

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY

Integration of MATLAB and LabVIEW with
Aspen Plus Dynamics

Using Control Strategies for a High-Fidelity Distillation
Column

Thesis submitted to the school of Engineering and Information Technology, Murdoch
University in partial fulfillment of the requirements for the degree of

Bachelor of Engineering Honours [BE(Hons)]

Instrumentation and Control, Electrical Power

Word Count: 14,861

Joshua Eggins

Supervisor: Dr. Linh Vu

November 2015

This page has intentionally been left blank

Declaration

I, Joshua Malcolm Eggins, certify that this work contains no material which has been accepted

for the award of any other degree or diploma in my name, in any university or other tertiary

institution and, to the best of my knowledge and belief, contains no material previously

published or written by another person, except where due reference has been made in the

text.

In addition, I certify that no part of this work will, in the future, be used in a submission in my

name, for any other degree or diploma in any university or other tertiary institution without

the prior approval of the Murdoch University.

I give consent to this copy of my thesis, when deposited in the University Library, being made

available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via

the University’s digital research repository, the Library Search and also through web search

engines, unless permission has been granted by the University to restrict access for a period of

time.

Signed: …………………………………………………..

Name: …………………………………………………..

Date: …………………………………………………..

This page has intentionally been left blank

Murdoch University

 iii

Abstract

The energy intensive distillation process has become a widely discussed topic as industry

attempts to minimise energy consumption. The implementation of Model Predictive Control

(MPC) can aid in the reduction of plant energy consumption. However, the leading chemical

and petroleum software packages Aspen Plus and Aspen HYSYS do not currently support MPC.

This project successfully integrated both MATLAB and LabVIEW with Aspen Plus Dynamics

(APD), which enables the implementation of MPC schemes. This integration was established

using Microsoft’s ActiveX Technology. In order to implement MPC from within MATLAB and

LabVIEW, their respective MPC toolboxes were explored; these toolboxes possess several

major flaws in their functionality. In particular, neither have the ability to perform RGA analysis

or determine the model of the plant through data-driven modelling. To overcome these

drawbacks a MATLAB script was developed which determines the model of the plant from

automatic step tests in Simulink. Once the communication was established, and toolboxes

documented, a high-fidelity distillation column was constructed in Aspen Plus before being

exported to APD. This plant model was developed as a reference to compare the effectiveness

of the PI and MPC control schemes, employing the Integral of Time-Weighted Absolute Error

(ITAE) performance criterion. MPC outperformed the PI control schemes in all but one

scenario. On average the ITAE values were 1000% lower for MPC, due to its ability to quickly

track the set point and avoid overshoot. Further research has been highlighted on a number of

toolbox features and dynamic communication options. Importantly, the use of the integrated

software packages can provide a number of benefits for students and personnel. By

developing a dynamic template it will be possible to implement these ideas into university,

laboratory and workplace training. This could increase confidence in predictive control

schemes, operator plant knowledge and reduce unsafe plant operation.

Murdoch University

 iv

This page has intentionally been left blank

Murdoch University

 v

Contents

Abstract .. iii

Acknowledgements .. xvii

1.0 Introduction... 1

2.0 Background.. 4

2.1 Distillation ... 4

2.1.1 Distillation Process ... 4

2.1.2 Distillation Columns ... 4

2.1.3 Column Types ... 5

2.1.4 Column Design ... 6

2.2 Process Control ... 7

2.2.1 PID .. 8

2.2.2 SISO v MIMO .. 9

2.2.3 Generic Model Control ... 9

2.2.4 Model Predictive Control ... 10

2.2.5 Relative Gain Array ... 14

2.2.6 Performance Criterion .. 15

2.3 Software in industry .. 15

2.3.1 Historians.. 16

2.3.2 SimSci PRO/II .. 17

2.3.3 Aspen Plus .. 17

Murdoch University

 vi

2.3.4 Aspen HYSYS ... 18

2.3.5 Aspen Capital Cost Estimator ... 18

2.3.6 MATLAB .. 19

2.3.7 LabVIEW ... 19

2.3.8 Microsoft Excel ... 20

2.4 ActiveX ... 20

2.4.1 Client Server ... 21

2.4.2 Properties and Methods .. 22

3.0 Modelling .. 23

4.0 High-Fidelity Distillation Column ... 24

4.1 Aspen Plus ... 24

4.1.1 Setup .. 24

4.2.2 Model Export .. 27

4.2 Aspen Plus Dynamics ... 29

4.2.1 Start Up .. 29

4.2.2 Operation ... 31

4.3 Aspen Advanced Process Control .. 33

4.4 Issues ... 33

4.5 Conclusion ... 34

5.0 ActiveX ... 36

5.1 Overview ... 36

Murdoch University

 vii

5.2 Active in MATLAB .. 37

5.3 ActiveX in LabVIEW ... 39

5.4 ActiveX in Excel .. 43

5.5 Co-Simulation .. 45

5.6 Issues ... 49

5.7 Conclusion ... 50

6.0 Model Predictive Controllers .. 51

6.1 MATLAB MPC Toolbox ... 51

6.2 LabVIEW Control Design Toolkit.. 56

6.3 Issues ... 59

6.4 Conclusion ... 60

7.0 Control Scheme Comparison ... 61

8.0 Conclusion ... 69

8.1 Summary ... 69

8.1.1 Software Integration .. 69

8.1.2 Model Predictive Control Functionality ... 69

8.1.3 Control Scheme Performance .. 71

8.2 Future Works ... 72

9.0 Bibliography .. 77

10.0 Appendices .. 85

10.1 Appendix 1 .. 85

Murdoch University

 viii

10.2 Appendix 2 .. 86

10.3 Appendix 3 .. 87

10.4 Appendix 4 .. 94

10.5 Appendix 5 .. 97

10.6 Appendix 6 .. 101

10.7 Appendix 7 .. 102

10.8 Appendix 8 .. 104

10.9 Appendix 9 .. 107

10.10 Appendix 10 .. 110

10.11 Appendix 11 .. 114

10.12 Appendix 12 .. 117

10.13 Appendix 13 .. 120

10.14 Appendix 14 .. 120

10.15 Appendix 15 .. 125

10.16 Appendix 16 .. 129

10.17 Appendix 17 .. 131

10.18 Appendix 18 .. 137

10.19 Appendix 19 .. 139

10.20 Appendix 20 .. 142

10.21 Appendix 21 .. 145

Murdoch University

 ix

 Figures

Figure 1: Distillation Column. .. 4

Figure 2: Tray Types: 1) Sieve; 2) Valve; 3) Bubble Cap. ... 6

Figure 3: Flow of Liquid and Vapour within Trays. .. 7

Figure 4: Feedback Block Diagram. ... 8

Figure 5: Convolution Model from Input Step Response. ... 13

Figure 6: Distributed Server-Client Structure. ... 21

Figure 7: Distillation Column Setup in Aspen Plus. ... 25

Figure 8: Databases Available in Aspen Plus. .. 25

Figure 9: Correctly Installed Database Availability. ... 26

Figure 10: Simulation Output in Aspen Plus.. 26

Figure 11: Hydraulics Tab for the 'Radfrac' Distillation Column in Aspen Plus. 28

Figure 12: Fatal Error When Completing Run in Aspen Plus. .. 28

Figure 13: Disconnected Streams in Aspen Plus Dynamics. .. 29

Figure 14: Aspen Properties Version Selector in the Programs List. ... 30

Figure 15: Aspen Version Selector. ... 31

Figure 16: Dynamic PFD in APD with PID Control. .. 31

Figure 17: Simulation Methods in APD. .. 32

Figure 18: Run Options in APD. ... 32

Figure 19: ActiveX COM Flowchart.. 36

Figure 20: Failed Server Creation in MATLAB. .. 37

Figure 21: Current Directory Returned by MATLAB. ... 39

Figure 22: ActiveX Automation Open Block in LabVIEW. .. 40

Figure 23: Aspen Customer Modeller ActiveX COM Setup. .. 40

file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870935
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870936
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870937
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870942
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870943
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870944
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870946
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870947
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870948
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870951
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870952
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870955
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870956

Murdoch University

 x

Figure 24: ActiveX Property and Invoke Nodes in LabVIEW. .. 41

Figure 25: Graphical ActiveX Programming in LabVIEW to Create APD COM. 41

Figure 26: Error When Retrieving Data over COM in LabVIEW. ... 41

Figure 27: Structure for LabVIEW-Excel-APD Communication. .. 42

Figure 28: VBA Node in LabVIEW. ... 43

Figure 29: ASW Toolbar in Excel. ... 43

Figure 30: Plot of the DV Step Across all Software Packages. ... 46

Figure 31: Plot of the MV Across all Software Packages. .. 47

Figure 32: Plots of the PV Across all Software Packages. .. 48

Figure 33: MPC Block in Simulink. ... 51

Figure 34: Additional MPC Input and Output Variables in Simulink. .. 51

Figure 35: MPC Controller Parameters in Simulink. .. 52

Figure 36: Design Tool Linearising Plant Model in Simulink. .. 52

Figure 37: MIMO TF Output from the MIMO Script in MATLAB. .. 53

Figure 38: MPC Toolbox Design Task in Simulink. ... 54

Figure 39: MPC Controller Parameters in the MPC Toolbox in Simulink. 55

Figure 40: Function Block in Simulink. .. 55

Figure 41: DMC Script in the MATLAB Node in LabVIEW. ... 56

Figure 42: Create MPC VI in LabVIEW. .. 57

Figure 43: Implement MPC VI in LabVIEW. ... 58

Figure 44: Open Loop Simulink Model for a High-Fidelity Distillation Column. 61

Figure 45: Closed Loop Simulink Model for a High-Fidelity Distillation Column with MPC. 63

Figure 46: Plots of the PV and MV with a 20% Decrease in Condenser Pressure SP. 66

Figure 47: Plots of Drum and Sump Level Rejecting a 20% Decrease in Condenser Pressure SP.

 ... 67

file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870960
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870961
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870962
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870967
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870968
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870969
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870970
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870971
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870973
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870974
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870975
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870976

Murdoch University

 xi

Figure 48: Plots of the PV and MV with a 20% Increase in Sump Level SP. 68

Figure 49: AspenTech License Registration. .. 87

Figure 50: Properties Explore in Aspen Plus. .. 87

Figure 51: Error Notification in Aspen Plus for the Enterprise Databases. 88

Figure 52: Component Entry in Aspen Plus. .. 88

Figure 53: Property Analysis in Aspen Plus. .. 89

Figure 54: 'Radfrac' Column in Aspen Plus. ... 89

Figure 55: 'Radfrac' Column Expecting Material Streams in Aspen Plus. 90

Figure 56: PFD in Aspen Plus. .. 90

Figure 57: Completed Column Feed Specifications in Aspen Plus. ... 91

Figure 58: Distillation Column Specifications in Aspen Plus. .. 91

Figure 59: Simulation Prompt in Aspen Plus. .. 92

Figure 60: Tray Sizing tab inside the Simulation Explorer in Aspen Plus. 92

Figure 61: Convergence Iterations in Aspen Plus. ... 93

Figure 62: Stream Results in Aspen Plus. .. 93

Figure 63: Dynamics Tab in the Aspen Plus Ribbon. ... 94

Figure 64: Block Options to Insert to an Existing Stream. ... 94

Figure 65: Navigation Pane Options for a Unit Operation. ... 95

Figure 66: Dynamic Options for a 'Radfrac' Distillation Column in Aspen Plus. 95

Figure 67: Controller Selection Pane in Aspen Plus. ... 96

Figure 68: The Controls and Controls 2 Libraries in APD. ... 97

Figure 69: Different Streams Available in APD. ... 97

Figure 70: Available Input and Output Ports for the Control Signal. .. 97

Figure 71: Output Port Variable Selection of Control B1. ... 98

Figure 72: Available MV for the 'Radfrac' Distillation Column in APD. 98

file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870983
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870984
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870987
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870989
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870994
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870998
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437870999
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871003
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871004
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871005
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871006

Murdoch University

 xii

Figure 73: Controller Configuration Panel in APD. .. 99

Figure 74: Controller Overview in APD. .. 99

Figure 75: PID Algorithms. ... 99

Figure 76: Controller Tuning Panel in APD. ... 100

Figure 77: Creation Tabs in APD Ribbon. .. 101

Figure 78: New Task in APD... 101

Figure 79: Aspen HYSYS COM Server Creation. ... 104

Figure 80: LabVIEW ActiveX Selection... 107

Figure 81: ActiveX Class Selection Tool in LabVIEW. ... 107

Figure 82: Opening Excel COM Object in LabVIEW. .. 107

Figure 83: Initial Setup of Excel COM in LabVIEW. .. 108

Figure 84: Executing a VBA Macro in LabVIEW. .. 109

Figure 85: Closing the COM Using ActiveX Blocks in LabVIEW. .. 109

Figure 86: Macro Extract to Open COM with LabVIEW and set the Reference Document. 110

Figure 87: Control Values Available in LabVIEW. .. 110

Figure 88: Syntax to Send and Receive Data from LabVIEW over ActiveX. 110

Figure 89: Code to Retrieve the Aspen System Setup Variables in VBA. 111

Figure 90: Code to Open a COM with APD in VBA. ... 112

Figure 91: VBA Code for Sending and Receiving Data in Excel to APD. 112

Figure 92: Model Explorer in APD. .. 113

Figure 93: Logged Data in Excel from Automation with LabVIEW and APD. 113

Figure 94: Plot of the Level in the Sump Controlled After a Disturbance Change. 121

Figure 95: Plot of the Manipulated Flow Rate of the Bottoms Stream to control the Level in the

Sump. .. 122

Figure 96: Plot of the Pressure in the Condenser Controlled After a Disturbance Change. 123

file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871007
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871008
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871010
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871012
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871014
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871015
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871016
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871018
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871019
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871021
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871023
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871026

Murdoch University

 xiii

Figure 97: Plot of the Manipulated Reflux Flow Rate to Control the Condenser Pressure. 124

Figure 98: MPC Toolbox Controller Blocks in Simulink. .. 131

Figure 99: MPC Controller Mask in Simulink. .. 132

Figure 100: Variable Specifications in Simulink. .. 132

Figure 101: MPC Toolbox Design Task Linearisation in Simulink. ... 133

Figure 102: Control and Estimation Tools Manager in MATLAB. .. 133

Figure 103: MPC Parameters in MATLAB. ... 134

Figure 104: Variable Constraints in MATLAB. ... 134

Figure 105: Scroll Bar to Select the Response Type in MATLAB. .. 135

Figure 106: MPC Controller Simulation in MATLAB. ... 135

Figure 107: Different Signal Types in MATLAB. ... 136

Figure 108: MPC Controller Exporter in MATLAB. .. 136

Figure 109: The Predictive Control Palette in the Control Design Toolkit in LabVIEW. 139

Figure 110: CD Implement MPC VI in LabVIEW... 141

Figure 111: CD Step Forward MPC Window VI in LabVIEW. ... 141

Figure 112: MPC Controller Design in LabVIEW. ... 142

Figure 113: Plot of the Condenser Pressure Tracking the SP as Pressure Increase 20%. 145

Figure 114: Plot of the Drum Level Rejecting Disturbance as the Pressure Increases 20%. 146

Figure 115: Plot of the Sump Level Rejecting Disturbance as the Pressure Increases 20%. 147

Figure 116: Plot of the Condenser Pressure Tracking the SP as Pressure Decreases 20%. 148

Figure 117: Plot of the Drum Level Rejecting Disturbance as the Pressure Increases 20%. 149

Figure 118: Plot of the Sump Level Rejecting Disturbance as the Pressure Increases 20%. 150

Figure 119: Plot of the Drum Level Tracking the SP as Level Increases 20%. 151

Figure 120: Plot of the Drum Level Tracking the SP as Level Decreases 20%. 152

Figure 121: Plot of the Sump Level Tracking the SP as Level Increases 20%. 153

file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871032
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871033
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871034
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871036
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871037
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871038
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871041
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871042
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871043
file:///F:/Final%20Year%20Engineering/ENG470/ENG470%20-%2003%20-%20Thesis%20-%20Joshua%20Eggins%2030983374%20%5bUpdated%5d.docx%23_Toc437871045

Murdoch University

 xiv

Figure 122: Plot of the Sump Level Tracking the SP as Level Decreases 20%. 154

Equations

1: PID Algorithm. ... 8

2: Error Calculation. ... 8

3: Reference Trajectory. .. 9

4: Step Response Matrix. .. 11

7: Weighting Matrices. .. 13

8: Step Response Vector. .. 13

9: Coefficient Matrix. ... 13

10: DMC Algorithm. ... 14

5: Gain Matrix. ... 14

6: RGA Algorithm. .. 14

11: ITAE Algorithm. ... 15

Tables

Table 1: Simulation Results from Aspen Plus. ... 27

Table 2: Gain Array Matrix for a High-Fidelity Distillation Column. .. 62

Table 3: RGA for a High-Fidelity Distillation Column. .. 62

Table 4: Updated RGA for a High-Fidelity Distillation Column. ... 64

Table 5: ITAE Performance Criterion for PI and MPC Control Schemes on a High-Fidelity

Distillation Column. ... 65

Acronyms and Abbreviations

ACCE Aspen Capital Cost Estimator

AHD Aspen HYSYS Dynamics

APC Advanced Process Control

Murdoch University

 xv

APD Aspen Plus Dynamics

ASW Aspen Simulation Workbook

ATV Auto-Tune Variation

COM Component Object Model

DLL Dynamic Linked Library

DMC Dynamic Matrix Control

DV Disturbance Variable

Excel Microsoft Excel

Fortran Formula Translation

FVT Final Value Theorem

GMC Generic Model Control

HYSYS Aspen HYSYS

ITAE Integral of Time-Weighted Absolute Error

LabVIEW Laboratory Virtual Instrument Engineering Workbench

MATLAB Matrix Laboratory

MIMO Multiple-Input Multiple-Output

MPC Model Predictive Control

MV Manipulated Variable

NI National Instruments

OLE Object Linking and Embedding

PFD Process Flow Diagram

PID Proportional, Integral, Derivative

PV Process Variable

RGA Relative Gain Array

SISO Single-Input Single-Output

Murdoch University

 xvi

SP Set Point

SS State Space

TF Transfer Function

UOM Units of Measurement

VB Visual Basic

VBA Visual Basic for Applications

Units

 Degrees Celsius

 F Degrees Fahrenheit

atm Atmosphere

bar

Btu British thermal unit

ft Foot

g Gram

hr Hour

in Inch

lb Pound

m Meter

mol Mole

psi Pound per square inch

s Second

W Watt

Murdoch University

 xvii

Acknowledgements

Firstly, I would like to express my gratitude to my supervisor, Dr. Linh Vu. Your door was

always open when I needed support and guidance over the last two years. You continued to

challenge me to achieve higher than I could have ever imagined. Thank you for helping shape

me into the engineer I am. Additionally, I would like to thank Will Stirling for promptly assisting

me throughout my research. You had every issue resolved within the day regardless of your

prior commitments, I appreciate your time.

I am forever indebted to my mother, Eleonora Korljan. You will never realise how much I

appreciate everything you have done for me. You taught me the true meaning of hard work.

To my partner Esther Healy, thank you for your consistent encouragement. You were always

available when I needed advice or feedback and never lost faith in me. You continue to

motivate me to push my limits. Finally, to the strong group of friends I am fortunate to have

made throughout my studies. Thank you for assisting me in my development, I learned greatly

off each of you over the years. In particular, special thanks to Chris McGivern for his advice

with my thesis formatting and structure.

Murdoch University

 xviii

This page has intentionally been left blank

Murdoch University 1.0 Introduction

 1

1.0 Introduction

From 1991 to 2002 the manufacturing sector accounted for approximately one quarter of the

total energy consumption in the U.S. (U.S. Energy Information Administration, 1991; 1994;

1998; 2002; 2006). Within this sector the chemical and petroleum industries contributed the

majority of this consumption. Approximately 40-50% of this consumption is due to the

distillation process, caused by the energy intensive thermal separation process (Cheremisinoff,

2000; Olujić et al. 2008; Gorak & Sorensen, 2014, p. 226). As a result of this consumption, the

U.S. Environmental Protection Agency targeted superior energy efficiency through refined

processes as a major goal for saving energy in the industrial sector (Neelis, Worrell, &

Masanet, 2008). This instigated a drop in energy consumption within the manufacturing

industry to one fifth of the total U.S. consumption (U.S. Energy Information Administration,

2010). This decrease in consumption has plateaued since and additional methods are being

investigated to reduce energy consumption. One such method is the implementation of

advanced control schemes which can minimise operational costs and energy usage in the

distillation process. The implementation of advanced control schemes at the Algyo Gas Plant in

Hungary returned a 35% decrease in energy costs over a 12 month period (Emerson, 2011).

However, in order to simulate these controller schemes, improvements must be made to

current industrial software packages.

AspenTech is the market-leading process software provider in industry (Ma, 2013, p. 15;

AspenTech 2015a). Their software packages Aspen Plus and Aspen HYSYS (HYSYS) prove useful

for modelling and simulating complex chemical and petroleum processes involving distillation

columns, reactors and heat exchangers. These packages have dynamic equivalents

appropriately named Aspen Plus Dynamics (APD) and Aspen HYSYS Dynamics (AHD)

Murdoch University 1.0 Introduction

 2

respectively. APD and AHD are however limited by their controller selection, which only allows

for conventional PID. Given current industrial trends this does not satisfy the growing need for

advanced controllers. AspenTech offers an additional software package, DMCPlus, which

utilises the Dynamic Matrix Control (DMC) algorithm and allow for Model Predictive Control

(MPC) to be extended to their software packages. However, this package comes at an

additional cost to the end user, so expanding the capabilities of the original software packages

would be beneficial. In order to achieve these expansions, ActiveX communication servers will

be established from MATLAB and LabVIEW to APD. Since Aspen Plus and HYSYS are similar in

operation, and the expansions are transferable between packages, only APD will be utilised in

this thesis; this software was preferred as the distillation column being modelled is commonly

found in chemical plants.

This software amalgamation will provide a number of benefits. The integration with MATLAB

will provide a means to test the performance of advanced control schemes on complex plants.

This will determine any negative or positive effects that new, or upgraded, advanced control

schemes would have on plant operation. Moreover, the integration with LabVIEW creates an

educational tool which can be operated as a real time simulator. This simulation package will

allow students and personnel to gain invaluable experience operating complex plants without

the hazards associated with real plant dynamics, effectively opening up an avenue for more

training on advance control schemes and hopefully increased implementation in industry.

The primary aim of this thesis is to enable communication between MATLAB and LabVIEW to

APD. Once this integration of software has been validated an additional aim will be to

document the capabilities of the MPC toolbox found within each package. Finally, the

performance of MPC will be compared against conventional PID control by minimising the

Murdoch University 1.0 Introduction

 3

Integral of Time-Weighted Absolute Error (ITAE) performance criterion. This will be to establish

the most efficient control scheme for reducing energy consumption.

Murdoch University 2.0 Background

 4

2.0 Background

2.1 Distillation

2.1.1 Distillation Process

Distillation, through the use of distillation columns, is a common method for separating

mixtures of two or more substances in the pharmaceutical, petroleum, food, and chemical

industries. This technique exploits the differing boiling points of the input feed substances and

separates them into a vapour and liquid. The vapour is rich in the lower boiling point

substances while the liquid contains the remaining products (Khoury, 2005, pp. 61-62).

2.1.2 Distillation Columns

Distillation columns are designed

from several major components:

column; condenser; reflux drum;

and reboiler. Figure 1 presents the

make-up of a standard distillation

column. The condenser cools the

vapour which leaves the column

through the top stage. This vapour is

condensed and sent to the reflux

drum before some is recycled,

through the reflux stream, back into

the column and the remainder

extracted in the distillate stream

(Green & Perry, 2007, p. 13.4). The reboiler, located at the bottom stage, provides vaporisation

Figure 1: Distillation Column.

Murdoch University 2.0 Background

 5

for the process. It boils the liquid which is leaving the column in the final stage and

reintroduces it in to the column (Green & Perry, 2007, p. 13.4). The remaining liquid is

removed in the bottoms stream. The constant heating and cooling of the mixture is the major

contributor to energy expenditure in distillation columns (Green & Perry, 2007, p. 13.5). The

liquid mixture fed into the column around the middle tray, known as the feed tray, divides the

column into the stripping section, below the feed tray, and enriching section, above the feed

tray; as shown in Figure 1.

2.1.3 Column Types

The most commonly found distillation column in industry is a continuous column (Mujtaba,

2004, p. 3). These columns are capable of high throughput and, under normal operation, are

fed a continuous stream (Green & Perry, 2007, p. 13.4). Another column is batch fed where the

feed is input batch-wise and the process completed. Once the process completes the batch is

extracted before the next batch introduced (Mujtaba, 2004, pp. 3-5). If the separated material

is high in solids, a batch separation should be employed (Mujtaba, 2004, p. 8).

This is however not the only identifying factor of a distillation column. The nature of the feed

also plays a role; if two components are fed to the column it is referred to as binary whilst

more than two components present in the feed is a multi-component column (Green & Perry,

2007, p. 13.4). Furthermore, it is possible for the column to have multiple product streams

(Green & Perry, 2007, p. 13.6). These distillation techniques are useful when the components

have boiling point limitations or do not separate during standard distillation processes

(Douglas, 1988, p. 185). Crude oil distillation is an example of this, there are many product

streams consisting of components with similar volatility.

Murdoch University 2.0 Background

 6

2.1.4 Column Design

Additionally, the internal operation of the column is dependent on the design employed to

enable contact between the vapour and liquid inside the column (Green & Perry, 2007, p.

13.4). A packed column is typically divided into three types (Kister, 1992, p. 421). The first two

packing types are structured mesh and grids. These are corrugated sheets arranged within the

column in either a wire mesh arrangement or open lattice grid. Random packings however, are

discrete geometrical shapes which are randomly packed into the column shell; this is the most

common practice in industry (Kister, 1992, p. 421). The overall aim of packing is to maximise

the surface area per unit volume, essentially increasing the vapour-liquid contact area and the

columns overall efficiency (Kister, 1992, pp. 422-423).

A tray column uses trays, or plates, to enable contact

between the vapour and liquid (Kister, 1992, p. 259).

Figure 2 illustrates the three primary types of tray in

operation within this column style: sieve; valve; and

bubble cap. A sieve tray is a metal plate which has holes

in it to allow the vapour to pass through it and relies on

the kinetic energy of the vapour to keep the liquid above

the tray surface (Kister, 1992, p. 260). A valve tray follows

the same design as the sieve tray however the holes on

the surface of the tray are covered with lift valves. This

was introduced to stop occasional leaking through the openings. It also provides an increase in

the range of flow rates due to the varying size of the opening when the valve lifts (Kister, 1992,

p. 260). Again, the bubble cap tray is an adaption on sieve trays. However unlike valve trays

which lift open from the flow, the holes are covered with a cap which the vapour flows into

Figure 2: Tray Types: 1) Sieve; 2) Valve;
3) Bubble Cap.

Murdoch University 2.0 Background

 7

and exits via small openings in the cap. The bubble cap trays were initially the most widely

used however, due to the associated cost are seldom used in industry now (University of

Michigan, 2010).

Regardless of their design, the

trays are constructed to allow

liquid hold up to cover the holes

on the surface of the tray,

including the valve or cap,

entirely. This is achieved by the

installation of a weir. This weir is

located next to a conduit,

referred to as a downcomer. When the liquid held up by the weir exceeds the weir height it

will flow into the downcomer, through gravitation force, onto the tray plate located in the

stage below. While this occurs, the vapour rises from the stage below through the holes in the

tray, as shown in Figure 3, and liquid on the trays surface (Green & Perry, 2007, p. 13.4). This

enables a transfer of energy between the liquid and vapour and results in some vapour

condensing and liquid evaporating at each stage, aiding to the separation process (Green &

Perry, 2007, p. 13.6).

2.2 Process Control

The objective of process control is to design and implement a controller which results in the

dynamics of the process following a desired response. The effect a controller has on the output

is dependent on system dynamics, but also on the type of controller used.

Figure 3: Flow of Liquid and Vapour within Trays.

Murdoch University 2.0 Background

 8

2.2.1 PID

Traditionally, feedback PID (Proportional , Integral , Derivative) controllers are used to

control most processes due to their robust design and easy implementation (Romagnoli &

Palazoglu, 2005, pp. 164-165). They do not require intricate knowledge of the underlying

process however do not offer optimal control of the process.

 (

)

1: PID Algorithm.

PID controllers have three primary parameters, see Equation 1 above, however the derivative

term is scarcely used due to its unwanted sensitivity to noise (Ang, Chong, & Li, 2005, p. 561).

Figure 4: Feedback Block Diagram.

The controller action, Manipulated Variable (MV), is based on the error () calculated at that

given time. This error, the difference between the controller Set Point (SP) and the Process

Variable (PV), see Equation 2, is fed back into the controller continuously to determine the

action the controller should take to minimise the error (Ogunnaike & Ray, 1994, pp. 462-463).

 2: Error Calculation.

By sending the PV back to the controller to calculate the error, a feedback loop is formed as

shown in Figure 4. This style of control scheme is referred to as feedback control (Ogunnaike &

Ray, 1994, pp. 462-463).

Murdoch University 2.0 Background

 9

2.2.2 SISO v MIMO

Single-Input Single-Output (SISO) is the simplest and most common type of controller. It uses

one control signal to control one output. More complicated systems however, require

Multiple-Input Multiple-Output (MIMO) controllers due to the complex nature of their

dynamics. PID is generally not MIMO control (Woolf, 2011), however recent development in

advanced controllers means model based and MPC are capable of handling MIMO. It should be

noted that in industrial processes, strong interaction between variables will be present and

MIMO controllers will always outperform the easier to implement SISO controllers (Ogunnaike

& Ray, 1994, p. 992). This interaction between control loops is referred to as coupling. It is

ideal to minimise the coupling through selective pairing of MVs to PVs (Romagnoli & Palazoglu,

2005, p. 251). Furthermore, MIMO and advanced control schemes introduce the ability to

overcome inherent nonlinearities and difficult process dynamics, such as: inverse response;

significant time delays; and open loop instability (Ogunnaike & Ray, 1994, p. 993).

2.2.3 Generic Model Control

Generic Model Control (GMC) is a Model Based Control strategy developed by Lee and Sullivan

(1988). It uses the nonlinear mathematical models of the plant to determine the controller

action and desired trajectory. An advantage of GMC is its ability to completely reject

Disturbance Variables (DV) when implemented with an accurate model. This is due to the fact

the nonlinear model is directly involved in the controller action algorithm (Lee & Sullivan,

1988).

(

)

 ∫
3: Reference Trajectory.

Equation 3 shows the reference trajectory with its two tuning parameters, and , and the

error term, . Equating this reference with the nonlinear model equation, it is possible to then

Murdoch University 2.0 Background

 10

rearrange for the MV (Lee & Sullivan, 1988). The resulting equation is the model based

controller algorithm which can be easily introduced into the control scheme like a standard PID

controller. It should be noted that because GMC is dependent on the model equation its

success does rely heavily on the accuracy of that model. Large deviations dramatically affect its

ability to measure, estimate and predict the behaviour of the process (Lee & Sullivan, 1988).

2.2.4 Model Predictive Control

Another controller falling under the banner of Model Based Control is MPC. Ogunnaike and

Ray (1994) claim MPC was born from the need to create consistent high quality product,

efficient use of energy and increase constraints on plant processes to meet expanding

environmental responsibilities. MPC employs a corrective controller action which predicts the

plant behaviour then rectifies itself to account for any irregularities in its prediction model and

direct the output as close to the SP as possible (Ogunnaike & Ray, 1994, p. 992). The key

features of MPC are (Maciejowski, 2002, pp. 1-2):

 Predicts future behaviour of the process over a finite time horizon;

 Computes the future controller actions while optimising a cost objective function given

equality and inequality constraints; then

 Applies the first, current time, controller action and compare the plants behaviour to

that of its prediction model.

As such, MPC requires a model of the process in order to predict the plants behaviour and

calculate the controller action. Determining a mathematical model of the plant can be time

consuming and laborious, however, it is also possible to predict the plant behaviour given a

step response (convolution) model (Maciejowski, 2002, pp. 108-115) (Romagnoli & Palazoglu,

2005, p. 321).

Murdoch University 2.0 Background

 11

To correctly implement such a model, a step is applied to each MV and the open loop

responses of the PV are logged. In theory, given the assumption of linearity, these models will

enable the controller to predict the behaviour of the plant for any change in the MV

(Maciejowski, 2002, pp. 108-109). These step response then form a step response matrix, as

given in Equation 4.

 ()

[

 () () ()

 () () ()

 () () ()]

 4: Step Response Matrix.

Where:

 is the number of MVs;

 is the number of PVs; and

 () is the response of PV from a step in MV .

This step response matrix is also referred to as the Dynamic Matrix of the plant (Maciejowski,

2002, p. 110). The convolution model is intuitive however cannot be exercised on unstable

systems. An additional method, which is increasing in popularity, is State Space (SS). This

technique does allow unstable open loop systems to be modeled though it does require

significant theoretical knowledge to implement correctly (Romagnoli & Palazoglu, 2005, p.

322). It is worth noting that it is possible to convert the convolution model into SS for use with

newer MPC packages (Maciejowski, 2002, pp. 113-120). Due to the ease in determining

dynamic plant behaviour models, and MPC’s proficiency in optimisation, this control scheme

has enjoyed substantial industry success (Ogunnaike & Ray, 1994, p. 991).

Murdoch University 2.0 Background

 12

2.2.4.1 Dynamic Matrix Control

MPC is an umbrella name given to the entire prediction controller family. The most well-known

and used MPC in industry is DMC. It was first devised by Dr. Cutler in his Ph.D dissertation and

later developed through his company DMC Corporation, before being acquired by AspenTech

(Boyes, 2009, p. 623). One of the disadvantages of MPC is the large number of model

coefficients needed to describe the response. As the DMC algorithm utilises the convolution

model these coefficients can be obtained directly from the step response data (Romagnoli &

Palazoglu, 2005, p. 323). The MPC controller parameters are (Romagnoli & Palazoglu, 2005, p.

326):

 N, model horizon;

 , prediction horizon;

 , control horizon; and

 and , weighting matrices.

It is recommended that the model horizon be selected large enough for the open loop

response to settle, , in order for the controller to know the

complete dynamic behaviour of the plant (Romagnoli & Palazoglu, 2005, p. 326). The control

horizon decides the number of control actions to calculate in order to predict the plant output

over the number of time steps specified by the prediction horizon. Romagnoli and Palazoglu

(2005) recommend the prediction horizon be the summation of the model horizon and control

horizon. If the prediction horizon is increased the controller will have a more conservative

action. On the contrary, if the control horizon is increased it will produce excessive controller

action. Lastly, the weighting matrices, and , determine the amount of control action or

tracking error by applying a penalty to the DMC algorithm. Typically the weighting matrices are

applied using a ratio, see Equation 7 (Romagnoli & Palazoglu, 2005, p. 326).

Murdoch University 2.0 Background

 13

5: Weighting Matrices.

Figure 5 shows the step response curve and the corresponding values for , where .

Figure 5: Convolution Model from Input Step Response.

These values are determined by sampling the step response curve at intervals of , then

applied to form the vector of step response coefficients, as given in Equation 8 (Romagnoli &

Palazoglu, 2005, p. 323).

 []

6: Step Response Vector.

The coefficients of this array are then used to construct the coefficient matrix shown in Figure

9 (Romagnoli & Palazoglu, 2005, p. 324).

[

]

 7: Coefficient Matrix.

Given this, the controller action can now be determined, taking into account the weighting

matrices and coefficient matrix. Equation 10 illustrates the DMC controller algorithm, allowing

for the weighting penalties (Romagnoli & Palazoglu, 2005, p. 326).

Murdoch University 2.0 Background

 14

 ()

 (

)

 (
)

8: DMC Algorithm.

2.2.5 Relative Gain Array

The Relative Gain Array (RGA), sometimes referred to as the Bristol Array after inventor Edgar

Bristol (Bristol, 1966), is determined from the array of gains from the plant. Using the step

response matrix, as shown in Equation 4, it is possible to determine the gains of the plant,

using Final Value Theorem (FVT). This provides the gain matrix in Equation 5.

[

]

9: Gain Matrix.

Using the matrix determined in Equation 9, the RGA can be determined via Equation 6.

 ()
10: RGA Algorithm.

This matrix then provides a measure for the interaction between each input and output

variable (Romagnoli & Palazoglu, 2005, p. 256). Note that the multiplication is element by

element, not matrix multiplication. As such, (
)

 . This array is governed by a

set of interaction rules which enable the best loop pairing to be selected (Romagnoli &

Palazoglu, 2005, pp. 258-259):

 , unstable operation;

 , input has no effect on output ;

 , the interacting input(s) have a stronger effect on output than input ;

 , the effect of input has an equal contribution on output as the interacting

input(s);

 , input has a stronger effect on output than the interacting input(s);

Murdoch University 2.0 Background

 15

 , input is the only variable which affects output , there is no interaction; and

 , the effect input has on output is greater than the interaction and in the

opposite direction.

Given these rules it can be stated that loop pairings should be selected to have RGA elements

close to unity and never negative (Ogunnaike & Ray, 1994, pp. 735-740). Once the interaction

and loop pairings are selected, only then is it possible to implement MPC.

2.2.6 Performance Criterion

All control schemes are judged against their ability to track the SP and reject DV, and although

they are established on the same premise not all schemes are equal (Ang, Chong, & Li, 2005,

pp. 562-563). In order to effectively assess the controller schemes, ITAE performance criterion

will be minimised (Levine, 1996, p. 170). This was selected because ITAE penalises errors which

persist over time heavier than those at the beginning of the response. This can lead to a

sluggish initial response, essential to avoid oscillations, however does result in quicker settling

times (Levine, 1996, p. 170). Equation 11 shows the algorithm for calculating the error

associated with ITAE.

 ∫ | |
11: ITAE Algorithm.

2.3 Software in industry

Computer simulations have been widely adopted through industry to model complex practical

settings; through the use of mathematical modelling (Kheir, 1995, pp. vii-viii). These range

from, but are not limited to: agriculture; industrial process; risk forecast; stock market; poison

Murdoch University 2.0 Background

 16

flow; and liquid flow (Robinson, 1993; Kheir, 1995, pp. vii). The popularity of process

simulation stems from its ability to support industry through: cost estimation; control and

management of operational plants; and troubleshooting or testing of new and upgrading

plants (Robinson, 1993). These all have the added benefit of reducing capital cost and

detecting poorly designed maintenance strategies or project plants. Software packages not

only provide support to industry they also form a useful tool for educating personnel and

students. The ability to gain an understanding of plant dynamics and control schemes as well

as obtain optimised plant performance is invaluable. It is important however, as more of

industry becomes reliant on simulation software that the mathematical and simulation models

and results are validated to ensure reliability and consistency of results (Ali & Petersen, 2012).

2.3.1 Historians

Computer packages such as OSIsoft PI and DeltaV are historians which provide real time data

logging through a process information server. This server operates underneath a visual

interface which is accessible to engineers, operators and managers for analysis and

visualisation of operational performance (OSIsoft, 2015). These systems enable plant data,

from multiple locations, to be stored on a central server and accessed by all plant personnel

and strategic management. In addition they also provide real time control over plant

instruments by operators located either on site or remote (Emerson, 2015).

Increasingly these distributed control systems are offering the implementation of advanced

control, like DeltaV’s MPCPro block. This upgrade in software can optimise plant performance

easily through selection of MIMO variables including up to 80 process outputs and 40 inputs

(Emerson, 2013). However without training or prior experience in advanced control systems it

is near impossible to implement such schemes effectively.

Murdoch University 2.0 Background

 17

2.3.2 SimSci PRO/II

SimSci PRO/II is a simulation software package from Schneider Electric which allows the

optimisation of plant design and operational analysis. It includes a substantial chemical

database which, coupled with the unit operators (such as advanced units heat exchangers,

distillation columns, reactors), enables the simulation of chemical, petroleum, polymer and

pharmaceutical plants. The package uses a Process Flow Diagram (PFD) to graphically display

the unit operators and plant design and can be used to determine the effect plant upgrades

have on process outputs (Schneider Electric, 2015). However, PRO/II is only a steady state

simulator. Although it allows optimisation of plant specifics, such as the feed tray of the

distillation column, it does not possess the capabilities to analyse dynamic plant operation. It

allows the implementation of feedback control loops, using PID control schemes. However, it is

not possible to implement advanced control schemes, or analyse transient plant behaviour

(Schneider Electric, 2015).

2.3.3 Aspen Plus

Despite PRO/II’s simulation proficiency, the inability to perform dynamic analysis leaves it well

behind the industry leader. AspenTech’s Aspen Plus and APD are the most widely used

computer package in the chemical industry (Ma, 2013, p. 15). Aspen Plus is a steady state

simulator, similar to PRO/II in operation and design, which allows complex processes to be

built without the need for tedious calculations or arduous mathematics (AspenTech, 2000a).

Aspen Plus utilises a database of chemical properties and applications in order to enable

minimal user interaction with plant and chemical specifics (AspenTech, 2000a). Typically the

end user only needs to specify the plant components and their values in order to successfully

operate Aspen Plus. APD is the dynamic equivalent of Aspen Plus, allowing analysis of the

dynamic behaviour of the plant and implementation of PID control schemes (Peers, 2013).

Murdoch University 2.0 Background

 18

2.3.4 Aspen HYSYS

HYSYS was originally created by Hyprotech before being acquired by AspenTech and

Honeywell; rereleased as Aspen HYSYS and UniSim Design respectively. HYSYS is used in the

energy industry and is the leading software package for oil and gas simulation and process

optimisation in design and operations (AspenTech, 2015b). It has the capacity to simulate

advanced systems such as: pipelines; hydraulics; fractionation LNG; dehydration; and

compression; and offers a complete package for modelling an entire refinery (AspenTech,

2015b). As stated previously in 1.0 Introduction, HYSYS will not be explored as the operation

and integration of software is very similar to APD. However, for the interested reader,

Professor Hanyak’s Chemical Process Simulation and the Aspen HYSYS Software (2012)

provides a very detailed user manual for HYSYS and the implementation of its complex unit

operations. Similar to APD, HYSYS can be operated in steady state or dynamic mode through

the use of its dynamic counterpart AHD. As with APD, AHD has the choice to only implement

conventional PID control schemes (AspenTech, 2015c).

2.3.5 Aspen Capital Cost Estimator

An additional reason the AspenTech product range enjoys significant dominance in industry is

its cost estimation software, Aspen Capital Cost Estimator (ACCE). The AspenTech software

range can increase profits through rigorous modelling of refineries and plants, while ACCE

reduces decision making processes and delivers estimates within 5-10% of the actual cost

(AspenTech, 2015d). This advantage enables the end user to make better informed decisions

regarding plant construction and operation.

Murdoch University 2.0 Background

 19

2.3.6 MATLAB

MathWorks’ Matrix Laboratory (MATLAB) is a high-level language and interactive

environment. It is used by engineers, scientists and economists worldwide for tasks such as:

numeric computation; data analysis and visualisation; programming and algorithm

development; and application development (MathWorks, 2015a). These capabilities can be

upgraded through the use of additional add-on products which build on MATLAB’s foundation

software. These cover a range of applications: optimisation; signal processing; control systems;

and finance (MathWorks, 2015b). Furthermore, Simulink is a block diagram environment for

model based design which runs on top of MATLAB. This software can be used to easily build

and simulate models as well as connect to hardware while running in real time (Mathworks,

2015c). The computational power of MATLAB and its additional toolboxes and add-ons make it

a key software package across many industries. The utilisation of these features will be

explored.

2.3.7 LabVIEW

Laboratory Virtual Instrument Engineering Workbench (LabVIEW), from National Instruments

(NI), is a development environment which uses visual programming. It is frequently used for:

data acquisition; instrument control; and industrial automation; and was designed to

accelerate the productivity of engineers and scientists (National Instruments, 2015a). The

biggest draw of LabVIEW is its unprecedented integration with all measurement hardware and

software. NI have gone to extreme lengths to ensure LabVIEW is easy to use for the end user

and adaptable to most industrial needs (National Instruments, 2015a). Moreover, LabVIEW is

used on University and College campuses all over the world to deliver hands-on learning and

enhance research (National Instruments, 2015b). This positions LabVIEW as the ideal software

Murdoch University 2.0 Background

 20

package to enable students and personnel to gain and develop skills in implementing advanced

control schemes on complex plants once integration with APD is established.

2.3.8 Microsoft Excel

Lastly, Microsoft’s Microsoft Excel (Excel) has become the industry leader for spreadsheet and

data analysis. Its capabilities include functions, graphical interfaces, programming and

communication (Cook, 2015; Microsoft, 2015a). The macro programming is implemented in

Microsoft’s Visual Basic for Applications (VBA), a variety of Visual Basic (VB), and can be used

to create user functions, customising Excel or automation processes. VBA is not limited to

Excel but also applies across the entire Microsoft Office software packages (Microsoft, 2013).

2.4 ActiveX

In order to establish a server connection between one software package to another,

Microsoft’s proprietary technology Object Linking and Embedding (OLE) and inter-process

communication OLE Automation, also referred to as ActiveX Technology, will be used

(Microsoft, 2015b). This mechanism originated for use in VB however has been expanded to all

scripting languages on Windows in response to the problem of cross application macro

programming. OLE Automation provides the infrastructure for applications to establish

connections and manipulate shared objects between a client-server model. The coding and use

of this communication follows the C and VB programing languages (Microsoft, 2015b). Figure 6

displays a central client server with a four client distribution network.

Murdoch University 2.0 Background

 21

ServerClient Client

Client

Client

Figure 6: Distributed Server-Client Structure.

2.4.1 Client Server

The server provides a service or resource to clients. The client will make requests of the server

and wait for the response of the server and any information it has requested (Microsoft,

2015b). The in-process server is implemented through a Dynamic Linked Library (DLL) by using

OLE Automations capabilities to create a Component Object Model (COM) server. An

advantage of Microsoft Windows is the majority of software packages are already integrated

with ActiveX and servers can easily be created by using their existing programmatic identifier

(Microsoft, 2015b). Examples of these identifiers are Microsoft Excel ‘Excel.Application’,

Microsoft Outlook ‘Outlook.Application’ and MATLAB ‘Matlab.Application’. Using the DLL

‘Aspen Customer Modeler 30.0’ it is possible to connect to a range of AspenTech’s software

through the following handles: Aspen Plus Dynamics ‘AD Application’; Aspen Customer

Modeler ‘ACM Application’; Aspen Adsim ‘ADS Application’; Aspen Chromatography ‘ACH

Application’; and Aspen HYSYS ‘HYSYS.Application’ (AspenTech, 2000b).

Murdoch University 2.0 Background

 22

2.4.2 Properties and Methods

Setting up the COM server is not the only issue which needs to be explored. Once the

communication is established the client needs to send and request information from the

server (Microsoft, 2015b). The properties allow the client to open and close specific files, run

programs and send and receive data from the server. The methods are functions which can be

called from the server (Microsoft, 2015b).

Murdoch University 3.0 Modelling

 23

3.0 Modelling

To implement model based controllers, such as GMC, an accurate mathematical model must

be developed. Given that the literature on modelling multicomponent distillation columns is

lacking, Sharmila and Mangaiyarkarasi’s (2014) paper on binary column modelling was used as

a reference to develop a binary model. In addition, using the mathematical models from Lee

and Dudukovic (1998), a multicomponent model was attempted but was not successful. In

order to progress with the project, either a binary column had to be adopted or the model

based controllers removed. The success of GMC relies greatly on the precision of the model, in

addition to the system having a relative degree of one. This means the MV must appear in the

mathematical model for the controlled PV (Lee P. L., 1993). As a result, GMC has not enjoyed

wide scale success in industry. Thus it was decided that instead of adopting a binary column for

the project, and including model based controllers, the multicomponent column would be

used. In the multicomponent distillation column the behaviour was determined using data-

driven models. These models can only be used for stable open loop systems and can come in

the form of either: SS; TF; zero-pole gain; and linear models. In order to create MPC controllers

in MATLAB and LabVIEW these data-driven models were developed following the introduction

of input steps to the plant model in APD. APD handles the complex mathematics, chemical,

and thermodynamics of the distillation column and allow the user to utilise the data-driven

models without the need for mathematical models.

Murdoch University 4.0 High-Fidelity Distillation Column

 24

4.0 High-Fidelity Distillation Column

The previous chapters provided an overview and background into the capabilities and theory

behind distillation columns, control schemes, modelling and industrial software packages.

Using this knowledge a distillation columns will be implement in Aspen Plus. The continuous

distillation column uses 29 ideal stages to separate a mixture of benzene, toluene, and p-

xylenes. The feed stream contains 30% benzene, 40% toluene and 30% p-xylene and flows at a

rate of 500 kmol/hr. It is desired that the distillation column will recover 95% of benzene in the

distillate stream. For distillation column sizing and hydraulics refer to 10.1 Appendix 1.

4.1 Aspen Plus

4.1.1 Setup

It is a common practice for any plant or refinery to be designed in AspenTech’s steady state

simulation software before being exported to dynamics (Peers, 2013, p. 2). To do so, the

‘radfrac’ block was used in Aspen Plus as the type of distillation column. A review of the

documentation (South Dakota School of Mines and Technology, 2000; AspenTech, 2000a)

provided the steps for using and setting up the ‘radfrac’ block in the steady state simulator. As

this documentation is out dated, a refreshed version has been prepared and available in 10.3

Appendix 3. This supplementary document will enable future work to be done in Aspen Plus

without the need to sort through multiple documents and provides the end user with a single

point of reference. To setup the model, the steady state conditions, which can be found in 10.1

Appendix 1, were input following the guidelines provided in 10.3 Appendix 3. Once completed,

the simulation can be run to ensure convergence occurs. Figure 7 shows the distillation column

after set up in Aspen Plus.

Murdoch University 4.0 High-Fidelity Distillation Column

 25

Figure 7: Distillation Column Setup in Aspen Plus.

With the model set up the system was tested under steady state conditions to ensure the

plant was set up correctly. Unfortunately, this run yielded no results due to an error.

Investigating the cause of this resulted in discovering the databanks in Aspen Plus were not

available, as shown in Figure 8. After the installation of Aspen Plus on a new device the

software will run an installation to save the databases from the server onto the device. This

installation had failed and

thus there were only two

generic databases

available within Aspen

Plus. The AspenTech

software packages was

removed from the device

and reinstalled by a

Murdoch University

technician and, when the

software was launched,
Figure 8: Databases Available in Aspen Plus.

Murdoch University 4.0 High-Fidelity Distillation Column

 26

the databases

successfully installed.

Figure 9 displays the

correctly installed

library of databases,

where Aspen Plus

automatically selected

some foundation

databases based on the

selection of the

template at start-up.

With the databases installed correctly, a steady state run was undertaken and achieved

convergence within three iterations, as shown in Figure 10. A check of the system results,

given in Table 1, indicates the

column was set up correctly and

the model ready to export to APD.

These databases are essential as

without them the chemical

properties of the materials are

unknown.

Figure 9: Correctly Installed Database Availability.

Figure 10: Simulation Output in Aspen Plus.

Murdoch University 4.0 High-Fidelity Distillation Column

 27

Table 1: Simulation Results from Aspen Plus.

FEED DISTIL BOTTOMS

Mole Flow kmol/hr

BENZENE 150.000 136.358 13.643

TOLUENE 200.000 13.642 186.358

P-XYLENE 150.000 0.000 150.000

Mole Frac

BENZENE 0.300 0.909 0.039

TOLUENE 0.400 0.091 0.532

P-XYLENE 0.300 0.000 0.429

Total Flow kmol/hr 500.000 150.000 350.000

Temperature C 100.000 81.977 136.498

Pressure bar 1.520 1.013 1.621

4.2.2 Model Export

Before exporting a model to APD a few steps must be undertaken (Peers, 2013, pp. 2-5):

 Isolate the unit operators to export;

 Active ‘Dynamic Mode’ in the ‘Dynamics’ tab on Aspen Plus’ ribbon;

 Decide on which analysis to perform – pressure or flow driven;

 Enter unit operators dynamic specifications – such as heat-transfer and which

variables to control;

 Run the simulation to ensure convergence; and

 Click on the analysis to perform – exporting the model.

10.4 Appendix 4 provides a summary of this procedure however a few key items should be

highlighted. The controller MV and PV can be overridden in APD and the choice of these does

not impact on the exporting of the file. These options are given to the end user to allow the

simulation to set up the model in APD automatically, therefore saving time for the user.

Moreover, if the user wants to analyse the pressure gradient then the pressure driven analysis

Murdoch University 4.0 High-Fidelity Distillation Column

 28

must be selected. By selecting this type of analysis the user will need to insert additional

pumps or values to achieve this pressure gradient in the model (Peers, 2013, p. 3). However, if

no pressure gradient is required then flow driven analysis is always the selection to be made.

Most commonly this will be the choice and it does not require any addition operators to be

added to the PFD (Peers, 2013, p. 3). Additionally, once the analysis mode is selected it will

prompt the end user to save the file and will do so under the APD file extension.

Figure 11: Hydraulics Tab for the 'Radfrac' Distillation Column in Aspen Plus.

In Aspen Plus the left-hand

side of the window displays

the model explorer. This

model explorer contains all

the information required

to simulate the plant

model within different

navigation panes. The

reflux drum and sump

geometry were entered in

the distillation column

dynamics navigation pane,

as defined in 10.1

Appendix 1. Then the

Figure 12: Fatal Error When Completing Run in Aspen Plus.

Murdoch University 4.0 High-Fidelity Distillation Column

 29

simple tray hydraulics was selected and entered as shown in Figure 11. A detailed procedure

for preparing the PFD for export to APD can be found in 10.4 Appendix 4. Once all the

information was entered, flow driven analysis was selected which initiates the plant exporting

process. While attempting to export Aspen Plus encountered a fatal error which stated that a

pressure drop through stage 1 did not exist, see Figure 12. By comparing the column

implemented to the examples found in Jump Start: Pressure Relief Scenario in Aspen Plus

Dynamics V8 (2013) it was determined that the dynamic pressure profile for the distillation

column stages was incorrectly entered and thus Aspen Plus had no basis for the pressure drops

throughout the column. To correct this issue the pressure profile was changed from fixing the

pressure in the first stage to providing an estimate of the first and last stage pressures. Once

this was corrected Aspen Plus exported the model without difficulty.

4.2 Aspen Plus Dynamics

4.2.1 Start Up

Figure 13: Disconnected Streams in Aspen Plus Dynamics.

Murdoch University 4.0 High-Fidelity Distillation Column

 30

With the model exported it was opened in APD. However, when the file was opened in APD an

error occurred causing the entire product and communication streams to disconnect, as shown

in Figure 13. Reconnecting the streams resulted in APD crashing. In an attempt to isolate this

issue, the file was opened on an additional device however, this produced the same outcome.

The Aspen Plus model was developed from scratch again to determine if an error had occurred

in the creation of the model but this was not successful in correcting the issue. Finally, APD

examples were opened, from AspenTech’s Example Library, and the same error ensued. This

suggested the issue was not in the models but the software itself. After consultation with a

Murdoch University technician it was advised that the software version of Aspen Plus and APD

could be the root cause of the fault. Following this advice led to the discovery that AspenTech

had done only a part release of their software package and Aspen Plus was a different version

to APD. To counteract this AspenTech included a special software version selector which

allows the older AspenTech products to distinguish the version the original model is being

imported from. Figure 14 shows this in the Start menu programs list. Once this was updated to

anticipate V8.6 instead of V8.4 the models opened in APD without error. Figure 15 shows the

Aspen version selector tool.

Figure 14: Aspen Properties Version Selector in the Programs List.

Murdoch University 4.0 High-Fidelity Distillation Column

 31

Figure 15: Aspen Version Selector.

4.2.2 Operation

With the model now in APD it is important to understand how the software works and its

capabilities. Once the model was opened in APD, the PID feedback loops using the

recommended control loops from Aspen Plus are generated. This is shown below in Figure 16.

Figure 16: Dynamic PFD in APD with PID Control.

Murdoch University 4.0 High-Fidelity Distillation Column

 32

APD offers an easy to use visual interface. The

simulation can be run from the ribbon using the

controls found in Figure 17. Furthermore, it is important to specify the run mode,

communication intervals and units in the Run Options. Figure 18 shows these options which

are accessed by pressing F9 whilst in APD. The time units have been updated to seconds and

the interval 1 second. Furthermore, it is possible to manipulate variables and events by writing

automation tasks. The creation of these tasks is documented in 10.6 Appendix 6.

By investigating PID in the PFD it is noted

that APD has the capacity to tune the

controllers based on two tuning rules: relay

tuning; and approximate first order model

based on input stepping (Ogunnaike & Ray,

1994). This enables conventional PID to be

tuned quickly regardless of the complexity

of the plant. 10.5 Appendix 5 details the

steps involved with specifying controller

parameters, tuning and plotting in greater

depth. This does not however include any

advanced control schemes. As this project

will be implementing advanced controllers

through the integrated software packages

the control loops have been removed from

the PFD in APD.

Figure 17: Simulation Methods in APD.

Figure 18: Run Options in APD.

Murdoch University 4.0 High-Fidelity Distillation Column

 33

4.3 Aspen Advanced Process Control

AspenTech has a product which does not form part of the Aspen Engineering Suite

(AspenTech, 2015e). Advanced Process Control (APC) Model Builder is part of Aspen

Manufacturing Suite and includes a range of software packages to model, build, simulate and

deploy model based controllers (AspenTech, 2011, p. 8). Although the full list of APC Model

Builder’s capabilities can be found in 10.7 Appendix 7, DMCplus is of particular interest.

After AspenTech acquired DMC Corporation they developed DMCplus, which has gone on to

be the industry leading multivariable MPC (AspenTech, 2011, p. 1). This integrated suite offers

the ability to:

 Use multiple model identification algorithms;

 Configure controllers through a validation wizard; and

 Evaluate the performance against a model to determine its suitability to noise and

inaccuracies.

Furthermore, this package also includes an implementation package referred to as DMCplus

Online (AspenTech, 2011, p. 2). This provides the infrastructure to implement the DMCplus

controller and connect to the process instruments in the field.

4.4 Issues

During the setup of the high-fidelity distillation column in Aspen Plus a number of issues were

encountered that warrant discussion. First, it is important to always ensure the software has

access to the databases. If the databases are not available then ensure access to the licensing

server is available. If no issue exists with the licensing server then ensure the software has

completed its install correctly. The databases will be downloaded onto the device the first time

Murdoch University 4.0 High-Fidelity Distillation Column

 34

the software is launched. However, sometimes this does not occur and a few attempts need to

be made. If the databases are not installed the software will fail to operate or give undesired

and unexpected results. Second, the end user should be careful when establishing the

dynamics of the unit operators. If they are incorrect the export will either fail or, if successful,

the operation of the dynamic simulation will be inaccurate.

Additionally, make sure the software versions of the AspenTech products match. As AspenTech

released updates on only half the products a version selector was made available. If the

version is not selected correctly, the file being opened will either open blank or incorrectly. As

shown in Figure 13, located on page 29, all the streams disconnected when opened in APD.

This occurred because APD was expecting a model from V8.4 not V8.6. Note that even if the

end user attempts to reconnect the streams the software will freeze and crash if the versions

are not congruent.

Finally, Aspen APC does not form part of the AspenTech Engineering Suite. It is from the

Manufacturing Suite and might require further download or occur additional cost to the end

user. A check of the licensing server will display how many licenses remain for each AspenTech

product and will advise if APC can be utilised on individual devices.

4.5 Conclusion

This chapter detailed the procedure involved in setting up and using a distillation column in

Aspen Plus and APD. Furthermore, it outlined clearly the steps involved in exporting from

steady state to dynamic simulations as well as the control options available in AspenTech’s

product range. Section 4.4 Issues emphasised the issues faced while completing this

documentation in order to enable future work to run smoother. With a distillation column

Murdoch University 4.0 High-Fidelity Distillation Column

 35

established and operational in APD the integration of APD with MATLAB and LabVIEW will be

investigated.

Murdoch University 5.0 ActiveX

 36

5.0 ActiveX

5.1 Overview

With the distillation column successfully implemented in APD the integration to additional

software packages was investigated. Typically Windows based software packages include

documentation on the OLE and ActiveX controls. However, where documentation is not

available, it is possible to use Microsoft’s OLE Viewer to examine the OLE typelib information

and trace the methods and properties (Schwartz, Olson, & Christiansen, 1997). With the aid of

AspenTech’s documentation on ActiveX (AspenTech, 2000b) a flowchart was established

outlining a general overview for how ActiveX will be exercised to apply control schemes in

client programs and communicate data to and from AspenTech, the server. Figure 19 outlines

this structure.

Start Simulation
(Client)

Send Data:
Input(s)

COM Open?

Client
Server

Open
Document

Document
Open?

Y

N

Determine Input(s)Y
Determine
Output(s)

Output(s)
Received?

Calculate Input(s)

Y

First Run? N

Y

N

Input(s)
Calculated?

N

ASPEN (Server)

MATLAB/LabVIEW/Excel
(Client)

Y
Input(s)

Received?

Send Data:
Output(s)

ASPEN (Server)

MATLAB/LabVIEW/Excel
(Client)

Update Input(s) Y

Run Simulation:
One Time Step

(Server)

Get Output(s)
Output(s)
Solved?

Y

N

Set Dynamic
Simulation

Open COM Object

N

Final Time Step? Add One Time StepN

Close
Document

Y

Close COM Object
End Simulation

(Client)

N

Figure 19: ActiveX COM Flowchart.

Murdoch University 5.0 ActiveX

 37

Initially the script will check to see if the COM is already open, if it is it will move on without

attempting to open the COM again. If the COM is not open the COM Object will be opened.

This check is in place as the software will not act as required if multiple COM servers are

activated. Following this, the document being manipulated will be checked to see if open.

Again, if it is open then it will not attempt to open it as this will result in a run error being

established, however if it is not open then the process will launch the file. Moving on, the

process will set up the server to match the specified client system settings then proceed to

send and receive data. Once the program has finished the simulation the file and COM will be

closed. Not closing the COM can cause the program to crash or stop the file from being

manipulated. As with all software packages, it is important the results obtained through the

use of ActiveX are validated. To do so a co-simulation will be undertaken to establish the

validity of the integration before implementing advanced control schemes.

5.2 Active in MATLAB

Following the architecture presented in Figure 19, communication between MATLAB and APD

was attempted. MATLAB has an inbuilt function ‘actxserver’ which takes advantage of OLE

Automations capabilities to create a COM server based on the predefined DLL (MathWorks,

2015d). Using ‘AD Application’(AspenTech, 2000b) an attempt was made to establish a

connection from the client to the server. However, this server creation failed with the error

given in Figure 20.

Figure 20: Failed Server Creation in MATLAB.

Murdoch University 5.0 ActiveX

 38

An issue occurred using the ‘actxserver’ function; as a result MATLAB was not able to establish

the connection to APD. After consulting the MathWorks forum it was discovered that

“MATLAB cannot be 64-bit for actxserver to load a 32-bit dll” (MathWorks, 2009). The current

software versions installed on the device were 64-bit MATLAB and 32-bit APD. This raised two

methods to continue:

 Install APD 64-bit; or

 Install MATLAB 32-bit.

The 64-bit version of APD was installed on the device and the COM server attempted again

using the two 64-bit software packages. This was unsuccessful and resulted in the same server

creation failed error. MATLAB 32-bit was placed onto the device and the script run again. This

time, using the 32-bit software variations, the server was established without issue. It was

discovered the ‘Aspen Customer Modeler 30.0’ DLL is 32-bit and this is the factor which

governs which software version MATLAB must be. With the server established the next task is

to communicate and manipulate data objects.

As stated in 2.4.2 Properties and Methods, in order to enable data communication and

automation, the properties and methods must be raised through the COM. Using the ‘invoke’

function MATLAB is able to invoke different methods on COM objects (MathWorks, 2015e).

There are several methods which can be employed which range from:

 Manipulating variables;

 Retrieving variables; and

 Automating the simulation.

Murdoch University 5.0 ActiveX

 39

Once the directory of the file being examined, as well as the number of inputs and outputs set,

it was possible to view all variables available on the server (AspenTech, 2000b). The available

variables include: flows; temperatures; pressures; levels; and system settings in APD. These

unit operator variables are called using the following naming convention:

OBJECT(“NAME”).Description|Units

10.8 Appendix 8 details how this communication from MATLAB to APD was implemented,

providing an in-depth description of each step.

5.3 ActiveX in LabVIEW

In order to create a real-time simulation of APD, LabVIEW will be integrated with APD. This

software package was selected as it has an existing utilisation across colleges and universities

around the world, in addition to wide scale industrial use (National Instruments, 2015b). Due

to this wide use the software integration could form a useful tool for educational purposes in

higher education and industry. Again, this communication will be achieved through the use of

ActiveX.

Connecting to MATLAB from within the LabVIEW interface is simple through the use of NI’s

MATLAB script node. This node connects directly to MATLAB using ActiveX technology and

invokes the MATLAB server to execute scripts. The scripts written inside the node follow the

MATLAB programming language. By default it is only possible to execute inbuilt MATLAB

functions. However, by using MATLAB’s inbuilt function ‘pwd’ to return the current folder it is

possible to save user defined functions within

this directory (MathWorks, 2015f). When using

the MATLAB software all user defined
Figure 21: Current Directory Returned by MATLAB.

Murdoch University 5.0 ActiveX

 40

functions must be within the current directory folder to be executed. Figure 21 shows the

current, default directory. As it is not possible to move user functions into the default file on

administrator locked devices an additional method can be applied. Using MATLAB’s function

‘cd’ it is possible to change the current directory to a different folder (MathWorks, 2015g). In

doing so it is possible to ensure LabVIEW and MATLAB will always search the same directory

for functions, thus removing any errors at start up. With the node set up with proper

validation it is possible to call user defined functions. This will be examined in 6.2 LabVIEW

Control Design Toolkit when implementing DMC in LabVIEW. The limitation of this method is

the user is restricted to the standard functionality of MATLAB. This does not provide any

additional benefit except the ease in implementing existing scripts into the LabVIEW visual

interface. In order to gain access to true automation the ActiveX blocks were investigated.

Using the Automation Open

block in LabVIEW, as shown in

Figure 22, it was possible to

specify which ActiveX object to

open communication with (National Instruments, 2007a). The COM interface, referred to as

Automation Refnum in LabVIEW, is daisy chained to the COM properties and methods from

the Automation Open block. As previously mentioned in 2.4 ActiveX, Aspen Customer Modeler

DLL is used to establish connection to APD. This is selected as the ActiveX class and connected

to the Automation Open block as shown in Figure 23.

Figure 23: Aspen Customer Modeller ActiveX COM Setup.

Figure 22: ActiveX Automation Open Block in LabVIEW.

Murdoch University 5.0 ActiveX

 41

Figure 24: ActiveX Property and Invoke Nodes in LabVIEW.

Once the COM server was created the interface reference was fed to the property and invoke

nodes, which are described in Figure 24. These nodes were used to make APD visible, open the

document and retrieve the temperature of the feed stream. Figure 25 below displays the

arrangement of the ActiveX blocks in LabVIEW. This initial configuration was used to check if

the COM was established correctly. The error indicator displays any error code and description

if ActiveX fails to complete a task.

Figure 25: Graphical ActiveX Programming in LabVIEW to Create APD COM.

It can be observed in Figure 25 that all the variables must be converted into the variant data

type before being usable in the ActiveX blocks. The variant data type was added to LabVIEW

for the sole purpose to handling the complicated data

required by ActiveX objects (Johnson & Jennings, 2006,

p. 126). When this VI was run, APD launched without

issue and the document, ‘DistilCol.dynf’, opened

Figure 26: Error When Retrieving Data over
COM in LabVIEW.

Murdoch University 5.0 ActiveX

 42

successfully. However, when retrieving the data from the server an unspecified error occurred,

displayed in Figure 26. A check through the ActiveX documentation did not resolve this issue

(AspenTech, 2000b; AspenTech, 2005; National Instruments, 2007). It is believed the issue

originates from a mismatch in the naming syntax for the variables in APD, or from the server

not expecting data to be requested. Further research into this issue is required. As a result it

was not possible to continue using this integration method and an alternative was explored.

In order to achieve the integration of

LabVIEW and APD, Excel could be used as

an intermediary. First LabVIEW would

need to establish a connection to Excel,

before Excel then creates a connection to

APD. Following the structure presented in

Figure 27 the three software packages

could work together to communicate and

log data. To achieve automation through

Excel, macros must be written in VBA.

Before these macros are designed in

Excel, to create a COM server to APD, the

LabVIEW ActiveX blocks will be used to

establish a server with Excel. 10.9

Appendix 9 details the steps taken to

enable communication between LabVIEW

and Excel. This process is relatively

simple, using VBA macros to perform the
Figure 27: Structure for LabVIEW-Excel-APD

Communication.

Murdoch University 5.0 ActiveX

 43

majority of the communication process depicted in Figure 27. As such, only the execution of

the macros is needed to provide automation from LabVIEWs perspective.

5.4 ActiveX in Excel

In order to retrieve information from LabVIEW the variables must first be specified. When

connecting to LabVIEW from Excel using ActiveX, the functions

GetControlValue and SetControlValue are used. These functions will

call variables based on their label in LabVIEW. However these

variables must be connected to a port on the VBA node within LabVIEW for the

communication to be successful. An empty VBA node is shown in Figure 28. Once the MVs, DVs

and PVs have been assigned to the VBA node, the VBA macro can be written to manipulate

these. 10.10 Appendix 10 outlines the creation of the macros, while 10.11 – 10.13 Appendices

11 – 13 include the VBA scripts. Once the LabVIEW COM server is created in Excel it remains

open until explicitly closed. Given this the COM server is created initially, then the variables

taken from LabVIEW and logged in Excel. After the simulation in APD is stepped, the PVs are

retrieved and logged in Excel before being sent back to LabVIEW to override the PVs using

SetControlValue.

Figure 29: ASW Toolbar in Excel.

To communicate to APD from Excel, AspenTech recommends utilising their Excel add-on Aspen

Simulation Workbook (ASW). ASW, once linked to an Aspen simulation, can manipulate and

retrieve variables from the model variables (Tremblay & Mantrala, 2014, p. 2). ASW also

provides the user with the Run controls from within APD, as shown in Figure 29. This method

Figure 28: VBA Node in
LabVIEW.

Murdoch University 5.0 ActiveX

 44

of integration is best used when providing a user interface for complex models in Excel. It

enables the capabilities of AspenTech’s products to run in the background while the user does

not explicitly need intimate knowledge of the software (Tremblay & Mantrala, 2014, p. 1).

ASW does not however provide the automation required to achieve integration with LabVIEW.

The ability to automatically step the simulation can be achieved through ActiveX and VBA. In

order to achieve unanimity between the three programs VBA also provides a logical solution as

the communication between LabVIEW and Excel is performed using VBA.

This configuration follows the methods described in Figure 27. Once the MVs are calculated in

LabVIEW the macro ‘StepAspen’ is run. Once this macro is run LabVIEW will wait for a

response, effectively pausing all processes within. When Excel receives the MVs from LabVIEW

they are advanced to APD by manipulating the variables in the tree structure in APDs model

explorer (AspenTech, 2005). With these variables updated to the current DVs and MVs, the

simulation is stepped one time interval. The PVs are now extracted from the model explorer

and sent back to Excel before being passed back to LabVIEW. Once they have been updated in

LabVIEW the macro ends and control is passed back to LabVIEW. With control returned,

LabVIEW will move to the next loop iteration and start the entire process again. This will

continue until the end user presses the STOP button inside LabVIEW. Once pressed, the

shutdown process is initiated and the ‘CloseAspen’ macro executed. This process will shut the

servers between Excel and APD as well as LabVIEW and Excel. An in-depth description of this

process is outlined in 10.10 Appendix 10.

Murdoch University 5.0 ActiveX

 45

5.5 Co-Simulation

With the client server models established across the software packages, the communication

must be validated to ensure correct operation. To do so, PI feedback control loops were

established across all three software packages. The control loops used were:

 Level in the reflux drum controlled by the distillate stream flow rate;

 Level in the sump controlled by the bottoms stream flow rate; and

 Pressure in stage one controlled by the reflux stream flow rate.

Through this co-simulation it was possible to test the implementation across the software

packages and in turn verify the performance of the communication servers and client control

schemes. The PI controllers are configured with the following parameters:

 Reflux Drum Level, ;

 Sump Level, ; and

 Condenser Pressure, .

These parameters are not tuned for the system and are used for the sole purpose of validating

the operation of the software packages.

Figure 30 displays the step in the feed stream temperature. The overall performance of

the control schemes is not of interest in this case, however the behaviour of the system is. It

can be seen in Figure 31 that the controllers implemented in APD, LabVIEW and Simulink have

all produced identical MVs. This endorses the operation of the integrated software packages.

Moreover, Figure 32 confirms the PVs across all software packages are indistinguishable. This

endorsement proposes MPC can be investigated and implemented in LabVIEW and MATLAB,

and the performance would be equal to a scheme which is implemented directly in APD. The

remaining plots can be found in 10.14 Appendix 14.

Murdoch University 5.0 ActiveX

 46

Figure 30: Plot of the DV Step Across all Software Packages.

Murdoch University 5.0 ActiveX

 47

Figure 31: Plot of the MV Across all Software Packages.

Murdoch University 5.0 ActiveX

 48

Figure 32: Plots of the PV Across all Software Packages.

Murdoch University 5.0 ActiveX

 49

5.6 Issues

During the development of the ActiveX communication servers a range of problems were

faced that warrant discussion. In order to use the Aspen Custom Model DLL, 32-bit MATLAB is

required. This is due to the fact the DLL is 32-bit not 64-bit. There is no fix for this except for

the change in software version. It was not possible to get the Aspen Custom Modeler DLL to

work in LabVIEW. When invoking methods across the COM an unspecified error would occur.

Further research is needed in order to document the correct syntax and provide the ability to

remove the use of a data highway, in the form of Excel. It is also important to note that the

documents from MATLAB; Simulink; APD; and LabVIEW; must be located in the same directory.

If they are not they will fail to launch when the current directory is searched. It is possible to

change directories as the process is operating however the constant change in directory will

introduce an unwanted time delay.

When troubleshooting the software packages it is easier to follow the flow of information and

processes when the software is visible. This applies to Excel and APD. If the software is not

visible while initial setup is conducted it can be difficult to isolate issues. On top of this, note

that the client will not continue to operate while the COM server is executing a command.

Consequently, the software can only complete a loop as quickly as the COM server can

communicate data. If the loop time drops below a time delay will be introduced into

the system every loop iteration and eventually void the real time simulation in LabVIEW.

When communicating to any ApsenTech product, if the Units of Measurement (UOM) are not

specified it will use the English UOM by default. These are as follows:

o Foot (ft);

o Pound (lb);

Murdoch University 5.0 ActiveX

 50

o Pound per square inch (psi);

o Degrees Fahrenheit (F); and

o British thermal unit (Btu).

5.7 Conclusion

This chapter explored the idea of Microsoft’s ActiveX and outlined a structure for achieving

communication between differing software packages. 5.6 Issues highlighted the main issues

associated with the implementation of ActiveX in MATLAB, LabVIEW and Excel. With

communication established the advanced control toolboxes will be explored in MATLAB and

LabVIEW.

Murdoch University 6.0 Model Predictive Controllers

 51

6.0 Model Predictive Controllers

6.1 MATLAB MPC Toolbox

With a valid connection between MATLAB and APD, the

MPC Toolbox in MATLAB can be considered. This toolbox

provides functions and Simulink blocks for designing,

analysing and simulation MPCs (MathWorks, 2015h). These

controllers follow the control algorithms and principles

discussed in 2.2.4 Model Predictive Control. The MPC

controller block in Simulink is displayed in Figure 33. By

default this block expects the (MathWorks, 2015i):

 Measured output, denoted as mo and previously referred to as the PV;

 SP, denoted as ref; and

 Measured disturbance or DV, denoted as md.

On top of the default inputs it is

possible for the MPC controller

to expect various optimisation

objective functions and plant

noise, as presented in Figure 34.

This affords Simulink the ability

to recreate realistic plant

behaviour with measured and

unmeasured DV present.

Figure 33: MPC Block in Simulink.

Figure 34: Additional MPC Input and Output Variables in Simulink.

Murdoch University 6.0 Model Predictive Controllers

 52

In addition to these features, Figure 35 indicates the controller constraints and penalty

weightings can also be defined. By enabling these it is possible to make a more adaptive

control schemes. However these variables can be set within the MPC toolbox itself if adaptive

control is not required.

Once the controller block was added to the Simulink model and connected to the plant model,

the controller design was launched. When the design tool launches MATLAB will automatically

linearise the existing plant in Simulink to use as a reference for the predictive nature of the

controller. This however is not possible over the ActiveX server. It is noted that MATLAB

performs the linearisation based

on the Simulink blocks used on the

model not through step tests.

Thus, when the toolbox attempts

to linearise the plant it produces an

error, as found in Figure 36. This

limitation removes the toolboxes

ability to quickly generate MPC

control schemes. In order to

Figure 35: MPC Controller Parameters in Simulink.

Figure 36: Design Tool Linearising Plant Model in Simulink.

Murdoch University 6.0 Model Predictive Controllers

 53

overcome this, the model of the plant must be determined. MATLAB suggests in Figure 36 that

a linear model should be obtained first.

Given the capabilities of MATLAB this can be

achieved using the system identification toolbox,

ident (MathWorks, 2015j). However an issue

associated with this method is the time investment

required to determine accurate models for each

output against all the inputs. To overcome this, a

new function and script was written to automate

this process and remove the need for tedious

calculations by the end user. 10.15 Appendix 15

documents the function which exercises the least

squares method to determine a first order or

capacitive Transfer Function (TF) model (Strang &

Borre, 1997, pp. 174-176). This function enables

quick prediction of the TF by minimising the sum of

the error squared based on the input of the PV, MV

and time arrays.

Given this function, the automation of Simulink was

written through MATLAB script. This is detailed in

10.17 Appendix 17 and performs steps on each

input in Simulink to determine the TF for each

element in the MIMO matrix. Once the relationships

Figure 37: MIMO TF Output from the MIMO
Script in MATLAB.

Murdoch University 6.0 Model Predictive Controllers

 54

the input has on each output are discovered the next input is stepped and process repeated.

The script will continue this process until all input variables have been stepped and analysed.

Figure 37 displays a MIMO TF matrix which can be utilised in the MPC toolbox. With the MIMO

TF determine this can be input into the MPC Toolbox by selecting ‘Import Plant’ in the MPC

Toolbox shown in Figure 38. The MPC Toolbox can be launched from the MATLAB Command

Window using the function ‘mpctool’.

Figure 38: MPC Toolbox Design Task in Simulink.

Once the plant model has been imported, the input and output variables will be determined by

the toolbox. This model will then be used as a reference for the controller design. Following

this the controller parameters, constraints and controller weighting must be specified. Figure

Murdoch University 6.0 Model Predictive Controllers

 55

39 shows the controller tuning window. 10.18 Appendix 18 provides further detail on the

setup of MPC controllers in MATLAB and Simulink.

On a side note, the MIMO TF can be

used for RGA analysis by utilising the

algorithm given in Equation 10, found on

page 14. This will provide the best loop

pairings given the variables available in

the TF. This is important because the

MPC Toolbox will match the first MV

with the first PV and so forth. It does not

determine the best pairing even though

it has the information and model to do

so.

Furthermore, the TF parameters can be utilised when designing

DMC controllers (Ogunnaike & Ray, 1994, pp. 1000-1007). To

implement DMC in Simulink, a MATLAB function was written. The

DMC function, as shown in the Simulink block in Figure 40, follows

the design steps in Romagnoli and Palazoglu (2005). The controller

inputs are:

 Control variables:

o PV;

o SP; and

Figure 40: Function Block
in Simulink.

Figure 39: MPC Controller Parameters in the MPC Toolbox in
Simulink.

Murdoch University 6.0 Model Predictive Controllers

 56

o Bias or steady state MV.

 Approximate first order model:

o Time delay, denoted by A to represent alpha ();

o Gain, denoted by K; and

o Time constant, denoted by Tau.

 Controller parameters:

o Control horizon, denoted as U;

o Prediction horizon, denoted as P; and

o Weighting matrices, denoted as and .

The output of the function is the MV. This controller action is calculated based on the

convolution model discussed in 2.2.4.1 Dynamic Matrix Control. It is possible to then run the

MV through a saturation block in Simulink to apply any MV constraints before being sent to

the plant. 10.19 Appendix 19 describes the DMC function in greater detail. This script was

designed to offer an alternative to the MPC toolbox.

6.2 LabVIEW Control Design Toolkit

The MATLAB node, discussed

previously in 5.3 ActiveX in

LabVIEW, can be used to implement

the DMC script in LabVIEW. The

functions inputs are fed to the node

and the function called. This then

utilises its ActiveX connection to run Figure 41: DMC Script in the MATLAB Node in LabVIEW.

Murdoch University 6.0 Model Predictive Controllers

 57

the function and determine the DMCs MV. Its implementation can be seen in Figure 41.

Implementing MPC in LabVIEW is done so by using three blocks. Initially the controller must be

created by preparing the ‘Create MPC’ block, shown in Figure 42. However before this block

can be used, the plant model must be defined in SS representation (National Instruments,

2009, p. 18.3). The limitation on model input fits the common theme across the majority of

MPC controllers in industry. Typically only DMC uses non SS representation. It is possible

however, to convert a TF model into SS before being input into the MPC block (National

Instruments, 2007b). The ‘Convert to SS’ block will take the TF input, perform any zero-pole

cancellations and output a SS representation of the model. This SS model is then fed to the

‘Create MPC’ block to use as reference for the controller predictions. Additionally the ‘Create

MPC’ block expects the follow inputs:

 MPC controller horizons; and

 Weighting coefficients.

The bold inputs in Figures 42 and 43 denote required node inputs. The MPC Controller

Parameters are broken down into the following:

 Prediction horizon;

 Control horizon;

Figure 42: Create MPC VI in LabVIEW.

Murdoch University 6.0 Model Predictive Controllers

 58

 Minimum delay of the model; and

 Whether to include integral action.

The integral action is used when the plant’s mathematical model does not match the plant’s

actual model. Furthermore, the MPC Cost Weights is broken down into the:

 Output error weighting;

 Change in controller action weighting; and

 Controller action weighting.

With the required inputs specified, the MPC Controller was fed to the ‘Implement MPC’ node

and used as a reference to calculate the MV. However, it is also possible to define the initial

conditions and constraints on the MVs and PVs.

Figure 43: Implement MPC VI in LabVIEW.

With the MPC controller constructed, it is fed to the ‘Implement MPC’ block shown in Figure

43. This block is used to calculate the MV of the MPC generally inside a loop. It applies the

MPC controller designed in ‘Create MPC’ to determine the next MV based on controller

parameters, constraints, and weighting. The ‘Implement MPC’ block needs the MPC controller

and PV input in order to calculate the current MV. It is possible to change the controller to

manual mode, in addition to feed the pervious MV back to the controller. This is useful as it

ensures the controller is aware of any discrepancies between its suggested action and the

Murdoch University 6.0 Model Predictive Controllers

 59

actual MV, potentially due to actuator limitations. The estimated output can also be

withdrawn from the block for reference purposes to track how well the controller is predicting

the behaviour of the plant. The implementation of MPC in LabVIEW, including MIMO, can be

found in 10.19 Appendix 19.

6.3 Issues

When documenting the functionality of the MPC toolboxes in MATLAB and LabVIEW, a number

of concerns were raised. When using MPC, or DMC, it is important that the is consistent

amongst the software packages and their controllers. If they are not congruent the controller

will make erratic controller predictions and result in unexpected plant behaviour. This stems

from the controller predicting over a different sample time.

The MATLAB MPC Toolbox explicitly uses the blocks in the Simulink model to linearise the

plant. When these blocks call a MATLAB script, or external information through a server, the

linearisation method will fail. In order to move beyond this drawback a model must be

developed and imported into the controller. This can be either a TF or SS in MATLAB, or SS in

LabVIEW. Nevertheless, the system identification toolbox in MATLAB only handles SISO

identification. In order to build a MIMO TF matrix the toolbox must be utilised repeatedly. This

process is tedious and thus a MIMO system identification script was written. This script can be

used for any system which is developed following the guidelines specified in 10.17 Appendix

17. In LabVIEW however, there is no tool which offers system identification. This requires

further research into how such a tool could be implemented, or how Excel and the solver add-

on could be incorporated with LabVIEW to achieve this automatously.

Murdoch University 6.0 Model Predictive Controllers

 60

Finally, neither of the MPC toolboxes have the capacity to perform RGA analysis. This means

the RGA must be determined beforehand by the user. An advantage of the MIMO system

identification script in MATLAB is that it can be used to determine the gain array and RGA. This

highlights the need for a more innovative control toolbox is both software packages.

6.4 Conclusion

This chapter detailed the functionality of the advanced control toolboxes in MATLAB and

LabVIEW, in addition to offering some alternatives and improvements. The major flaws in

functionality and operation were detailed in 6.3 Issues. With the capabilities expanded and

toolboxes documented a comparison of MPC against PI can be undertaken. This will be used to

confirm the original idea and driving force behind the integrated software that implementation

of MPC will reduce the amount of energy usage in distillation columns.

Murdoch University 7.0 Control Scheme Comparison

 61

7.0 Control Scheme Comparison

With the MPC application in MATLAB and LabVIEW documented it is possible to implement

these controllers on the high-fidelity distillation column. Before that can be done an open loop

simulation must be run to determine the effect each input has on the outputs. Using the

MIMO TF matrix script in 10.16 Appendix 16 it was possible to construct the MIMO model

automatically. This script was run on the open loop system shown in Figure 44.

Figure 44: Open Loop Simulink Model for a High-Fidelity Distillation Column.

Murdoch University 7.0 Control Scheme Comparison

 62

This script utilises the function provided in 10.15 Appendix 15 to solve for the TF of a given

input and output. It repeats this process until all inputs have a corresponding TF for each

output. The resulting MIMO TF matrix can be found in 10.20 Appendix 20 while the gain matrix

is given in Table 2 below.

Table 2: Gain Array Matrix for a High-Fidelity Distillation Column.

K Input 1 Input 2 Input 3 Input 4 Input 5

Output 1 1.896E+00 1.761E+00 -1.358E-05 -6.618E-07 -9.206E-07

Output 2 -3.171E+00 1.656E+00 -4.891E-04 -4.508E-04 7.359E-06

Output 3 3.316E+00 -1.633E+00 5.256E-04 -5.806E-05 -2.249E-03

Output 4 -1.981E-01 1.158E-01 -5.082E-05 8.687E-08 -5.803E-08

Output 5 1.034E-01 -4.785E-02 9.218E-06 -7.482E-08 1.524E-09

Using Equation 10 it was possible to determine the RGA. This is given in Table 3, where the

best loop pairings are highlighted in blue. These pairing were selected given the rules provided

in 2.2.5 Relative Gain Array.

Table 3: RGA for a High-Fidelity Distillation Column.

 Input 1 Input 2 Input 3 Input 4 Input 5

Output 1 0.30 0.70 0.00 0.00 0.00

Output 2 0.00 0.00 0.00 1.00 0.00

Output 3 0.00 0.00 0.00 0.00 1.00

Output 4 -0.36 -0.26 1.61 0.00 0.00

Output 5 1.06 0.55 -0.61 0.00 0.00

The input and output variables are described in 10.2 Appendix 2, with the ideal loop pairings:

 Condenser pressure controlled by the reboiler duty;

 Condenser level controlled by the distillate flow;

 Sump level controlled by the bottoms flow;

 Toluene in the distillate controlled by the reflux flow; and

 Benzene in the Bottoms controlled by the condenser duty.

Murdoch University 7.0 Control Scheme Comparison

 63

Using these pairings MPC controllers are implemented in MATLAB and LabVIEW. The MIMO TF

in 10.20 Appendix 20 is applied as the model reference in both the software packages, with the

TF model converted to SS in LabVIEW. Figure 45 shows the closed loop set up in MATLAB with

the MPC controller established.

Figure 45: Closed Loop Simulink Model for a High-Fidelity Distillation Column with MPC.

The MPC controller was designed with the following parameters:

 ;

 ;

 and

 .

Murdoch University 7.0 Control Scheme Comparison

 64

When this control scheme was run the system did not operate as expected. The MIMO TF had

to be manipulated because the MPC controllers in MATLAB and LabVIEW do not allow for the

inputs to control different outputs. It simply connects input one with output one and so forth.

Due to this the inputs were altered positions to allow them to match the number of the output

they are controlling. Table 4 displays the updated RGA, using the new arrangement, with the

input controlling output .

Table 4: Updated RGA for a High-Fidelity Distillation Column.

 Input 1 Input 2 Input 3 Input 4 Input 5

Output 1 0.70 0.00 0.00 0.00 0.30

Output 2 0.00 1.00 0.00 0.00 0.00

Output 3 0.00 0.00 1.00 0.00 0.00

Output 4 -0.26 0.00 0.00 1.61 -0.36

Output 5 0.55 0.00 0.00 -0.61 1.06

To test the performance of this control scheme, a comparison against tuned PI control was

completed. These tests were performed to confirm the suggestion MPC would result in better

energy usage in the distillation column. When implementing PI control around five variables,

to match the MPC control scheme, APD would fail. APD would lose convergence once the

simulation completed two iterations. To overcome this, two controllers were removed from

the scheme and operation was resumed. The control loops being examined are:

 Condenser duty controlling the condenser pressure;

 Distillate flow rate controlling the reflux drum level; and

 Bottoms flow rate controlling the sump level.

The PI controller parameters were determined from the Zeigler-Nichols approximate model

tuning rules. These are:

 , ;

 , ; and

Murdoch University 7.0 Control Scheme Comparison

 65

 , .

In order to test the performance of the control schemes, SP changes were introduced

individually in Simulink. The performance of each system was then compared against one

another using the ITAE performance criterion, provided in 2.2.6 Performance Criterion. Table 5

displays the ITAE values for the PI and MPC control schemes, with the variable tracking their SP

highlighted in blue. This performance criterion was used for both the SP tracking and DV

rejection.

A supplementary feature which was not active in the toolboxes was the addition of integral

action within the MPC controller. This action can be employed to remove the mismatch caused

from inaccurate plant models. Further research into the implementation of this is required to

determine if there is an improved effect on the control schemes, and how significant this

effect is.

Table 5: ITAE Performance Criterion for PI and MPC Control Schemes on a High-Fidelity Distillation Column.

It is noted from Table 5, the MPC controller produces significantly lower ITAE values across all

scenarios except when tracking SP changes in the condenser pressure. Changes on this SP

resulted in the PI controller outperforming MPC, as shown in Figure 46, potentially due to the

system being over damped.

MPC PI MPC PI MPC PI MPC PI MPC PI MPC PI

Pressure 23.956 8.374 23.956 8.374 0.000 1.719 0.000 1.720 0.000 4.025 0.000 4.038

Drum Level 0.123 532.336 0.123 532.336 6.026 46.724 6.027 46.724 0.000 6.463 0.000 6.465

Sump Level 0.292 681.954 0.292 681.954 0.000 3.782 0.000 3.783 9.983 140.899 9.986 140.902

Drum Level +20% Drum Level -20% Sump Level +20% Sump Level -20%Pressure +20% Pressure -20%

Murdoch University 7.0 Control Scheme Comparison

 66

Figure 46: Plots of the PV and MV with a 20% Decrease in Condenser Pressure SP.

Murdoch University 7.0 Control Scheme Comparison

 67

However the other PVs were not able to reject the DVs under these conditions. The deviation

in the drum and sump levels shown in Figure 47 produced large ITAEs for the PI schemes when

the pressure profile was altered, approximately 532 and 682 respectively. The MPC scheme

rejects the disturbance as it occurs due to the predictive nature of the controller.

Figure 47: Plots of Drum and Sump Level Rejecting a 20% Decrease in Condenser Pressure SP.

Murdoch University 7.0 Control Scheme Comparison

 68

Figure 48 displays the control schemes tracking the SP of the sump level. The SP was increased

20% with the MPC settles quickly at the new SP and avoiding overshoot. The PI eventually

settled at the set point however as it is not able to predict the nature of the plant and the

effect its input changes will have it overshoot by approximately 8%. This type of behaviour was

consistent across the remaining steps and can be found in 10.21 Appendix 21.

Figure 48: Plots of the PV and MV with a 20% Increase in Sump Level SP.

Murdoch University 8.0 Conclusion

 69

8.0 Conclusion

8.1 Summary

8.1.1 Software Integration

To conclude, the issue with the current software used in the chemical and petroleum

industries is the lack of advanced control strategies. By integrating MATLAB with APD, and

LabVIEW with APD, it was possible to implement MPC on the plant constructed in APD. This

was achieved using ActiveX across all software packages. LabVIEW however was not connected

to APD directly due to lack of documentation on the object tree structure. As such its current

form lacks dynamic functionality. This paper documented the steps involved in creating the

communication servers in the hope that this research will lead to the development of a

template which can be used to train the user on advanced control schemes. This includes

educating users on the implementation and tuning of predictive control and training users on

the dynamics of complex systems.

8.1.2 Model Predictive Control Functionality

With communication established between these software packages the MPC toolboxes were

explored. The main finding from this investigating was the limitations placed around the

functionality of these toolboxes. Of these, the biggest limiting factors in MATLAB are the

inability to quickly determine the MIMO plant model and perform RGA analysis. Originally it

was thought the toolbox determined the model of the plant by introducing input steps into the

open loop system. MATLAB could then utilise this data to determine the system model

through its system identification tool. This unfortunately is not the case. The MPC toolbox

linearises the system by evaluating the current Simulink blocks and parameters. It uses its

existing knowledge of these blocks to conclude the SS representation of the plant. This causes

Murdoch University 8.0 Conclusion

 70

a major issue for the current set up as the plant is located on a different software package and

thus MATLAB cannot determine the model. The toolbox also does not distinguish between the

inputs and outputs of the system. If the user connects an input in position one and an output

in position one the MPC controller will pair the two together. This is the case regardless of

their interaction. As the toolbox does not determine which loop pairings are ideal this must be

performed prior to connecting the streams to the controller.

As MATLAB did not possess the capabilities to perform these tasks a function and script was

written in MATLAB to automate this process. Prior to this automation the user would have to

import step data into the system identification tool, ident, and determine SISO TFs for each

input and output combination. This is tedious and time consuming, especially when

considering a 5 input, 5 output system. To determine the complete dynamics of this system

the user would need to generate 25 SISO TFs before merging them into one MIMO matrix. The

automation of this process not only performed steps on each input and created a data-driven

MIMO matrix, it also provided the information necessary to accomplish the RGA analysis. The

steady state gain of each interaction can easily be determined from the MIMO TF, through

FVT, and used for constructing the RGA.

Similarly, LabVIEW did not afford the user any increase in functionality over MATLAB. The MPC

toolkit was very rigid in needing the SS model in order to develop the MPC controller.

Additionally, no system identification tool exists within LabVIEW. In order to develop the

controller in LabVIEW the SS representation must be known. This can be developed

mathematically or through input step tests. Given the script written in MATLAB it is possible to

determine the MIMO TF matrix and use the LabVIEW block to convert the TFs to SS

Murdoch University 8.0 Conclusion

 71

representation. Alternatively, step tests can be performed in LabVIEW and the data logged.

This logged data can then be used to identify the system model using Excel’s solver add-on.

8.1.3 Control Scheme Performance

The present research also demonstrates the advantages of MPC control schemes. The control

schemes were compared using the ITAE performance criterion. This comparison of PI and MPC

illustrates that MPC control significantly outclasses the PI control schemes in all scenarios

except condenser pressure SP tracking. Specifically, there is a large difference in the ITAE

values between the control schemes. The improved performance of the MPC control scheme is

likely due to its ability to deal with difficult dynamic systems, such as large time delays or

inverse response. Not only is the scheme able to predict the behaviour of a MIMO system it

also enforces operation within system constraints. Moreover, its ability to predict the

behaviour of the plant and make sophisticated control changes means it settles quicker and

avoids oscillations or overshoot. These findings support the literature, and highlight the

advantages of MPC in industrial environments.

The reduction in the ITAE, along with the added benefit of operating closer to constraints,

could aid in minimising energy usage in the distillation process. However the current

perception in industry is MPC is too complex to implement without a specialist and

consequently too costly and time consuming. In order to overcome such a hurdle better

education and hands on experience is needed. To do so educational tools must be developed.

This paper has provided a basis for establishing such a tool which could be used to educate

personnel and students on the operation and dynamics of advanced control schemes around

complex plants. Ideally, with the integration of the software packages, this can be performed

in a safe, simulated environment however still provide a real visual experience through

Murdoch University 8.0 Conclusion

 72

LabVIEW. By increasing education it could be possible to remove the stigma surrounding MPC.

However, additional work is required to establish a user friendly interface which complements

users’ knowledge and makes available the tools to assist in performing advanced control

theory. Furthermore, the tool will also enable the user to gain experience operating complex

plant operators without the cost or dangers involved. These are discussed in detail in 8.2

Future Works.

8.2 Future Works

One of the challenges with setting up a connection from LabVIEW to APD was the lack of

documentation on the Aspen Custom Modeler DLL. Without knowing the syntax to use with

the property and method nodes in LabVIEW multiple errors were encountered. Typically

ActiveX errors are numbered and can be traced in the supplementary documentation. The

errors encountered when exercising ActiveX to connect LabVIEW directly to APD were not

documented thus this method was abandoned. Further research is needed in isolating these

errors and creating documentation. Experience in computer systems and a deep

understanding of object linking would be necessary during this research. If documentation was

developed it would be possible to remove Excel from the communication sequence and

minimise the amount of software used in achieving integration. An added side effect could be

a reduction in the loop simulation time and see the communication interval be reduced from

 to approximately .

Additionally, in order to employ LabVIEW as a training tool for implementing advanced control

schemes on complex plants, software templates must be developed. The programs developed

through this paper achieve the desired integration however a comprehensive knowledge of

their operation is still required. This stems from a lack of adaptability within the programs

Murdoch University 8.0 Conclusion

 73

constructed. To successfully roll out such an educational product, the amount of hard coding

requiring manipulation by the end user should be minimised. Currently the user must change

the variable names within the Excel VBAs to ensure the correct variables are updated in APD. If

LabVIEW was connected directly to APD and the Aspen Custom Modeler DLL was adequately

documented the input required by the end user would be reduced. However, if this was not

achieved Excel would remain essential for the data communication, and a dynamic way of

sending the variable names from LabVIEW to Excel would be required. The infrastructure of

the current template enables the variables names to be communicated from LabVIEW to Excel.

However attempts to use this information in Excel, which is saved in a string, were not

successful. If a technique to exploit this string information was determine and used to set the

manipulated variables in APD the need for the end user to edit the VBA macro can be

removed. When this transpires, a dynamic template in LabVIEW and Excel could be created

and used in laboratories or training courses.

If a dynamic template was developed, training material would need to be created. The idea is

focused around MPC on complex plants however the students could gain insight into both

advanced control schemes and the behaviour of complex plants. The laboratories could cover

the following ideas across LabVIEW, APD and AHD:

 Setup complex chemical or petroleum plants in APD and AHD respectively;

o Gain an understanding of the Aspen products and their general operation.

 Introduce open loop dynamics of the complex systems;

o Look into the development of input functions and plotting. These inputs could

range from step or ramp inputs through to saw tooth and sinusoidal inputs.

 Implement PI control loops and tuning;

Murdoch University 8.0 Conclusion

 74

o Different tuning methods could be employed and the variances in system

behaviour compared. This also provides an introduction to performance

criteria.

 Implement cascade and/or feedforward control schemes;

 Implement basic MPC through the LabVIEW toolkit and Aspen APC;

o These could cover different features across a few laboratories building on their

previous knowledge each week.

 Create sub VI’s, functions or scripts which can achieve adaptive MPC or adaptive RGA;

o Challenge the students to create their own adaption to the base template and

attempt to apply their knowledge of advance control techniques in LabVIEW.

 Implement advanced MPC through LabVIEW toolkit and Aspen APC.

o A final comparison of the toolboxes full capabilities. The students could be

challenged to see who can create the best performing, or who can make the

best adaptive, MPC controller in a final project. And also look at optimising a

profit function to see which scheme resulted in the biggest margins.

The laboratories would be designed around increasing the users’ knowledge of advanced

control schemes and it is believed the hands on approach and real time simulation will provide

a good basis for increased implementation in industry. By receiving increased exposure to

MPC, the stigma surrounding MPC will slowly be removed. If this difficulty is removed, and the

benefits sold, then as students expand into industry they will be open to the implementation

of such control schemes, potentially even the driving force behind it.

Furthermore, an additional proposal surrounding the template is the ability to expose

personnel to specific scenarios. A good plant operator understands how each section of a plant

Murdoch University 8.0 Conclusion

 75

functions and the effect small operating changes have on the system. Therefore, an operator

will be trained over many years to ensure they understand the plant dynamics and how to

safely operate the plant. If the plant they are learning was established in APD or AHD then the

template could be used for the testing of different input changes as well as fault and training

scenarios. A set of scenarios could be developed to put the plant into a volatile state. The

operator would then need to take corrective action in order to avoid an event of differing

magnitudes. As the LabVIEW template will operate as a real time simulator it will provide an

experience similar to controlling the plant in reality with the added safety benefit.

Finally, as was produced in MATLAB, a function or set of sub VIs need to be developed to

achieve system identification in LabVIEW. Currently there is no tool in LabVIEW which allows

for a SISO or MIMO system to be identified. It could be possible to integrate Excel and the

solver add-on with LabVIEW to perform this. This could possibly be done by:

 Introducing a step into the system;

 Wait for either steady states or a predetermined fix time period to pass;

 Analyse the data using the solver add-on and determine the TF;

 Convert the TF into SS and save it into an array;

 Step the next input and repeat the process; then

 Once all the inputs are completed the sub VI could output the MIMO SS model.

This process could then be performed before entering a loop to control the system in the real

time simulator. Furthermore, this could also be used for RGA analysis once the matrix was

constructed. Overall the MATLAB toolbox and LabVIEW toolkit are lacking around adaptive

control and modelling. They assume the user has the SS model ready to feed into the ‘Create

MPC’ node. By researching and expanding on the toolboxes it could open more avenues for

Murdoch University 8.0 Conclusion

 76

operators to switch to MPC through the diminished fear surrounding their lack of knowledge

on the subject.

Overall the driving theme surrounding this, and all proposed research is providing more

accessible tools and documentation for students and personnel on MPC. The increased

exposure and understanding of MPC will in turn provide greater confidence in advanced

control scheme. Furthermore, the experience in implementing MPC and observing the benefit

on energy and cost reduction might compel more of industry to change to advanced optimised

control schemes.

Murdoch University 9.0 Bibliography

 77

9.0 Bibliography

Ali, N. B., & Petersen, K. (2012). A Consolidated Process for Software Process Simulation. 38th

Euromicro Conference on Software Engineering and Advanced Applications, pp. 4-5.

Ang, K. H., Chong, G. C., & Li, Y. (2005). PID Control System Analysis, Design and Technology.

IEEE Transcations on Control Systems Technology, 559-576.

AspenTech. (2000a). Aspen Plus User Guide 10.2. Cambridge: Aspen Technology.

AspenTech. (2000b). Using the Aspen Plus ActiveX Automation Server. In Aspen Plus User

Guide 10.2 (pp. 37-1;38-35). Cambridge: Aspen Technology.

AspenTech. (2005). Aspen Custom Modeller Reference Guide. Massachusetts: AspenTech.

AspenTech. (2011). Advanced Process Control. Massachusetts: AspenTech.

AspenTech. (2015a). Design and Optimise Chemical Processes with Aspen Plus. Retrieved

September 11, 2015, from Angineering Products:

http://www.aspentech.com/products/aspen-plus.aspx

AspenTech. (2015b). Aspen HYSYS. Retrieved September 18, 2015, from AspenTech:

http://www.aspentech.com/products/aspen-hysys/

AspenTech. (2015c). Aspen HYSYS Dynamics. Retrieved September 25, 2015, from Products:

https://www.aspentech.com/products/aspen-hysys-dynamics.aspx

AspenTech. (2015d). Aspen Capital Cost Estimator. Retrieved September 28, 2015, from

AspenTech: http://www.aspentech.com/products/aspen-kbase.aspx

AspenTech. (2015e). APC Model Builder. Retrieved September 08, 2015, from AspenTech:

https://www.aspentech.com/products/APC-Model-Builder/

Murdoch University 9.0 Bibliography

 78

Boyes, W. (2009). Advanced Control for the Plant Floor. In Instrumentation Reference Book (pp.

623-62). Oxford: Butterworth-Heinemann.

Bristol, E. H. (1966). New Measure of Interaction for Multivariable Process Control. IEEE

Transactions on Automatic Control, 133-134.

Cheremisinoff, N. P. (2000). Distillation Equipment. In Handbook of Chemical Processing

Equipment (pp. 162-165). Oxford: Elsevier.

Cook, S. (2015, Sept 24). Advantages of Microsoft Excel. Retrieved Dec 14, 2015, from

Computer Software: http://hubpages.com/technology/Advantages-of-Microsoft-Excel

Douglas, J. M. (1988). Azeotropic Systems. In Conceptual Design of Chemical Processes (pp.

173-192). New York: McGraw-Hill.

Emerson. (2011). MOL Reduces Energy Consumption at its Algyo Gas Plant Using Emerson’s

SmartProcess Distillation Optimizer. Retrieved August 29, 2015, from Documents:

http://www2.emersonprocess.com/siteadmincenter/PM%20DeltaV%20Documents/Pr

ovenResults/OilGasRefining/RES_OG_MOL_Algyo_APC_Final_7-11.pdf

Emerson. (2013). DeltaV Product Data Sheet. Minnesota: EMERSON.

Emerson. (2015). DeltaV DCS System Overview. Retrieved October 08, 2015, from DeltaV:

http://www2.emersonprocess.com/en-

us/brands/deltav/differentiators/pages/systemoverview.aspx

Gorak, A., & Sorensen, E. (2014). Energy Considerations in Distillation. In Distillation:

Fundamentals and Principles (pp. 226-267). Oxford: Elsevier.

Green, D. W., & Perry, R. H. (2007). Distillation. In Perry's Chemical Engineers' Handbook (pp.

13.4 - 13.9). New York: McGraw-Hill.

Murdoch University 9.0 Bibliography

 79

Hanyak, M. E. (2012). Chemical Process Simulation and the Aspen HYSYS Software.

Pennsylvania: Bucknell University.

Johnson, G. W., & Jennings, R. (2006). LabVIEW Data Types. In LabVIEW Graphical

Programming (p. 126). New York: McGraw-Hill.

Kheir, N. (1995). Preface. In Systems Modeling and Computer Simulation (pp. vii-viii). New

York: Marcel Dekker.

Khoury, F. M. (2005). The Equilibrium Stage. In Multistage Separation Processes (pp. 61-62).

Florida: CRC Press.

Kister, H. Z. (1992). Tray Design and Operation. In Distillation Design (pp. 259-267; 421-434).

New York: McGraw-Hill.

Lee, J.-H., & Dudukovic, M. P. (1998). A Comparison of the Equilibrium and Nonequilibrium

Models for a Multicomponent Reactive Distillation Column. Computers and Chemical

Engineering, 159-172.

Lee, P. L. (1993). Generic Model Control - The Basics. In Nonlinear Process Control (pp. 11-13).

London: Springer-Verlag.

Lee, P. L., & Sullivan, G. R. (1988). Generic Model Control. Computers and Chemical

Engineering, 573-580.

Levine, W. S. (1996). Design Using Performance Indicies. In The Control Handbook (p. 170).

Florida: CRC Press.

Ma, Y. (2013). Introduction to Engineering Informatics. In Semantic Modeling and

Interoperability in Product and Process Engineering (p. 15). London: Springer-Verlag.

Murdoch University 9.0 Bibliography

 80

Maciejowski, J. M. (2002). Predictive Control: with Constraints. Essex: Pearson Education.

MathWorks. (2009). Server Creation Failed: Class not registered. Retrieved September 03,

2015, from MATLAB Central:

http://au.mathworks.com/matlabcentral/newsreader/view_thread/257718

MathWorks. (2015a). MATLAB. Retrieved October 19, 2015, from Mathworks:

http://au.mathworks.com/products/matlab/

MathWorks. (2015b). Product and Services. Retrieved October 19, 2015, from Mathworks:

http://au.mathworks.com/products/

Mathworks. (2015c). Simulink. Retrieved October 19, 2015, from Mathworks:

http://au.mathworks.com/products/simulink/

MathWorks. (2015d). actxserver. Retrieved August 04, 2015, from Documentation:

http://au.mathworks.com/help/matlab/ref/actxserver.html

MathWorks. (2015e). invoke. Retrieved September 06, 2015, from Documentation:

http://au.mathworks.com/help/matlab/ref/invoke.html

MathWorks. (2015f). pwd. Retrieved September 08, 2015, from Documentation:

http://au.mathworks.com/help/matlab/ref/pwd.html

MathWorks. (2015g). cd. Retrieved September 08, 2015, from Documentation:

http://au.mathworks.com/help/matlab/ref/cd.html

MathWorks. (2015h). Model Predictive Control Toolbox. Retrieved August 21, 2015, from

Documentation: http://au.mathworks.com/help/mpc/index.html

Murdoch University 9.0 Bibliography

 81

MathWorks. (2015i). MPC Controller. Retrieved August 25, 2015, from Documentation:

http://au.mathworks.com/help/mpc/ref/mpccontroller.html

MathWorks. (2015j). Identify Linear Models Using System Identification App. Retrieved

October 24, 2015, from Documentation:

http://au.mathworks.com/help/ident/gs/identify-linear-models-using-the-gui.html

Microsoft. (2013). Office 2013 VBA Documentation. Retrieved October 18, 2015, from

Microsoft Download Center: http://www.microsoft.com/en-

us/download/details.aspx?id=40326

Microsoft. (2015a). Excel. Retrieved October 15, 2015, from Microsoft Office:

https://products.office.com/en-us/excel

Microsoft. (2015b). Microsoft OLE DB. Retrieved August 04, 2015, from Windows Data Access

Components: https://msdn.microsoft.com/en-us/library/ms722784(v=vs.85).aspx

Mujtaba, I. M. (2004). Batch Distillation: Design and Operation. London: Imperial College Press.

National Instruments. (2007a). ActiveX and LabVIEW. Retrieved September 10, 2015, from

National Instruments: http://www.ni.com/white-paper/2983/en/

National Instruments. (2007b). CD Convert to State-Space Model (Control Design Toolkit).

Retrieved October 15, 2015, from Manuals: http://zone.ni.com/reference/en-

XX/help/370853D-01/lvctrldsgn/convert_state_space_model/#parent

National Instruments. (2009). Creating and Implementing a Model Predictive Controller. In

Control Design User Manual (pp. 18.1 - 18.19). Texas: National Instruments.

National Instruments. (2015a). LabVIEW System Design Software. Retrieved October 20, 2015,

from National Instruments: http://www.ni.com/labview/

Murdoch University 9.0 Bibliography

 82

National Instruments. (2015b). LabVIEW for Higher Education. Retrieved October 20, 2015,

from National Instruments: http://www.ni.com/labview/applications/academic/

Neelis, M., Worrell, E., & Masanet, E. (2008). Energy Efficiency Improvement and Cost Saving

Opportunities for the Petrochemical Industry. Berkeley: University of California.

Ogunnaike, B. A., & Ray, W. H. (1994). Process Control. In Process Dynamics, Modeling and

Control (pp. 461-675; 723-807; 992-1022). Oxford : Oxford University Press.

Olujić, Ž., Sun, L., Gadalla, M., de Rijke, A., & Jansens, P. J. (2008). Enhancing Thermodynamic

Efficiency of Energy Intensive Distillation Columns. Chemical and Biochemical

Engineering Quarterly, 383-392.

OSIsoft. (2015). What Is PI. Retrieved October 09, 2015, from OSIsoft:

http://www.osisoft.com/software-support/what-is-pi/What_Is_PI.aspx

Peers, Z. (2013). Jump Start: Pressure Relief Scenario in Aspen Plus Dynamics V8. Cambridge:

Aspen Technology.

Robinson, S. (1993). The Application of Computer Simulation in Manufacturing. Integrated

Manufacturing Systems, 18.

Romagnoli, J. A., & Palazoglu, A. (2005). Model Predictive Control (MPC). In Introduction to

Process Controll (pp. 319-335; 251-265). Florida: CRC Press.

Schneider Electric. (2015). PRO/II Process Simulation Datasheet. California: Schneider Electric.

Schwartz, R. L., Olson, E., & Christiansen, T. (1997). Introduction to OLE Automation. Retrieved

October 04, 2015, from Learning Perl on Win32 Systems:

http://docstore.mik.ua/orelly/perl/learn32/ch19_01.htm

Murdoch University 9.0 Bibliography

 83

Sharmila, M., & Mangaiyarkarasi, V. (2014). Modeling and Control of Binary Distillation

Column. International Journal of Advanced Research in Electrical, Electronics and

Instrumentation Engineering, 105-111.

South Dakota School of Mines and Technology. (2000). RadFrac for Dummies: A How to Guide

on Aspen Plus. South Dakota: SDSM&T.

Strang, G., & Borre, K. (1997). Least-Squares Approximation. In Linear Algebra, Geodesy, and

GPS (pp. 174-176). Cambrdige: Wellesley-Cambrdige Press.

Tremblay, D., & Mantrala, V. (2014). Jump Start: Aspen Simulation Workbook in Apsen HYSYS

V8. Massachusetts: AspenTech.

U.S. Energy Information Administration. (1991). 1991 MECS Survey Data. Retrieved September

01, 2015, from Manufacturing Energy Consumption Survey:

http://www.eia.gov/consumption/manufacturing/data/1991/

U.S. Energy Information Administration. (1994). 1994 MECS Survey Data. Retrieved September

01, 2015, from Manufacturing Energy Consumption Survey:

http://www.eia.gov/consumption/manufacturing/data/1994/

U.S. Energy Information Administration. (1998). 1998 MECS Survey Data. Retrieved September

01, 2015, from Manufacturing Energy Consumption Survey:

http://www.eia.gov/consumption/manufacturing/data/1998/

U.S. Energy Information Administration. (2002). 2002 MECS Survey Data. Retrieved September

01, 2015, from Manufacturing Energy Consumption Survey:

http://www.eia.gov/consumption/manufacturing/data/2002/

Murdoch University 9.0 Bibliography

 84

U.S. Energy Information Administration. (2006). 2006 MECS Survey Data. Retrieved September

01, 2015, from Manufacturing Energy Consumption Survey:

http://www.eia.gov/consumption/manufacturing/data/2006/

U.S. Energy Information Administration. (2010). 2010 MECS Survey Data. Retrieved September

01, 2015, from Manufacturing Energy Consumption Survey:

http://www.eia.gov/consumption/manufacturing/data/2010/

University of Michigan. (2010). Encyclopedia of Chemical Engineering Equipment. Retrieved

September 05, 2015, from Bubble Cap:

http://encyclopedia.che.engin.umich.edu/Pages/SeparationsChemical/DistillationColu

mns/Hotspot/BubbleCap.html

Woolf, P. (2011). University of Michigan. Retrieved September 17, 2015, from Michigan

Chemical Process Dynamics and Controls:

https://controls.engin.umich.edu/wiki/images/e/e9/

Murdoch University 10.0 Appendices

 85

10.0 Appendices

10.1 Appendix 1

Initial Conditions

Feed

 Benzene:

 Toluene:

 Xylenes:

 Steady State Flow:

 Steady State Temperature:

 Steady State Pressure:

 Input Stage:

Tray

 Stages:

 Type:

 Spacing:

 Diameter:

 Weir Height:

Reflux Drum

 Nominal Liquid Depth:

 Length:

 Diameter:

Sump

 Nominal Liquid Depth:

Murdoch University 10.0 Appendices

 86

 Height:

 Diameter:

Hydraulics

 Simple Tray:

 Lw/D:

10.2 Appendix 2

Control Specifications

Plant Inputs

 Condenser duty

 Reboiler duty

 Reflux mass flow rate

 Distillate mass flow rate

 Bottoms mass flow rate

 Feed molar flow rate

Plant Outputs

 Condenser pressure

 Reflux drum liquid level

 Sump liquid level

 Mass fraction toluene in the distillate

 Mass fraction benzene in the bottoms

Objectives

 Maintain tower pressure

 Maintain 5% toluene in distillate, or 95% benzene in distillate

Murdoch University 10.0 Appendices

 87

 Maintain 1.7% benzene in bottoms

 Maintain liquid levels in reflux drum and sum at nominal levels found in 10.1 Appendix

1.

10.3 Appendix 3

Aspen Plus ‘Radfrac’ Setup

To launch Aspen Plus go to the Start Menu – All

Programs – AspenTech – Process Modeling V8.6 –

Aspen Plus - Aspen Plus V8.6. When launching, if

prompted to register the license, select Register

Later as shown in Figure 49.

Once the software begins select New – Blank and Recent – Blank

Simulation – Create. This will launch a blank template and display the

Components – Specifications. Select Setup at the top of the list, shown in

Figure 50, enter the title of the project “High-Fidelity Distillation Tower”

and set the global unit set to “MET” for metric. Click Next and it will return

to the Components – Specifications page.

Aspen Plus has a database of components which it can auto fill in the

details for (type, component name, alias). You must list all the

components which will be included in the project here. Start by entering

Benzene into the component ID and press enter. If Aspen Plus does not

Figure 49: AspenTech License Registration.

Figure 50:
Properties Explore

in Aspen Plus.

Murdoch University 10.0 Appendices

 88

auto fill the data there is a problem with the available databases. Figure 51 highlights the

Enterprise Database displaying an error to the user.

Figure 51: Error Notification in Aspen Plus for the Enterprise Databases.

Select this tab and determine if the databanks are available. Aspen Plus typically has a large

selection of databases available. If these are not available then the databases are not correctly

installed on the device and a reinstall should be performed before continuing.

Once the databases have been successfully installed the appropriate data will automatically

complete, as seen in Figure 52. Enter the remaining components, Toluene and p-Xylene, then

select Next.

Figure 52: Component Entry in Aspen Plus.

Murdoch University 10.0 Appendices

 89

This will display the Method Specifications page. The base method use will be NRLT which

applies Ideal gas and Henry’s law. Select next.

This will prompt the user to run a property analysis

to determine if the setup is completed before

moving to the PFD. Figure 53 displays the prompt

from Aspen Plus. If this completed without error

the PFD will be displayed. If not then review the

previous step of this documentation to ensure all

the information has been entered correctly. The

results page will inform the user of the issues encountered when performing the analysis.

The PFD will currently be empty. Select Columns from the Model Palette and drag the

‘RadFrac’ column onto the flow sheet as shown in Figure 54. The object will be named B1 by

default. Right click on the ‘RadFrac’ column and select ‘Rename Object’, name the object

DISTCOL.

Figure 54: 'Radfrac' Column in Aspen Plus.

Figure 53: Property Analysis in Aspen Plus.

Murdoch University 10.0 Appendices

 90

The column now needs the feed, distillate and bottoms streams created.

Select the Material stream. This will highlight the input and output ports

for the given material stream. The red ports are essential while blue are

optional streams. Once all three streams are connected they can be

renamed by right-clicking on the stream and selecting Rename Stream.

These streams are named:

 Feed;

 Distillate; and

 Bottoms.

Figure 56 shows all the necessary streams and objects on the PFD. It is now possible to enter

the numerical specifications for operation.

Figure 56: PFD in Aspen Plus.

By examining the Simulation Explorer located on the left-hand side of the PFD, any object

without a blue tick requires attention. Select Streams – Feed – Input.

Figure 55: 'Radfrac'
Column Expecting

Material Streams in
Aspen Plus.

Murdoch University 10.0 Appendices

 91

There are three state variables which can be selected; however you may only choose two of

the three. For this example we will be specifying temperature and pressure. Change

temperature into Celsius and pressure to atmosphere. Then enter 100 and 1.5 atm. As

stated in 10.1 Appendix 1 the Feed is 500 . Leave the total flow basis as Mole and

enter 500. Now the composition must be entered: the feed stream contains 30% of benzene,

40% of toluene and 30% of xylenes. Change the drop down to Mole-Frac and enter the

variables. It should Total 1 or 100%. Figure 57 displays the completed Feed specifications.

Figure 57: Completed Column Feed Specifications in Aspen Plus.

Select Next and the distillation columns specification setup will be displayed. There are 29

stages in the column and the condenser is of type total, specified in 10.1 Appendix 1. Set the

distillate rate at 150 , as you want to recover 95% of the benzene, with 5% toluene,

and the reflux ratio at 1.5 as shown in Figure 58.

Figure 58: Distillation Column Specifications in Aspen Plus.

Murdoch University 10.0 Appendices

 92

Now the feed stage is specified as stage 15 and the distillate and bottoms product streams

stage 1 and 29 respectively. As the process is ideal no efficiencies will be changed. Select Next

and the completion prompt in Figure 59 will appear. Do not run the simulation yet as the tray

sizing has not been specified.

Figure 59: Simulation Prompt in Aspen Plus.

Select Cancel then the Sizing and Rating tab in the Simulation Explorer,

shown in Figure 60. Select New and enter the tray specifications from 10.1

Appendix 1. As the condenser and reboiler count as stages the starting tray

is specified as 2 and ending stage as maximum trays minus one, or 28. The

tray type is ‘Sieve’ and spacing is 18 .

Now select tray rating below and select stages 2 and 28 for the starting and

ending trays, as well as the Sieve type. Now enter the tray geometry:

diameter and tray spacing from 10.1 Appendix 1. Enter the diameter as 1.95

 , tray spacing 18 and weir height of panel A as 5 .

Finally, select the next tab Design/Pdrop. Press Update section pressure profile and define the

pressure at the top of the column as 1 and bottom stage as 1.6 . Aspen Plus will

determine the pressure drop through the column based on these estimates. All the inputs are

Figure 60: Tray
Sizing tab inside
the Simulation

Explorer in Aspen
Plus.

Murdoch University 10.0 Appendices

 93

now complete and the prompt shown in Figure 59 will be displayed again. This time the

simulation can be run and the convergence results will be displayed as shown in Figure 61. This

will inform the user if any items require attention.

Figure 61: Convergence Iterations in Aspen Plus.

Furthermore the results can be analysed in the Stream Results tab found in Figure 62.

Figure 62: Stream Results in Aspen Plus.

Murdoch University 10.0 Appendices

 94

10.4 Appendix 4

Aspen Plus Steady-State to Dynamic

APD allows the end user to simulate and optimise continuous and batch processes. This

appendix provides the necessary information to transition a steady state model from Aspen

Plus to APD. Additional information is available for the interested reader through AspenTech’s

support, found at support.aspentech.com. A general rule of thumb is to design the PFD inside

the steady state simulation package as it is easier to maintain the properties and avoids

duplication of processes.

Once the steady state model is developed in Aspen Plus the unit operators must be isolated for

exportation to APD. The first step is selected Dynamic Mode from the Dynamics tab in the

ribbon, as shown in Figure 63. With Dynamic Mode selected the simulation is run.

Figure 63: Dynamics Tab in the Aspen Plus Ribbon.

Note that if you want analyse the entire PFD then you do not need to isolate the unit

operations. However if you wanted to only look at

certain operations then you can isolate that unit by

right-clicking on the unit’s feed streams and

selecting ‘Reconcile’. This will launch a popup which

allows the user to select the variables to reconcile.

Once all feeds have been reconciled the remaining

unit operators can be removed from the PFD.
Figure 64: Block Options to Insert to an Existing

Stream.

Murdoch University 10.0 Appendices

 95

Now the type of analysis must be selected: flow driven; or pressure driven. These are selected

in the Dynamics tab as shown in Figure 63. Most analysis will only require flow driven however

if the user needs to analyse the pressure gradient or relief then a pressure driven analysis must

be performed. A pressure driven analysis requires pumps and valves be added to the PFD. To

quickly add an object to an existing stream right-click on the stream and select ‘Insert Block’.

This will launch a popup, as shown in Figure 64, which allows the user to select either a:

 Stream Splitter (FSplit);

 Heater;

 Mixer;

 Pump; or

 Value.

Once the values or pumps are added and the outlet pressure defined

the dynamics of the unit operators can be entered. The primary difference between steady

state and dynamic operation is the sizing, efficiency and heat transfer of equipment. The

valves do not require dynamic specifications but the unit operator dynamics can be specified in

the navigation pane as shown in Figure 65. By opening this tab it is possible to specify the

sizing and heat transfer of the unit operation, as shown in Figure 66.

Figure 66: Dynamic Options for a 'Radfrac' Distillation Column in Aspen Plus.

Figure 65: Navigation
Pane Options for a Unit

Operation.

Murdoch University 10.0 Appendices

 96

Furthermore, the controllers can be pre-selected before exporting to APD by selecting the

Controllers tab. APD will automatically add controllers based on default selections when the

model is exported to APD. By changing the setting in the Controllers tab it is possible to

manipulate which control loops are created in APD. Figure 67 displays the controller options

for the distillation column, this tab will differ depending on the unit operation being

controlled, which will override the defaults if selected.

Figure 67: Controller Selection Pane in Aspen Plus.

With all the dynamic specifications completed the simulation should be run again to confirm

convergence then can be exported by specifying and selecting the analysis to be completed.

This will launch an exporter which will ask for a new name of the file to be specified. Once it

has saved the model in the APD extension it is possible to open in APD.

Murdoch University 10.0 Appendices

 97

10.5 Appendix 5

Aspen Plus Dynamics Controller Setup

To add a controller to the PFD in APD you add an object from the ‘Controls’ or ‘Controls 2’ tabs

in the Dynamics library. Figure 68 below shows these libraries; the ‘Controls’ library has

conventional controller operators while ‘Controls 2’ has advanced control units.

Figure 68: The Controls and Controls 2 Libraries in APD.

To add PID control to the model, the PIDIncr

from the ‘Controls’ library is added to the

PFD near the unit operation it will control.

Then by selecting the control signal from the

list of streams, see Figure 69, the available

control input and outputs will be available on the PFD, as shown in Figure 70.

Figure 70: Available Input and Output Ports for the Control Signal.

Figure 69: Different Streams Available in APD.

Murdoch University 10.0 Appendices

 98

The naming convention for controller units

is , where is increased in increments of

1 as more controllers are added to the PFD.

When you connect the control signal to the

output of the controller it will prompt the

user to select which variable is the MV. This

can be seen in Figure 71 where the option

of the MV, PV and SP are available.

AspenTech uses the naming convention OP

for the controller output variable instead of the MV as in this paper; these are interchangeable

and will be referred to as MV throughout this paper.

Once the MV is selected on the controller is can be

connected to an input port of which variable will be the

controlled. Note that if you select a stream or unit operator

which has only one variable it will automatically select this

as the MV. If you connect to a unit operation which has

multiple variables it will prompt the user to select which

variable will be the MV. Figure 72 portrays this with the

long list of available variables in the ‘Radfrac’ unit operator.

Once this is completed, the input port to the controller

must be connected to the PV in a similar fashion. Note that

if you have already connected the MV to the control unit it

will not provide that option when connecting to the

Figure 71: Output Port Variable Selection of Control B1.

Figure 72: Available MV for the
'Radfrac' Distillation Column in APD.

Murdoch University 10.0 Appendices

 99

available port. This procedure is identical when connecting to the DMCplus unit operator from

the ‘Controls 2’ library. However the DMCplus model must be loaded into the model from

Aspen APC.

Once all controllers are set up they must be tuned. If you

double click on a controller it will launch the controller

overview window, as in Figure 74. The first page will display

the standard controller information: SP; PV; and MV. The

first two buttons, from the left-hand side change the

controller between automatic and manual modes. The third button is used if cascade control is

being utilised in the model while the fourth simple changes the display from units to

percentages. The last three buttons however are used to configure, plot and tune the

controller respectively.

The configuration panel, see Figure 73, allows the

actual PID parameters to be entered. This panel

also includes operating limitations on the PV and

MV, filtering and which controller algorithm to

use. APD has 6 PID algorithms available; these are

shown in Figure 75.

Figure 75: PID Algorithms.

Figure 74: Controller Overview in APD.

Figure 73: Controller Configuration Panel in APD.

Murdoch University 10.0 Appendices

 100

Finally the Tune button allows two tuning methods to be employed:

 Open Loop Approximate Model Tuning; or

 Closed Loop Relay Tuning, or Auto-Tune Variation (ATV).

To do so the system is run with no changes

implemented from steady-state. Then inside the

tuning panel a test started. Figure 76 shows the two

types of methods which can be employed and the

step amplitude or relay amplitude depending on the

method selected. Once the test has been operating

for an extended period of time it can be finished by

pressing ‘Finish test’. This will cause the calculated

loop characteristics to be displayed and the tuning

parameters to be determined.

Depending on the tuning method used will depend on the options available for the tuning

parameters. Approximate model tuning rules available for PI and PID are:

 Ziegler-Nichols;

 Cohen-Coon;

 IMC;

 IAE;

 ISE; or

 ITAE.

The stability margin tuning rules available for PI only with closed loop relay tuning are:

 Ziegler-Nichols; or

 Tyreus-Luyben.

Figure 76: Controller Tuning Panel in APD.

Murdoch University 10.0 Appendices

 101

Once the controllers have been tuned and the user is satisfied it is possible to now run the

dynamic simulation. Note that it is good practice to test the simulation after controllers have

been made to ensure the system is still operating at its steady state conditions.

10.6 Appendix 6

Aspen Plus Dynamics Automation Tasks

In order to create scenarios within APD the user can either manual change variables or create

automatic tasks. These tasks are created by selecting the ‘New Task’ button located in the

ribbon, see Figure 77 below.

Figure 77: Creation Tabs in APD Ribbon.

This prompts the user to name the task, Figure 78 shows the

popup, before showing the task creation script. These

scripts are written in Formula Translation (Fortran).

Task Step_Temp // <Trigger>
// event driven tasks, <Trigger> can be one of:
// Runs At <time> e.g. Runs At 2.5 or
// Runs When <condition> e.g. Runs When b1.y >= 0.6 or
// Runs Once When <condition> e.g. Runs Once When b1.y >= 0.6
// Ramp (<variable>, <final value>, <duration>, <type>);
// SRamp(<variable>, <final value>, <duration>, <type>);
// Wait For <condition> e.g. when b1.y < 0.6;
// (Use Wait For to stop the task firing again once trigger condition has been met)
End

Using this it is possible to manipulate any variables in the PFD and create multiple tasks for

disturbance or set point changes. An example of stepping the temperature in the feed stream

Figure 78: New Task in APD.

Murdoch University 10.0 Appendices

 102

by 15 F at time 450 is provided below. Note the units are not specified in this script and it will

use the default units of the current simulation.

Task Step_Temp Runs When Time == 450
Streams(“FEED”).T: 225; // Changes the temperature of feed to 225 F
End

10.7 Appendix 7

Advanced Process Control

AspenTech’s APC provides two options for advanced control of processes and plants:

 Aspen DMCplus; and

 Aspen Control Platform.

Aspen DMCplus is the leading multivariable MPC in industry. It has been applied in industry to

refining, chemicals and petrochemical processing. It utilises a set of desktop tools for

controller design and simulation and an online component for controller implementation.

Within the desktop suite there are three components.

 DMCplus Model is used to allow system identification, utilising multiple identification

algorithms;

 DMCplus Build makes the control configuration through the use of a configuration

wizard; and

 DMCplus Simulate allows evaluation and testing of controller performance against

model inaccuracies and noise.

This software package is beneficial as it provides a useful and simple tool for constructing and

testing MPC. Furthermore, DMCplus Online suite is a package which enables the controllers to

Murdoch University 10.0 Appendices

 103

be connected online and includes input validation, steady state calculations and dynamic move

calculations. To connect to a field instrument the control is set up through DMCplus Connect.

The second main feature of APC is Aspen Control Platform. This environment provides a single

location for the user to build, test and deploy controllers. Included in this is the servers,

applications as well as data collection and historian. It enables the entire APC application to be

managed through one program including tracking of controller and plant data in real time.

Furthermore, as with all MPC, the ability to predict and optimise controllers is performed

within the software and the direct implementation removes the need for controllers to be

placed in field. The controllers built in Aspen Control Platform are capable of handling

nonlinear processes and allows any of AspenTech’s system identification algorithms to be

used. These are:

 Finite Impulse Response;

 Linear MIMO State Space; and

 Nonlinear MIMO State Space.

Within these there are a few more additional extras. Sequence Control integrates with the real

time database to deliver information to process control systems and operators. Sequence

Control Manager enables the end user to create complex transition strategies based on

sophisticated logic and rules. On top of this standard Key Perfromance Indicators (KPIs) allow

detection of aging equipment and changing economic conditions. These KPIs are determined

online in real time. Furthermore, the package allows the controllers to run online simulation

scenarios which can be used to determine why an event occurred or the best corrective action

to take. This means the controllers have the ability to access historical data and adapt the

model based on the plants regression over time.

Murdoch University 10.0 Appendices

 104

10.8 Appendix 8

MATLAB ActiveX Automation

In order to create the COM automation server in MATLAB the inbuilt function ‘actxserver’ is

used. The programmatic identifier for the COM server is entered and the output of the

function is server’s default interface. To access the entire AspenTech software family the

follow identifiers are used:

 Aspen HYSYS, ‘HYSYS.Application’;

 Aspen Plus, ‘APWN.Document’; or

 Aspen Customer Modeler, ‘AMSimulation.Control’.

Note that within the Aspen Customer Modeler DLL the following programs are called

(AspenTech, 2000b):

 Aspen Plus Dynamics ‘AD Application’;

 Aspen Customer Modeler ‘ACM Application’;

 Aspin Adsim ‘ADS Application’; or

 Aspen Chromatography ‘ACH Application’.

Once the server is created the properties and methods can be determined from the COM

object using the ‘get’ and ‘invoke’ functions. Figure 79 displays a capture of the MATLAB

Command Window displaying the result of the ‘invoke’ command on the HYSYS COM.

Figure 79: Aspen HYSYS COM Server Creation.

Murdoch University 10.0 Appendices

 105

Figure 79 provides the essential methods for automating HYSYS, this in turn makes the

automation process more intuitive. As the Aspen Custom Modeler DLL provides access to four

software packages the use of it is slightly different to typical COM automation servers. The

server is created using actxserver, like all other applications, however it is not possible to

extract the properties and methods automatically from the COM object. This is due to the fact

there are four software packages available within this library.

Once the COM server is established the user must define which program within the DLL it

wishes to automate. To do so ‘StartRun’ must be invoked and the specific program, file name

and variables must be defined. If the server was created as such:

ACMApp = actxserver('AMSimulation.Control')

Then the file will be opened by using the following template.

invoke(ACMApp, 'StartRun', pwd, 'C:\...\File.dynf', 'Application',

NoInputs, 'InputNames', NoOutputs, 'OutputNames', Visible);

Where:

 ACMApp is the COM Server;

 ‘StartRun’ is the method being invoked;

 pwd is an inbuilt MATLAB function and returns the current working directory;

 'C:\...\File.dynf' is the directory of the file;

 ‘Application’ is the specific application to launch, in this case ‘AD Application’;

 NoInputs is the number of inputs to be manipulated;

 ‘InputNames’ is the name of all the inputs separated by a backslash;

 NoOutputs is the number of outputs to be controlled;

 ‘OutputNames’ is the name of all outputs separated by a backslash; and

 Visible is either true or false to make the application visible on the device.

Murdoch University 10.0 Appendices

 106

Once this line is executed the specific file will have been opened within the application and

prepared for simulation.

To update the manipulated variables the method ‘UpdateInputs’ is used to prepare the file to

accept variable changes. Then the ‘SetInputValue’ method overrides the input variables

specified in ‘InputNames’. Now following the flow chart in 5.0 ActiveX the system is run by

invoking the ‘Run’ method. This is input as follows:

invoke(ACMApp, 'Run', EndTime, 'C:\...\File.dynf')

This will run the simulation from its current time to the time specified in EndTime. Once the

simulation reaches EndTime it will stop and return control to MATLAB to continue through the

script.

Once the simulation has run the output variables can be received from APD using

‘GetOutputValue’. This process can be repeated until the simulation is cancelled by the user or

the simulation reaches the final time period. When this occurs it is important the file is

terminated by invoking the method ‘Terminate’ or using Quit(ACMApp). Following

termination the COM server must be closed by using ACMApp.delete.

When creating COM automation servers the initial step is to attempt to retrieve the properties

and methods from the server. If this is unsuccessful then a look into further documentation is

required. The Aspen Custom Modeler DLL is a special case when dealing with COM

automation. As it does not provide the properties and methods through the COM server it can

be difficult to execute. To overcome this the Aspen Customer Modeler Reference Guide (2005)

was utilised. This guide outlines the available properties, methods and syntax to successfully

establish automation through the Aspen Custom Modeler DLL.

Murdoch University 10.0 Appendices

 107

10.9 Appendix 9

LabVIEW ActiveX Automation

To communicate to a software package from LabVIEW,

using ActiveX, the ActiveX class must be selected. This is

the library which will be referenced to invoke methods

and properties over the COM. Once the Automation

Open block is placed on the LabVIEW Block Diagram the

input refnum can be specified by right-clicking and browsing the available DLL as shown in

Figure 80. Once selected, this will launch the selection tool displayed in Figure 81.

Initially a connection to APD was attempted.

Aspen Custom Modeler 30.0 DLL was elected from

the list of available libraries then ‘AD Application’

was nominated from the objects. With the COM

now open the reference stream can be connected

to the property and invoke nodes. As detailed in

BODY this method was not successful so connection to Excel, through ‘Excel.Application’, was

used.

Figure 82 displays the block connection to open a COM

server from LabVIEW to Excel and provides the option

to make the Excel application visible or invisible during

operation. During troubleshooting and testing it is best

to make the application visible as it can be easier to

Figure 80: LabVIEW ActiveX Selection.

Figure 81: ActiveX Class Selection Tool in LabVIEW.

Figure 82: Opening Excel COM Object in
LabVIEW.

Murdoch University 10.0 Appendices

 108

confirm operation of the server. Once the server is established correctly it can be made

invisible so the end user only deals with one software package.

In order to ensure the correct sequence of data transfer, simulation and data logging between

LabVIEW, Excel and APD, Excel macros will be utilised. With the COM active it is possible to

open the workbook and execute the macros within. Figure 83 below shows the infrastructure

required to achieve this. The specific Excel document to open is specified from the Front Panel

VI and concatenated with the default directory and macro-enabled workbook extension. Once

the workbook is open the initial macro was be executed to create a server to APD from Excel.

This entire sequence is completed before entering a while loop as the COM servers do not

need to be created multiple times and opening and closing the server every loop introduces a

significant delay in operation. The macro to open communication between Excel and APD,

called ‘OpenAspen’, is found in 10.11 Appendix 11.

Figure 83: Initial Setup of Excel COM in LabVIEW.

Murdoch University 10.0 Appendices

 109

With communication between LabVIEW to Excel and Excel to APD

established the controller action will be calculated inside a while loop

and sent to APD every iteration. The controller algorithms are not

limited by the communication and can be coded in a number of ways.

These control schemes are discussed in detail in 2.2 Process Control.

Each loop the control error is calculated using Equation 2 on page 8

and fed to the control algorithms. This MV is sent to Excel by

executing the macro ‘StepAspen’ which can be found in 10.12

Appendix 12. This process will extract the MVs from LabVIEW for all

the control loops, log them in Excel and update APD. Once the

variables have been updated in APD the simulation is stepped one

time unit, which mirrors the loop time in LabVIEW. Then the PVs retrieved and logged in Excel

before being updated in LabVIEW. Excel undertakes the bulk of this operation. LabVIEW only

executes the macro remotely and waits until the PVs are updated for the given MVs.

This process will continue until the user stops the

simulation. This is achieved by pressing the STOP button

located on the Front Panel and triggers the closure of the

COM servers. When the while loop is departed the

‘CloseAspen’ macro, found in 10.13 Appendix 13 is

executed. This macro will close APD then the COM from

Excel to APD. Once this is completed, functionality will

return to LabVIEW and it will close Excel then the Excel

application COM. As stated previously in 5.0 ActiveX, it is

important to close the COM servers as unexpected software behaviour can result.

Figure 84: Executing a
VBA Macro in LabVIEW.

Figure 85: Closing the COM Using
ActiveX Blocks in LabVIEW.

Murdoch University 10.0 Appendices

 110

10.10 Appendix 10

Excel ActiveX Automation

Before any data can be communicated between LabVIEW and Excel or APD and Excel the COM

servers must be established. First an ActiveX object is created for LabVIEW using the handle

‘LabVIEW.Application’. Once this is completed the specific LabVIEW document can be set as

the reference.

Figure 86: Macro Extract to Open COM with LabVIEW and set the Reference Document.

As the LabVIEW document is already open there is no need to reopen this file, however the

COM does need to know what file to reference. Once this is complete it is possible to extract

information from LabVIEW using GetControlValue

and manipulate variables with SetControlValue.

This specific method of communication requires

the control values to be specified in LabVIEW. In

the top right corner of LabVIEW is the tool which

connects to each variable which can be either

manipulated or read. This is configured as shown in Figure 87 with the MV, DV, PV and system

information assigned to a free port. It does not matter if the variable is an indicator or control

in LabVIEW, it is assigned to a port the same way. With the variables connected it is possible to

call them over the COM using the syntax shown in Figure 88.

Figure 88: Syntax to Send and Receive Data from LabVIEW over ActiveX.

Figure 87: Control Values Available in LabVIEW.

Murdoch University 10.0 Appendices

 111

Now the ActiveX object for

APD must be created and

the file specified. This uses

a similar convention as

shown in Figure 86 however

the handle used is ‘AD

Application’. Once established the APD file must be opened and system settings customised.

As the idea was to create LabVIEW as the main program for the end user the settings from APD

are defined in LabVIEW and sent to Excel during the first macro. This string is called "Aspen Set

Up File" and is split using the code found in Figure 89. This information includes:

 The file name to open;

 Which AspenTech product to launch;

 The input variables;

 The output variables;

 If the Aspen software should be visible; and

 If Excel should clear the data from the workbook.

Given this information it is possible to open the ActiveX object and set the simulation options

of the Aspen software package. Figure 90 displays the code required to: open the COM; make

the server visible; change the run mode to dynamic; set the time interval; and sent the time

units.

Figure 89: Code to Retrieve the Aspen System Setup Variables in VBA.

Murdoch University 10.0 Appendices

 112

Figure 90: Code to Open a COM with APD in VBA.

10.11 Appendix 11 shows the macro associated with the opening and initial setup of APD. With

the setup completed the next macro covers the communication of data. This macro, called

‘StepAspen’, will be executed every loop iteration in LabVIEW. Initially it will retrieve the MVs

and DVs using GetControlValue. These variables will then be logged into their respective

columns in the Excel workbook. Once they are logged Excel will send them to Aspen using the

following convention:

ACMApp.Simulation.Flowsheet.STREAMS("NAME").TYPE.Value("UNITS")

This is used for both updating and extracting variables in APD thorough ActiveX as shown

below in Figure 91.

Figure 91: VBA Code for Sending and Receiving Data in Excel to APD.

There are two operators which can be called using this syntax, streams and blocks. Then the

name of the operator as displayed in APD must be entered. The variables being manipulated

can be found through the Aspen Model Explorer, as shown in Figure 92. By comparing the

Murdoch University 10.0 Appendices

 113

naming convention specified in Figure

91 to the tree structure in Figure 92 it

can be concluded that the ActiveX

connection directly follows the model

explorer tree structure to manipulate

the variable specified. Each period

separates a new level on the tree.

Once the MVs are updated in APD the

simulation is stepped by one time

period, using ACMApp.Simulation.Step,

before retrieving the PVs from APD and

saving the workbook. This macro can be found in 10.12 Appendix 12. This process will continue

each iteration until the STOP button is pressed in LabVIEW and the ‘CloseAspen’ macro is

called. This final macro closes the APD document followed by closing the COM server and

saving the workbook. Once this macro has completed it returns control to LabVIEW which

closes the workbook and Excel COM server. This macro is documented in 10.13 Appendix 13.

The final product in Excel from this process is provided in Figure 93.

Figure 93: Logged Data in Excel from Automation with LabVIEW and APD.

Figure 92: Model Explorer in APD.

Murdoch University 10.0 Appendices

 114

10.11 Appendix 11

Excel Open Aspen Macro

The following macro provides the basis for creating a COM object to LabVIEW and APD. This is

used to establish the connection and setup the parameters within APD.

' Global Variables
Dim ACMApp As Object
Dim ACMDocument As Object
Dim ACMSimulation As Object
Dim LabVIEWApp As Object
Dim LabVIEWDocument As Object
Dim ParamNames(15) As String
Dim ParamValues(15) As Variant
Dim SetUp() As String

Sub OpenAspen()
 ''
 ' Written by Joshua M Eggins, Murdoch University 28/09/2015
 ' This sub will start one of the ASPEN products and format the workbook to ensure it is ready
for the
 ' Declared variables
 Dim Inputs() As String
 Dim Disturbances() As String
 Dim Outputs() As String
 Dim CurrentRow As Long
 Dim CurrentColumn As Long
 ''
 ' Extract the data from LabVIEW to initiate the software
 ' SetUp(0): File and directory
 ' SetUp(1): Application to launch
 ' SetUp(2): Number of inputs
 ' SetUp(4): Number of disturbances
 ' SetUp(6): Number of outputs
 ' SetUp(8): Visible? Y/N
 ' SetUp(9): Erase all data? Y/N
 ' Inputs(0): Input 1
 ' Inputs(1): Input 2
 ' ...
 ' Disturbance(0): Disturbance 1
 ' Disturbance(1): Disturbance 2
 ' ...
 ' Outputs(0): Input 1
 ' Outputs(1): Input 2
 ' ...
 ''

Murdoch University 10.0 Appendices

 115

 ' Turn off Screen Updates Until all Actions Completed
 Application.ScreenUpdating = False
 ''
 ' Setup the Parameter Names
 ParamNames(0) = "dt (ms)"
 ParamNames(1) = "Aspen Set Up File"
 ParamNames(2) = "Manipulated Variable 01"
 ParamNames(3) = "Manipulated Variable 02"
 ParamNames(4) = "Manipulated Variable 03"
 ParamNames(5) = "Manipulated Variable 04"
 ParamNames(6) = "Manipulated Variable 05"
 ParamNames(7) = "Disturbance Variable 01"
 ParamNames(8) = "Disturbance Variable 02"
 ParamNames(9) = "Disturbance Variable 03"
 ParamNames(10) = "Disturbance Variable 04"
 ParamNames(11) = "Process Variable 01"
 ParamNames(12) = "Process Variable 02"
 ParamNames(13) = "Process Variable 03"
 ParamNames(14) = "Process Variable 04"
 ParamNames(15) = "Process Variable 05"
 ' Establish Communication to LabVIEW and send and pull information from
 Set LabVIEWApp = CreateObject("LabVIEW.Application")
 Set LabVIEWDocument =
LabVIEWApp.GetVIReference("C:\Users\30983374\Desktop\NIMacro.vi")
 ''
 ' Determine the Set up information
 ' Seperate the string
 SetUp = Split(LabVIEWDocument.GetControlValue(ParamNames(1)), ",")
 ' Remove the spaces and string quotations
 For i = LBound(SetUp) To UBound(SetUp)
 If i <> 1 Then
 SetUp(i) = Replace(SetUp(i), " ", "")
 Else
 ProgramID = Split(SetUp(i), "'")
 SetUp(i) = ProgramID(1)
 End If
 Next i
 ''
 ' Store the input, disturbances and outputs in arrays then seperate them to be displayed
 ' in the workbook with the desired units below the name of the variable
 ' Erase all data in workbook
 If SetUp(9) = "True" Then
 Cells.Delete Shift:=xlUp
 End If
 ' Time Variables
 Cells(1, 1).Value = "TIME"
 Cells(2, 1).Value = "ACMSimulation.Time"
 Cells(3, 1).Value = "Seconds"
 ' Input Variables
 Inputs = Split(SetUp(3), "\")

Murdoch University 10.0 Appendices

 116

 Cells(1, 2).Value = "INPUTS"
 For k = LBound(Inputs) To UBound(Inputs)
 tempstr = Split(Inputs(k), "|")
 Cells(2, k + 2).Value = tempstr(0)
 Cells(3, k + 2).Value = tempstr(1)
 Next k
 ' Disturbance Variables
 Disturbances = Split(SetUp(5), "\")
 If SetUp(4) > 0 Then
 Cells(1, k + 2).Value = "DISTURBANCES"
 For l = LBound(Disturbances) To UBound(Disturbances)
 tempstr = Split(Disturbances(l), "|")
 Cells(2, k + l + 2).Value = tempstr(0)
 Cells(3, k + l + 2).Value = tempstr(1)
 Next l
 Else
 l = 0
 End If
 ' Output Variables
 Outputs = Split(SetUp(7), "\")
 Cells(1, k + l + 2).Value = "OUTPUTS"
 For j = LBound(Outputs) To UBound(Outputs)
 tempstr = Split(Outputs(j), "|")
 Cells(2, k + l + j + 2).Value = tempstr(0)
 Cells(3, k + l + j + 2).Value = tempstr(1)
 Next j
 ' Change the column sizing to fit the entire directory
 Columns("A:ZZ").ColumnWidth = 35
 ''
 ' Set up the ASPEN product for simulation and open the connection
 ' Create COM to ASPEN Product
 Set ACMApp = CreateObject(SetUp(1))
 ' Make the product visible
 If SetUp(8) = "True" Then
 ACMApp.Visible = True
 Else
 ACMApp.Visible = False
 End If
 ' Open specific file
 Set ACMDocument = ACMApp.opendocument(SetUp(0))
 Set ACMSimulation = ACMApp.simulation
 ' Change run mode to Dynamic
 ACMSimulation.runmode = "Dynamic"
 ' Extract the time from LabVIEW then change the step time in ASPEN to match
 ACMSimulation.communicationinterval =
LabVIEWDocument.GetControlValue(ParamNames(0)) / 1000
 ' Check the units in ASPEN and change to seconds if needed
 If ACMSimulation.Options.TimeSettings.CommunicationUnits <> "Seconds" Then
 ACMSimulation.Options.TimeSettings.CommunicationUnits = "Seconds"
 End If

Murdoch University 10.0 Appendices

 117

 ''
 ' Place a thin solid line below the last row of data, this can be used to distinquish between
data sets
 CurrentRow = Cells(Rows.Count, 1).End(xlUp).Row
 CurrentColumn = Cells(CurrentRow, Columns.Count).End(xlToLeft).Column
 With Range(Cells(CurrentRow, 1), Cells(CurrentRow,
CurrentColumn)).Borders(xlEdgeBottom)
 .LineStyle = xlContinuous
 .ColorIndex = 0
 .TintAndShade = 0
 .Weight = xlThin
 End With
 ''
 ' Freeze the label panes in the first three rows to enable better analysis of data
 ActiveWindow.FreezePanes = False
 Range("A4").Select
 ActiveWindow.FreezePanes = True
 Range("A1").Select
 ''
 ' Simulation is now set up and the workbook formatted
 ' Save the Workbook for next set of updates
 ThisWorkbook.Save
 ' Turn on Screen Updates
 Application.ScreenUpdating = True
 ''
End Sub

10.12 Appendix 12

Excel Step Aspen Macro

With APD set up it is possible to update the inputs, step the simulation one time period and

retrieve the outputs. The following macro completes these steps and communicates with

LabVIEW to retrieve the new MVs and update the PVs.

Sub StepAspen()
 ''
 ' Written by Joshua M Eggins, Murdoch University 28/09/2015
 ' This sub will step the open ASPEN product at the given step intervals and save the
workbook
 ''
 ' Determine the current row to log data to
 Dim CurrentRow As Long
 CurrentRow = ActiveSheet.Range("A" & Rows.Count).End(xlUp).Row + 1

Murdoch University 10.0 Appendices

 118

 ''
 ' Turn off Screen Updates Until all Actions Completed
 Application.ScreenUpdating = False
 ''
 ' Setup the Parameter Names
 ParamNames(0) = "dt (ms)"
 ParamNames(1) = "Aspen Set Up File"
 ParamNames(2) = "Manipulated Variable 01"
 ParamNames(3) = "Manipulated Variable 02"
 ParamNames(4) = "Manipulated Variable 03"
 ParamNames(5) = "Manipulated Variable 04"
 ParamNames(6) = "Manipulated Variable 05"
 ParamNames(7) = "Disturbance Variable 01"
 ParamNames(8) = "Disturbance Variable 02"
 ParamNames(9) = "Disturbance Variable 03"
 ParamNames(10) = "Disturbance Variable 04"
 ParamNames(11) = "Process Variable 01"
 ParamNames(12) = "Process Variable 02"
 ParamNames(13) = "Process Variable 03"
 ParamNames(14) = "Process Variable 04"
 ParamNames(15) = "Process Variable 05"
 ''
 ' Extract the time from LabVIEW then change the step time in ASPEN to match
 If ACMSimulation.communicationinterval <>
LabVIEWDocument.GetControlValue(ParamNames(0)) / 1000 Then
 ACMSimulation.communicationinterval =
LabVIEWDocument.GetControlValue(ParamNames(0)) / 1000
 End If
 ''
 ' Inputs
 ' SetUp(2): Number of inputs
 For i = 1 To 4
 Cells(CurrentRow, i + 1).Value = LabVIEWDocument.GetControlValue(ParamNames(1 + i))
 If i = 1 Then
 ACMSimulation.Flowsheet.STREAMS("DISTILLATE").FMR.Value("lb/hr") =
Cells(CurrentRow, i + 1).Value
 ElseIf i = 2 Then
 ACMSimulation.Flowsheet.Blocks("DISTCOL").Condenser(1).Fl_med.Value("lb/hr") =
Cells(CurrentRow, i + 1).Value
 ElseIf i = 3 Then
 ACMSimulation.Flowsheet.STREAMS("BOTTOMS").FMR.Value("lb/hr") =
Cells(CurrentRow, i + 1).Value
 ElseIf i = 4 Then
 ACMSimulation.Flowsheet.STREAMS("FEED").FMR.Value("lb/hr") = Cells(CurrentRow, i +
1).Value
 ElseIf i = 5 Then
 ' Additional Input
 End If
 Next i
 i = i - 1

Murdoch University 10.0 Appendices

 119

 ''
 ' Disturbances
 ' SetUp(4): Number of disturbances
 For j = 1 To SetUp(4)
 Cells(CurrentRow, i + j + 1).Value = LabVIEWDocument.GetControlValue(ParamNames(6 +
j))
 If j = 1 Then
 ACMSimulation.Flowsheet.STREAMS("FEED").T.Value("F") = Cells(CurrentRow, i + j +
1).Value
 ElseIf i = 2 Then
 ' Additional Disturbance
 ElseIf i = 3 Then
 ' Additional Disturbance
 ElseIf i = 4 Then
 ' Additional Disturbance
 End If
 Next j
 j = j - 1
 ''
 ' Update the inputs and disturbances
 ACMSimulation.Step (True)
 ''
 ' Outputs
 ' SetUp(6): Number of outputs
 For k = 1 To SetUp(6)
 If k = 1 Then
 Cells(CurrentRow, i + j + k + 1).Value =
ACMSimulation.Flowsheet.Blocks("DISTCOL").Stage(1).Level.Value("ft")
 ElseIf k = 2 Then
 Cells(CurrentRow, i + j + k + 1).Value = ACMSimulation.Flowsheet.Blocks("DISTCOL
").Stage(1).P.Value("psi")
 ElseIf k = 3 Then
 Cells(CurrentRow, i + j + k + 1).Value = ACMSimulation.Flowsheet.Blocks("DISTCOL
").Stage(22).Level.Value("ft")
 ElseIf k = 4 Then
 Cells(CurrentRow, i + j + k + 1).Value =
ACMSimulation.Flowsheet.Streams("DISTILLATE").Zmn("TOLUENE").Value("kg/kg")
 ElseIf k = 5 Then
 Cells(CurrentRow, i + j + k + 1).Value =
ACMSimulation.Flowsheet.Streams("BOTTOMS").Zmn("BENZENE").Value("kg/kg")
 End If
 PVControlValueVI = LabVIEWDocument.SetControlValue(ParamNames(10 + k),
Cells(CurrentRow, i + j + k + 1).Value)
 Next k
 Cells(CurrentRow, 1).Value = ACMSimulation.Time
 ''
 ' Save the Workbook for next set of updates
 ThisWorkbook.Save
 ' Turn on Screen Updates
 Application.ScreenUpdating = True

Murdoch University 10.0 Appendices

 120

 ''
End Sub

10.13 Appendix 13

Excel Close Aspen Macro

This macro closes the open APD document and then the ActiveX object.

Sub CloseAspen()
 ''
 ' Written by Joshua M Eggins, Murdoch University 28/09/2015
 ' This sub will close one of the ASPEN products and save the workbook
 ''
 ' Close the ActiveX COM
 ACMApp.Quit
 ' Save the Workbook
 ThisWorkbook.Save
 ''
End Sub

10.14 Appendix 14

ActiveX Co-Simulation

The following plots are the remaining ActiveX validation plots. These are simply a reference to

display the correct implementation of the communication between MATLAB and APD in

addition to LabVIEW, Excel and APD. 5.5 Co-Simulation displays the step of the DV in Figure 30.

Figure 94 displays the level in the sump due to this disturbance change and Figure 95 the

controller action to track the set point. Similarly, Figure 96 is the pressure in the condenser

while being controlled by the reflux flow rate shown in Figure 97.

Murdoch University 10.0 Appendices

 121

Figure 94: Plot of the Level in the Sump Controlled After a Disturbance Change.

Murdoch University 10.0 Appendices

 122

Figure 95: Plot of the Manipulated Flow Rate of the Bottoms Stream to control the Level in the Sump.

Murdoch University 10.0 Appendices

 123

Figure 96: Plot of the Pressure in the Condenser Controlled After a Disturbance Change.

Murdoch University 10.0 Appendices

 124

Figure 97: Plot of the Manipulated Reflux Flow Rate to Control the Condenser Pressure.

Murdoch University 10.0 Appendices

 125

10.15 Appendix 15

MATLAB System Identification Function

In order to easily determine a system’s transfer function the least squares method was

employed within a user defined function. This enabled the MIMO transfer function script the

capabilities to quickly determine a system’s model without using too much computer memory

or user time. In order to achieve this identification, the data is fed into the function. This is

then separated into the input and output streams and the time of the step established. An

additional feature was added which allows the user the ability to view the plot and select if any

data needed to be removed from the end of the plot due to unwanted dynamics. This issue

arises from the limitations being reached in capacity systems when the simulation logged data

for an excessive period of time. If there is information on the plot which is not needed for the

system identification the user can select it on the plot with a simple mouse click. The function

will then remove all the data from that time period onwards from the modelling algorithm.

Once the data has been trimmed, it can be used to establish the transfer function. This process

is only capable of SISO identification. However the MIMO transfer function modeller found in

10.17 Appendix 17 utilises this function to determine the MIMO matrix. There are two models

which the function examines:

 First Order; and

 Capacity.

The first order model tries to minimise the sum of the error squared (Strang & Borre, 1997, pp.

174-176), also known as the method of least squares, to approximate the model parameters.

As the model parameters are changed the sum of the error squared is calculated. If it is greater

than the previous it is possible the function is heading in the wrong direction so corrections are

Murdoch University 10.0 Appendices

 126

made. Once the function has converged on the minimum it will exit the loop. Now the capacity

model is calculated using the standard linear model and the error is calculated.

Before outputting the system’s transfer function, a comparison of the two models is

undertaken and the model with the smallest sum of error squared is selected as the solution.

This function was validated against Microsoft Excel’s solver add-on and found to have no

variations. The following script is the function script from MATLAB for user’s reference.

function [mod, dt] = solverlstsq(stepdata, tout)
%% Step Data Model Builder
% Joshua M Eggins, Murdoch University, 14/09/2015
% Take the output of Simulink and determine the first order model or

linear
% capacity system of the system to be imported into any model
% based controller. Such as Dynamic Matrix Control (DMC).

%% Time Step
% Check if the model data is available
if length(stepdata) < 2
 error('No model data found. Re-simulate the model.')
end
% Set the sample time of the data
dt = tout(2) - tout(1);

%% Extract Data
% Extract the data into arrays for processing
PV = stepdata(:,1);
MV = stepdata(:,2);
Time = tout(:,1);
% Determine the steady state values and deviate the variables
PVsteady = PV(1);
MVsteady = MV(1);
PVdev = PV - PVsteady;
MVdev = MV - MVsteady;

%% Input Step Time
% Check for when the input changes
for signalposition = 1:length(MVdev) - 1
 if MVdev(signalposition + 1) ~= MVdev(signalposition)
 MVStepTime = signalposition;
 end
end
% Remove excess data pre input step
MVdevSnip = MVdev(MVStepTime+1:length(MVdev));
PVdevSnip = PVdev(MVStepTime+1:length(MVdev));
TimedevSnip = Time(MVStepTime:length(MVdev)-1)-Time(MVStepTime);

Murdoch University 10.0 Appendices

 127

% Allow user to check for any unwanted behaviour at the end of the

plot
% that affect dynamics
% ie. Maximum or minimum reached
disp('If there is any unwanted data in the figure, click on the plot

to define the position to remove. Any information after this time will

be removed for the model prediction algorithm. If no data should be

removed pressed Enter.')
figure(10)
plot(TimedevSnip, PVdevSnip)
[t,y] = ginput(1);
close(figure(10))
% Make sure there was a selection made and if so then remove excess

from
% plot before calculating models
if t > 0
 position = find(TimedevSnip==round(t));
 MVdevSnip = MVdevSnip(1:position);
 PVdevSnip = PVdevSnip(1:position);
 TimedevSnip = TimedevSnip(1:position);
end

%% Model Prediction - First Order Model
% Determine the input step and system gain.
% Additional checks could involve checking to ensure not more than one

step
% happens over the checking of the data as this would void the error
% calculations and model.
A = MVdevSnip(length(MVdevSnip));
K = PVdevSnip(length(PVdevSnip)) / A;
% Arbitrary large error to initiate the array
SumError = 10000000;
SumError2 = 100000;
tau = 5;
direct = 1;
Tau = 0;
same = 0;
% Solve for the minimum sum of the error squared
% When the minimum is found, save tau for use once all options are
% completed.
while same < 10
 SumError3 = SumError;
 SumError = 0;
 for ii = 1:length(PVdevSnip)
 % Extract actual data and calculate the predicted
 time = (ii-1)*dt;
 ModelPredicted = A*K*(1-exp(-(time/tau)));
 ModelActual = PVdevSnip(ii);
 % Calculate the error
 Error = ModelPredicted - ModelActual;
 SumError = SumError + (Error)^2;
 end
 % If the sum of the error squared is a new minimum save the error

and
 % tau for use in next iterations
 if SumError > SumError3
 direct = direct*-1;
 end

Murdoch University 10.0 Appendices

 128

 tau = tau + direct*0.01;
 Tau2 = Tau;
 if SumError < SumError2
 SumError2 = SumError;
 Err = SumError;
 Tau = tau;
 end
 if Tau == Tau2
 same = same + 1;
 else
 same = 0;
 end
end

%% Model Prediction - Capacity Model
% Determine the slope of the line.
finaly = PVdevSnip(length(PVdevSnip));
finalx = TimedevSnip(length(TimedevSnip));
SumErrorLin = 0;
KLin = finaly / finalx / A;
% Calculate the sum of the error squared
for ii = 1:length(PVdevSnip)
 % Extract actual data and calculate the predicted
 time = (ii-1)*dt;
 ModelPredicted = A*KLin*time;
 ModelActual = PVdevSnip(ii);
 % Calculate the error
 Error = ModelPredicted - ModelActual;
 SumErrorLin = SumErrorLin + (Error)^2;
End

%% Result
% Plot the result to confirm the operation of the model predictor in
% addition to display the results. This can be used as a reference

against
% user predicted models.
% Determine which model gave a better response and output data
if SumErrorLin < SumError
 fprintf('Linear Model Found: A = %0.3f K = %0.3f dt =

%0.3f\nThe sum of the squared error is %0.4f\n', A, KLin, dt,

SumErrorLin)
 %plot(TimedevSnip, PVdevSnip, 'b', TimedevSnip,

A*KLin*TimedevSnip, 'r')
 mod = tf(KLin,[1 0]);
else
 fprintf('First Order Model Found: A = %0.3f K = %0.3f Tau =

%0.3f dt = %0.3f\nThe sum of the squared error is %0.4f\n', A, K,

Tau, dt, Err)
 %plot(TimedevSnip, PVdevSnip, 'b', TimedevSnip, A*K*(1-exp(-

(TimedevSnip/Tau))), 'r')
 mod = tf(K,[Tau 1]);
end
end

Murdoch University 10.0 Appendices

 129

10.16 Appendix 16

MATLAB Automatic MIMO TF Modeller Script

In order to use the MPC Toolbox in MATLAB and Simulink a model must be obtained. The issue

associated with integrating MATLAB to APD is the MPC Toolbox is not able to automatically

linearise the plant and determine the plant model. To overcome this issue a script has been

written which performs unit steps on the inputs, in the open loop Simulink file, one by one and

determines the transfer function for each output to the inputs. These transfer functions are

then saved into a MIMO transfer function and input into the MPC Toolbox.

The user can define the Simulink file to open, the final time in the simulation and the time of

the input step. It will then do a single iteration simulation of the Simulink file to determine

how many inputs and outputs are connected to the sinks in addition to the sampling time of

the simulation. Once this is completed it will reset all the inputs back to zero and all step times

back to zero before stepping the first input by the amplitude and at the time specified at the

start of the program. Once the simulation is completed for the first input, the input and the

first output is sent to the model predictor. This is performed within a loop in order to find a

model for all the outputs against that input.

Once this is completed, the input is reset to zero and the second input is stepped. This process

will repeat until the final input has been stepped and the entire MIMO transfer function matrix

constructed. It is possible to then import the variable ‘MIMOPlantModel’ into the MPC

Toolbox and design the advanced controller against this model. The full script, with comments,

is given below. The function to identify the system model is found in 10.15 Appendix 15.

%% Solve for the MIMO transfer function models of a plant

Murdoch University 10.0 Appendices

 130

% Joshua M Eggins, Murdoch University, 13/10/2015
% This dynamic predictor can be used in conjunction with Simulink to
% determine the MIMO transfer function matrix for the plant.
% This script is dynamic and will work for any plant provided the

inputs
% are connected to a 'to workspace' sink labelled 'inputs' and the

outputs
% connected to a separate sink labels 'outputs'.
clear
clc

%% Set the name of the Simulink file to open
simulinkFile = 'FileNameOpenLoop';
finalTime = 3000;
stepTime = 500;
stepAmplitude = 1;

%% Initiate the Simulation
% Run the simulation as a test to determine the data to be examined

and how
% many of each variable exists
set_param(simulinkFile, 'StopTime', '1');
simOutput = sim(simulinkFile, 'ReturnWorkspaceOutputs', 'on');
set_param(simulinkFile, 'StopTime', num2str(finalTime));
inputs = simOutput.get('inputs');
noinputs = size(inputs, 2);
outputs = simOutput.get('outputs');
nooutputs = size(outputs, 2);
tout = simOutput.get('tout');
timestep = tout(2) - tout(1);
tout = [0:timestep:finalTime]';

%% Initiate the Input Array
% Empty array to input the sample time for each transfer function
dt = zeros(nooutputs, noinputs);
inputname = cell(noinputs, 1);
for position = 1:noinputs
 % Determines and store the name of each input step block to enable
 % dynamic analysis
 inputname{position} = strcat(simulinkFile, strcat('/Input',

num2str(position)));
 % Reset all the step data to 0, step time to 10
 set_param(inputname{position},'Before','0');
 set_param(inputname{position},'After','0');
 set_param(inputname{position},'Time',num2str(stepTime));
end

%% Model Predictions
% Step each input separately and determine the model of the response.
% Call the function solverlstsq to determine the transfer function

model
% These models will be stored within a MIMO transfer function matrix.
for input = 1:1%noinputs
 % Step the step amplitude
 set_param(inputname{input},'After',num2str(stepAmplitude));
 % Rerun the simulation and extracts the outputs
 simOutput = sim(simulinkFile, 'ReturnWorkspaceOutputs', 'on');
 inputs = simOutput.get('inputs');

Murdoch University 10.0 Appendices

 131

 outputs = simOutput.get('outputs');
 for output = 1:nooutputs
 % Put the raw data into an array and send to the function
 rawdata=[outputs(:, output), inputs(:, input)];
 [MIMOPlantModel(output, input), dt(output, input)] =

solverlstsq(rawdata, tout);
 end
 set_param(inputname{input},'After','0');
end

% Step each input seperatly and
MIMOPlantModel

10.17 Appendix 17

MATLAB MPC Toolbox

A major issue with MIMO control schemes is loop coupling. Traditional PI feedback loops do

not have the capabilities to deal with this and thus advanced control implemented.

MathWorks’ MPC Toolbox optimises the controller action for MIMO systems subject to

defined variable constraints. This documentation will outline the necessary steps for

implementing MPC control in Simulink.

Initially the MPC Controller found in Figure 98 is

added to the Simulink model. The PV, SP and DVs

are connected to the controller block. Although

the DVs are not essential it is recommended to connect them into the controller even if they

will be unmeasured. Within the estimate window it is possible to allocate what type of variable

these DVs are, measured or unmeasured. Once the inputs are connected the output, MV,

should be connected to the plant.

Figure 98: MPC Toolbox Controller Blocks in
Simulink.

Murdoch University 10.0 Appendices

 132

By double clicking on the MPC block Simulink launches

the MPC controller mask shown in Figure 99. Within this

window it is possible to allocate ports for additional

inputs and outputs as well as controller parameters,

such as:

 Constraints;

 Weightings; and

 Sample time.

By pressing Design the controller will ask the user to

specify the number of MVs and PVs to be controlled in

addition to the sample time of the data acquisition. Once

these have been entered, as shown in Figure 100, the

toolbox will analyse the plant to determine the operating

points and linearise around those points. Figure 101 is the

window prompt when performing these tasks. Once it has

linearised the plant the MPC toolbox will provide the model in the following representations:

 SS;

 TF; and

 Zero-pole gain.

Figure 99: MPC Controller Mask in
Simulink.

Figure 100: Variable Specifications in
Simulink.

Murdoch University 10.0 Appendices

 133

Figure 101: MPC Toolbox Design Task Linearisation in Simulink.

When using this method for the integrated software the linearisation will fail. This is occurs

because the MPC Toolbox uses the Simulink blocks to linearise the plant, as the plant is

actually a script it cannot determine the variables or model. In order to overcome this a

MATLAB script, which can be found in

10.16 Appendix 16, was written to

perform step tests on each input and

determine the MIMO TF matrix. Once this

matrix is created the toolbox can be

launched from the MATLAB Command

Window using ‘mpctool’. When the

Control and Estimation Tools Manager

has launched it is possible to import the

plant model using the Import Plant

button shown in Figure 102.

Figure 102: Control and Estimation Tools Manager in
MATLAB.

Murdoch University 10.0 Appendices

 134

With the plant imported the variable names can be changed in addition to the nominal values

set. The description and units fields shown in Figure 102 are used only for reference and will

not affect the performance of the controller. Note that if the controller linearised the plant

automatically it will determine the nominal values as well. If the plant model was imported

these values must be entered by the user.

Now the controller parameters can be entered by selecting the

Controllers tab. If a previous controller was designed it can be

imported here otherwise a new MPC can be designed. Figure 103

displays the initial parameters which must be specified for the MPC

controller. The specified plant model will be used as a reference to

perform the prediction inside the MPC algorithm. Similarly, the

horizons are entered and sample time, inherit from the initial specifications window shown

previously in Figure 100. Note the control horizon should be less than the prediction horizon,

which typically should be long enough to capture the major dynamic behaviour of the plant.

Once these variables are selected the next tab allows input and output constraints to be

quantified. As stated previously these can be input via the Simulink model or inside the MPC

Manager. The variables which can be

specified are, as given in Figure 104:

 Absolute minimum;

 Absolute maximum;

 Maximum rate of change downwards; and

 Maximum rate of change upwards.

If there are no constraints it is possible to enter ‘inf’ as the limitation.

Figure 103: MPC Parameters
in MATLAB.

Figure 104: Variable Constraints in MATLAB.

Murdoch University 10.0 Appendices

 135

The Weighting Tuning tab allows different weights to be applied to the inputs and outputs.

These can be specified in the Simulink model or through this tab. If they are specified on the

model then those values override those set inside the controller.

Figure 105: Scroll Bar to Select the Response Type in MATLAB.

The overall performance of the controller can also be manipulated by using the scroll bar

shown in Figure 105. These variables can be changed later. Once satisfied with the weighting

the controller tuning is completed and the MPC controller can be tested against the plant

model.

Figure 106: MPC Controller Simulation in MATLAB.

Murdoch University 10.0 Appendices

 136

Figure 106 shows the MPC simulation window. On this window it is possible to test the

controller developed against the plant model for SP tracking and DV rejection. The SPs or DVs

can be changed to one of the following, as shown in Figure 107:

 Constant

 Step;

 Ramp;

 Sine;

 Pulse; or

 Gaussian.

Once the type of scenario and variables are selected the simulation can be run by selecting the

Simulate button located at the bottom of the window. Once the simulation has completed two

plots will appear. The first will display the PVs against their SP. The other shows the DVs. If the

user is not happy with the performance of the controller the parameters can be altered in the

Controllers tab and the scenarios run again. Once the MPC controller is performing as wanted

it can be exported to MATLAB by returning to the Controllers tab and selecting Export. This will

launch the Controller Exporter,

shown in Figure 108, which will

ask for which controller to

export and the name.

With the controller exported to

the MATLAB workspace it can

now be used in the MPC

Figure 107: Different
Signal Types in

MATLAB.

Figure 108: MPC Controller Exporter in MATLAB.

Murdoch University 10.0 Appendices

 137

Controller block in Simulink. Return to the Simulink model and double click on the MPC block.

This will launch the MPC controller mask shown in Figure 99 again. However this time instead

of selecting design, the name of the controller can be entered in MPC Controller field.

10.18 Appendix 18

MATLAB DMC Function

As an alternative to the MPC Toolbox in MATLAB and Simulink, a DMC script was created. This

script takes advantage of the SISO system identification function found in 10.15 Appendix 15

to determine the transfer function for the given input and output pairing. This is then used as

the convolution model to design the reference for the DMC. Following the theory found in

2.2.4.1 Dynamic Matrix Control, the controller was implemented as a function which requires

three sets of information to be specified. First are the controller specifications: PV; SP; and MV

Bias. Then the first order step response model parameters: step amplitude; model gain; and

model time constant. Finally the DMC algorithm parameters: control horizon; prediction

horizon; and the weighting matrices.

This function will then perform the DMC algorithm for the current plant variables and

determine the action it should take to achieve the SP. Using the first control action and bias it

will output the MV for this current time period. The function script is given below.

function MV = DMC(PV, SP, Bias, A, K, Tau, v, u, w1, w2)
% DMC.m, Joshua M Eggins, Murdoch University, 18/08/2015
% Function to computer the controller action of DMC. The user must

% input the transfer function model parameters determined from the

% SISO system identification function solverlstsq as well as the

% DMC parameters.

% v is the control horizon

% u is the prediction horizon

% w1 and w2 are the weighting matrices

Murdoch University 10.0 Appendices

 138

%% Time

% Initial time array and the sample time, the user should change

% this is using a different time.
dt = 0.5;
Tdmc=dt:dt:v+dt;
Tdmc=Tdmc';
% Reference First Order Model
CP=A*K*(1+exp(-Tdmc/Tau));

%% Definitions

% Define A matrix
A=zeros(v,u);
for j = 1:1:u
 for i = j:1:v
 A(i,j) = CP(i-j+1,1);
 end
end
% Define diagonal weighting matrices
W1 = w1*eye(v);
W2 = w2*eye(u);
% Define H matrix
st = max(size(CP))-1;
fh = zeros(st+v,1);
h = zeros(v,st);
for i = 1 :1 :st
 fh(i,1) = CP(i+1,1) - CP(i,1);
end
for j = 1 :1 :st
 for i = 1 :1 :v
 h(i,j) = fh(i+j-1,1);
 end
end
% Define Controller Gain
Kdmc=inv(A'*W1*A + W2)*A'*W1;

%% DMC Calculations

% Initialise Arrays
E = SP - PV;
P = zeros(v,1);
dmv = zeros(st,1);
cv = zeros(st,1);
% Calculate change in MV and the predicted outputs
dMV = Kdmc * E;
dmv(1,1) = dMV(1,1);
CV = A * dMV;
cv(1,1) = CV(1,1);
s = h * dmv;
P(1,1) = s(1,1);
for j = 2:1:v
 P(j,1) = P((j-1),1) + s(j,1);
end

%% Controller Action

% Calculate the error
ER = E - P - cv(1,1);

% Extract current MV and add bias term
MV = Kdmc * ER;
MV = Bias + MV(1,1);
end

Murdoch University 10.0 Appendices

 139

10.19 Appendix 19

LabVIEW MPC Toolkit

Within the LabVIEW Control Design and

Simulation Module is the Control Design

Toolkit. The Predictive Control palette

contains various Vis which are used to develop

MPC control. Figure 109 shows the Predictive

Control Palette in LabVIEW. If the user wishes

to set up dynamically informed SPs and DVs

the real-time target RT FIFO VIs are used. These blocks queue the information each iteration

before removing it from memory. It is typically used when there are large amounts of

information being accessed every loop.

For smaller systems the CD Create MPC block is used to create the initial controller instance.

Figure 42 displays this block, shown previously in 6.2 LabVIEW Control Design Toolkit. It

expects the SS model of the plant to be input in addition to the controller and weighting

parameters. The MPC controller parameters are:

 Prediction horizon;

 Control horizon; and

 Integral action.

The integral action is used when the SS model provided has large variations on the actual

performance of the plant. If the behaviour of plant is represented accurately by the discrete SS

the performance of the MPC controller will be improved.

Figure 109: The Predictive Control Palette in the Control
Design Toolkit in LabVIEW.

Murdoch University 10.0 Appendices

 140

The error weightings follow the idea that no penalty is applied when at unity. However if the

weighting coefficient it less than one it will decrease the weight of that item, similarly, if the

coefficient is greater than one it will increase the weighting of that item. Also note that the

weight cannot be less than zero. The weighting matrices for the MPC controller are:

 PVs error;

 MVs rate of change; and

 MVs error.

When creating the MPC controller the constraints must be set via the MPC Constraints input.

These constraints cover minimum and maximum:

 MVs;

 MVs rate of change; and

 PVs.

If any of the variables are not specified LabVIEW will assume Inf. Furthermore, it is possible

to specify optimisation stopping criteria within this category. These conditions cover the total

time elapsed, iterations and rate of change.

Finally, the initial conditions of the controller can be specified. If these are not identified then

LabVIEW will assume they are all zero. This can result in unexpected behaviour from the

controller on startup, such as offset. The following conditions can be fed into the MPC Initial

Conditions:

 MVs;

 PVs;

 DVs; and

 MVs rate of change.

Murdoch University 10.0 Appendices

 141

With all these variables setup the controller is ready to fed into a while loop and the CD

Implement MPC block. This block, shown in Figure 110, received the created MPC controller

and PVs to determine the MVs.

Figure 110: CD Implement MPC VI in LabVIEW.

It is possible to change between manual and automatic control using the top input ports. If

TRUE is quantified the controller will not complete its algorithm and simply pass through the

value input to the Manual Control Action port. However if FALSE then that input is ignored and

the controller will calculate the MVs based on the PVs and SPs. The PVs are input through the

Measured Output input while the SPs must be specified previously in the CD Step Forward

MPC Window VI.

Figure 111 shows the Step

Forward Window VI. This block

transforms the SP values into

the Output Reference Window

which is sent to the Implement MPC VI. The MPC controller reference is passed from the

Create MPC VI to the Step Forward MPC VI then to the Implement MPC VI.

It is recommended the previous measured output is fed into the controller as this allows the

block to know if an actuator is not able to execute its suggested MV. It is possible saturation

Figure 111: CD Step Forward MPC Window VI in LabVIEW.

Murdoch University 10.0 Appendices

 142

within the system might not have been input and this check allows the controller to easily

detect any issues within the systems behaviour and update itself accordingly. Moreover, the

predicted PVs can be withdrawn for the system through the Estimated Output port. These can

provide insight into the validity of the plant model. If the controller has large errors between

the predicted and actual PVs then it is possible the model being used is not viable for MPC

reference.

Figure 112 displays the setup of MPC control within LabVIEW. The controller is created given

the specifications input on the Front Panel. However these variables can be constants set on

the Block Diagram as they will not be updated once the simulation is underway and loop

entered. The MPC controller is sent to the Step Forward VI and the SPs set. Finally the

Implement MPC VI receives the SPs, PVs, previous MVs and the MPC controller reference.

Using these it calculates the MVs to reach the predicted PVs.

Figure 112: MPC Controller Design in LabVIEW.

10.20 Appendix 20

MIMO TF Model

The MIMO TF was determined from open loop Simulink model provided in Figure 44 in 7.0

Control Scheme Comparison. By stepping each input independently the system identification

function, found in 10.15 Appendix 15, determined the following:

Murdoch University 10.0 Appendices

 143

MIMOPlantModel =

 From input 1 to output...

 1.896

 1: ----------

 0.14 s + 1

 -3.171

 2: ------

 s

 3.316

 3: -----

 s

 -0.1981

 4: ----------

 0.16 s + 1

 0.1034

 5: ----------

 0.14 s + 1

 From input 2 to output...

 1.761

 1: ----------

 0.15 s + 1

 1.565

 2: -----

 s

 -1.633

 3: ------

 s

 0.1158

 4: ----------

 0.17 s + 1

 -0.04785

 5: ----------

 0.02 s + 1

 From input 3 to output...

 -1.358e-05

 1: ----------

 0.14 s + 1

 -0.0004891

 2: ----------

 s

Murdoch University 10.0 Appendices

 144

 0.0005256

 3: ---------

 s

 -5.082e-05

 4: ----------

 0.15 s + 1

 9.218e-06

 5: ----------

 0.13 s + 1

 From input 4 to output...

 -6.618e-07

 1: ----------

 0.13 s + 1

 -0.0004508

 2: ----------

 s

 -5.806e-05

 3: ----------

 1.34 s + 1

 8.687e-08

 4: ----------

 0.14 s + 1

 -7.482e-08

 5: ----------

 0.12 s + 1

 From input 5 to output...

 -9.206e-07

 1: ----------

 0.14 s + 1

 7.359e-06

 2: ----------

 0.01 s + 1

 -0.002249

 3: ----------

 1.83 s + 1

 -5.803e-08

 4: ----------

 0.17 s + 1

 1.524e-09

 5: ----------

 0.02 s + 1

Continuous-time transfer function.

Murdoch University 10.0 Appendices

 145

10.21 Appendix 21

Comparison Plots

The following figures have been provided as a reference to the scenarios run. These

compliment the ITAE values found in Table 5 in 7.0 Control Scheme Comparison.

Figure 113: Plot of the Condenser Pressure Tracking the SP as Pressure Increase 20%.

Murdoch University 10.0 Appendices

 146

Figure 114: Plot of the Drum Level Rejecting Disturbance as the Pressure Increases 20%.

Murdoch University 10.0 Appendices

 147

Figure 115: Plot of the Sump Level Rejecting Disturbance as the Pressure Increases 20%.

Murdoch University 10.0 Appendices

 148

Figure 116: Plot of the Condenser Pressure Tracking the SP as Pressure Decreases 20%.

Murdoch University 10.0 Appendices

 149

Figure 117: Plot of the Drum Level Rejecting Disturbance as the Pressure Increases 20%.

Murdoch University 10.0 Appendices

 150

Figure 118: Plot of the Sump Level Rejecting Disturbance as the Pressure Increases 20%.

Murdoch University 10.0 Appendices

 151

Figure 119: Plot of the Drum Level Tracking the SP as Level Increases 20%.

Murdoch University 10.0 Appendices

 152

Figure 120: Plot of the Drum Level Tracking the SP as Level Decreases 20%.

Murdoch University 10.0 Appendices

 153

Figure 121: Plot of the Sump Level Tracking the SP as Level Increases 20%.

Murdoch University 10.0 Appendices

 154

Figure 122: Plot of the Sump Level Tracking the SP as Level Decreases 20%.

