMs from CMIP5 (Taylor et al., 2012) represent the current state of the art for global climate120

models however the necessary 6-hourly fields required to run WRF were not available when sim-121

ulations were commenced, hence the choice of CMIP3 GCMs. The GCMs; Max Planck Institute122

ECHAM5 model (Roeckner, 2003) (ECHAM), Center for Climate System Research Model for123

Interdisciplinary Research on Climate 3.2 (MIROC) (Hasumi and Emori, 2004), National Center124

for Atmospheric Research Community Climate System Model version 3 (CCSM) (Collins et al.,125

2006), Commonwealth Scientific and Industrial Research Organisation Mark 3.5 (CSIRO) (Gor-126

don et al., 2002) were chosen based on the availability of data with 6-hourly fields. In choosing127

GCMs, consideration was given to the findings of Perkins et al. (2007) who evaluated the perfor-128

mance of CMIP3 GCMs for Australia and found that all of our chosen GCMs performed satisfac-129

torily. Furthermore, in a subsequent study of the statistical independence of GCMs over Australia,130

Evans et al. (2014) found that both MIROC and ECHAM ranked highly in terms of model inde-131

pendence which warrants their use within a RCM ensemble. 6-hourly input data from the GCMs,132
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which includes winds, geopotential height, temperature, humidity and pressure are ingested by the133

RCM at the lateral boundary of the outer domain only.134

Our model utilises a three domain configuration (Fig.1(a)) with a 50:10:5 km horizontal reso-135

lution and 30 vertical levels. The choice of model physics was based on the findings of a prior136

sensitivity analysis of WRF to different physics and input data over SWWA (Kala et al., 2014).137

Parameterisation options include; the Single-Moment 5 class microphysics scheme (Hong et al.,138

2004), RRTM for long-wave radiation (Mlawer et al., 1997), Dudhia short-wave radiation (Dud-139

hia, 1989), Yonsei University planetary boundary layer scheme, convective parameterisation on140

the first and second domains only from Kain Fritsch (Kain, 2004), the MM5 surface layer scheme141

(Grell et al., 2000) and Noah land surface model (Chen and Dudhia, 2001).142

c. Observational Data143

Observational data used for evaluation is from a daily gridded data set of maximum and min-144

imum temperatures and rainfall provided by the Australian Bureau of Meteorology (Jones et al.,145

2009). The data, at a resolution of 5 km, is an interpolation from a network of weather stations146

across Australia and has been used as a validation tool for previous regional climate simulations in147

SWWA (Andrys et al., 2015; Kala et al., 2014) and other regions in Australia (Evans et al., 2011).148

King et al. (2013) established that, while this data set underestimates the contribution of extreme149

rainfall events, it is capable of reproducing trends and variability in extreme precipitation events150

for much of Australia, including SWWA.151

The data was interpolated using simple inverse distance weighting to both domain two (10 km152

resolution) and three (5 km resolution) of the simulation. Andrys et al. (2015) found that the153

higher resolution, convection resolving 5 km domain was able to represent the overall climatology154

of SWWA generally better than the 10 km domain and as such this study will focus on the results155
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of the 5 km domain. Data from the outer domain is used for examining large scale features such156

as mean sea level pressure (SLP) however our focus is on SWWA and so temperature and pre-157

cipitation are not analysed for the the outer domain. To explore the source of temperature biases,158

monthly mean 2 m temperature data from each GCM used in the simulation was interpolated to159

the outer WRF grid and also compared with the observational data set.160

The model configuration used in this study is identical to that of Andrys et al. (2015) who161

used ERA-Interim reanalysis (Dee et al., 2011) boundary conditions with WRF over the period162

1981-2010. Because reanalysis data are constrained by observations we use the outputs from163

Andrys et al. (2015) as a “best-guess” of actual conditions to examine the validity of certain model164

diagnostics which are useful in depicting the synoptic meteorology, including mean SLP and 10165

m wind vectors.166

d. Evaluation Criteria167

Daily rainfall and temperature distributions are assessed using probability density functions168

(PDFs). Simulated rainfall values less than 0.2 mm are excluded from the analysis as this falls169

below the detection level of the observations (Evans and McCabe, 2010). To examine the model’s170

spatial performance at representing daily rainfall and temperatures we use a summary statistic171

known as relative entropy (RE), which compares the observed and simulated distributions, and172

measures the difference between them. RE has been used to compare GCM simulations with ob-173

servations by Shukla et al. (2006) and Tippett et al. (2004) and also by Naveau et al. (2014) to174

detect changes in climate extremes. RE is expressed by Cover and Thomas (2012) as;175

RE(p||q) = ∑
x∈X

p(x)log
p(x)
q(x)

(1)
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where p(x) and q(x) are the observed and simulated PDFs respectively. As its name suggests,176

RE is a relative measure rather than an absolute measure for examining model divergence. In cases177

were the model is showing perfect agreement with the observations, the RE will be 0. A model with178

very poor agreement will have RE approaching 1 however there is no absolute maximum value.179

Figure 2 illustrates examples of distributions with shifts in variance (a) and mean (c) that show180

good agreement having a corresponding RE score of 0.01, while distributions with larger shifts181

in variance (b) and mean (d) show poor agreement, having a RE score of 0.5. We acknowledge182

that there are a number of other metrics available for comparing observed and simulated PDFs;183

including the Kolmogorov-Smirnov (KS) test and the Perkins Skill Score (Perkins et al., 2007).184

We choose RE because this method sums the log of the ratio between p(x) and q(x) at each bin,185

while both the Perkins Skill Score and KS test sum the difference in probabilities for each bin. By186

calculating the log of the ratio and not the difference, RE ensures an equal weighting for changes187

in the tails of the distribution relative to changes at the distribution centre, where absolute changes188

are almost always the greatest.189

We examine the average number of days that fronts traverse SWWA during winter using an190

automated front recognition technique, the thermal gradient recognition (TGR) algorithm. This191

method is based on thermal gradients at the 850 hPa level to detect the baroclinic zone within192

a cold front. Initially described by Mills (2005) and further validated by Hope et al. (2014) for193

applications in SWWA, parameters used for TGR in our study include a thermal gradient of greater194

than 2.5oC 100 km-1 at 850 hPa that is accompanied by daily domain averaged rainfall greater than195

0.5 mm. We note that Hope et al. (2014) employed a smaller temperature gradient of 1.3oC 100196

km-1 compared to our higher threshold. The former analyzed reanalysis data at a 250 km resolution197

which would have smoothed out the baroclinic zone within cold fronts, whereas our simulations198

at 10 and 5 km had more well defined baroclinicity, and hence, a larger threshold was warranted.199
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Given that the focus of this paper is on the ability of the RCM to provide climate information200

that is valuable to the agricultural sector of SWWA, our analysis of extreme indices is limited to201

the cereal crop growing season (May-October). Metrics are based on the core indices developed202

by the World Meteorological Organisation working group, the Expert Team on Climate Change203

Detection and Indices (ETCCDI) (Persson et al., 2007) which we modified to provide a better204

reflection of extreme conditions in SWWA. We redefine the summer days (SD) index to a count205

of days when the maximum temperature exceeds 34oC based on findings by Asseng et al. (2011)206

who determined that temperatures in excess of this threshold can impact grain yield. The frost207

days (FD) index is modified to a count of days when minimum temperatures are lower than 2oC208

following the work of Kala et al. (2009) who found that screen temperatures below 2oC can result209

in foliage temperatures less than 0oC.210

Our choice of rainfall indices focus on rainfall intensity and distribution which are relevant for211

agriculture. We use the simple precipitation intensity index (SDII):212

SDII j =
∑

w
w=1 RRw j

W
(2)

where RRwj is the daily precipitation amount on wet days W when RR is greater than 1 mm213

in period j and W is the number of wet days in j. The total number of rain days (PRCPTOT) is214

a count of days where daily rainfall exceeds 1 mm. We also use the ETCCDI metrics, maximum215

length of dry spell (CDD) and maximum length of wet spell (CWD). These indices measure the216

longest span of days where rainfall is less than 1 mm for CDD and the longest span of days where217

rainfall is greater than 1 mm for CWD.218
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3. Results219

The meriodonal movement of the SR underpins seasonality in SWWA, hence, it is important to220

evaluate the model’s ability to capture this seasonal transition. Figure 3 shows the outer domain221

mean seasonal sea level pressure (SLP) for the ERA-Interim driven simulation of Andrys et al.222

(2015) (W-ERA), which is assumed to be a “best-guess” at reality, and the 4 GCM driven simula-223

tions. We compute seasonal means over the period 1981-1999, being the period when outputs are224

available for both W-ERA and the GCM driven simulations. The position of the SR to the south of225

Australia in summer and its northerly position over the continent in winter are apparent in W-ERA.226

While all of the simulations are able to represent this transition, there are distinct differences. The227

MIROC forced simulation (W-MIR) has the lowest SLP over SWWA in winter, suggesting a more228

northerly winter position of the SR, and hence a more northerly storm track than indicated by229

W-ERA. Conversely, the CSIRO driven model (W-CSI) is displaying a southerly position for the230

SR in winter which would lead to a more southerly storm track. Simulations using ECHAM (W-231

ECH) and CCSM (W-CCS) as boundary conditions are able to represent the winter SLP well, with232

W-CCS providing the closest match to W-ERA. The position of the SR during summer is gener-233

ally well represented by all the ensemble members however both W-MIR and W-ECH have lower234

SLP relative to W-ERA, particularly in the region of Australia’s mid south coast which suggests235

that the intensification of high pressure systems in this region, a major synoptic feature during the236

summer, is not fully captured by these simulations.237

a. Seasonal Precipitation238

Mean seasonal precipitation and simulation biases are shown in Figure 4. Observations

highlight that most of the region’s rainfall is in winter with a distinct west to east precipi-

tation gradient. All of the simulations represent the seasonal transition of rainfall in SWWA.
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Generally, model agreement with observations is satisfactory, with biases not exceeding +/- 20 mm

month−1howeverbiaseso f thismagnitudearemorenoteworthyinthesummerbecausemeanmonthlyrain f allduringthisperiodisgenerallylessthan20mm.Andryset al. (2015)highlightedlimitationswithWRFinrepresentingthetimingo f largescalesummerrainevents, there f ore,weconsidertheabilityo f eachsimulationtocapturetheseeventsbyanalysingmonthlysummerprecipitation f oreachyearo f theclimatology.Resultso f thisanalysisareshowninTable1.Wede f ineawetsummerashavingatleastonemonthwheredomainaveragedrain f allexceeds20mm.Observationsshowthattherewere6wetsummersbetween1970and1999.W−

CSIisabletorepresentthetemporaldistributiono f thisrain f allwiththegreatestskill,simulating10wetsummers.W−

CCSunderestimatesthetimingo f regionalscalesummerrain f all,withonly2wetsummerswhileW −

MIRandW −ECHoverestimateevents,simulating14and15wetsummersrespectively.

To investigate the impact of mean SLP on the number of frontal systems traversing SWWA, we239

examine the number of days that cold fronts are present over the region during winter using TGR240

and compare this with W-ERA for the period 1981-1999. The mean and standard deviation of241

winter front days are shown in Figure 5. W-MIR has the highest mean number of winter front242

days (30) followed by W-ECH (26). Both are higher than W-ERA (22). W-CCS, with an average243

of 24, represents front days well while W-CSI (16) is underestimating the number of winter fronts.244

b. Daily Precipitation245

Figure 6 shows the daily precipitation PDF of rainfall across all land points in the region. Obser-246

vations show that rainfall less than 1 mm occurs 38% of the time. Daily rainfall exceeding 10 mm247

is uncommon, with a likelihood of 10% and rainfall greater than 25 mm day-1 has a probability248

of only 1%. W-MIR underestimates the likelihood of rain less than 1 mm day-1 by approximately249

5% and overestimates the probability of days with rainfall greater than 4 mm. RE for W-MIR250

(0.015) indicates that this simulation has the lowest agreement with observations. W-ECH follows251

a similar pattern to W-MIR, however the magnitude of the disparity for W-ECH is not as great,252

and this is reflected in an improved RE of 0.010. Both W-CSI (RE 0.007) and W-CCS (RE 0.001)253

overestimate the chance of light rainfall and subsequently underestimate the likelihood of more254

intense rain, however this is small for the W-CCS simulation, hence the good RE value.255
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The spatial distribution of RE for daily rainfall is shown in Figure 7 which highlights that for256

all simulations, RE is generally below 0.1. Inland areas show the best values for RE and model257

deviation tends to increase in the north west corner of the domain for the W-CSI, W-MIR and W-258

ECH simulations. All simulations show poor agreement in the vicinity of the south west coastline,259

consistent with (Andrys et al., 2015).260

c. Seasonal Temperatures261

Observed seasonal mean maximum temperatures and simulation bias is shown in Figure 8. With262

the exception of W-CSI, simulations underestimate maximum temperatures. This is particularly263

apparent in the W-MIR simulation, where negative summer biases can exceed 5oC. W-ECH also264

displays a systematic cold bias up to 5oC. Both W-CCS and W-CSI show good agreement with265

observations, with biases generally not exceeding +/- 2oC. Seasonal mean observed minimum266

temperatures and model bias is shown in Figure 9. Overall, minimum temperatures show smaller267

biases than maximum temperatures, however the W-MIR cold bias persists, particularly in the268

summer. W-CCS performs well, with biases generally less than +/- 2oC. Likewise, W-ECH rep-269

resents minimum temperatures with little bias. Contrary to its robust performance with respect to270

maximum temperatures, W-CSI displays a warm bias for summer minimum temperatures up to271

5oC.272

We consider the mean annual temperature bias of the GCM and the RCM between 1970 and273

1999 in Figure 10. MIROC and ECHAM show very little bias in SWWA however CCSM and274

CSIRO are both displaying a warm bias, up to 5oC in the case of CSIRO. The RCM is able to275

eliminate much of this bias from W-CCS and W-CSI however WRF introduces a cold bias to276

W-MIR and W-ECH. In all cases the RCM is colder than its corresponding GCM.277
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W-MIR also displays a negative night time temperature bias which is strongest in summer. We278

investigate this by examining differences in air flow which are illustrated in Figure 11 showing the279

mean seasonal 10 m wind vectors between 1981-1999 for simulations and W-ERA. Summer winds280

in W-MIR are more meriodonal than W-ERA which displays a more zonal flow. Additionally, W-281

MIR winds in autumn and spring display a tendency towards onshore flow which is not found in282

W-ERA.283

d. Daily Temperatures284

Daily maximum temperature distributions for all land based grid points, including RE scores,285

are shown in Figure 12 and summary statistics for these distributions are shown in Table 2. Obser-286

vations show that the distribution has a short left tail suggesting that very cold maxima are rare,287

while the right tail is elongated, indicating that hot extremes are more likely than cold extremes.288

Summer days (> 34oC) have an occurrence probability of 10%.289

Ensemble members are able to simulate the shape of this distribution however, as expected290

by the high biases found in the seasonal analysis, there is a skew towards colder temperatures291

in W-MIR and W-ECH. W-MIR also displays decreased variability in maximum temperatures292

shown by a standard deviation 0.9oC lower than observations (Table 2). Consequently, W-MIR293

has a poor RE of 0.229. W-ECH represents the distribution of higher temperatures with more294

accuracy than W-MIR and has a RE of 0.083. W-CSI (RE 0.017) and W-CCS (RE 0.035) show295

very good agreement with observations. W-CCS overestimates the likelihood of colder maxima296

and underestimates moderate maxima however its representation of temperatures above 34oC is297

close to observations. Conversely, W-CSI overestimates the likelihood of higher temperatures but298

represents the distribution of colder maxima well.299
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The observed daily minimum temperature PDF, shown in Figure 13, follows a normal distribu-300

tion, which indicates that warm extremes and cold extremes have an equal likelihood of occur-301

rence. W-CCS simulates daily minima with the greatest accuracy, having a RE of 0.018. W-ECH302

(RE 0.026) also performs well however it is overestimating the variability of warmer minimum303

temperatures. Conversely, W-MIR (RE 0.064) underestimates the overall variability of tempera-304

tures, particularly warm minima, and overestimates the likelihood of median temperatures. W-CSI305

displays significant warm bias for summer minimum temperatures and the impact of this bias is306

apparent in the PDF for W-CSI (RE 0.087), which is skewed to the right.307

Spatial RE is considered for temperatures in Figure 14. The strong performance of W-CCS and308

W-CSI for maximum temperatures is apparent when compared with the much poorer RE of W-309

MIR and W-ECH. Minimum temperature RE corresponds with findings from the PDFs; W-CCS310

and W-ECH show generally strong performance throughout the domain while W-CSI and W-MIR311

do not perform as well.312

e. Extreme Indices in the Growing Season313

Indices related to extremes of temperature (FD and SU) and precipitation (PRCPTOT, CDD,314

CWD and SDII) as they occur during the SWWA growing season are shown in Figure 15. Ob-315

servations show that the most intense rain in SWWA, indicated by SDII, is the orographically316

induced rainfall near the Darling Scarp (Fig.1(b)). The high resolution of the simulation means317

that all models can represent an increased SDII due to the Darling Scarp however none of the318

simulations are able to fully account for the magnitude of the SDII in this area. Rainfall intensity319

in the southern coastal region is significantly underestimated by all the simulations.320

PRCPTOT observations show more than 100 days of rain each growing season in the south and321

as few as 30 in the north east. The spatial distribution of PRCPTOT is well represented and the322
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magnitude is also generally well modeled however all simulations underestimate the number of323

rain days in the north east. W-MIR represents the high PRCPTOT values on the southern coast324

which are missed by the other simulations however it is overestimating in the domain interior.325

A tendency to overestimate CDD in the north east and underestimate CWD in the south west is326

common to all simulations.327

Because the growing season occurs over the cooler months, the hot temperatures represented328

by SU are uncommon. The northern region experiences 2 SU each growing season and events329

do no generally occur to the south. On account of the strong cold bias displayed by W-MIR330

(Fig.8), this simulation does not represent SU at all. W-CCS and W-ECH both simulate SU well331

while W-CSI overestimates SU. Observations of FD show that frost does not commonly impact332

the coast. Inland areas are more susceptible to frost, experiencing between 8 to 30 FD in a growing333

season. Simulations represent the very low risk of frost along the coast however all simulations334

overestimate the occurrence of FD inland. This overestimation is the highest in W-MIR while335

W-CSI shows results closest to observations.336

4. Discussion337

Simulations are able to represent the topographically enhanced rainfall near the Darling Scarp338

and the strong west to east precipitation gradient which, due to the fine spatial scale of these fea-339

tures, are not well represented at the resolution of the driving GCMs. Some errors are systematic340

across all simulations, most notably the strong negative winter precipitation bias in the south west.341

We attribute this to the WRF model because a similar bias was also present in the 30-year ERA-342

Interim driven simulation of Andrys et al. (2015) which was caused by the south west boundary343

of domain 3 being too close to the coast.344
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Seasonal rainfall biases are smaller than those found in a regional climate study over Australia345

by Song et al. (2008) and comparable to the biases found by Evans and McCabe (2013) in south-346

east Australia. The wet summer bias in W-MIR and W-ECH and dry bias in W-CCS are caused by347

the poor representation of regional scale summer rainfall events. Because these summer rainfall348

events are associated with tropical disturbances in the north of Western Australia, we explore this349

region to attribute the bias. Summer SLP in Figure 3, displays apparent differences in the tropical350

regions of the outer domain, particularly off the northwest coast of Australia. W-CCS has higher351

pressure in this region compared to W-ERA whereas W-MIR and W-ECH display lower pressures.352

The ability of GCMs to represent tropical meteorology has been evaluated by Brown et al. (2013)353

who found that elements of the tropical climatology are poorly simulated by CMIP3 GCMs in the354

western tropical Pacific whereas Moise et al. (2012) identified uncertainties in the representation355

of the Australian tropical climate. Hence, the limitations of the GCMs in representing tropical356

meteorology is a likely source of error for these summer rainfall biases.357

Winter bias varies markedly between simulations and we attribute this to the position of the SR358

shown in Figure 3. Wet biases in W-MIR and W-ECH are caused by a northerly track of winter359

storms, resulting in more of these systems traversing SWWA. Conversely, the dry bias in W-CSI is360

attributed to the southerly winter position of the SR which forces a southerly storm track, reducing361

the number of fronts traversing the region. This attribution is in line with the findings of Argüeso362

et al. (2012) who, in a RCM study for Spain using WRF, established that model differences in wet363

season SLP contributed to precipitation biases as storm tracks were deviated from their observed364

position.365

The high number of front days in W-MIR and W-ECH (Fig. 5) provides further evidence of a366

northerly storm track in both of these simulations. W-CCS had low winter rainfall bias because the367

simulation represented both the position of the SR and the number of winter front days well while368
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W-CSI underestimated the number of front days due to the simulation’s southerly storm track. In369

an analysis of the position of the Austral jet stream, and hence storm tracks, Kidston and Gerber370

(2010) found a high degree of variability between CMIP3 GCMs. This spread is the likely cause371

of the differences in our simulations with respect to winter front days as these large scale features372

would be strongly influenced by the lateral boundary conditions used to drive WRF.373

The performance of CMIP3 GCMs to simulate daily rainfall in regions of Australia, including374

SWWA, was evaluated by Perkins et al. (2007). They found that the GCMs, including the four375

used as boundary conditions in this study, overestimated the likelihood of low rainfall as much376

as two to three times. Our results show that this overestimation has been reduced by the RCM.377

Perkins et al. (2007) also found that ECHAM represented SWWA precipitation with greater skill378

than CCSM, CSIRO and MIROC. Based on our findings, W-CSI and W-CCS perform better than379

W-ECH. Furthermore, Perkins et al. (2007) found that CCSM was among the lower performing380

models for rainfall in SWWA however, our analysis shows that W-CCS displays the greatest skill.381

This suggests that a direct relationship cannot be assumed between the ranked performance of a382

GCM and the performance of the same GCM used as boundary conditions to drive an RCM. De-383

termining why this is the case is outside the scope of this paper, however we can speculate that the384

higher resolution, or different dynamics and parameterisations, in the RCM are allowing the devel-385

opment of important local drivers in the W-CSI and W-CCS simulations. Alternatively, the higher386

resolution is realising some previously undetected issue with the lateral boundary conditions in387

the W-MIR simulation. Such an issue was found by Evans and McCabe (2013) in a RCM study388

over south-east Australia, who established that the GCM (in their case CSIRO) was transporting389

excessive moisture into the higher latitudes from the tropics however this excess moisture did not390

result in high precipitation biases until the resolution of the RCM was fine enough to fully resolve391

the topography of the region.392
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In terms of relative model performance, W-MIR has the highest overall bias and worst RE while393

W-CCS provides the best representation of rainfall with very little bias and consistently good RE .394

Because W-CCS is clearly the better simulation with respect to precipitation, we expect that W-395

CCS would also reproduce precipitation indices with the greatest skill however this is not always396

the case (Fig. 15). W-CCS and W-ECH generally provide the best representation of precipitation397

indices however they tend towards a dry bias; overestimating CDD and underestimating SDII,398

PRCPTOT and CWD. We find that W-CSI consistently underestimates rainfall indices due to the399

dry rainfall bias caused by the southerly storm track seen in this simulation. Conversely, W-400

MIR overestimates rainfall indices for PRCPTOT, SDII and CDD which is expected based on the401

northerly storm track found in this simulation. However, W-MIR provides the best simulation of402

rainfall around the Darling Scarp for SDII, PRCPTOT and CWD. None of the simulations can403

account for the full impact of the orography of the Darling Scarp which is in line with the findings404

of Pitts and Lyons (1990) who found that a resolution of 0.5 km was needed to fully represent the405

turbulent air flow initiated by the Scarp.406

Argüeso et al. (2012) used WRF to downscale ECHAM and CCSM GCM data in a regional407

climate study over Spain and included extreme precipitation metrics in their evaluation criteria.408

They found that their simulation using ECHAM boundary conditions represented the CWD and409

CDD with greater skill than the simulation driven by CCSM however we find very little difference410

between W-ECH and W-CCS. Indeed, we find very little difference between all of the simulations411

with respect to these precipitation indices compared with seasonal differences in rainfall bias.412

However, while Argüeso et al. (2012) examined a number of different rainfall regions and different413

seasons in their analysis of indices, we consider only the growing season where rainfall is almost414

exclusively from southwesterly frontal systems. The relative homogeneity of our results indicate415
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that all of our simulations show skill in representing the spatio temporal characteristics of rainfall416

in SWWA during the growing season.417

High resolution simulations of precipitation are important for agriculture in SWWA because of418

the region’s large east-west precipitation gradient during autumn, winter and spring, which all of419

the simulations are able to represent. Furthermore, to be of use to agriculture, accurate simulation420

of indices such as the SDII and CDD are vital because these cannot be derived from monthly421

rainfall values alone. The spatial variability observed in these indices has been well represented422

by all simulations in the inland region, especially by W-CCS.423

Some simulations display strong biases for seasonal temperatures. With the exception of a warm424

bias in W-CSI, which we attribute to bias in the CSIRO GCM (Fig. 10), simulations tend to be425

cold, particularly for daytime temperatures. Andrys et al. (2015) previously found that WRF426

produced a cold bias for daytime temperatures in SWWA while WRF was also shown to introduce427

a cold bias for south east Asia (Chotamonsak et al., 2011) and Norway (Heikkilä et al., 2011).428

These studies are in line with our finding that the RCM is always colder than its corresponding429

GCM which accounts for the daytime cold bias in W-ECH and W-MIR, however this does not430

explain why the magnitude of the cooling between the GCM and the RCM is different for each431

simulation. For example, while areas of the W-CCS simulation are up to 4oC colder than CCSM,432

the difference is only 1-2oC between W-ECH and ECHAM. However, as we have highlighted in433

this paper with respect to precipitation and as has been demonstrated by other regional climate434

studies (Evans and McCabe, 2013), dynamical downscaling of a GCM does not produce a linear435

response in the corresponding RCM.436

MIROC has been shown by Perkins et al. (2007) to represent Australian temperatures well how-437

ever its performance globally tends to be low when compared with other CMIP3 GCMs (Randall438

et al., 2007). Connolley and Bracegirdle (2007) performed an assessment of CMIP3 GCMs over439
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the Antarctic region and found that MIROC was one of the lowest performing simulations in this440

region. Furthermore, Irving et al. (2011) conducted a similar analysis of CMIP3 GCMs in the441

Pacific Islands region and also determined that MIROC performed poorly with respect to tempera-442

ture. The extent of our simulation’s outer domain means that boundary conditions are drawn from443

regions where MIROC has shown poor performance and as such it is likely that the GCM is also444

contributing to the negative temperature bias found in W-MIR. This suggests that, when choosing445

boundary conditions for RCM, the performance of the GCM in the vicinity of the outer domain446

lateral boundary is more important than the performance of the GCM over the specific area of447

study.448

W-MIR also displays a cold nighttime bias which is strongest in summer. This bias can be at-449

tributed to anomalies in air flow in the W-MIR simulation (Fig. 11). With the exception of the450

coastal sea breeze circulation, mean summer 10 m wind direction in the SWWA is predominantly451

easterly. This flow is caused by high pressure systems in the Great Australian Bight which result452

in hot, dry winds from the continental interior dominating the SWWA wind field. The persistence453

of high pressure in this region is evident from the summer pattern of mean SLP in the W-ERA sim-454

ulation in Figure 3. The summer meriodonal flow apparent in W-MIR suggests that the simulation455

is not advecting hot air from the continental interior which is contributing to the cold bias.456

In their analysis of CMIP3 GCM daily temperatures for Australia, Perkins et al. (2007) found457

that GCMs produced temperature distributions that were too broad. We find that, based on the458

observed and simulated daily temperature standard deviations (Table 2), this distribution spread459

appears to be somewhat reduced by the RCM. When spatial performance is considered, coastal460

regions consistently display the poorest RE scores in each simulation. This indicates that the461

difficulty representing the distribution of coastal maximum temperatures is a function of the WRF462

model configuration rather than the lateral boundary conditions themselves. This is consistent with463
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the findings of Andrys et al. (2015) who also found issues in representing the daily distribution464

of temperatures in the coastal region. With the exception of W-MIR, all the simulations show465

an inferior RE over the Perth metropolitan area. This also follows the findings of Andrys et al.466

(2015) who suggested that a reduction in simulation skill for night time temperatures over the467

metropolitan area was a result of the lack of representation of urban land use.468

Because W-CCS represents temperatures over 34oC well, it is also expected to simulate SU469

well and this is demonstrated in Figure 15. Maximum temperature skewness in W-MIR and W-470

ECH and the overestimation of high maxima in W-CSI mean that these simulations are unable471

to represent SU with the same skill as W-CCS. However, while W-CSI demonstrated the lowest472

performance for nighttime temperatures, minimum temperature distributions (Fig. 13) show that473

W-CSI has the best overall agreement for temperatures below 2oC. This suggests that W-CSI,474

despite its warm minimum temperature bias, will represent FD with the greatest skill and this475

is shown in Figure 15. All simulations overestimate FD somewhat and share a common spatial476

pattern, which indicates that the distribution of FD in the region is heavily influenced by the RCM.477

It is apparent that W-MIR is not representing seasonal or daily temperatures with the same level478

of skill as the other simulations, indicated by the high negative temperature biases and the poor479

values of RE for daily temperatures shown for both minimum and maximum temperatures. W-CCS480

is the only simulation which shows low bias for both minimum and maximum temperatures and481

consistently strong RE scores for daily temperature distributions. While W-CSI is able to represent482

daytime temperatures well and also very cold minimum temperatures, the simulation shows a high483

bias and overall low skill for nighttime temperatures. Conversely, W-ECH represented nighttime484

temperatures well but performed poorly for daytime temperatures.485

Minimum and maximum temperatures are of interest to agriculture, however the growing season486

distribution of temperature extremes, including FD and SU, are more relevant. While simulation487
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bias has introduced errors in representing the extent and magnitude of temperature indices in488

SWWA, W-CCS provides a good representation of SU, and both W-CCS and W-CSI are able to489

represent the spatial distribution of FD to a reasonable degree.490

These findings demonstrate the merits of our RCM ensemble however there are limitations with491

our experimental design which warrant consideration. While Kala et al. (2014) established the492

most appropriate model physics options for WRF in SWWA, our study is limited in that our sim-493

ulations used a single RCM only. WRF has a known sensitivity to parameterisation schemes, for494

example precipitation is sensitive to the choice of convective scheme while temperatures are sensi-495

tive to the PBL scheme (Argueso et al., 2011). Other regional climate simulations have employed496

an ensemble of RCMs to reduce the uncertainty from using a single model; either through the use497

of different dynamical cores (Solman et al., 2013) or by imposing different physical parameters498

within the same modeling framework (Evans et al., 2014). The use of additional RCMs was not499

computationally feasible for this project and as such our results are constrained by the uncertainty500

inherent in using a single RCM.501

5. Conclusion502

We present an evaluation of the RCM, WRF 3.3, for SWWA between 1970-1999 using four503

CMIP 3 GCMs; CCSM3, CSIRO mk3.5, ECHAM5 and MIROC3.2 (med-res) as lateral boundary504

conditions. Our analysis focused on the ability of the downscaled GCMs to represent the climate of505

the cereal crop growing season in SWWA, which runs from May to October. The growing season506

is of particular interest because dryland cereal crops are a major contributor to the economy of the507

region and are at a high risk of being impacted by changing hydrological regimes in the future.508

Simulation performance was varied. Seasonal rainfall bias was generally low however there are509

elements of bias related to systematic errors from the WRF model itself and from errors in the510
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lateral boundary conditions. For example, the dry winter rainfall bias in the south west corner can511

be attributed to model error because the domain boundary was located too close to the SWWA512

coastline (Andrys et al., 2015). Conversely, the wet inland winter biases shown by W-MIR and513

W-ECH are caused by a northerly storm track allowing too many cold fronts to traverse the region,514

which we attribute to the lateral boundary conditions. Dry summer rainfall biases in W-CCS and515

wet biases in W-MIR and W-ECH can also be attributed to the lateral boundary conditions because516

of GCM limitations in modeling tropical meteorology (Brown et al., 2013; Moise et al., 2012).517

WRF demonstrated a tendency to simulate colder temperatures than those found in the GCMs518

and maximum temperature biases were considerable in some simulations. For example, W-MIR519

showed summer daytime cold biases exceeding 5oC in some areas and this bias impacted the520

representation of extreme indices. While a portion of this bias was due to the cooling tendency521

seen in WRF, we also attribute this bias to the lateral boundary conditions that have been shown522

to demonstrate poor performance in the vicinity of our simulation outer domain.523

We find that GCMs which rank highly when evaluated using PDFs of rainfall and tempera-524

ture will not necessarily perform the best when used to provide lateral boundary conditions to a525

RCM. For example, Perkins et al. (2007) found CCSM to be among the worst performing GCMs526

for SWWA however, after downscaling, we find that W-CCS provided the best representation of527

rainfall distribution, exceeding the performance of W-CSI, W-ECH and W-MIR, whose corre-528

sponding GCMs all provided a closer approximation of daily rainfall than CCSM. This indicates529

that the suitability of a GCM for dynamical downscaling cannot necessarily be determined by how530

well it represents temperature and precipitation in a region. This finding is supported by Evans and531

McCabe (2013) who found that surface variables may not be sufficient to fully assess the capabil-532

ity of a GCM for regional climate modeling. Furthermore, the poor performance of the W-MIR533

simulation, which contrasts with the strong performance of MIROC over Australia, suggests that534
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the performance of the GCM in the vicinity of the RCM lateral boundary may be a better indicator535

for how the GCM will perform when it has been downscaled.536

In a recent review of regional climate modeling, and the conditions under which they add value537

to GCM data, Xue et al. (2014) highlighted the importance of the appropriate choice of GCM data538

and a robust model set up. We have identified some issues with both the lateral boundary condi-539

tions and the model itself in this study. However one simulation, W-CCS, represents the climate540

of SWWA remarkably well and two further simulations (W-CSI and W-ECH) provide a satisfac-541

tory representation. We note issues with W-CSI representing minimum temperatures and W-ECH542

with maximum temperatures and suggest caution when using their results for those variables. The543

W-MIR simulation consistently performed with the lowest skill; cold temperature biases resulted544

in large errors when extreme temperature indices were examined and errors in mean SLP resulted545

in wet summer and winter precipitation biases. Based on these findings, we do not recommend546

that the W-MIR simulation be used for future climate analysis for SWWA. Notwithstanding, when547

compared with the findings of Perkins et al. (2007), the RCM has significantly improved upon548

the daily distribution of precipitation and allowed for the development of more intense rainfall549

events. The strong performance of the RCM is particularly apparent in representing the spatiotem-550

poral distribution of wet season rainfall, which is significant for future applications of this data in551

agricultural adaptation planning. Based on these findings, we have validated the capability of the552

individual ensemble members W-ECH, W-CCS and W-CSI to represent the historical climate of553

SWWA and have confidence in the use of the RCM for analysis of future climate scenarios.554
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TABLE 1. Number of wet and dry summers from observations (OBS) and all simulations from 1970-1999. A

wet summer has at least one month where domain averaged rainfall exceeds 20 mm

728

729

OBS W-MIR W-CCS W-ECH W-CSI

Wet Summer 6 14 2 15 10

Dry Summer 24 16 28 15 20
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TABLE 2. Domain averaged mean and standard deviation of observed and simulated daily minimum and

maximum temperatures

730

731

OBS W-MIR W-CCS W-ECH W-CSI

Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)

Maximum Temperature (oC) 23.2 (6.9) 19.4 (6.2) 22.3 (7.3) 20.7 (7.5) 23.2 (7.6)

Minimum Temperature (oC) 10.4 (4.8) 9.1 (4.5) 10.5 (5.1) 10.4 (5.5) 12.1 (5.9)
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FIG. 1. Topographical map from Andrys et al. (2015) of (a) the model outer domain showing the extent of

nested domains 2 (10 km resolution) and 3 (5 km resolution) used for simulations and (b) the location of Perth

and the topography of the Darling Scarp within the 5 km domain.
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FIG. 2. Example PDF plots showing (a) distributions with equal means and a 10% variance shift having a

RE score of 0.01 representing good agreement, (b) distributions with the equal means and a 150% variance shift

having a RE score of 0.5 representing poor agreement, (c) distributions with a 5% mean shift and equal variance

having a RE score of 0.01 and (d) distributions with 33% mean shift and equal variance having a RE score of 0.5.
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FIG. 3. Seasonal mean sea level pressure (1980-1999) for the WRF outer domain for simulations using ERA-

Interim (W-ERA), MIROC3.2 (W-MIR), CCSM3 (W-CCS), ECHAM5 (W-ECH) and CSIRO Mk 3 (W-CSI)

lateral boundary conditions.
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FIG. 4. Observed (OBS) seasonal mean rainfall (top panel) and bias (bottom panels) for all simulations over

the period 1970-1999.
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FIG. 5. Boxplot showing the range of winter front days by simulation. Centre line displays mean values, the

box bounds one standard deviation from the mean and tails represent the range of values.
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FIG. 6. Daily rainfall probability density functions for simulations and observations taken from all land based

grid points from the 5 km domain. The RE value comparing the similarity of the distributions is included for

each plot.
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FIG. 7. Contour plot showing spatial distribution of daily rainfall RE .

45



	
  
SUMMER	
   AUTUMN	
   WINTER	
   SPRING	
  

W
-­‐M

IR
	
  

W
-­‐C
CS
	
  

W
-­‐E
CH

	
  
W
-­‐C
SI
	
  

O
BS
	
  

FIG. 8. Observed seasonal mean maximum temperatures (top panel) and bias (bottom panels) for all simula-

tions over the period 1970-1999.
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FIG. 9. Observed seasonal mean minimum temperatures (top panel) and bias (bottom panels) for all simula-

tions over the period 1970-1999.
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FIG. 10. Mean annual temperature bias (1970-1999) for GCM model output and the corresponding RCM

simulation.
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FIG. 11. Mean seasonal 10 m wind vectors for W-ERA and all simulations from 1980-1999. The reference

vector represents a wind speed of 1 m s-1
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FIG. 12. Daily maximum temperature probability density functions for simulations and observations taken

from all land based grid points from the 5 km domain. The RE value comparing the similarity of the distributions

is included for each plot.
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FIG. 13. Daily minimum temperature probability density functions for simulations and observations taken

from all land based grid points from the 5 km domain. The RE value comparing the similarity of the distributions

is included for each plot.
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FIG. 14. Contour plots showing the spatial distribution of minimum and maximum temperature RE .
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FIG. 15. Contour plots showing the observed and simulated climatological mean of extreme indices calculated

over the SWWA growing season (May-October) only.
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