
 
 
 

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY 
 
 

Integration of MATLAB and LabVIEW with 
Aspen Plus Dynamics 

Using Control Strategies for a High-Fidelity Distillation 
Column 

 

 

Thesis submitted to the school of Engineering and Information Technology, Murdoch 
University in partial fulfillment of the requirements for the degree of 

 
Bachelor of Engineering Honours [BE(Hons)] 

Instrumentation and Control, Electrical Power 
 
 
 

Word Count: 14,861 
 

Joshua Eggins 

Supervisor: Dr. Linh Vu 

 

November 2015 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page has intentionally been left blank   



Declaration 

I, Joshua Malcolm Eggins, certify that this work contains no material which has been accepted 

for the award of any other degree or diploma in my name, in any university or other tertiary 

institution and, to the best of my knowledge and belief, contains no material previously 

published or written by another person, except where due reference has been made in the 

text. 

In addition, I certify that no part of this work will, in the future, be used in a submission in my 

name, for any other degree or diploma in any university or other tertiary institution without 

the prior approval of the Murdoch University. 

I give consent to this copy of my thesis, when deposited in the University Library, being made 

available for loan and photocopying, subject to the provisions of the Copyright Act 1968. 

I also give permission for the digital version of my thesis to be made available on the web, via 

the University’s digital research repository, the Library Search and also through web search 

engines, unless permission has been granted by the University to restrict access for a period of 

time. 

 

 

Signed:  ………………………………………………….. 

Name:  ………………………………………………….. 

Date:  ………………………………………………….. 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page has intentionally been left blank 



Murdoch University  

 iii 

Abstract 

The energy intensive distillation process has become a widely discussed topic as industry 

attempts to minimise energy consumption. The implementation of Model Predictive Control 

(MPC) can aid in the reduction of plant energy consumption. However, the leading chemical 

and petroleum software packages Aspen Plus and Aspen HYSYS do not currently support MPC. 

This project successfully integrated both MATLAB and LabVIEW with Aspen Plus Dynamics 

(APD), which enables the implementation of MPC schemes. This integration was established 

using Microsoft’s ActiveX Technology. In order to implement MPC from within MATLAB and 

LabVIEW, their respective MPC toolboxes were explored; these toolboxes possess several 

major flaws in their functionality. In particular, neither have the ability to perform RGA analysis 

or determine the model of the plant through data-driven modelling. To overcome these 

drawbacks a MATLAB script was developed which determines the model of the plant from 

automatic step tests in Simulink. Once the communication was established, and toolboxes 

documented, a high-fidelity distillation column was constructed in Aspen Plus before being 

exported to APD. This plant model was developed as a reference to compare the effectiveness 

of the PI and MPC control schemes, employing the Integral of Time-Weighted Absolute Error 

(ITAE) performance criterion. MPC outperformed the PI control schemes in all but one 

scenario. On average the ITAE values were 1000% lower for MPC, due to its ability to quickly 

track the set point and avoid overshoot. Further research has been highlighted on a number of 

toolbox features and dynamic communication options. Importantly, the use of the integrated 

software packages can provide a number of benefits for students and personnel. By 

developing a dynamic template it will be possible to implement these ideas into university, 

laboratory and workplace training. This could increase confidence in predictive control 

schemes, operator plant knowledge and reduce unsafe plant operation. 
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1.0 Introduction 

From 1991 to 2002 the manufacturing sector accounted for approximately one quarter of the 

total energy consumption in the U.S. (U.S. Energy Information Administration, 1991; 1994; 

1998; 2002; 2006). Within this sector the chemical and petroleum industries contributed the 

majority of this consumption. Approximately 40-50% of this consumption is due to the 

distillation process, caused by the energy intensive thermal separation process (Cheremisinoff, 

2000; Olujić et al. 2008; Gorak & Sorensen, 2014, p. 226). As a result of this consumption, the 

U.S. Environmental Protection Agency targeted superior energy efficiency through refined 

processes as a major goal for saving energy in the industrial sector (Neelis, Worrell, & 

Masanet, 2008). This instigated a drop in energy consumption within the manufacturing 

industry to one fifth of the total U.S. consumption (U.S. Energy Information Administration, 

2010). This decrease in consumption has plateaued since and additional methods are being 

investigated to reduce energy consumption. One such method is the implementation of 

advanced control schemes which can minimise operational costs and energy usage in the 

distillation process. The implementation of advanced control schemes at the Algyo Gas Plant in 

Hungary returned a 35% decrease in energy costs over a 12 month period (Emerson, 2011). 

However, in order to simulate these controller schemes, improvements must be made to 

current industrial software packages. 

 

AspenTech is the market-leading process software provider in industry (Ma, 2013, p. 15; 

AspenTech 2015a). Their software packages Aspen Plus and Aspen HYSYS (HYSYS) prove useful 

for modelling and simulating complex chemical and petroleum processes involving distillation 

columns, reactors and heat exchangers. These packages have dynamic equivalents 

appropriately named Aspen Plus Dynamics (APD) and Aspen HYSYS Dynamics (AHD) 
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respectively. APD and AHD are however limited by their controller selection, which only allows 

for conventional PID. Given current industrial trends this does not satisfy the growing need for 

advanced controllers. AspenTech offers an additional software package, DMCPlus, which 

utilises the Dynamic Matrix Control (DMC) algorithm and allow for Model Predictive Control 

(MPC) to be extended to their software packages. However, this package comes at an 

additional cost to the end user, so expanding the capabilities of the original software packages 

would be beneficial. In order to achieve these expansions, ActiveX communication servers will 

be established from MATLAB and LabVIEW to APD. Since Aspen Plus and HYSYS are similar in 

operation, and the expansions are transferable between packages, only APD will be utilised in 

this thesis; this software was preferred as the distillation column being modelled is commonly 

found in chemical plants. 

 

This software amalgamation will provide a number of benefits. The integration with MATLAB 

will provide a means to test the performance of advanced control schemes on complex plants. 

This will determine any negative or positive effects that new, or upgraded, advanced control 

schemes would have on plant operation. Moreover, the integration with LabVIEW creates an 

educational tool which can be operated as a real time simulator. This simulation package will 

allow students and personnel to gain invaluable experience operating complex plants without 

the hazards associated with real plant dynamics, effectively opening up an avenue for more 

training on advance control schemes and hopefully increased implementation in industry. 

 

The primary aim of this thesis is to enable communication between MATLAB and LabVIEW to 

APD. Once this integration of software has been validated an additional aim will be to 

document the capabilities of the MPC toolbox found within each package. Finally, the 

performance of MPC will be compared against conventional PID control by minimising the 
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Integral of Time-Weighted Absolute Error (ITAE) performance criterion. This will be to establish 

the most efficient control scheme for reducing energy consumption. 
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2.0 Background 

2.1 Distillation 

2.1.1 Distillation Process 

Distillation, through the use of distillation columns, is a common method for separating 

mixtures of two or more substances in the pharmaceutical, petroleum, food, and chemical 

industries. This technique exploits the differing boiling points of the input feed substances and 

separates them into a vapour and liquid. The vapour is rich in the lower boiling point 

substances while the liquid contains the remaining products (Khoury, 2005, pp. 61-62). 

 

2.1.2 Distillation Columns 

Distillation columns are designed 

from several major components: 

column; condenser; reflux drum; 

and reboiler. Figure 1 presents the 

make-up of a standard distillation 

column. The condenser cools the 

vapour which leaves the column 

through the top stage. This vapour is 

condensed and sent to the reflux 

drum before some is recycled, 

through the reflux stream, back into 

the column and the remainder 

extracted in the distillate stream 

(Green & Perry, 2007, p. 13.4). The reboiler, located at the bottom stage, provides vaporisation 

Figure 1: Distillation Column. 
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for the process. It boils the liquid which is leaving the column in the final stage and 

reintroduces it in to the column (Green & Perry, 2007, p. 13.4). The remaining liquid is 

removed in the bottoms stream. The constant heating and cooling of the mixture is the major 

contributor to energy expenditure in distillation columns (Green & Perry, 2007, p. 13.5). The 

liquid mixture fed into the column around the middle tray, known as the feed tray, divides the 

column into the stripping section, below the feed tray, and enriching section, above the feed 

tray; as shown in Figure 1. 

 

2.1.3 Column Types 

The most commonly found distillation column in industry is a continuous column (Mujtaba, 

2004, p. 3). These columns are capable of high throughput and, under normal operation, are 

fed a continuous stream (Green & Perry, 2007, p. 13.4). Another column is batch fed where the 

feed is input batch-wise and the process completed. Once the process completes the batch is 

extracted before the next batch introduced (Mujtaba, 2004, pp. 3-5). If the separated material 

is high in solids, a batch separation should be employed (Mujtaba, 2004, p. 8). 

 

This is however not the only identifying factor of a distillation column. The nature of the feed 

also plays a role; if two components are fed to the column it is referred to as binary whilst 

more than two components present in the feed is a multi-component column (Green & Perry, 

2007, p. 13.4). Furthermore, it is possible for the column to have multiple product streams 

(Green & Perry, 2007, p. 13.6). These distillation techniques are useful when the components 

have boiling point limitations or do not separate during standard distillation processes 

(Douglas, 1988, p. 185). Crude oil distillation is an example of this, there are many product 

streams consisting of components with similar volatility.  
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2.1.4 Column Design 

Additionally, the internal operation of the column is dependent on the design employed to 

enable contact between the vapour and liquid inside the column (Green & Perry, 2007, p. 

13.4). A packed column is typically divided into three types (Kister, 1992, p. 421). The first two 

packing types are structured mesh and grids. These are corrugated sheets arranged within the 

column in either a wire mesh arrangement or open lattice grid. Random packings however, are 

discrete geometrical shapes which are randomly packed into the column shell; this is the most 

common practice in industry (Kister, 1992, p. 421). The overall aim of packing is to maximise 

the surface area per unit volume, essentially increasing the vapour-liquid contact area and the 

columns overall efficiency (Kister, 1992, pp. 422-423). 

 

A tray column uses trays, or plates, to enable contact 

between the vapour and liquid (Kister, 1992, p. 259). 

Figure 2 illustrates the three primary types of tray in 

operation within this column style: sieve; valve; and 

bubble cap. A sieve tray is a metal plate which has holes 

in it to allow the vapour to pass through it and relies on 

the kinetic energy of the vapour to keep the liquid above 

the tray surface (Kister, 1992, p. 260). A valve tray follows 

the same design as the sieve tray however the holes on 

the surface of the tray are covered with lift valves. This 

was introduced to stop occasional leaking through the openings. It also provides an increase in 

the range of flow rates due to the varying size of the opening when the valve lifts (Kister, 1992, 

p. 260). Again, the bubble cap tray is an adaption on sieve trays. However unlike valve trays 

which lift open from the flow, the holes are covered with a cap which the vapour flows into 

Figure 2: Tray Types: 1) Sieve; 2) Valve; 
3) Bubble Cap. 
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and exits via small openings in the cap. The bubble cap trays were initially the most widely 

used however, due to the associated cost are seldom used in industry now (University of 

Michigan, 2010). 

 

Regardless of their design, the 

trays are constructed to allow 

liquid hold up to cover the holes 

on the surface of the tray, 

including the valve or cap, 

entirely. This is achieved by the 

installation of a weir. This weir is 

located next to a conduit, 

referred to as a downcomer. When the liquid held up by the weir exceeds the weir height it 

will flow into the downcomer, through gravitation force, onto the tray plate located in the 

stage below. While this occurs, the vapour rises from the stage below through the holes in the 

tray, as shown in Figure 3, and liquid on the trays surface (Green & Perry, 2007, p. 13.4). This 

enables a transfer of energy between the liquid and vapour and results in some vapour 

condensing and liquid evaporating at each stage, aiding to the separation process (Green & 

Perry, 2007, p. 13.6). 

 

2.2 Process Control 

The objective of process control is to design and implement a controller which results in the 

dynamics of the process following a desired response. The effect a controller has on the output 

is dependent on system dynamics, but also on the type of controller used. 

 

Figure 3: Flow of Liquid and Vapour within Trays. 
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2.2.1 PID 

Traditionally, feedback PID (Proportional   , Integral   , Derivative   ) controllers are used to 

control most processes due to their robust design and easy implementation (Romagnoli & 

Palazoglu, 2005, pp. 164-165). They do not require intricate knowledge of the underlying 

process however do not offer optimal control of the process. 

     (  
 

    
     ) 

1: PID Algorithm. 

 

PID controllers have three primary parameters, see Equation 1 above, however the derivative 

term is scarcely used due to its unwanted sensitivity to noise (Ang, Chong, & Li, 2005, p. 561). 

 

 

Figure 4: Feedback Block Diagram. 

The controller action, Manipulated Variable (MV), is based on the error ( ) calculated at that 

given time. This error, the difference between the controller Set Point (SP) and the Process 

Variable (PV), see Equation 2, is fed back into the controller continuously to determine the 

action the controller should take to minimise the error (Ogunnaike & Ray, 1994, pp. 462-463). 

        2: Error Calculation. 

 

By sending the PV back to the controller to calculate the error, a feedback loop is formed as 

shown in Figure 4. This style of control scheme is referred to as feedback control (Ogunnaike & 

Ray, 1994, pp. 462-463). 
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2.2.2 SISO v MIMO 

Single-Input Single-Output (SISO) is the simplest and most common type of controller. It uses 

one control signal to control one output. More complicated systems however, require 

Multiple-Input Multiple-Output (MIMO) controllers due to the complex nature of their 

dynamics. PID is generally not MIMO control (Woolf, 2011), however recent development in 

advanced controllers means model based and MPC are capable of handling MIMO. It should be 

noted that in industrial processes, strong interaction between variables will be present and 

MIMO controllers will always outperform the easier to implement SISO controllers (Ogunnaike 

& Ray, 1994, p. 992). This interaction between control loops is referred to as coupling. It is 

ideal to minimise the coupling through selective pairing of MVs to PVs (Romagnoli & Palazoglu, 

2005, p. 251). Furthermore, MIMO and advanced control schemes introduce the ability to 

overcome inherent nonlinearities and difficult process dynamics, such as: inverse response; 

significant time delays; and open loop instability (Ogunnaike & Ray, 1994, p. 993). 

 

2.2.3 Generic Model Control 

Generic Model Control (GMC) is a Model Based Control strategy developed by Lee and Sullivan 

(1988). It uses the nonlinear mathematical models of the plant to determine the controller 

action and desired trajectory. An advantage of GMC is its ability to completely reject 

Disturbance Variables (DV) when implemented with an accurate model. This is due to the fact 

the nonlinear model is directly involved in the controller action algorithm (Lee & Sullivan, 

1988). 

(
  

  
)
   

         ∫     
3: Reference Trajectory. 

 

Equation 3 shows the reference trajectory with its two tuning parameters,    and   , and the 

error term,  . Equating this reference with the nonlinear model equation, it is possible to then 
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rearrange for the MV (Lee & Sullivan, 1988). The resulting equation is the model based 

controller algorithm which can be easily introduced into the control scheme like a standard PID 

controller. It should be noted that because GMC is dependent on the model equation its 

success does rely heavily on the accuracy of that model. Large deviations dramatically affect its 

ability to measure, estimate and predict the behaviour of the process (Lee & Sullivan, 1988). 

 

2.2.4 Model Predictive Control 

Another controller falling under the banner of Model Based Control is MPC. Ogunnaike and 

Ray (1994) claim MPC was born from the need to create consistent high quality product, 

efficient use of energy and increase constraints on plant processes to meet expanding 

environmental responsibilities. MPC employs a corrective controller action which predicts the 

plant behaviour then rectifies itself to account for any irregularities in its prediction model and 

direct the output as close to the SP as possible (Ogunnaike & Ray, 1994, p. 992). The key 

features of MPC are (Maciejowski, 2002, pp. 1-2): 

 Predicts future behaviour of the process over a finite time horizon; 

 Computes the future controller actions while optimising a cost objective function given 

equality and inequality constraints; then 

 Applies the first, current time, controller action and compare the plants behaviour to 

that of its prediction model. 

 

As such, MPC requires a model of the process in order to predict the plants behaviour and 

calculate the controller action. Determining a mathematical model of the plant can be time 

consuming and laborious, however, it is also possible to predict the plant behaviour given a 

step response (convolution) model (Maciejowski, 2002, pp. 108-115) (Romagnoli & Palazoglu, 

2005, p. 321). 
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To correctly implement such a model, a step is applied to each MV and the open loop 

responses of the PV are logged. In theory, given the assumption of linearity, these models will 

enable the controller to predict the behaviour of the plant for any change in the MV 

(Maciejowski, 2002, pp. 108-109). These step response then form a step response matrix, as 

given in Equation 4. 

 

 ( )  

[
 
 
 
 
   ( )     ( )      ( )

   ( )     ( )      ( )                           
                           

   ( )     ( )      ( )]
 
 
 
 

  4: Step Response Matrix. 

 

Where: 

  is the number of MVs;  

  is the number of PVs; and 

   ( ) is the response of PV   from a step in MV  . 

 

This step response matrix is also referred to as the Dynamic Matrix of the plant (Maciejowski, 

2002, p. 110). The convolution model is intuitive however cannot be exercised on unstable 

systems. An additional method, which is increasing in popularity, is State Space (SS). This 

technique does allow unstable open loop systems to be modeled though it does require 

significant theoretical knowledge to implement correctly (Romagnoli & Palazoglu, 2005, p. 

322). It is worth noting that it is possible to convert the convolution model into SS for use with 

newer MPC packages (Maciejowski, 2002, pp. 113-120). Due to the ease in determining 

dynamic plant behaviour models, and MPC’s proficiency in optimisation, this control scheme 

has enjoyed substantial industry success (Ogunnaike & Ray, 1994, p. 991). 
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2.2.4.1 Dynamic Matrix Control 

MPC is an umbrella name given to the entire prediction controller family. The most well-known 

and used MPC in industry is DMC. It was first devised by Dr. Cutler in his Ph.D dissertation and 

later developed through his company DMC Corporation, before being acquired by AspenTech 

(Boyes, 2009, p. 623). One of the disadvantages of MPC is the large number of model 

coefficients needed to describe the response. As the DMC algorithm utilises the convolution 

model these coefficients can be obtained directly from the step response data (Romagnoli & 

Palazoglu, 2005, p. 323). The MPC controller parameters are (Romagnoli & Palazoglu, 2005, p. 

326): 

 N, model horizon; 

   , prediction horizon; 

   , control horizon; and 

    and   , weighting matrices. 

 

It is recommended that the model horizon be selected large enough for the open loop 

response to settle,                            , in order for the controller to know the 

complete dynamic behaviour of the plant (Romagnoli & Palazoglu, 2005, p. 326). The control 

horizon decides the number of control actions to calculate in order to predict the plant output 

over the number of time steps specified by the prediction horizon. Romagnoli and Palazoglu 

(2005) recommend the prediction horizon be the summation of the model horizon and control 

horizon. If the prediction horizon is increased the controller will have a more conservative 

action. On the contrary, if the control horizon is increased it will produce excessive controller 

action. Lastly, the weighting matrices,    and   , determine the amount of control action or 

tracking error by applying a penalty to the DMC algorithm. Typically the weighting matrices are 

applied using a ratio, see Equation 7 (Romagnoli & Palazoglu, 2005, p. 326). 
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5: Weighting Matrices. 

 

Figure 5 shows the step response curve and the corresponding values for   , where      . 

 

 

Figure 5: Convolution Model from Input Step Response. 

These values are determined by sampling the step response curve at intervals of   , then 

applied to form the vector of step response coefficients, as given in Equation 8 (Romagnoli & 

Palazoglu, 2005, p. 323). 

  [          ]
  

6: Step Response Vector. 

 

The coefficients of this array are then used to construct the coefficient matrix shown in Figure 

9 (Romagnoli & Palazoglu, 2005, p. 324). 

 

  

[
 
 
 
 
                      
                                        
               

                   ]
 
 
 
 

 7: Coefficient Matrix. 

 

Given this, the controller action can now be determined, taking into account the weighting 

matrices and coefficient matrix. Equation 10 illustrates the DMC controller algorithm, allowing 

for the weighting penalties (Romagnoli & Palazoglu, 2005, p. 326). 
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    (        )
  
    ( 

          ) 

                        ( 
          ) 

 

8: DMC Algorithm. 

 

2.2.5 Relative Gain Array 

The Relative Gain Array (RGA), sometimes referred to as the Bristol Array after inventor Edgar 

Bristol (Bristol, 1966), is determined from the array of gains from the plant. Using the step 

response matrix, as shown in Equation 4, it is possible to determine the gains of the plant, 

using Final Value Theorem (FVT). This provides the gain matrix in Equation 5. 

  

[
 
 
 
 
               
                                  
                   
               ]

 
 
 
 

  
9: Gain Matrix. 

 

Using the matrix determined in Equation 9, the RGA can be determined via Equation 6. 

  (   )     
10: RGA Algorithm. 

 

This matrix then provides a measure for the interaction between each input and output 

variable (Romagnoli & Palazoglu, 2005, p. 256). Note that the multiplication is element by 

element, not matrix multiplication. As such,     ( 
  )  

     . This array is governed by a 

set of interaction rules which enable the best loop pairing to be selected (Romagnoli & 

Palazoglu, 2005, pp. 258-259): 

      , unstable operation; 

      , input   has no effect on output  ; 

          , the interacting input(s) have a stronger effect on output   than input  ; 

        , the effect of input   has an equal contribution on output   as the interacting 

input(s); 

          , input   has a stronger effect on output   than the interacting input(s); 
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      , input   is the only variable which affects output  , there is no interaction; and 

      , the effect input   has on output   is greater than the interaction and in the 

opposite direction. 

 

Given these rules it can be stated that loop pairings should be selected to have RGA elements 

close to unity and never negative (Ogunnaike & Ray, 1994, pp. 735-740). Once the interaction 

and loop pairings are selected, only then is it possible to implement MPC. 

 

2.2.6 Performance Criterion 

All control schemes are judged against their ability to track the SP and reject DV, and although 

they are established on the same premise not all schemes are equal (Ang, Chong, & Li, 2005, 

pp. 562-563). In order to effectively assess the controller schemes, ITAE performance criterion 

will be minimised (Levine, 1996, p. 170). This was selected because ITAE penalises errors which 

persist over time heavier than those at the beginning of the response. This can lead to a 

sluggish initial response, essential to avoid oscillations, however does result in quicker settling 

times (Levine, 1996, p. 170). Equation 11 shows the algorithm for calculating the error 

associated with ITAE. 

      ∫  | |    
11: ITAE Algorithm. 

 

 

2.3 Software in industry 

Computer simulations have been widely adopted through industry to model complex practical 

settings; through the use of mathematical modelling (Kheir, 1995, pp. vii-viii). These range 

from, but are not limited to: agriculture; industrial process; risk forecast; stock market; poison 



Murdoch University   2.0 Background  

 16 

flow; and liquid flow (Robinson, 1993; Kheir, 1995, pp. vii). The popularity of process 

simulation stems from its ability to support industry through: cost estimation; control and 

management of operational plants; and troubleshooting or testing of new and upgrading 

plants (Robinson, 1993). These all have the added benefit of reducing capital cost and 

detecting poorly designed maintenance strategies or project plants. Software packages not 

only provide support to industry they also form a useful tool for educating personnel and 

students. The ability to gain an understanding of plant dynamics and control schemes as well 

as obtain optimised plant performance is invaluable. It is important however, as more of 

industry becomes reliant on simulation software that the mathematical and simulation models 

and results are validated to ensure reliability and consistency of results (Ali & Petersen, 2012). 

 

2.3.1 Historians 

Computer packages such as OSIsoft PI and DeltaV are historians which provide real time data 

logging through a process information server. This server operates underneath a visual 

interface which is accessible to engineers, operators and managers for analysis and 

visualisation of operational performance (OSIsoft, 2015). These systems enable plant data, 

from multiple locations, to be stored on a central server and accessed by all plant personnel 

and strategic management. In addition they also provide real time control over plant 

instruments by operators located either on site or remote (Emerson, 2015). 

 

Increasingly these distributed control systems are offering the implementation of advanced 

control, like DeltaV’s MPCPro block. This upgrade in software can optimise plant performance 

easily through selection of MIMO variables including up to 80 process outputs and 40 inputs 

(Emerson, 2013). However without training or prior experience in advanced control systems it 

is near impossible to implement such schemes effectively. 
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2.3.2 SimSci PRO/II 

SimSci PRO/II is a simulation software package from Schneider Electric which allows the 

optimisation of plant design and operational analysis. It includes a substantial chemical 

database which, coupled with the unit operators (such as advanced units heat exchangers, 

distillation columns, reactors), enables the simulation of chemical, petroleum, polymer and 

pharmaceutical plants. The package uses a Process Flow Diagram (PFD) to graphically display 

the unit operators and plant design and can be used to determine the effect plant upgrades 

have on process outputs (Schneider Electric, 2015). However, PRO/II is only a steady state 

simulator. Although it allows optimisation of plant specifics, such as the feed tray of the 

distillation column, it does not possess the capabilities to analyse dynamic plant operation. It 

allows the implementation of feedback control loops, using PID control schemes. However, it is 

not possible to implement advanced control schemes, or analyse transient plant behaviour 

(Schneider Electric, 2015). 

 

2.3.3 Aspen Plus 

Despite PRO/II’s simulation proficiency, the inability to perform dynamic analysis leaves it well 

behind the industry leader. AspenTech’s Aspen Plus and APD are the most widely used 

computer package in the chemical industry (Ma, 2013, p. 15). Aspen Plus is a steady state 

simulator, similar to PRO/II in operation and design, which allows complex processes to be 

built without the need for tedious calculations or arduous mathematics (AspenTech, 2000a). 

Aspen Plus utilises a database of chemical properties and applications in order to enable 

minimal user interaction with plant and chemical specifics (AspenTech, 2000a). Typically the 

end user only needs to specify the plant components and their values in order to successfully 

operate Aspen Plus. APD is the dynamic equivalent of Aspen Plus, allowing analysis of the 

dynamic behaviour of the plant and implementation of PID control schemes (Peers, 2013). 
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2.3.4 Aspen HYSYS 

HYSYS was originally created by Hyprotech before being acquired by AspenTech and 

Honeywell; rereleased as Aspen HYSYS and UniSim Design respectively. HYSYS is used in the 

energy industry and is the leading software package for oil and gas simulation and process 

optimisation in design and operations (AspenTech, 2015b). It has the capacity to simulate 

advanced systems such as: pipelines; hydraulics; fractionation LNG; dehydration; and 

compression; and offers a complete package for modelling an entire refinery (AspenTech, 

2015b). As stated previously in 1.0 Introduction, HYSYS will not be explored as the operation 

and integration of software is very similar to APD. However, for the interested reader, 

Professor Hanyak’s Chemical Process Simulation and the Aspen HYSYS Software (2012) 

provides a very detailed user manual for HYSYS and the implementation of its complex unit 

operations. Similar to APD, HYSYS can be operated in steady state or dynamic mode through 

the use of its dynamic counterpart AHD. As with APD, AHD has the choice to only implement 

conventional PID control schemes (AspenTech, 2015c). 

 

2.3.5 Aspen Capital Cost Estimator 

An additional reason the AspenTech product range enjoys significant dominance in industry is 

its cost estimation software, Aspen Capital Cost Estimator (ACCE). The AspenTech software 

range can increase profits through rigorous modelling of refineries and plants, while ACCE 

reduces decision making processes and delivers estimates within 5-10% of the actual cost 

(AspenTech, 2015d). This advantage enables the end user to make better informed decisions 

regarding plant construction and operation. 
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2.3.6 MATLAB 

MathWorks’ Matrix Laboratory (MATLAB) is a high-level language and interactive 

environment. It is used by engineers, scientists and economists worldwide for tasks such as: 

numeric computation; data analysis and visualisation; programming and algorithm 

development; and application development (MathWorks, 2015a). These capabilities can be 

upgraded through the use of additional add-on products which build on MATLAB’s foundation 

software. These cover a range of applications: optimisation; signal processing; control systems; 

and finance (MathWorks, 2015b). Furthermore, Simulink is a block diagram environment for 

model based design which runs on top of MATLAB. This software can be used to easily build 

and simulate models as well as connect to hardware while running in real time (Mathworks, 

2015c). The computational power of MATLAB and its additional toolboxes and add-ons make it 

a key software package across many industries. The utilisation of these features will be 

explored. 

 

2.3.7 LabVIEW 

Laboratory Virtual Instrument Engineering Workbench (LabVIEW), from National Instruments 

(NI), is a development environment which uses visual programming. It is frequently used for: 

data acquisition; instrument control; and industrial automation; and was designed to 

accelerate the productivity of engineers and scientists (National Instruments, 2015a). The 

biggest draw of LabVIEW is its unprecedented integration with all measurement hardware and 

software. NI have gone to extreme lengths to ensure LabVIEW is easy to use for the end user 

and adaptable to most industrial needs (National Instruments, 2015a). Moreover, LabVIEW is 

used on University and College campuses all over the world to deliver hands-on learning and 

enhance research (National Instruments, 2015b). This positions LabVIEW as the ideal software 
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package to enable students and personnel to gain and develop skills in implementing advanced 

control schemes on complex plants once integration with APD is established. 

 

2.3.8 Microsoft Excel 

Lastly, Microsoft’s Microsoft Excel (Excel) has become the industry leader for spreadsheet and 

data analysis. Its capabilities include functions, graphical interfaces, programming and 

communication (Cook, 2015; Microsoft, 2015a). The macro programming is implemented in 

Microsoft’s Visual Basic for Applications (VBA), a variety of Visual Basic (VB), and can be used 

to create user functions, customising Excel or automation processes. VBA is not limited to 

Excel but also applies across the entire Microsoft Office software packages (Microsoft, 2013). 

 

2.4 ActiveX 

In order to establish a server connection between one software package to another, 

Microsoft’s proprietary technology Object Linking and Embedding (OLE) and inter-process 

communication OLE Automation, also referred to as ActiveX Technology, will be used 

(Microsoft, 2015b). This mechanism originated for use in VB however has been expanded to all 

scripting languages on Windows in response to the problem of cross application macro 

programming. OLE Automation provides the infrastructure for applications to establish 

connections and manipulate shared objects between a client-server model. The coding and use 

of this communication follows the C and VB programing languages (Microsoft, 2015b). Figure 6 

displays a central client server with a four client distribution network. 
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ServerClient Client

Client

Client

 

Figure 6: Distributed Server-Client Structure. 

 

2.4.1 Client Server 

The server provides a service or resource to clients. The client will make requests of the server 

and wait for the response of the server and any information it has requested (Microsoft, 

2015b). The in-process server is implemented through a Dynamic Linked Library (DLL) by using 

OLE Automations capabilities to create a Component Object Model (COM) server. An 

advantage of Microsoft Windows is the majority of software packages are already integrated 

with ActiveX and servers can easily be created by using their existing programmatic identifier 

(Microsoft, 2015b). Examples of these identifiers are Microsoft Excel ‘Excel.Application’, 

Microsoft Outlook ‘Outlook.Application’ and MATLAB ‘Matlab.Application’. Using the DLL 

‘Aspen Customer Modeler 30.0’ it is possible to connect to a range of AspenTech’s software 

through the following handles: Aspen Plus Dynamics ‘AD Application’; Aspen Customer 

Modeler ‘ACM Application’; Aspen Adsim ‘ADS Application’; Aspen Chromatography ‘ACH 

Application’; and Aspen HYSYS ‘HYSYS.Application’ (AspenTech, 2000b). 
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2.4.2 Properties and Methods 

Setting up the COM server is not the only issue which needs to be explored. Once the 

communication is established the client needs to send and request information from the 

server (Microsoft, 2015b). The properties allow the client to open and close specific files, run 

programs and send and receive data from the server. The methods are functions which can be 

called from the server (Microsoft, 2015b).  
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3.0 Modelling 

To implement model based controllers, such as GMC, an accurate mathematical model must 

be developed. Given that the literature on modelling multicomponent distillation columns is 

lacking, Sharmila and Mangaiyarkarasi’s (2014) paper on binary column modelling was used as 

a reference to develop a binary model. In addition, using the mathematical models from Lee 

and Dudukovic (1998), a multicomponent model was attempted but was not successful. In 

order to progress with the project, either a binary column had to be adopted or the model 

based controllers removed. The success of GMC relies greatly on the precision of the model, in 

addition to the system having a relative degree of one. This means the MV must appear in the 

mathematical model for the controlled PV (Lee P. L., 1993). As a result, GMC has not enjoyed 

wide scale success in industry. Thus it was decided that instead of adopting a binary column for 

the project, and including model based controllers, the multicomponent column would be 

used. In the multicomponent distillation column the behaviour was determined using data-

driven models. These models can only be used for stable open loop systems and can come in 

the form of either: SS; TF; zero-pole gain; and linear models. In order to create MPC controllers 

in MATLAB and LabVIEW these data-driven models were developed following the introduction 

of input steps to the plant model in APD. APD handles the complex mathematics, chemical, 

and thermodynamics of the distillation column and allow the user to utilise the data-driven 

models without the need for mathematical models. 
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4.0 High-Fidelity Distillation Column 

The previous chapters provided an overview and background into the capabilities and theory 

behind distillation columns, control schemes, modelling and industrial software packages. 

Using this knowledge a distillation columns will be implement in Aspen Plus. The continuous 

distillation column uses 29 ideal stages to separate a mixture of benzene, toluene, and p-

xylenes. The feed stream contains 30% benzene, 40% toluene and 30% p-xylene and flows at a 

rate of 500 kmol/hr. It is desired that the distillation column will recover 95% of benzene in the 

distillate stream. For distillation column sizing and hydraulics refer to 10.1 Appendix 1. 

 

4.1 Aspen Plus  

4.1.1 Setup 

It is a common practice for any plant or refinery to be designed in AspenTech’s steady state 

simulation software before being exported to dynamics (Peers, 2013, p. 2). To do so, the 

‘radfrac’ block was used in Aspen Plus as the type of distillation column. A review of the 

documentation (South Dakota School of Mines and Technology, 2000; AspenTech, 2000a) 

provided the steps for using and setting up the ‘radfrac’ block in the steady state simulator. As 

this documentation is out dated, a refreshed version has been prepared and available in 10.3 

Appendix 3. This supplementary document will enable future work to be done in Aspen Plus 

without the need to sort through multiple documents and provides the end user with a single 

point of reference. To setup the model, the steady state conditions, which can be found in 10.1 

Appendix 1, were input following the guidelines provided in 10.3 Appendix 3. Once completed, 

the simulation can be run to ensure convergence occurs. Figure 7 shows the distillation column 

after set up in Aspen Plus. 
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Figure 7: Distillation Column Setup in Aspen Plus. 

 

With the model set up the system was tested under steady state conditions to ensure the 

plant was set up correctly. Unfortunately, this run yielded no results due to an error. 

Investigating the cause of this resulted in discovering the databanks in Aspen Plus were not 

available, as shown in Figure 8. After the installation of Aspen Plus on a new device the 

software will run an installation to save the databases from the server onto the device. This 

installation had failed and 

thus there were only two 

generic databases 

available within Aspen 

Plus. The AspenTech 

software packages was 

removed from the device 

and reinstalled by a 

Murdoch University 

technician and, when the 

software was launched, 
Figure 8: Databases Available in Aspen Plus. 
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the databases 

successfully installed. 

Figure 9 displays the 

correctly installed 

library of databases, 

where Aspen Plus 

automatically selected 

some foundation 

databases based on the 

selection of the 

template at start-up. 

 

With the databases installed correctly, a steady state run was undertaken and achieved 

convergence within three iterations, as shown in Figure 10. A check of the system results, 

given in Table 1, indicates the 

column was set up correctly and 

the model ready to export to APD. 

These databases are essential as 

without them the chemical 

properties of the materials are 

unknown. 

  

Figure 9: Correctly Installed Database Availability. 

Figure 10: Simulation Output in Aspen Plus. 
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Table 1: Simulation Results from Aspen Plus. 

 
FEED DISTIL BOTTOMS 

Mole Flow kmol/hr       

BENZENE 150.000 136.358 13.643 

TOLUENE 200.000 13.642 186.358 

P-XYLENE 150.000 0.000 150.000 

Mole Frac       

BENZENE 0.300 0.909 0.039 

TOLUENE 0.400 0.091 0.532 

P-XYLENE 0.300 0.000 0.429 

Total Flow kmol/hr 500.000 150.000 350.000 

Temperature  C 100.000 81.977 136.498 

Pressure bar 1.520 1.013 1.621 

 

4.2.2 Model Export 

Before exporting a model to APD a few steps must be undertaken (Peers, 2013, pp. 2-5): 

 Isolate the unit operators to export; 

 Active ‘Dynamic Mode’ in the ‘Dynamics’ tab on Aspen Plus’ ribbon; 

 Decide on which analysis to perform – pressure or flow driven; 

 Enter unit operators dynamic specifications – such as heat-transfer and which 

variables to control; 

 Run the simulation to ensure convergence; and 

 Click on the analysis to perform – exporting the model. 

 

10.4 Appendix 4 provides a summary of this procedure however a few key items should be 

highlighted. The controller MV and PV can be overridden in APD and the choice of these does 

not impact on the exporting of the file. These options are given to the end user to allow the 

simulation to set up the model in APD automatically, therefore saving time for the user. 

Moreover, if the user wants to analyse the pressure gradient then the pressure driven analysis 
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must be selected. By selecting this type of analysis the user will need to insert additional 

pumps or values to achieve this pressure gradient in the model (Peers, 2013, p. 3). However, if 

no pressure gradient is required then flow driven analysis is always the selection to be made. 

Most commonly this will be the choice and it does not require any addition operators to be 

added to the PFD (Peers, 2013, p. 3). Additionally, once the analysis mode is selected it will 

prompt the end user to save the file and will do so under the APD file extension. 

 

 

Figure 11: Hydraulics Tab for the 'Radfrac' Distillation Column in Aspen Plus. 

 

In Aspen Plus the left-hand 

side of the window displays 

the model explorer. This 

model explorer contains all 

the information required 

to simulate the plant 

model within different 

navigation panes. The 

reflux drum and sump 

geometry were entered in 

the distillation column 

dynamics navigation pane, 

as defined in 10.1 

Appendix 1. Then the 

Figure 12: Fatal Error When Completing Run in Aspen Plus. 
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simple tray hydraulics was selected and entered as shown in Figure 11. A detailed procedure 

for preparing the PFD for export to APD can be found in 10.4 Appendix 4. Once all the 

information was entered, flow driven analysis was selected which initiates the plant exporting 

process. While attempting to export Aspen Plus encountered a fatal error which stated that a 

pressure drop through stage 1 did not exist, see Figure 12. By comparing the column 

implemented to the examples found in Jump Start: Pressure Relief Scenario in Aspen Plus 

Dynamics V8 (2013) it was determined that the dynamic pressure profile for the distillation 

column stages was incorrectly entered and thus Aspen Plus had no basis for the pressure drops 

throughout the column.  To correct this issue the pressure profile was changed from fixing the 

pressure in the first stage to providing an estimate of the first and last stage pressures. Once 

this was corrected Aspen Plus exported the model without difficulty. 

 

4.2 Aspen Plus Dynamics 

4.2.1 Start Up 

 

Figure 13: Disconnected Streams in Aspen Plus Dynamics. 
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With the model exported it was opened in APD. However, when the file was opened in APD an 

error occurred causing the entire product and communication streams to disconnect, as shown 

in Figure 13. Reconnecting the streams resulted in APD crashing. In an attempt to isolate this 

issue, the file was opened on an additional device however, this produced the same outcome. 

The Aspen Plus model was developed from scratch again to determine if an error had occurred 

in the creation of the model but this was not successful in correcting the issue. Finally, APD 

examples were opened, from AspenTech’s Example Library, and the same error ensued. This 

suggested the issue was not in the models but the software itself. After consultation with a 

Murdoch University technician it was advised that the software version of Aspen Plus and APD 

could be the root cause of the fault. Following this advice led to the discovery that AspenTech 

had done only a part release of their software package and Aspen Plus was a different version 

to APD. To counteract this AspenTech included a special software version selector which 

allows the older AspenTech products to distinguish the version the original model is being 

imported from. Figure 14 shows this in the Start menu programs list. Once this was updated to 

anticipate V8.6 instead of V8.4 the models opened in APD without error. Figure 15 shows the 

Aspen version selector tool. 

 

 

Figure 14: Aspen Properties Version Selector in the Programs List. 
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Figure 15: Aspen Version Selector. 

4.2.2 Operation 

With the model now in APD it is important to understand how the software works and its 

capabilities. Once the model was opened in APD, the PID feedback loops using the 

recommended control loops from Aspen Plus are generated. This is shown below in Figure 16.  

 

Figure 16: Dynamic PFD in APD with PID Control. 
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APD offers an easy to use visual interface. The 

simulation can be run from the ribbon using the 

controls found in Figure 17. Furthermore, it is important to specify the run mode, 

communication intervals and units in the Run Options. Figure 18 shows these options which 

are accessed by pressing F9 whilst in APD. The time units have been updated to seconds and 

the interval 1 second. Furthermore, it is possible to manipulate variables and events by writing 

automation tasks. The creation of these tasks is documented in 10.6 Appendix 6.  

 

By investigating PID in the PFD it is noted 

that APD has the capacity to tune the 

controllers based on two tuning rules: relay 

tuning; and approximate first order model 

based on input stepping (Ogunnaike & Ray, 

1994). This enables conventional PID to be 

tuned quickly regardless of the complexity 

of the plant. 10.5 Appendix 5 details the 

steps involved with specifying controller 

parameters, tuning and plotting in greater 

depth. This does not however include any 

advanced control schemes. As this project 

will be implementing advanced controllers 

through the integrated software packages 

the control loops have been removed from 

the PFD in APD. 

Figure 17: Simulation Methods in APD. 

Figure 18: Run Options in APD. 
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4.3 Aspen Advanced Process Control 

AspenTech has a product which does not form part of the Aspen Engineering Suite 

(AspenTech, 2015e). Advanced Process Control (APC) Model Builder is part of Aspen 

Manufacturing Suite and includes a range of software packages to model, build, simulate and 

deploy model based controllers (AspenTech, 2011, p. 8). Although the full list of APC Model 

Builder’s capabilities can be found in 10.7 Appendix 7, DMCplus is of particular interest.  

 

After AspenTech acquired DMC Corporation they developed DMCplus, which has gone on to 

be the industry leading multivariable MPC (AspenTech, 2011, p. 1). This integrated suite offers 

the ability to: 

 Use multiple model identification algorithms; 

 Configure controllers through a validation wizard; and 

 Evaluate the performance against a model to determine its suitability to noise and 

inaccuracies. 

Furthermore, this package also includes an implementation package referred to as DMCplus 

Online (AspenTech, 2011, p. 2). This provides the infrastructure to implement the DMCplus 

controller and connect to the process instruments in the field. 

 

4.4 Issues 

During the setup of the high-fidelity distillation column in Aspen Plus a number of issues were 

encountered that warrant discussion. First, it is important to always ensure the software has 

access to the databases. If the databases are not available then ensure access to the licensing 

server is available. If no issue exists with the licensing server then ensure the software has 

completed its install correctly. The databases will be downloaded onto the device the first time 
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the software is launched. However, sometimes this does not occur and a few attempts need to 

be made. If the databases are not installed the software will fail to operate or give undesired 

and unexpected results. Second, the end user should be careful when establishing the 

dynamics of the unit operators. If they are incorrect the export will either fail or, if successful, 

the operation of the dynamic simulation will be inaccurate. 

 

Additionally, make sure the software versions of the AspenTech products match. As AspenTech 

released updates on only half the products a version selector was made available. If the 

version is not selected correctly, the file being opened will either open blank or incorrectly. As 

shown in Figure 13, located on page 29, all the streams disconnected when opened in APD. 

This occurred because APD was expecting a model from V8.4 not V8.6. Note that even if the 

end user attempts to reconnect the streams the software will freeze and crash if the versions 

are not congruent. 

 

Finally, Aspen APC does not form part of the AspenTech Engineering Suite. It is from the 

Manufacturing Suite and might require further download or occur additional cost to the end 

user. A check of the licensing server will display how many licenses remain for each AspenTech 

product and will advise if APC can be utilised on individual devices. 

 

4.5 Conclusion 

This chapter detailed the procedure involved in setting up and using a distillation column in 

Aspen Plus and APD. Furthermore, it outlined clearly the steps involved in exporting from 

steady state to dynamic simulations as well as the control options available in AspenTech’s 

product range. Section 4.4 Issues emphasised the issues faced while completing this 

documentation in order to enable future work to run smoother. With a distillation column 
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established and operational in APD the integration of APD with MATLAB and LabVIEW will be 

investigated.  
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5.0 ActiveX 

5.1 Overview 

With the distillation column successfully implemented in APD the integration to additional 

software packages was investigated. Typically Windows based software packages include 

documentation on the OLE and ActiveX controls. However, where documentation is not 

available, it is possible to use Microsoft’s OLE Viewer to examine the OLE typelib information 

and trace the methods and properties (Schwartz, Olson, & Christiansen, 1997). With the aid of 

AspenTech’s documentation on ActiveX (AspenTech, 2000b) a flowchart was established 

outlining a general overview for how ActiveX will be exercised to apply control schemes in 

client programs and communicate data to and from AspenTech, the server. Figure 19 outlines 

this structure. 

Start Simulation
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Send Data: 
Input(s)

COM Open?

Client
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Open 
Document

Document 
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Figure 19: ActiveX COM Flowchart. 
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Initially the script will check to see if the COM is already open, if it is it will move on without 

attempting to open the COM again. If the COM is not open the COM Object will be opened. 

This check is in place as the software will not act as required if multiple COM servers are 

activated. Following this, the document being manipulated will be checked to see if open. 

Again, if it is open then it will not attempt to open it as this will result in a run error being 

established, however if it is not open then the process will launch the file. Moving on, the 

process will set up the server to match the specified client system settings then proceed to 

send and receive data. Once the program has finished the simulation the file and COM will be 

closed. Not closing the COM can cause the program to crash or stop the file from being 

manipulated. As with all software packages, it is important the results obtained through the 

use of ActiveX are validated. To do so a co-simulation will be undertaken to establish the 

validity of the integration before implementing advanced control schemes. 

 

5.2 Active in MATLAB 

Following the architecture presented in Figure 19, communication between MATLAB and APD 

was attempted. MATLAB has an inbuilt function ‘actxserver’ which takes advantage of OLE 

Automations capabilities to create a COM server based on the predefined DLL (MathWorks, 

2015d). Using ‘AD Application’(AspenTech, 2000b) an attempt was made to establish a 

connection from the client to the server. However, this server creation failed with the error 

given in Figure 20.  

 

Figure 20: Failed Server Creation in MATLAB. 
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An issue occurred using the ‘actxserver’ function; as a result MATLAB was not able to establish 

the connection to APD. After consulting the MathWorks forum it was discovered that 

“MATLAB cannot be 64-bit for actxserver to load a 32-bit dll” (MathWorks, 2009). The current 

software versions installed on the device were 64-bit MATLAB and 32-bit APD. This raised two 

methods to continue: 

 Install APD 64-bit; or 

 Install MATLAB 32-bit. 

 

The 64-bit version of APD was installed on the device and the COM server attempted again 

using the two 64-bit software packages. This was unsuccessful and resulted in the same server 

creation failed error. MATLAB 32-bit was placed onto the device and the script run again. This 

time, using the 32-bit software variations, the server was established without issue. It was 

discovered the ‘Aspen Customer Modeler 30.0’ DLL is 32-bit and this is the factor which 

governs which software version MATLAB must be. With the server established the next task is 

to communicate and manipulate data objects. 

 

As stated in 2.4.2 Properties and Methods, in order to enable data communication and 

automation, the properties and methods must be raised through the COM. Using the ‘invoke’ 

function MATLAB is able to invoke different methods on COM objects (MathWorks, 2015e). 

There are several methods which can be employed which range from: 

 Manipulating variables; 

 Retrieving variables; and 

 Automating the simulation. 
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Once the directory of the file being examined, as well as the number of inputs and outputs set, 

it was possible to view all variables available on the server (AspenTech, 2000b). The available 

variables include: flows; temperatures; pressures; levels; and system settings in APD. These 

unit operator variables are called using the following naming convention: 

OBJECT(“NAME”).Description|Units 

10.8 Appendix 8 details how this communication from MATLAB to APD was implemented, 

providing an in-depth description of each step. 

 

5.3 ActiveX in LabVIEW 

In order to create a real-time simulation of APD, LabVIEW will be integrated with APD. This 

software package was selected as it has an existing utilisation across colleges and universities 

around the world, in addition to wide scale industrial use (National Instruments, 2015b). Due 

to this wide use the software integration could form a useful tool for educational purposes in 

higher education and industry. Again, this communication will be achieved through the use of 

ActiveX. 

 

Connecting to MATLAB from within the LabVIEW interface is simple through the use of NI’s 

MATLAB script node. This node connects directly to MATLAB using ActiveX technology and 

invokes the MATLAB server to execute scripts. The scripts written inside the node follow the 

MATLAB programming language. By default it is only possible to execute inbuilt MATLAB 

functions. However, by using MATLAB’s inbuilt function ‘pwd’ to return the current folder it is 

possible to save user defined functions within 

this directory (MathWorks, 2015f). When using 

the MATLAB software all user defined 
Figure 21: Current Directory Returned by MATLAB. 
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functions must be within the current directory folder to be executed. Figure 21 shows the 

current, default directory. As it is not possible to move user functions into the default file on 

administrator locked devices an additional method can be applied. Using MATLAB’s function 

‘cd’ it is possible to change the current directory to a different folder (MathWorks, 2015g). In 

doing so it is possible to ensure LabVIEW and MATLAB will always search the same directory 

for functions, thus removing any errors at start up. With the node set up with proper 

validation it is possible to call user defined functions. This will be examined in 6.2 LabVIEW 

Control Design Toolkit when implementing DMC in LabVIEW. The limitation of this method is 

the user is restricted to the standard functionality of MATLAB. This does not provide any 

additional benefit except the ease in implementing existing scripts into the LabVIEW visual 

interface. In order to gain access to true automation the ActiveX blocks were investigated. 

 

Using the Automation Open 

block in LabVIEW, as shown in 

Figure 22, it was possible to 

specify which ActiveX object to 

open communication with (National Instruments, 2007a). The COM interface, referred to as 

Automation Refnum in LabVIEW, is daisy chained to the COM properties and methods from 

the Automation Open block. As previously mentioned in 2.4 ActiveX, Aspen Customer Modeler 

DLL is used to establish connection to APD. This is selected as the ActiveX class and connected 

to the Automation Open block as shown in Figure 23.  

 

Figure 23: Aspen Customer Modeller ActiveX COM Setup. 

 

Figure 22: ActiveX Automation Open Block in LabVIEW. 
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Figure 24: ActiveX Property and Invoke Nodes in LabVIEW. 

 

Once the COM server was created the interface reference was fed to the property and invoke 

nodes, which are described in Figure 24. These nodes were used to make APD visible, open the 

document and retrieve the temperature of the feed stream. Figure 25 below displays the 

arrangement of the ActiveX blocks in LabVIEW. This initial configuration was used to check if 

the COM was established correctly. The error indicator displays any error code and description 

if ActiveX fails to complete a task. 

 

Figure 25: Graphical ActiveX Programming in LabVIEW to Create APD COM. 

 

It can be observed in Figure 25 that all the variables must be converted into the variant data 

type before being usable in the ActiveX blocks. The variant data type was added to LabVIEW 

for the sole purpose to handling the complicated data 

required by ActiveX objects (Johnson & Jennings, 2006, 

p. 126). When this VI was run, APD launched without 

issue and the document, ‘DistilCol.dynf’, opened 

Figure 26: Error When Retrieving Data over 
COM in LabVIEW. 
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successfully. However, when retrieving the data from the server an unspecified error occurred, 

displayed in Figure 26. A check through the ActiveX documentation did not resolve this issue 

(AspenTech, 2000b; AspenTech, 2005; National Instruments, 2007). It is believed the issue 

originates from a mismatch in the naming syntax for the variables in APD, or from the server 

not expecting data to be requested. Further research into this issue is required. As a result it 

was not possible to continue using this integration method and an alternative was explored. 

 

In order to achieve the integration of 

LabVIEW and APD, Excel could be used as 

an intermediary. First LabVIEW would 

need to establish a connection to Excel, 

before Excel then creates a connection to 

APD. Following the structure presented in 

Figure 27 the three software packages 

could work together to communicate and 

log data. To achieve automation through 

Excel, macros must be written in VBA. 

Before these macros are designed in 

Excel, to create a COM server to APD, the 

LabVIEW ActiveX blocks will be used to 

establish a server with Excel. 10.9 

Appendix 9 details the steps taken to 

enable communication between LabVIEW 

and Excel. This process is relatively 

simple, using VBA macros to perform the 
Figure 27: Structure for LabVIEW-Excel-APD 

Communication. 
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majority of the communication process depicted in Figure 27. As such, only the execution of 

the macros is needed to provide automation from LabVIEWs perspective. 

 

5.4 ActiveX in Excel 

In order to retrieve information from LabVIEW the variables must first be specified. When 

connecting to LabVIEW from Excel using ActiveX, the functions 

GetControlValue and SetControlValue are used. These functions will 

call variables based on their label in LabVIEW. However these 

variables must be connected to a port on the VBA node within LabVIEW for the 

communication to be successful. An empty VBA node is shown in Figure 28. Once the MVs, DVs 

and PVs have been assigned to the VBA node, the VBA macro can be written to manipulate 

these. 10.10 Appendix 10 outlines the creation of the macros, while 10.11 – 10.13 Appendices 

11 – 13 include the VBA scripts. Once the LabVIEW COM server is created in Excel it remains 

open until explicitly closed. Given this the COM server is created initially, then the variables 

taken from LabVIEW and logged in Excel. After the simulation in APD is stepped, the PVs are 

retrieved and logged in Excel before being sent back to LabVIEW to override the PVs using 

SetControlValue. 

 

 

Figure 29: ASW Toolbar in Excel. 

To communicate to APD from Excel, AspenTech recommends utilising their Excel add-on Aspen 

Simulation Workbook (ASW). ASW, once linked to an Aspen simulation, can manipulate and 

retrieve variables from the model variables (Tremblay & Mantrala, 2014, p. 2). ASW also 

provides the user with the Run controls from within APD, as shown in Figure 29. This method 

Figure 28: VBA Node in 
LabVIEW. 



Murdoch University   5.0 ActiveX  

 44 

of integration is best used when providing a user interface for complex models in Excel. It 

enables the capabilities of AspenTech’s products to run in the background while the user does 

not explicitly need intimate knowledge of the software (Tremblay & Mantrala, 2014, p. 1). 

ASW does not however provide the automation required to achieve integration with LabVIEW. 

The ability to automatically step the simulation can be achieved through ActiveX and VBA. In 

order to achieve unanimity between the three programs VBA also provides a logical solution as 

the communication between LabVIEW and Excel is performed using VBA. 

 

This configuration follows the methods described in Figure 27. Once the MVs are calculated in 

LabVIEW the macro ‘StepAspen’ is run. Once this macro is run LabVIEW will wait for a 

response, effectively pausing all processes within. When Excel receives the MVs from LabVIEW 

they are advanced to APD by manipulating the variables in the tree structure in APDs model 

explorer (AspenTech, 2005). With these variables updated to the current DVs and MVs, the 

simulation is stepped one time interval. The PVs are now extracted from the model explorer 

and sent back to Excel before being passed back to LabVIEW. Once they have been updated in 

LabVIEW the macro ends and control is passed back to LabVIEW. With control returned, 

LabVIEW will move to the next loop iteration and start the entire process again. This will 

continue until the end user presses the STOP button inside LabVIEW. Once pressed, the 

shutdown process is initiated and the ‘CloseAspen’ macro executed. This process will shut the 

servers between Excel and APD as well as LabVIEW and Excel. An in-depth description of this 

process is outlined in 10.10 Appendix 10. 
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5.5 Co-Simulation 

With the client server models established across the software packages, the communication 

must be validated to ensure correct operation. To do so, PI feedback control loops were 

established across all three software packages. The control loops used were: 

 Level in the reflux drum controlled by the distillate stream flow rate; 

 Level in the sump controlled by the bottoms stream flow rate; and 

 Pressure in stage one controlled by the reflux stream flow rate. 

Through this co-simulation it was possible to test the implementation across the software 

packages and in turn verify the performance of the communication servers and client control 

schemes. The PI controllers are configured with the following parameters: 

 Reflux Drum Level,            ; 

 Sump Level,            ; and 

 Condenser Pressure,              . 

These parameters are not tuned for the system and are used for the sole purpose of validating 

the operation of the software packages. 

 

Figure 30 displays the      step in the feed stream temperature. The overall performance of 

the control schemes is not of interest in this case, however the behaviour of the system is. It 

can be seen in Figure 31 that the controllers implemented in APD, LabVIEW and Simulink have 

all produced identical MVs. This endorses the operation of the integrated software packages. 

Moreover, Figure 32 confirms the PVs across all software packages are indistinguishable. This 

endorsement proposes MPC can be investigated and implemented in LabVIEW and MATLAB, 

and the performance would be equal to a scheme which is implemented directly in APD. The 

remaining plots can be found in 10.14 Appendix 14. 
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Figure 30: Plot of the DV Step Across all Software Packages. 
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Figure 31: Plot of the MV Across all Software Packages. 
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Figure 32: Plots of the PV Across all Software Packages. 
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5.6 Issues 

During the development of the ActiveX communication servers a range of problems were 

faced that warrant discussion. In order to use the Aspen Custom Model DLL, 32-bit MATLAB is 

required. This is due to the fact the DLL is 32-bit not 64-bit. There is no fix for this except for 

the change in software version. It was not possible to get the Aspen Custom Modeler DLL to 

work in LabVIEW. When invoking methods across the COM an unspecified error would occur. 

Further research is needed in order to document the correct syntax and provide the ability to 

remove the use of a data highway, in the form of Excel. It is also important to note that the 

documents from MATLAB; Simulink; APD; and LabVIEW; must be located in the same directory. 

If they are not they will fail to launch when the current directory is searched. It is possible to 

change directories as the process is operating however the constant change in directory will 

introduce an unwanted time delay. 

 

When troubleshooting the software packages it is easier to follow the flow of information and 

processes when the software is visible. This applies to Excel and APD. If the software is not 

visible while initial setup is conducted it can be difficult to isolate issues. On top of this, note 

that the client will not continue to operate while the COM server is executing a command. 

Consequently, the software can only complete a loop as quickly as the COM server can 

communicate data. If the loop time drops below        a time delay will be introduced into 

the system every loop iteration and eventually void the real time simulation in LabVIEW. 

 

When communicating to any ApsenTech product, if the Units of Measurement (UOM) are not 

specified it will use the English UOM by default. These are as follows: 

o Foot (ft); 

o Pound (lb);  
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o Pound per square inch (psi); 

o Degrees Fahrenheit ( F); and 

o British thermal unit (Btu).  

 

5.7 Conclusion 

This chapter explored the idea of Microsoft’s ActiveX and outlined a structure for achieving 

communication between differing software packages. 5.6 Issues highlighted the main issues 

associated with the implementation of ActiveX in MATLAB, LabVIEW and Excel. With 

communication established the advanced control toolboxes will be explored in MATLAB and 

LabVIEW.  
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6.0 Model Predictive Controllers 

6.1 MATLAB MPC Toolbox 

With a valid connection between MATLAB and APD, the 

MPC Toolbox in MATLAB can be considered. This toolbox 

provides functions and Simulink blocks for designing, 

analysing and simulation MPCs (MathWorks, 2015h). These 

controllers follow the control algorithms and principles 

discussed in 2.2.4 Model Predictive Control. The MPC 

controller block in Simulink is displayed in Figure 33. By 

default this block expects the (MathWorks, 2015i): 

 Measured output, denoted as mo and previously referred to as the PV; 

 SP, denoted as ref; and 

 Measured disturbance or DV, denoted as md. 

 

On top of the default inputs it is 

possible for the MPC controller 

to expect various optimisation 

objective functions and plant 

noise, as presented in Figure 34. 

This affords Simulink the ability 

to recreate realistic plant 

behaviour with measured and 

unmeasured DV present. 

Figure 33: MPC Block in Simulink. 

Figure 34: Additional MPC Input and Output Variables in Simulink. 
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In addition to these features, Figure 35 indicates the controller constraints and penalty 

weightings can also be defined. By enabling these it is possible to make a more adaptive 

control schemes. However these variables can be set within the MPC toolbox itself if adaptive 

control is not required. 

 

 

 

 

 

 

 

 

Once the controller block was added to the Simulink model and connected to the plant model, 

the controller design was launched. When the design tool launches MATLAB will automatically 

linearise the existing plant in Simulink to use as a reference for the predictive nature of the 

controller. This however is not possible over the ActiveX server. It is noted that MATLAB 

performs the linearisation based 

on the Simulink blocks used on the 

model not through step tests. 

Thus, when the toolbox attempts 

to linearise the plant it produces an 

error, as found in Figure 36. This 

limitation removes the toolboxes 

ability to quickly generate MPC 

control schemes. In order to 

Figure 35: MPC Controller Parameters in Simulink. 

Figure 36: Design Tool Linearising Plant Model in Simulink. 
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overcome this, the model of the plant must be determined. MATLAB suggests in Figure 36 that 

a linear model should be obtained first. 

 

Given the capabilities of MATLAB this can be 

achieved using the system identification toolbox, 

ident (MathWorks, 2015j). However an issue 

associated with this method is the time investment 

required to determine accurate models for each 

output against all the inputs. To overcome this, a 

new function and script was written to automate 

this process and remove the need for tedious 

calculations by the end user. 10.15 Appendix 15 

documents the function which exercises the least 

squares method to determine a first order or 

capacitive Transfer Function (TF) model (Strang & 

Borre, 1997, pp. 174-176). This function enables 

quick prediction of the TF by minimising the sum of 

the error squared based on the input of the PV, MV 

and time arrays. 

 

Given this function, the automation of Simulink was 

written through MATLAB script. This is detailed in 

10.17 Appendix 17 and performs steps on each 

input in Simulink to determine the TF for each 

element in the MIMO matrix. Once the relationships 

Figure 37: MIMO TF Output from the MIMO 
Script in MATLAB. 
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the input has on each output are discovered the next input is stepped and process repeated. 

The script will continue this process until all input variables have been stepped and analysed. 

Figure 37 displays a MIMO TF matrix which can be utilised in the MPC toolbox. With the MIMO 

TF determine this can be input into the MPC Toolbox by selecting ‘Import Plant’ in the MPC 

Toolbox shown in Figure 38. The MPC Toolbox can be launched from the MATLAB Command 

Window using the function ‘mpctool’. 

 

 

Figure 38: MPC Toolbox Design Task in Simulink. 

 

Once the plant model has been imported, the input and output variables will be determined by 

the toolbox. This model will then be used as a reference for the controller design. Following 

this the controller parameters, constraints and controller weighting must be specified. Figure 
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39 shows the controller tuning window. 10.18 Appendix 18 provides further detail on the 

setup of MPC controllers in MATLAB and Simulink. 

 

On a side note, the MIMO TF can be 

used for RGA analysis by utilising the 

algorithm given in Equation 10, found on 

page 14. This will provide the best loop 

pairings given the variables available in 

the TF. This is important because the 

MPC Toolbox will match the first MV 

with the first PV and so forth. It does not 

determine the best pairing even though 

it has the information and model to do 

so.  

 

Furthermore, the TF parameters can be utilised when designing 

DMC controllers (Ogunnaike & Ray, 1994, pp. 1000-1007). To 

implement DMC in Simulink, a MATLAB function was written. The 

DMC function, as shown in the Simulink block in Figure 40, follows 

the design steps in Romagnoli and Palazoglu (2005). The controller 

inputs are: 

 Control variables: 

o PV; 

o SP; and 

Figure 40: Function Block 
in Simulink. 

Figure 39: MPC Controller Parameters in the MPC Toolbox in 
Simulink. 
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o Bias or steady state MV. 

 Approximate first order model: 

o Time delay, denoted by A to represent alpha ( ); 

o Gain, denoted by K; and 

o Time constant, denoted by Tau. 

 Controller parameters: 

o Control horizon, denoted as U; 

o Prediction horizon, denoted as P; and 

o Weighting matrices, denoted as    and   . 

 

The output of the function is the MV. This controller action is calculated based on the 

convolution model discussed in 2.2.4.1 Dynamic Matrix Control. It is possible to then run the 

MV through a saturation block in Simulink to apply any MV constraints before being sent to 

the plant. 10.19 Appendix 19 describes the DMC function in greater detail. This script was 

designed to offer an alternative to the MPC toolbox. 

 

6.2 LabVIEW Control Design Toolkit 

The MATLAB node, discussed 

previously in 5.3 ActiveX in 

LabVIEW, can be used to implement 

the DMC script in LabVIEW. The 

functions inputs are fed to the node 

and the function called. This then 

utilises its ActiveX connection to run Figure 41: DMC Script in the MATLAB Node in LabVIEW. 
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the function and determine the DMCs MV. Its implementation can be seen in Figure 41. 

 

Implementing MPC in LabVIEW is done so by using three blocks. Initially the controller must be 

created by preparing the ‘Create MPC’ block, shown in Figure 42. However before this block 

can be used, the plant model must be defined in SS representation (National Instruments, 

2009, p. 18.3). The limitation on model input fits the common theme across the majority of 

MPC controllers in industry. Typically only DMC uses non SS representation. It is possible 

however, to convert a TF model into SS before being input into the MPC block (National 

Instruments, 2007b). The ‘Convert to SS’ block will take the TF input, perform any zero-pole 

cancellations and output a SS representation of the model. This SS model is then fed to the 

‘Create MPC’ block to use as reference for the controller predictions. Additionally the ‘Create 

MPC’ block expects the follow inputs: 

 MPC controller horizons; and 

 Weighting coefficients. 

 

The bold inputs in Figures 42 and 43 denote required node inputs. The MPC Controller 

Parameters are broken down into the following: 

 Prediction horizon; 

 Control horizon; 

Figure 42: Create MPC VI in LabVIEW. 
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 Minimum delay of the model; and 

 Whether to include integral action. 

The integral action is used when the plant’s mathematical model does not match the plant’s 

actual model. Furthermore, the MPC Cost Weights is broken down into the: 

 Output error weighting; 

 Change in controller action weighting; and 

 Controller action weighting. 

 

With the required inputs specified, the MPC Controller was fed to the ‘Implement MPC’ node 

and used as a reference to calculate the MV. However, it is also possible to define the initial 

conditions and constraints on the MVs and PVs. 

 

Figure 43: Implement MPC VI in LabVIEW. 

With the MPC controller constructed, it is fed to the ‘Implement MPC’ block shown in Figure 

43. This block is used to calculate the MV of the MPC generally inside a loop. It applies the 

MPC controller designed in ‘Create MPC’ to determine the next MV based on controller 

parameters, constraints, and weighting. The ‘Implement MPC’ block needs the MPC controller 

and PV input in order to calculate the current MV. It is possible to change the controller to 

manual mode, in addition to feed the pervious MV back to the controller. This is useful as it 

ensures the controller is aware of any discrepancies between its suggested action and the 
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actual MV, potentially due to actuator limitations. The estimated output can also be 

withdrawn from the block for reference purposes to track how well the controller is predicting 

the behaviour of the plant. The implementation of MPC in LabVIEW, including MIMO, can be 

found in 10.19 Appendix 19.  

 

6.3 Issues 

When documenting the functionality of the MPC toolboxes in MATLAB and LabVIEW, a number 

of concerns were raised. When using MPC, or DMC, it is important that the    is consistent 

amongst the software packages and their controllers. If they are not congruent the controller 

will make erratic controller predictions and result in unexpected plant behaviour. This stems 

from the controller predicting over a different sample time. 

 

The MATLAB MPC Toolbox explicitly uses the blocks in the Simulink model to linearise the 

plant. When these blocks call a MATLAB script, or external information through a server, the 

linearisation method will fail. In order to move beyond this drawback a model must be 

developed and imported into the controller. This can be either a TF or SS in MATLAB, or SS in 

LabVIEW. Nevertheless, the system identification toolbox in MATLAB only handles SISO 

identification. In order to build a MIMO TF matrix the toolbox must be utilised repeatedly. This 

process is tedious and thus a MIMO system identification script was written. This script can be 

used for any system which is developed following the guidelines specified in 10.17 Appendix 

17. In LabVIEW however, there is no tool which offers system identification. This requires 

further research into how such a tool could be implemented, or how Excel and the solver add-

on could be incorporated with LabVIEW to achieve this automatously. 
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Finally, neither of the MPC toolboxes have the capacity to perform RGA analysis. This means 

the RGA must be determined beforehand by the user. An advantage of the MIMO system 

identification script in MATLAB is that it can be used to determine the gain array and RGA. This 

highlights the need for a more innovative control toolbox is both software packages. 

 

6.4 Conclusion 

This chapter detailed the functionality of the advanced control toolboxes in MATLAB and 

LabVIEW, in addition to offering some alternatives and improvements. The major flaws in 

functionality and operation were detailed in 6.3 Issues. With the capabilities expanded and 

toolboxes documented a comparison of MPC against PI can be undertaken. This will be used to 

confirm the original idea and driving force behind the integrated software that implementation 

of MPC will reduce the amount of energy usage in distillation columns.  
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7.0 Control Scheme Comparison 

With the MPC application in MATLAB and LabVIEW documented it is possible to implement 

these controllers on the high-fidelity distillation column. Before that can be done an open loop 

simulation must be run to determine the effect each input has on the outputs. Using the 

MIMO TF matrix script in 10.16 Appendix 16 it was possible to construct the MIMO model 

automatically. This script was run on the open loop system shown in Figure 44. 

 

Figure 44: Open Loop Simulink Model for a High-Fidelity Distillation Column. 
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This script utilises the function provided in 10.15 Appendix 15 to solve for the TF of a given 

input and output. It repeats this process until all inputs have a corresponding TF for each 

output. The resulting MIMO TF matrix can be found in 10.20 Appendix 20 while the gain matrix 

is given in Table 2 below. 

Table 2: Gain Array Matrix for a High-Fidelity Distillation Column. 

K Input 1 Input 2 Input 3 Input 4 Input 5 

Output 1 1.896E+00 1.761E+00 -1.358E-05 -6.618E-07 -9.206E-07 

Output 2 -3.171E+00 1.656E+00 -4.891E-04 -4.508E-04 7.359E-06 

Output 3 3.316E+00 -1.633E+00 5.256E-04 -5.806E-05 -2.249E-03 

Output 4 -1.981E-01 1.158E-01 -5.082E-05 8.687E-08 -5.803E-08 

Output 5 1.034E-01 -4.785E-02 9.218E-06 -7.482E-08 1.524E-09 

 

Using Equation 10 it was possible to determine the RGA. This is given in Table 3, where the 

best loop pairings are highlighted in blue. These pairing were selected given the rules provided 

in 2.2.5 Relative Gain Array. 

Table 3: RGA for a High-Fidelity Distillation Column. 

   Input 1 Input 2 Input 3 Input 4 Input 5 

Output 1 0.30 0.70 0.00 0.00 0.00 

Output 2 0.00 0.00 0.00 1.00 0.00 

Output 3 0.00 0.00 0.00 0.00 1.00 

Output 4 -0.36 -0.26 1.61 0.00 0.00 

Output 5 1.06 0.55 -0.61 0.00 0.00 

 

The input and output variables are described in 10.2 Appendix 2, with the ideal loop pairings: 

 Condenser pressure controlled by the reboiler duty; 

 Condenser level controlled by the distillate flow; 

 Sump level controlled by the bottoms flow; 

 Toluene in the distillate controlled by the reflux flow; and 

 Benzene in the Bottoms controlled by the condenser duty. 
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Using these pairings MPC controllers are implemented in MATLAB and LabVIEW. The MIMO TF 

in 10.20 Appendix 20 is applied as the model reference in both the software packages, with the 

TF model converted to SS in LabVIEW. Figure 45 shows the closed loop set up in MATLAB with 

the MPC controller established. 

 

 

Figure 45: Closed Loop Simulink Model for a High-Fidelity Distillation Column with MPC. 

 

The MPC controller was designed with the following parameters: 

     ; 

       ; 

       and 

      . 
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When this control scheme was run the system did not operate as expected. The MIMO TF had 

to be manipulated because the MPC controllers in MATLAB and LabVIEW do not allow for the 

inputs to control different outputs. It simply connects input one with output one and so forth. 

Due to this the inputs were altered positions to allow them to match the number of the output 

they are controlling. Table 4 displays the updated RGA, using the new arrangement, with the 

input   controlling output  . 

 

Table 4: Updated RGA for a High-Fidelity Distillation Column. 

   Input 1 Input 2 Input 3 Input 4 Input 5 

Output 1 0.70 0.00 0.00 0.00 0.30 

Output 2 0.00 1.00 0.00 0.00 0.00 

Output 3 0.00 0.00 1.00 0.00 0.00 

Output 4 -0.26 0.00 0.00 1.61 -0.36 

Output 5 0.55 0.00 0.00 -0.61 1.06 

 

To test the performance of this control scheme, a comparison against tuned PI control was 

completed. These tests were performed to confirm the suggestion MPC would result in better 

energy usage in the distillation column. When implementing PI control around five variables, 

to match the MPC control scheme, APD would fail. APD would lose convergence once the 

simulation completed two iterations. To overcome this, two controllers were removed from 

the scheme and operation was resumed. The control loops being examined are: 

 Condenser duty controlling the condenser pressure; 

 Distillate flow rate controlling the reflux drum level; and 

 Bottoms flow rate controlling the sump level. 

The PI controller parameters were determined from the Zeigler-Nichols approximate model 

tuning rules. These are: 

          ,        ; 

          ,        ; and 
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          ,        . 

 

In order to test the performance of the control schemes,      SP changes were introduced 

individually in Simulink. The performance of each system was then compared against one 

another using the ITAE performance criterion, provided in 2.2.6 Performance Criterion. Table 5 

displays the ITAE values for the PI and MPC control schemes, with the variable tracking their SP 

highlighted in blue. This performance criterion was used for both the SP tracking and DV 

rejection.  

 

A supplementary feature which was not active in the toolboxes was the addition of integral 

action within the MPC controller. This action can be employed to remove the mismatch caused 

from inaccurate plant models. Further research into the implementation of this is required to 

determine if there is an improved effect on the control schemes, and how significant this 

effect is. 

 

Table 5: ITAE Performance Criterion for PI and MPC Control Schemes on a High-Fidelity Distillation Column. 

 

 

It is noted from Table 5, the MPC controller produces significantly lower ITAE values across all 

scenarios except when tracking SP changes in the condenser pressure. Changes on this SP 

resulted in the PI controller outperforming MPC, as shown in Figure 46, potentially due to the 

system being over damped. 

 

 

MPC PI MPC PI MPC PI MPC PI MPC PI MPC PI

Pressure 23.956 8.374 23.956 8.374 0.000 1.719 0.000 1.720 0.000 4.025 0.000 4.038

Drum Level 0.123 532.336 0.123 532.336 6.026 46.724 6.027 46.724 0.000 6.463 0.000 6.465

Sump Level 0.292 681.954 0.292 681.954 0.000 3.782 0.000 3.783 9.983 140.899 9.986 140.902

Drum Level +20% Drum Level -20% Sump Level +20% Sump Level -20%Pressure +20% Pressure -20%
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Figure 46: Plots of the PV and MV with a 20% Decrease in Condenser Pressure SP. 
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However the other PVs were not able to reject the DVs under these conditions. The deviation 

in the drum and sump levels shown in Figure 47 produced large ITAEs for the PI schemes when 

the pressure profile was altered, approximately 532 and 682 respectively. The MPC scheme 

rejects the disturbance as it occurs due to the predictive nature of the controller. 

 

Figure 47: Plots of Drum and Sump Level Rejecting a 20% Decrease in Condenser Pressure SP.  
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Figure 48 displays the control schemes tracking the SP of the sump level. The SP was increased 

20% with the MPC settles quickly at the new SP and avoiding overshoot. The PI eventually 

settled at the set point however as it is not able to predict the nature of the plant and the 

effect its input changes will have it overshoot by approximately 8%. This type of behaviour was 

consistent across the remaining steps and can be found in 10.21 Appendix 21. 

 

Figure 48: Plots of the PV and MV with a 20% Increase in Sump Level SP. 
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8.0 Conclusion 

8.1 Summary 

8.1.1 Software Integration 

To conclude, the issue with the current software used in the chemical and petroleum 

industries is the lack of advanced control strategies. By integrating MATLAB with APD, and 

LabVIEW with APD, it was possible to implement MPC on the plant constructed in APD. This 

was achieved using ActiveX across all software packages. LabVIEW however was not connected 

to APD directly due to lack of documentation on the object tree structure. As such its current 

form lacks dynamic functionality. This paper documented the steps involved in creating the 

communication servers in the hope that this research will lead to the development of a 

template which can be used to train the user on advanced control schemes. This includes 

educating users on the implementation and tuning of predictive control and training users on 

the dynamics of complex systems. 

 

8.1.2 Model Predictive Control Functionality  

With communication established between these software packages the MPC toolboxes were 

explored. The main finding from this investigating was the limitations placed around the 

functionality of these toolboxes. Of these, the biggest limiting factors in MATLAB are the 

inability to quickly determine the MIMO plant model and perform RGA analysis. Originally it 

was thought the toolbox determined the model of the plant by introducing input steps into the 

open loop system. MATLAB could then utilise this data to determine the system model 

through its system identification tool. This unfortunately is not the case. The MPC toolbox 

linearises the system by evaluating the current Simulink blocks and parameters. It uses its 

existing knowledge of these blocks to conclude the SS representation of the plant. This causes 
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a major issue for the current set up as the plant is located on a different software package and 

thus MATLAB cannot determine the model. The toolbox also does not distinguish between the 

inputs and outputs of the system. If the user connects an input in position one and an output 

in position one the MPC controller will pair the two together. This is the case regardless of 

their interaction. As the toolbox does not determine which loop pairings are ideal this must be 

performed prior to connecting the streams to the controller. 

 

As MATLAB did not possess the capabilities to perform these tasks a function and script was 

written in MATLAB to automate this process. Prior to this automation the user would have to 

import step data into the system identification tool, ident, and determine SISO TFs for each 

input and output combination. This is tedious and time consuming, especially when 

considering a 5 input, 5 output system. To determine the complete dynamics of this system 

the user would need to generate 25 SISO TFs before merging them into one MIMO matrix. The 

automation of this process not only performed steps on each input and created a data-driven 

MIMO matrix, it also provided the information necessary to accomplish the RGA analysis. The 

steady state gain of each interaction can easily be determined from the MIMO TF, through 

FVT, and used for constructing the RGA. 

 

Similarly, LabVIEW did not afford the user any increase in functionality over MATLAB. The MPC 

toolkit was very rigid in needing the SS model in order to develop the MPC controller. 

Additionally, no system identification tool exists within LabVIEW. In order to develop the 

controller in LabVIEW the SS representation must be known. This can be developed 

mathematically or through input step tests. Given the script written in MATLAB it is possible to 

determine the MIMO TF matrix and use the LabVIEW block to convert the TFs to SS 
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representation. Alternatively, step tests can be performed in LabVIEW and the data logged. 

This logged data can then be used to identify the system model using Excel’s solver add-on. 

 

8.1.3 Control Scheme Performance 

The present research also demonstrates the advantages of MPC control schemes. The control 

schemes were compared using the ITAE performance criterion. This comparison of PI and MPC 

illustrates that MPC control significantly outclasses the PI control schemes in all scenarios 

except condenser pressure SP tracking. Specifically, there is a large difference in the ITAE 

values between the control schemes. The improved performance of the MPC control scheme is 

likely due to its ability to deal with difficult dynamic systems, such as large time delays or 

inverse response. Not only is the scheme able to predict the behaviour of a MIMO system it 

also enforces operation within system constraints. Moreover, its ability to predict the 

behaviour of the plant and make sophisticated control changes means it settles quicker and 

avoids oscillations or overshoot. These findings support the literature, and highlight the 

advantages of MPC in industrial environments. 

 

The reduction in the ITAE, along with the added benefit of operating closer to constraints, 

could aid in minimising energy usage in the distillation process. However the current 

perception in industry is MPC is too complex to implement without a specialist and 

consequently too costly and time consuming. In order to overcome such a hurdle better 

education and hands on experience is needed. To do so educational tools must be developed. 

This paper has provided a basis for establishing such a tool which could be used to educate 

personnel and students on the operation and dynamics of advanced control schemes around 

complex plants. Ideally, with the integration of the software packages, this can be performed 

in a safe, simulated environment however still provide a real visual experience through 
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LabVIEW. By increasing education it could be possible to remove the stigma surrounding MPC. 

However, additional work is required to establish a user friendly interface which complements 

users’ knowledge and makes available the tools to assist in performing advanced control 

theory. Furthermore, the tool will also enable the user to gain experience operating complex 

plant operators without the cost or dangers involved. These are discussed in detail in 8.2 

Future Works.  

 

8.2 Future Works 

One of the challenges with setting up a connection from LabVIEW to APD was the lack of 

documentation on the Aspen Custom Modeler DLL. Without knowing the syntax to use with 

the property and method nodes in LabVIEW multiple errors were encountered. Typically 

ActiveX errors are numbered and can be traced in the supplementary documentation. The 

errors encountered when exercising ActiveX to connect LabVIEW directly to APD were not 

documented thus this method was abandoned. Further research is needed in isolating these 

errors and creating documentation. Experience in computer systems and a deep 

understanding of object linking would be necessary during this research. If documentation was 

developed it would be possible to remove Excel from the communication sequence and 

minimise the amount of software used in achieving integration. An added side effect could be 

a reduction in the loop simulation time and see the communication interval be reduced from 

       to approximately       . 

 

Additionally, in order to employ LabVIEW as a training tool for implementing advanced control 

schemes on complex plants, software templates must be developed. The programs developed 

through this paper achieve the desired integration however a comprehensive knowledge of 

their operation is still required. This stems from a lack of adaptability within the programs 
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constructed. To successfully roll out such an educational product, the amount of hard coding 

requiring manipulation by the end user should be minimised. Currently the user must change 

the variable names within the Excel VBAs to ensure the correct variables are updated in APD. If 

LabVIEW was connected directly to APD and the Aspen Custom Modeler DLL was adequately 

documented the input required by the end user would be reduced. However, if this was not 

achieved Excel would remain essential for the data communication, and a dynamic way of 

sending the variable names from LabVIEW to Excel would be required. The infrastructure of 

the current template enables the variables names to be communicated from LabVIEW to Excel. 

However attempts to use this information in Excel, which is saved in a string, were not 

successful. If a technique to exploit this string information was determine and used to set the 

manipulated variables in APD the need for the end user to edit the VBA macro can be 

removed. When this transpires, a dynamic template in LabVIEW and Excel could be created 

and used in laboratories or training courses.  

 

If a dynamic template was developed, training material would need to be created. The idea is 

focused around MPC on complex plants however the students could gain insight into both 

advanced control schemes and the behaviour of complex plants. The laboratories could cover 

the following ideas across LabVIEW, APD and AHD: 

 Setup complex chemical or petroleum plants in APD and AHD respectively; 

o Gain an understanding of the Aspen products and their general operation. 

 Introduce open loop dynamics of the complex systems; 

o Look into the development of input functions and plotting. These inputs could 

range from step or ramp inputs through to saw tooth and sinusoidal inputs. 

 Implement PI control loops and tuning; 
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o Different tuning methods could be employed and the variances in system 

behaviour compared. This also provides an introduction to performance 

criteria. 

 Implement cascade and/or feedforward control schemes; 

 Implement basic MPC through the LabVIEW toolkit and Aspen APC; 

o These could cover different features across a few laboratories building on their 

previous knowledge each week. 

 Create sub VI’s, functions or scripts which can achieve adaptive MPC or adaptive RGA; 

o Challenge the students to create their own adaption to the base template and 

attempt to apply their knowledge of advance control techniques in LabVIEW. 

 Implement advanced MPC through LabVIEW toolkit and Aspen APC. 

o A final comparison of the toolboxes full capabilities. The students could be 

challenged to see who can create the best performing, or who can make the 

best adaptive, MPC controller in a final project. And also look at optimising a 

profit function to see which scheme resulted in the biggest margins. 

 

The laboratories would be designed around increasing the users’ knowledge of advanced 

control schemes and it is believed the hands on approach and real time simulation will provide 

a good basis for increased implementation in industry. By receiving increased exposure to 

MPC, the stigma surrounding MPC will slowly be removed. If this difficulty is removed, and the 

benefits sold, then as students expand into industry they will be open to the implementation 

of such control schemes, potentially even the driving force behind it. 

 

Furthermore, an additional proposal surrounding the template is the ability to expose 

personnel to specific scenarios. A good plant operator understands how each section of a plant 
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functions and the effect small operating changes have on the system. Therefore, an operator 

will be trained over many years to ensure they understand the plant dynamics and how to 

safely operate the plant. If the plant they are learning was established in APD or AHD then the 

template could be used for the testing of different input changes as well as fault and training 

scenarios. A set of scenarios could be developed to put the plant into a volatile state. The 

operator would then need to take corrective action in order to avoid an event of differing 

magnitudes. As the LabVIEW template will operate as a real time simulator it will provide an 

experience similar to controlling the plant in reality with the added safety benefit. 

 

Finally, as was produced in MATLAB, a function or set of sub VIs need to be developed to 

achieve system identification in LabVIEW. Currently there is no tool in LabVIEW which allows 

for a SISO or MIMO system to be identified. It could be possible to integrate Excel and the 

solver add-on with LabVIEW to perform this. This could possibly be done by: 

 Introducing a step into the system; 

 Wait for either steady states or a predetermined fix time period to pass; 

 Analyse the data using the solver add-on and determine the TF; 

 Convert the TF into SS and save it into an array; 

 Step the next input and repeat the process; then 

 Once all the inputs are completed the sub VI could output the MIMO SS model. 

 

This process could then be performed before entering a loop to control the system in the real 

time simulator. Furthermore, this could also be used for RGA analysis once the matrix was 

constructed. Overall the MATLAB toolbox and LabVIEW toolkit are lacking around adaptive 

control and modelling. They assume the user has the SS model ready to feed into the ‘Create 

MPC’ node. By researching and expanding on the toolboxes it could open more avenues for 
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operators to switch to MPC through the diminished fear surrounding their lack of knowledge 

on the subject. 

 

Overall the driving theme surrounding this, and all proposed research is providing more 

accessible tools and documentation for students and personnel on MPC. The increased 

exposure and understanding of MPC will in turn provide greater confidence in advanced 

control scheme. Furthermore, the experience in implementing MPC and observing the benefit 

on energy and cost reduction might compel more of industry to change to advanced optimised 

control schemes.  
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10.0 Appendices 

10.1 Appendix 1 

Initial Conditions 

Feed 

 Benzene:       

 Toluene:       

 Xylenes:       

 Steady State Flow:               

 Steady State Temperature:        

 Steady State Pressure:          

 Input Stage:      

Tray 

 Stages:       

 Type:           

 Spacing:          

 Diameter:           

 Weir Height:         

Reflux Drum 

 Nominal Liquid Depth:          

 Length:           

 Diameter:          

Sump 

 Nominal Liquid Depth:            
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 Height:            

 Diameter:          

Hydraulics 

 Simple Tray:               

 Lw/D:            

 

10.2 Appendix 2 

Control Specifications 

Plant Inputs 

 Condenser duty 

 Reboiler duty 

 Reflux mass flow rate 

 Distillate mass flow rate 

 Bottoms mass flow rate 

 Feed molar flow rate 

Plant Outputs 

 Condenser pressure 

 Reflux drum liquid level 

 Sump liquid level 

 Mass fraction toluene in the distillate 

 Mass fraction benzene in the bottoms 

Objectives 

 Maintain tower pressure 

 Maintain 5% toluene in distillate, or 95% benzene in distillate 
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 Maintain 1.7% benzene in bottoms 

 Maintain liquid levels in reflux drum and sum at nominal levels found in 10.1 Appendix 

1. 

 

10.3 Appendix 3 

Aspen Plus ‘Radfrac’ Setup 

To launch Aspen Plus go to the Start Menu – All 

Programs – AspenTech – Process Modeling V8.6 – 

Aspen Plus - Aspen Plus V8.6. When launching, if 

prompted to register the license, select Register 

Later as shown in Figure 49. 

 

Once the software begins select New – Blank and Recent – Blank 

Simulation – Create. This will launch a blank template and display the 

Components – Specifications. Select Setup at the top of the list, shown in 

Figure 50, enter the title of the project “High-Fidelity Distillation Tower” 

and set the global unit set to “MET” for metric. Click Next and it will return 

to the Components – Specifications page. 

 

Aspen Plus has a database of components which it can auto fill in the 

details for (type, component name, alias). You must list all the 

components which will be included in the project here. Start by entering 

Benzene into the component ID and press enter. If Aspen Plus does not 

Figure 49: AspenTech License Registration. 

Figure 50: 
Properties Explore 

in Aspen Plus. 
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auto fill the data there is a problem with the available databases. Figure 51 highlights the 

Enterprise Database displaying an error to the user. 

 

Figure 51: Error Notification in Aspen Plus for the Enterprise Databases. 

Select this tab and determine if the databanks are available. Aspen Plus typically has a large 

selection of databases available. If these are not available then the databases are not correctly 

installed on the device and a reinstall should be performed before continuing. 

 

Once the databases have been successfully installed the appropriate data will automatically 

complete, as seen in Figure 52. Enter the remaining components, Toluene and p-Xylene, then 

select Next. 

 

Figure 52: Component Entry in Aspen Plus. 
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This will display the Method Specifications page. The base method use will be NRLT which 

applies Ideal gas and Henry’s law. Select next. 

This will prompt the user to run a property analysis 

to determine if the setup is completed before 

moving to the PFD. Figure 53 displays the prompt 

from Aspen Plus. If this completed without error 

the PFD will be displayed. If not then review the 

previous step of this documentation to ensure all 

the information has been entered correctly. The 

results page will inform the user of the issues encountered when performing the analysis. 

 

The PFD will currently be empty. Select Columns from the Model Palette and drag the 

‘RadFrac’ column onto the flow sheet as shown in Figure 54. The object will be named B1 by 

default. Right click on the ‘RadFrac’ column and select ‘Rename Object’, name the object 

DISTCOL. 

 

Figure 54: 'Radfrac' Column in Aspen Plus. 

Figure 53: Property Analysis in Aspen Plus. 



Murdoch University   10.0 Appendices  

 90 

The column now needs the feed, distillate and bottoms streams created. 

Select the Material stream. This will highlight the input and output ports 

for the given material stream. The red ports are essential while blue are 

optional streams. Once all three streams are connected they can be 

renamed by right-clicking on the stream and selecting Rename Stream. 

These streams are named: 

 Feed; 

 Distillate; and 

 Bottoms. 

 

Figure 56 shows all the necessary streams and objects on the PFD. It is now possible to enter 

the numerical specifications for operation. 

 

Figure 56: PFD in Aspen Plus. 

By examining the Simulation Explorer located on the left-hand side of the PFD, any object 

without a blue tick requires attention. Select Streams – Feed – Input. 

Figure 55: 'Radfrac' 
Column Expecting 

Material Streams in 
Aspen Plus. 
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There are three state variables which can be selected; however you may only choose two of 

the three. For this example we will be specifying temperature and pressure. Change 

temperature into Celsius and pressure to atmosphere. Then enter 100    and 1.5 atm. As 

stated in 10.1 Appendix 1 the Feed is 500        . Leave the total flow basis as Mole and 

enter 500. Now the composition must be entered: the feed stream contains 30% of benzene, 

40% of toluene and 30% of xylenes. Change the drop down to Mole-Frac and enter the 

variables. It should Total 1 or 100%. Figure 57 displays the completed Feed specifications. 

 

 

Figure 57: Completed Column Feed Specifications in Aspen Plus. 

 

Select Next and the distillation columns specification setup will be displayed. There are 29 

stages in the column and the condenser is of type total, specified in 10.1 Appendix 1. Set the 

distillate rate at 150        , as you want to recover 95% of the benzene, with 5% toluene, 

and the reflux ratio at 1.5     as shown in Figure 58. 

 

Figure 58: Distillation Column Specifications in Aspen Plus. 
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Now the feed stage is specified as stage 15 and the distillate and bottoms product streams 

stage 1 and 29 respectively. As the process is ideal no efficiencies will be changed. Select Next 

and the completion prompt in Figure 59 will appear. Do not run the simulation yet as the tray 

sizing has not been specified. 

 

Figure 59: Simulation Prompt in Aspen Plus. 

 

Select Cancel then the Sizing and Rating tab in the Simulation Explorer, 

shown in Figure 60. Select New and enter the tray specifications from 10.1 

Appendix 1. As the condenser and reboiler count as stages the starting tray 

is specified as 2 and ending stage as maximum trays minus one, or 28. The 

tray type is ‘Sieve’ and spacing is 18   . 

 

Now select tray rating below and select stages 2 and 28 for the starting and 

ending trays, as well as the Sieve type. Now enter the tray geometry: 

diameter and tray spacing from 10.1 Appendix 1. Enter the diameter as 1.95 

 , tray spacing 18    and weir height of panel A as 5   . 

 

Finally, select the next tab Design/Pdrop. Press Update section pressure profile and define the 

pressure at the top of the column as 1     and bottom stage as 1.6    . Aspen Plus will 

determine the pressure drop through the column based on these estimates. All the inputs are 

Figure 60: Tray 
Sizing tab inside 
the Simulation 

Explorer in Aspen 
Plus. 
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now complete and the prompt shown in Figure 59 will be displayed again. This time the 

simulation can be run and the convergence results will be displayed as shown in Figure 61. This 

will inform the user if any items require attention. 

 

Figure 61: Convergence Iterations in Aspen Plus. 

 

Furthermore the results can be analysed in the Stream Results tab found in Figure 62. 

 

Figure 62: Stream Results in Aspen Plus. 
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10.4 Appendix 4 

Aspen Plus Steady-State to Dynamic 

APD allows the end user to simulate and optimise continuous and batch processes. This 

appendix provides the necessary information to transition a steady state model from Aspen 

Plus to APD. Additional information is available for the interested reader through AspenTech’s 

support, found at support.aspentech.com. A general rule of thumb is to design the PFD inside 

the steady state simulation package as it is easier to maintain the properties and avoids 

duplication of processes.  

 

Once the steady state model is developed in Aspen Plus the unit operators must be isolated for 

exportation to APD. The first step is selected Dynamic Mode from the Dynamics tab in the 

ribbon, as shown in Figure 63. With Dynamic Mode selected the simulation is run. 

 

Figure 63: Dynamics Tab in the Aspen Plus Ribbon. 

Note that if you want analyse the entire PFD then you do not need to isolate the unit 

operations. However if you wanted to only look at 

certain operations then you can isolate that unit by 

right-clicking on the unit’s feed streams and 

selecting ‘Reconcile’. This will launch a popup which 

allows the user to select the variables to reconcile. 

Once all feeds have been reconciled the remaining 

unit operators can be removed from the PFD. 
Figure 64: Block Options to Insert to an Existing 

Stream. 
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Now the type of analysis must be selected: flow driven; or pressure driven. These are selected 

in the Dynamics tab as shown in Figure 63. Most analysis will only require flow driven however 

if the user needs to analyse the pressure gradient or relief then a pressure driven analysis must 

be performed. A pressure driven analysis requires pumps and valves be added to the PFD. To 

quickly add an object to an existing stream right-click on the stream and select ‘Insert Block’. 

This will launch a popup, as shown in Figure 64, which allows the user to select either a: 

 Stream Splitter (FSplit); 

 Heater; 

 Mixer; 

 Pump; or 

 Value. 

 

Once the values or pumps are added and the outlet pressure defined 

the dynamics of the unit operators can be entered. The primary difference between steady 

state and dynamic operation is the sizing, efficiency and heat transfer of equipment. The 

valves do not require dynamic specifications but the unit operator dynamics can be specified in 

the navigation pane as shown in Figure 65. By opening this tab it is possible to specify the 

sizing and heat transfer of the unit operation, as shown in Figure 66.  

 

Figure 66: Dynamic Options for a 'Radfrac' Distillation Column in Aspen Plus. 

Figure 65: Navigation 
Pane Options for a Unit 

Operation. 
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Furthermore, the controllers can be pre-selected before exporting to APD by selecting the 

Controllers tab. APD will automatically add controllers based on default selections when the 

model is exported to APD. By changing the setting in the Controllers tab it is possible to 

manipulate which control loops are created in APD. Figure 67 displays the controller options 

for the distillation column, this tab will differ depending on the unit operation being 

controlled, which will override the defaults if selected. 

 

 
Figure 67: Controller Selection Pane in Aspen Plus. 

 

With all the dynamic specifications completed the simulation should be run again to confirm 

convergence then can be exported by specifying and selecting the analysis to be completed. 

This will launch an exporter which will ask for a new name of the file to be specified. Once it 

has saved the model in the APD extension it is possible to open in APD. 
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10.5 Appendix 5 

Aspen Plus Dynamics Controller Setup 

To add a controller to the PFD in APD you add an object from the ‘Controls’ or ‘Controls 2’ tabs 

in the Dynamics library. Figure 68 below shows these libraries; the ‘Controls’ library has 

conventional controller operators while ‘Controls 2’ has advanced control units.  

 

Figure 68: The Controls and Controls 2 Libraries in APD. 

 

To add PID control to the model, the PIDIncr 

from the ‘Controls’ library is added to the 

PFD near the unit operation it will control. 

Then by selecting the control signal from the 

list of streams, see Figure 69, the available 

control input and outputs will be available on the PFD, as shown in Figure 70. 

 

 
Figure 70: Available Input and Output Ports for the Control Signal. 

Figure 69: Different Streams Available in APD. 
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The naming convention for controller units 

is   , where   is increased in increments of 

1 as more controllers are added to the PFD. 

When you connect the control signal to the 

output of the controller it will prompt the 

user to select which variable is the MV. This 

can be seen in Figure 71 where the option 

of the MV, PV and SP are available. 

AspenTech uses the naming convention OP 

for the controller output variable instead of the MV as in this paper; these are interchangeable 

and will be referred to as MV throughout this paper. 

 

Once the MV is selected on the controller is can be 

connected to an input port of which variable will be the 

controlled. Note that if you select a stream or unit operator 

which has only one variable it will automatically select this 

as the MV. If you connect to a unit operation which has 

multiple variables it will prompt the user to select which 

variable will be the MV. Figure 72 portrays this with the 

long list of available variables in the ‘Radfrac’ unit operator. 

 

Once this is completed, the input port to the controller 

must be connected to the PV in a similar fashion. Note that 

if you have already connected the MV to the control unit it 

will not provide that option when connecting to the 

Figure 71: Output Port Variable Selection of Control B1. 

Figure 72: Available MV for the 
'Radfrac' Distillation Column in APD. 
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available port. This procedure is identical when connecting to the DMCplus unit operator from 

the ‘Controls 2’ library. However the DMCplus model must be loaded into the model from 

Aspen APC. 

 

Once all controllers are set up they must be tuned. If you 

double click on a controller it will launch the controller 

overview window, as in Figure 74. The first page will display 

the standard controller information: SP; PV; and MV. The 

first two buttons, from the left-hand side change the 

controller between automatic and manual modes. The third button is used if cascade control is 

being utilised in the model while the fourth simple changes the display from units to 

percentages. The last three buttons however are used to configure, plot and tune the 

controller respectively. 

 

The configuration panel, see Figure 73, allows the 

actual PID parameters to be entered. This panel 

also includes operating limitations on the PV and 

MV, filtering and which controller algorithm to 

use. APD has 6 PID algorithms available; these are 

shown in Figure 75. 

 

 

Figure 75: PID Algorithms. 

Figure 74: Controller Overview in APD. 

Figure 73: Controller Configuration Panel in APD. 
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Finally the Tune button allows two tuning methods to be employed: 

 Open Loop Approximate Model Tuning; or 

 Closed Loop Relay Tuning, or Auto-Tune Variation (ATV). 

To do so the system is run with no changes 

implemented from steady-state. Then inside the 

tuning panel a test started. Figure 76 shows the two 

types of methods which can be employed and the 

step amplitude or relay amplitude depending on the 

method selected. Once the test has been operating 

for an extended period of time it can be finished by 

pressing ‘Finish test’. This will cause the calculated 

loop characteristics to be displayed and the tuning 

parameters to be determined. 

 

Depending on the tuning method used will depend on the options available for the tuning 

parameters. Approximate model tuning rules available for PI and PID are: 

 Ziegler-Nichols; 

 Cohen-Coon; 

 IMC; 

 IAE; 

 ISE; or 

 ITAE. 

The stability margin tuning rules available for PI only with closed loop relay tuning are: 

 Ziegler-Nichols; or 

 Tyreus-Luyben. 

Figure 76: Controller Tuning Panel in APD. 
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Once the controllers have been tuned and the user is satisfied it is possible to now run the 

dynamic simulation. Note that it is good practice to test the simulation after controllers have 

been made to ensure the system is still operating at its steady state conditions. 

 

10.6 Appendix 6 

Aspen Plus Dynamics Automation Tasks 

In order to create scenarios within APD the user can either manual change variables or create 

automatic tasks. These tasks are created by selecting the ‘New Task’ button located in the 

ribbon, see Figure 77 below. 

 

Figure 77: Creation Tabs in APD Ribbon. 

This prompts the user to name the task, Figure 78 shows the 

popup, before showing the task creation script. These 

scripts are written in Formula Translation (Fortran). 

 

Task Step_Temp // <Trigger> 
// event driven tasks, <Trigger> can be one of: 
//   Runs At <time>              e.g. Runs At 2.5 or 
//   Runs When <condition>       e.g. Runs When b1.y >= 0.6 or 
//   Runs Once When <condition> e.g. Runs Once When b1.y >= 0.6 
// Ramp (<variable>, <final value>, <duration>, <type>); 
// SRamp(<variable>, <final value>, <duration>, <type>); 
// Wait For <condition> e.g. when b1.y < 0.6; 
// (Use Wait For to stop the task firing again once trigger condition has been met) 
End 

 

Using this it is possible to manipulate any variables in the PFD and create multiple tasks for 

disturbance or set point changes. An example of stepping the temperature in the feed stream 

Figure 78: New Task in APD. 
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by 15 F at time 450 is provided below. Note the units are not specified in this script and it will 

use the default units of the current simulation. 

 

Task Step_Temp Runs When Time == 450 
Streams(“FEED”).T: 225; // Changes the temperature of feed to 225 F 
End 

 

10.7 Appendix 7 

Advanced Process Control 

AspenTech’s APC provides two options for advanced control of processes and plants: 

 Aspen DMCplus; and 

 Aspen Control Platform. 

 

Aspen DMCplus is the leading multivariable MPC in industry. It has been applied in industry to 

refining, chemicals and petrochemical processing. It utilises a set of desktop tools for 

controller design and simulation and an online component for controller implementation. 

Within the desktop suite there are three components.  

 DMCplus Model is used to allow system identification, utilising multiple identification 

algorithms; 

 DMCplus Build makes the control configuration through the use of a configuration 

wizard; and 

 DMCplus Simulate allows evaluation and testing of controller performance against 

model inaccuracies and noise. 

This software package is beneficial as it provides a useful and simple tool for constructing and 

testing MPC. Furthermore, DMCplus Online suite is a package which enables the controllers to 
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be connected online and includes input validation, steady state calculations and dynamic move 

calculations. To connect to a field instrument the control is set up through DMCplus Connect. 

 

The second main feature of APC is Aspen Control Platform. This environment provides a single 

location for the user to build, test and deploy controllers. Included in this is the servers, 

applications as well as data collection and historian. It enables the entire APC application to be 

managed through one program including tracking of controller and plant data in real time. 

Furthermore, as with all MPC, the ability to predict and optimise controllers is performed 

within the software and the direct implementation removes the need for controllers to be 

placed in field. The controllers built in Aspen Control Platform are capable of handling 

nonlinear processes and allows any of AspenTech’s system identification algorithms to be 

used. These are: 

 Finite Impulse Response; 

 Linear MIMO State Space; and 

 Nonlinear MIMO State Space. 

 

Within these there are a few more additional extras. Sequence Control integrates with the real 

time database to deliver information to process control systems and operators. Sequence 

Control Manager enables the end user to create complex transition strategies based on 

sophisticated logic and rules. On top of this standard Key Perfromance Indicators (KPIs) allow 

detection of aging equipment and changing economic conditions. These KPIs are determined 

online in real time. Furthermore, the package allows the controllers to run online simulation 

scenarios which can be used to determine why an event occurred or the best corrective action 

to take. This means the controllers have the ability to access historical data and adapt the 

model based on the plants regression over time. 
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10.8 Appendix 8 

MATLAB ActiveX Automation 

In order to create the COM automation server in MATLAB the inbuilt function ‘actxserver’ is 

used. The programmatic identifier for the COM server is entered and the output of the 

function is server’s default interface. To access the entire AspenTech software family the 

follow identifiers are used: 

 Aspen HYSYS, ‘HYSYS.Application’; 

 Aspen Plus, ‘APWN.Document’; or 

 Aspen Customer Modeler, ‘AMSimulation.Control’. 

Note that within the Aspen Customer Modeler DLL the following programs are called 

(AspenTech, 2000b): 

 Aspen Plus Dynamics ‘AD Application’; 

 Aspen Customer Modeler ‘ACM Application’; 

 Aspin Adsim ‘ADS Application’; or 

 Aspen Chromatography ‘ACH Application’. 

Once the server is created the properties and methods can be determined from the COM 

object using the ‘get’ and ‘invoke’ functions. Figure 79 displays a capture of the MATLAB 

Command Window displaying the result of the ‘invoke’ command on the HYSYS COM. 

 

Figure 79: Aspen HYSYS COM Server Creation. 
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Figure 79 provides the essential methods for automating HYSYS, this in turn makes the 

automation process more intuitive. As the Aspen Custom Modeler DLL provides access to four 

software packages the use of it is slightly different to typical COM automation servers. The 

server is created using actxserver, like all other applications, however it is not possible to 

extract the properties and methods automatically from the COM object. This is due to the fact 

there are four software packages available within this library. 

 

Once the COM server is established the user must define which program within the DLL it 

wishes to automate. To do so ‘StartRun’ must be invoked and the specific program, file name 

and variables must be defined. If the server was created as such: 

ACMApp = actxserver('AMSimulation.Control') 

Then the file will be opened by using the following template. 

invoke(ACMApp, 'StartRun', pwd, 'C:\...\File.dynf', 'Application', 

NoInputs, 'InputNames', NoOutputs, 'OutputNames', Visible); 

Where: 

 ACMApp is the COM Server; 

 ‘StartRun’ is the method being invoked; 

 pwd is an inbuilt MATLAB function and returns the current working directory; 

 'C:\...\File.dynf' is the directory of the file; 

 ‘Application’ is the specific application to launch, in this case ‘AD Application’; 

 NoInputs is the number of inputs to be manipulated; 

 ‘InputNames’ is the name of all the inputs separated by a backslash; 

 NoOutputs is the number of outputs to be controlled; 

 ‘OutputNames’ is the name of all outputs separated by a backslash; and 

 Visible is either true or false to make the application visible on the device. 
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Once this line is executed the specific file will have been opened within the application and 

prepared for simulation. 

 

To update the manipulated variables the method ‘UpdateInputs’ is used to prepare the file to 

accept variable changes. Then the ‘SetInputValue’ method overrides the input variables 

specified in ‘InputNames’. Now following the flow chart in 5.0 ActiveX the system is run by 

invoking the ‘Run’ method. This is input as follows:  

invoke(ACMApp, 'Run', EndTime, 'C:\...\File.dynf') 

This will run the simulation from its current time to the time specified in EndTime. Once the 

simulation reaches EndTime it will stop and return control to MATLAB to continue through the 

script. 

 

Once the simulation has run the output variables can be received from APD using 

‘GetOutputValue’. This process can be repeated until the simulation is cancelled by the user or 

the simulation reaches the final time period. When this occurs it is important the file is 

terminated by invoking the method ‘Terminate’ or using Quit(ACMApp). Following 

termination the COM server must be closed by using ACMApp.delete.  

 

When creating COM automation servers the initial step is to attempt to retrieve the properties 

and methods from the server. If this is unsuccessful then a look into further documentation is 

required. The Aspen Custom Modeler DLL is a special case when dealing with COM 

automation. As it does not provide the properties and methods through the COM server it can 

be difficult to execute. To overcome this the Aspen Customer Modeler Reference Guide (2005) 

was utilised. This guide outlines the available properties, methods and syntax to successfully 

establish automation through the Aspen Custom Modeler DLL. 
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10.9 Appendix 9 

LabVIEW ActiveX Automation 

To communicate to a software package from LabVIEW, 

using ActiveX, the ActiveX class must be selected. This is 

the library which will be referenced to invoke methods 

and properties over the COM. Once the Automation 

Open block is placed on the LabVIEW Block Diagram the 

input refnum can be specified by right-clicking and browsing the available DLL as shown in 

Figure 80. Once selected, this will launch the selection tool displayed in Figure 81. 

 

Initially a connection to APD was attempted. 

Aspen Custom Modeler 30.0 DLL was elected from 

the list of available libraries then ‘AD Application’ 

was nominated from the objects. With the COM 

now open the reference stream can be connected 

to the property and invoke nodes. As detailed in 

BODY this method was not successful so connection to Excel, through ‘Excel.Application’, was 

used. 

 

Figure 82 displays the block connection to open a COM 

server from LabVIEW to Excel and provides the option 

to make the Excel application visible or invisible during 

operation. During troubleshooting and testing it is best 

to make the application visible as it can be easier to 

Figure 80: LabVIEW ActiveX Selection. 

Figure 81: ActiveX Class Selection Tool in LabVIEW. 

Figure 82: Opening Excel COM Object in 
LabVIEW. 
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confirm operation of the server. Once the server is established correctly it can be made 

invisible so the end user only deals with one software package. 

 

In order to ensure the correct sequence of data transfer, simulation and data logging between 

LabVIEW, Excel and APD, Excel macros will be utilised. With the COM active it is possible to 

open the workbook and execute the macros within. Figure 83 below shows the infrastructure 

required to achieve this. The specific Excel document to open is specified from the Front Panel 

VI and concatenated with the default directory and macro-enabled workbook extension. Once 

the workbook is open the initial macro was be executed to create a server to APD from Excel. 

This entire sequence is completed before entering a while loop as the COM servers do not 

need to be created multiple times and opening and closing the server every loop introduces a 

significant delay in operation. The macro to open communication between Excel and APD, 

called ‘OpenAspen’, is found in 10.11 Appendix 11. 

 

Figure 83: Initial Setup of Excel COM in LabVIEW. 
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With communication between LabVIEW to Excel and Excel to APD 

established the controller action will be calculated inside a while loop 

and sent to APD every iteration. The controller algorithms are not 

limited by the communication and can be coded in a number of ways. 

These control schemes are discussed in detail in 2.2 Process Control. 

Each loop the control error is calculated using Equation 2 on page 8 

and fed to the control algorithms. This MV is sent to Excel by 

executing the macro ‘StepAspen’ which can be found in 10.12 

Appendix 12. This process will extract the MVs from LabVIEW for all 

the control loops, log them in Excel and update APD. Once the 

variables have been updated in APD the simulation is stepped one 

time unit, which mirrors the loop time in LabVIEW. Then the PVs retrieved and logged in Excel 

before being updated in LabVIEW. Excel undertakes the bulk of this operation. LabVIEW only 

executes the macro remotely and waits until the PVs are updated for the given MVs. 

 

This process will continue until the user stops the 

simulation. This is achieved by pressing the STOP button 

located on the Front Panel and triggers the closure of the 

COM servers. When the while loop is departed the 

‘CloseAspen’ macro, found in 10.13 Appendix 13 is 

executed. This macro will close APD then the COM from 

Excel to APD. Once this is completed, functionality will 

return to LabVIEW and it will close Excel then the Excel 

application COM. As stated previously in 5.0 ActiveX, it is 

important to close the COM servers as unexpected software behaviour can result.  

Figure 84: Executing a 
VBA Macro in LabVIEW. 

Figure 85: Closing the COM Using 
ActiveX Blocks in LabVIEW. 
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10.10 Appendix 10 

Excel ActiveX Automation 

Before any data can be communicated between LabVIEW and Excel or APD and Excel the COM 

servers must be established. First an ActiveX object is created for LabVIEW using the handle 

‘LabVIEW.Application’. Once this is completed the specific LabVIEW document can be set as 

the reference.  

 

Figure 86: Macro Extract to Open COM with LabVIEW and set the Reference Document. 

As the LabVIEW document is already open there is no need to reopen this file, however the 

COM does need to know what file to reference. Once this is complete it is possible to extract 

information from LabVIEW using GetControlValue 

and manipulate variables with SetControlValue. 

This specific method of communication requires 

the control values to be specified in LabVIEW. In 

the top right corner of LabVIEW is the tool which 

connects to each variable which can be either 

manipulated or read. This is configured as shown in Figure 87 with the MV, DV, PV and system 

information assigned to a free port. It does not matter if the variable is an indicator or control 

in LabVIEW, it is assigned to a port the same way. With the variables connected it is possible to 

call them over the COM using the syntax shown in Figure 88. 

 

 

Figure 88: Syntax to Send and Receive Data from LabVIEW over ActiveX. 

 

Figure 87: Control Values Available in LabVIEW. 
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Now the ActiveX object for 

APD must be created and 

the file specified. This uses 

a similar convention as 

shown in Figure 86 however 

the handle used is ‘AD 

Application’. Once established the APD file must be opened and system settings customised. 

As the idea was to create LabVIEW as the main program for the end user the settings from APD 

are defined in LabVIEW and sent to Excel during the first macro. This string is called "Aspen Set 

Up File" and is split using the code found in Figure 89. This information includes: 

 The file name to open; 

 Which AspenTech product to launch; 

 The input variables; 

 The output variables; 

 If the Aspen software should be visible; and 

 If Excel should clear the data from the workbook. 

 

Given this information it is possible to open the ActiveX object and set the simulation options 

of the Aspen software package. Figure 90 displays the code required to: open the COM; make 

the server visible; change the run mode to dynamic; set the time interval; and sent the time 

units. 

Figure 89: Code to Retrieve the Aspen System Setup Variables in VBA. 
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Figure 90: Code to Open a COM with APD in VBA. 

 

10.11 Appendix 11 shows the macro associated with the opening and initial setup of APD. With 

the setup completed the next macro covers the communication of data. This macro, called 

‘StepAspen’, will be executed every loop iteration in LabVIEW. Initially it will retrieve the MVs 

and DVs using GetControlValue. These variables will then be logged into their respective 

columns in the Excel workbook. Once they are logged Excel will send them to Aspen using the 

following convention: 

ACMApp.Simulation.Flowsheet.STREAMS("NAME").TYPE.Value("UNITS") 

This is used for both updating and extracting variables in APD thorough ActiveX as shown 

below in Figure 91. 

 

Figure 91: VBA Code for Sending and Receiving Data in Excel to APD. 

 

There are two operators which can be called using this syntax, streams and blocks. Then the 

name of the operator as displayed in APD must be entered. The variables being manipulated 

can be found through the Aspen Model Explorer, as shown in Figure 92. By comparing the 
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naming convention specified in Figure 

91 to the tree structure in Figure 92 it 

can be concluded that the ActiveX 

connection directly follows the model 

explorer tree structure to manipulate 

the variable specified. Each period 

separates a new level on the tree. 

 

Once the MVs are updated in APD the 

simulation is stepped by one time 

period, using ACMApp.Simulation.Step, 

before retrieving the PVs from APD and 

saving the workbook. This macro can be found in 10.12 Appendix 12. This process will continue 

each iteration until the STOP button is pressed in LabVIEW and the ‘CloseAspen’ macro is 

called. This final macro closes the APD document followed by closing the COM server and 

saving the workbook. Once this macro has completed it returns control to LabVIEW which 

closes the workbook and Excel COM server. This macro is documented in 10.13 Appendix 13. 

The final product in Excel from this process is provided in Figure 93. 

 

 

Figure 93: Logged Data in Excel from Automation with LabVIEW and APD. 

  

Figure 92: Model Explorer in APD. 
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10.11 Appendix 11 

Excel Open Aspen Macro 

The following macro provides the basis for creating a COM object to LabVIEW and APD. This is 

used to establish the connection and setup the parameters within APD. 

' Global Variables 
Dim ACMApp As Object 
Dim ACMDocument As Object 
Dim ACMSimulation As Object 
Dim LabVIEWApp As Object 
Dim LabVIEWDocument As Object 
Dim ParamNames(15) As String 
Dim ParamValues(15) As Variant 
Dim SetUp() As String 
 
Sub OpenAspen() 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Written by Joshua M Eggins, Murdoch University 28/09/2015 
    ' This sub will start one of the ASPEN products and format the workbook to ensure it is ready 
for the 
    ' Declared variables 
    Dim Inputs() As String 
    Dim Disturbances() As String 
    Dim Outputs() As String 
    Dim CurrentRow As Long 
    Dim CurrentColumn As Long 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Extract the data from LabVIEW to initiate the software 
    ' SetUp(0): File and directory 
    ' SetUp(1): Application to launch 
    ' SetUp(2): Number of inputs 
    ' SetUp(4): Number of disturbances 
    ' SetUp(6): Number of outputs 
    ' SetUp(8): Visible? Y/N 
    ' SetUp(9): Erase all data? Y/N 
    ' Inputs(0): Input 1 
    ' Inputs(1): Input 2 
    ' ... 
    ' Disturbance(0): Disturbance 1 
    ' Disturbance(1): Disturbance 2 
    ' ... 
    ' Outputs(0): Input 1 
    ' Outputs(1): Input 2 
    ' ... 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
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    ' Turn off Screen Updates Until all Actions Completed 
    Application.ScreenUpdating = False 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Setup the Parameter Names 
    ParamNames(0) = "dt (ms)" 
    ParamNames(1) = "Aspen Set Up File" 
    ParamNames(2) = "Manipulated Variable 01" 
    ParamNames(3) = "Manipulated Variable 02" 
    ParamNames(4) = "Manipulated Variable 03" 
    ParamNames(5) = "Manipulated Variable 04" 
    ParamNames(6) = "Manipulated Variable 05" 
    ParamNames(7) = "Disturbance Variable 01" 
    ParamNames(8) = "Disturbance Variable 02" 
    ParamNames(9) = "Disturbance Variable 03" 
    ParamNames(10) = "Disturbance Variable 04" 
    ParamNames(11) = "Process Variable 01" 
    ParamNames(12) = "Process Variable 02" 
    ParamNames(13) = "Process Variable 03" 
    ParamNames(14) = "Process Variable 04" 
    ParamNames(15) = "Process Variable 05" 
    ' Establish Communication to LabVIEW and send and pull information from 
    Set LabVIEWApp = CreateObject("LabVIEW.Application") 
    Set LabVIEWDocument = 
LabVIEWApp.GetVIReference("C:\Users\30983374\Desktop\NIMacro.vi") 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Determine the Set up information 
    ' Seperate the string 
    SetUp = Split(LabVIEWDocument.GetControlValue(ParamNames(1)), ",") 
    ' Remove the spaces and string quotations 
    For i = LBound(SetUp) To UBound(SetUp) 
        If i <> 1 Then 
            SetUp(i) = Replace(SetUp(i), " ", "") 
        Else 
            ProgramID = Split(SetUp(i), "'") 
            SetUp(i) = ProgramID(1) 
        End If 
    Next i 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Store the input, disturbances and outputs in arrays then seperate them to be displayed 
    ' in the workbook with the desired units below the name of the variable 
    ' Erase all data in workbook 
    If SetUp(9) = "True" Then 
        Cells.Delete Shift:=xlUp 
    End If 
    ' Time Variables 
    Cells(1, 1).Value = "TIME" 
    Cells(2, 1).Value = "ACMSimulation.Time" 
    Cells(3, 1).Value = "Seconds" 
    ' Input Variables 
    Inputs = Split(SetUp(3), "\") 
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    Cells(1, 2).Value = "INPUTS" 
    For k = LBound(Inputs) To UBound(Inputs) 
        tempstr = Split(Inputs(k), "|") 
        Cells(2, k + 2).Value = tempstr(0) 
        Cells(3, k + 2).Value = tempstr(1) 
    Next k 
    ' Disturbance Variables 
    Disturbances = Split(SetUp(5), "\") 
    If SetUp(4) > 0 Then 
        Cells(1, k + 2).Value = "DISTURBANCES" 
        For l = LBound(Disturbances) To UBound(Disturbances) 
            tempstr = Split(Disturbances(l), "|") 
            Cells(2, k + l + 2).Value = tempstr(0) 
            Cells(3, k + l + 2).Value = tempstr(1) 
        Next l 
    Else 
        l = 0 
    End If 
    ' Output Variables 
    Outputs = Split(SetUp(7), "\") 
    Cells(1, k + l + 2).Value = "OUTPUTS" 
    For j = LBound(Outputs) To UBound(Outputs) 
        tempstr = Split(Outputs(j), "|") 
        Cells(2, k + l + j + 2).Value = tempstr(0) 
        Cells(3, k + l + j + 2).Value = tempstr(1) 
    Next j 
    ' Change the column sizing to fit the entire directory 
    Columns("A:ZZ").ColumnWidth = 35 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Set up the ASPEN product for simulation and open the connection 
    ' Create COM to ASPEN Product 
    Set ACMApp = CreateObject(SetUp(1)) 
    ' Make the product visible 
    If SetUp(8) = "True" Then 
        ACMApp.Visible = True 
    Else 
        ACMApp.Visible = False 
    End If 
    ' Open specific file 
    Set ACMDocument = ACMApp.opendocument(SetUp(0)) 
    Set ACMSimulation = ACMApp.simulation 
    ' Change run mode to Dynamic 
    ACMSimulation.runmode = "Dynamic" 
    ' Extract the time from LabVIEW then change the step time in ASPEN to match 
    ACMSimulation.communicationinterval = 
LabVIEWDocument.GetControlValue(ParamNames(0)) / 1000 
    ' Check the units in ASPEN and change to seconds if needed 
    If ACMSimulation.Options.TimeSettings.CommunicationUnits <> "Seconds" Then 
        ACMSimulation.Options.TimeSettings.CommunicationUnits = "Seconds" 
    End If 
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    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Place a thin solid line below the last row of data, this can be used to distinquish between 
data sets 
    CurrentRow = Cells(Rows.Count, 1).End(xlUp).Row 
    CurrentColumn = Cells(CurrentRow, Columns.Count).End(xlToLeft).Column 
    With Range(Cells(CurrentRow, 1), Cells(CurrentRow, 
CurrentColumn)).Borders(xlEdgeBottom) 
        .LineStyle = xlContinuous 
        .ColorIndex = 0 
        .TintAndShade = 0 
        .Weight = xlThin 
    End With 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Freeze the label panes in the first three rows to enable better analysis of data 
    ActiveWindow.FreezePanes = False 
    Range("A4").Select 
    ActiveWindow.FreezePanes = True 
    Range("A1").Select 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Simulation is now set up and the workbook formatted 
    ' Save the Workbook for next set of updates 
    ThisWorkbook.Save 
    ' Turn on Screen Updates 
    Application.ScreenUpdating = True 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
End Sub 
 
 

10.12 Appendix 12 

Excel Step Aspen Macro 

With APD set up it is possible to update the inputs, step the simulation one time period and 

retrieve the outputs. The following macro completes these steps and communicates with 

LabVIEW to retrieve the new MVs and update the PVs. 

Sub StepAspen() 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Written by Joshua M Eggins, Murdoch University 28/09/2015 
    ' This sub will step the open ASPEN product at the given step intervals and save the 
workbook 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Determine the current row to log data to 
    Dim CurrentRow As Long 
    CurrentRow = ActiveSheet.Range("A" & Rows.Count).End(xlUp).Row + 1 
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    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''  
    ' Turn off Screen Updates Until all Actions Completed 
    Application.ScreenUpdating = False 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Setup the Parameter Names 
    ParamNames(0) = "dt (ms)" 
    ParamNames(1) = "Aspen Set Up File" 
    ParamNames(2) = "Manipulated Variable 01" 
    ParamNames(3) = "Manipulated Variable 02" 
    ParamNames(4) = "Manipulated Variable 03" 
    ParamNames(5) = "Manipulated Variable 04" 
    ParamNames(6) = "Manipulated Variable 05" 
    ParamNames(7) = "Disturbance Variable 01" 
    ParamNames(8) = "Disturbance Variable 02" 
    ParamNames(9) = "Disturbance Variable 03" 
    ParamNames(10) = "Disturbance Variable 04" 
    ParamNames(11) = "Process Variable 01" 
    ParamNames(12) = "Process Variable 02" 
    ParamNames(13) = "Process Variable 03" 
    ParamNames(14) = "Process Variable 04" 
    ParamNames(15) = "Process Variable 05" 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Extract the time from LabVIEW then change the step time in ASPEN to match 
    If ACMSimulation.communicationinterval <> 
LabVIEWDocument.GetControlValue(ParamNames(0)) / 1000 Then 
        ACMSimulation.communicationinterval = 
LabVIEWDocument.GetControlValue(ParamNames(0)) / 1000 
    End If 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Inputs 
    ' SetUp(2): Number of inputs 
    For i = 1 To 4 
        Cells(CurrentRow, i + 1).Value = LabVIEWDocument.GetControlValue(ParamNames(1 + i)) 
        If i = 1 Then 
            ACMSimulation.Flowsheet.STREAMS("DISTILLATE").FMR.Value("lb/hr") = 
Cells(CurrentRow, i + 1).Value 
        ElseIf i = 2 Then 
            ACMSimulation.Flowsheet.Blocks("DISTCOL").Condenser(1).Fl_med.Value("lb/hr") = 
Cells(CurrentRow, i + 1).Value 
        ElseIf i = 3 Then 
            ACMSimulation.Flowsheet.STREAMS("BOTTOMS").FMR.Value("lb/hr") = 
Cells(CurrentRow, i + 1).Value 
        ElseIf i = 4 Then 
            ACMSimulation.Flowsheet.STREAMS("FEED").FMR.Value("lb/hr") = Cells(CurrentRow, i + 
1).Value 
        ElseIf i = 5 Then 
        '    Additional Input 
        End If 
    Next i 
    i = i - 1 
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    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Disturbances 
    ' SetUp(4): Number of disturbances 
    For j = 1 To SetUp(4) 
        Cells(CurrentRow, i + j + 1).Value = LabVIEWDocument.GetControlValue(ParamNames(6 + 
j)) 
        If j = 1 Then 
            ACMSimulation.Flowsheet.STREAMS("FEED").T.Value("F") = Cells(CurrentRow, i + j + 
1).Value 
        ElseIf i = 2 Then 
        '    Additional Disturbance 
        ElseIf i = 3 Then 
        '    Additional Disturbance 
        ElseIf i = 4 Then 
        '    Additional Disturbance 
        End If 
    Next j 
    j = j - 1 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Update the inputs and disturbances 
    ACMSimulation.Step (True) 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Outputs 
    ' SetUp(6): Number of outputs 
    For k = 1 To SetUp(6) 
        If k = 1 Then 
            Cells(CurrentRow, i + j + k + 1).Value = 
ACMSimulation.Flowsheet.Blocks("DISTCOL").Stage(1).Level.Value("ft") 
        ElseIf k = 2 Then 
            Cells(CurrentRow, i + j + k + 1).Value = ACMSimulation.Flowsheet.Blocks("DISTCOL 
").Stage(1).P.Value("psi") 
        ElseIf k = 3 Then 
            Cells(CurrentRow, i + j + k + 1).Value = ACMSimulation.Flowsheet.Blocks("DISTCOL 
").Stage(22).Level.Value("ft") 
        ElseIf k = 4 Then 
            Cells(CurrentRow, i + j + k + 1).Value = 
ACMSimulation.Flowsheet.Streams("DISTILLATE").Zmn("TOLUENE").Value("kg/kg") 
        ElseIf k = 5 Then 
        Cells(CurrentRow, i + j + k + 1).Value = 
ACMSimulation.Flowsheet.Streams("BOTTOMS").Zmn("BENZENE").Value("kg/kg") 
        End If 
        PVControlValueVI = LabVIEWDocument.SetControlValue(ParamNames(10 + k), 
Cells(CurrentRow, i + j + k + 1).Value) 
    Next k 
    Cells(CurrentRow, 1).Value = ACMSimulation.Time 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Save the Workbook for next set of updates 
    ThisWorkbook.Save 
    ' Turn on Screen Updates 
    Application.ScreenUpdating = True 
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    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
End Sub 

 

10.13 Appendix 13 

Excel Close Aspen Macro 

This macro closes the open APD document and then the ActiveX object. 

Sub CloseAspen() 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Written by Joshua M Eggins, Murdoch University 28/09/2015 
    ' This sub will close one of the ASPEN products and save the workbook 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' Close the ActiveX COM 
    ACMApp.Quit 
    ' Save the Workbook 
    ThisWorkbook.Save 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
End Sub 

 

10.14 Appendix 14 

ActiveX Co-Simulation 

The following plots are the remaining ActiveX validation plots. These are simply a reference to 

display the correct implementation of the communication between MATLAB and APD in 

addition to LabVIEW, Excel and APD. 5.5 Co-Simulation displays the step of the DV in Figure 30. 

Figure 94 displays the level in the sump due to this disturbance change and Figure 95 the 

controller action to track the set point. Similarly, Figure 96 is the pressure in the condenser 

while being controlled by the reflux flow rate shown in Figure 97. 
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Figure 94: Plot of the Level in the Sump Controlled After a Disturbance Change. 
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Figure 95: Plot of the Manipulated Flow Rate of the Bottoms Stream to control the Level in the Sump. 
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Figure 96: Plot of the Pressure in the Condenser Controlled After a Disturbance Change. 
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Figure 97: Plot of the Manipulated Reflux Flow Rate to Control the Condenser Pressure. 
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10.15 Appendix 15 

MATLAB System Identification Function 

In order to easily determine a system’s transfer function the least squares method was 

employed within a user defined function. This enabled the MIMO transfer function script the 

capabilities to quickly determine a system’s model without using too much computer memory 

or user time. In order to achieve this identification, the data is fed into the function. This is 

then separated into the input and output streams and the time of the step established. An 

additional feature was added which allows the user the ability to view the plot and select if any 

data needed to be removed from the end of the plot due to unwanted dynamics. This issue 

arises from the limitations being reached in capacity systems when the simulation logged data 

for an excessive period of time. If there is information on the plot which is not needed for the 

system identification the user can select it on the plot with a simple mouse click. The function 

will then remove all the data from that time period onwards from the modelling algorithm. 

 

Once the data has been trimmed, it can be used to establish the transfer function. This process 

is only capable of SISO identification. However the MIMO transfer function modeller found in 

10.17 Appendix 17 utilises this function to determine the MIMO matrix. There are two models 

which the function examines: 

 First Order; and 

 Capacity. 

The first order model tries to minimise the sum of the error squared (Strang & Borre, 1997, pp. 

174-176), also known as the method of least squares, to approximate the model parameters. 

As the model parameters are changed the sum of the error squared is calculated. If it is greater 

than the previous it is possible the function is heading in the wrong direction so corrections are 
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made. Once the function has converged on the minimum it will exit the loop. Now the capacity 

model is calculated using the standard linear model and the error is calculated. 

 

Before outputting the system’s transfer function, a comparison of the two models is 

undertaken and the model with the smallest sum of error squared is selected as the solution. 

This function was validated against Microsoft Excel’s solver add-on and found to have no 

variations. The following script is the function script from MATLAB for user’s reference. 

 

function [mod, dt] = solverlstsq(stepdata, tout) 
%% Step Data Model Builder 
% Joshua M Eggins, Murdoch University, 14/09/2015 
% Take the output of Simulink and determine the first order model or 

linear 
% capacity system of the system to be imported into any model 
% based controller. Such as Dynamic Matrix Control (DMC). 

 
%% Time Step 
% Check if the model data is available 
if length(stepdata) < 2 
    error('No model data found. Re-simulate the model.') 
end 
% Set the sample time of the data 
dt = tout(2) - tout(1); 

 
%% Extract Data 
% Extract the data into arrays for processing 
PV = stepdata(:,1); 
MV = stepdata(:,2); 
Time = tout(:,1); 
% Determine the steady state values and deviate the variables 
PVsteady = PV(1); 
MVsteady = MV(1); 
PVdev = PV - PVsteady; 
MVdev = MV - MVsteady; 

 
%% Input Step Time 
% Check for when the input changes 
for signalposition = 1:length(MVdev) - 1 
    if MVdev(signalposition + 1) ~= MVdev(signalposition) 
        MVStepTime = signalposition; 
    end 
end 
% Remove excess data pre input step 
MVdevSnip = MVdev(MVStepTime+1:length(MVdev)); 
PVdevSnip = PVdev(MVStepTime+1:length(MVdev)); 
TimedevSnip = Time(MVStepTime:length(MVdev)-1)-Time(MVStepTime); 
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% Allow user to check for any unwanted behaviour at the end of the 

plot 
% that affect dynamics 
% ie. Maximum or minimum reached  
disp('If there is any unwanted data in the figure, click on the plot 

to define the position to remove. Any information after this time will 

be removed for the model prediction algorithm. If no data should be 

removed pressed Enter.') 
figure(10) 
plot(TimedevSnip, PVdevSnip) 
[t,y] = ginput(1); 
close(figure(10)) 
% Make sure there was a selection made and if so then remove excess 

from 
% plot before calculating models 
if t > 0 
    position = find(TimedevSnip==round(t)); 
    MVdevSnip = MVdevSnip(1:position); 
    PVdevSnip = PVdevSnip(1:position); 
    TimedevSnip = TimedevSnip(1:position); 
end 

 
%% Model Prediction - First Order Model 
% Determine the input step and system gain. 
% Additional checks could involve checking to ensure not more than one 

step 
% happens over the checking of the data as this would void the error 
% calculations and model. 
A = MVdevSnip(length(MVdevSnip)); 
K = PVdevSnip(length(PVdevSnip)) / A; 
% Arbitrary large error to initiate the array 
SumError = 10000000; 
SumError2 = 100000; 
tau = 5; 
direct = 1; 
Tau = 0; 
same = 0; 
% Solve for the minimum sum of the error squared 
% When the minimum is found, save tau for use once all options are 
% completed. 
while same < 10 
    SumError3 = SumError; 
    SumError = 0; 
    for ii = 1:length(PVdevSnip) 
        % Extract actual data and calculate the predicted 
        time = (ii-1)*dt; 
        ModelPredicted = A*K*(1-exp(-(time/tau))); 
        ModelActual = PVdevSnip(ii); 
        % Calculate the error 
        Error = ModelPredicted - ModelActual; 
        SumError = SumError + (Error)^2; 
    end 
    % If the sum of the error squared is a new minimum save the error 

and 
    % tau for use in next iterations 
    if SumError > SumError3 
        direct = direct*-1; 
    end 
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    tau = tau + direct*0.01; 
    Tau2 = Tau; 
    if SumError < SumError2 
        SumError2 = SumError; 
        Err = SumError; 
        Tau = tau; 
    end 
    if Tau == Tau2 
        same = same + 1; 
    else  
        same = 0; 
    end 
end 

 
%% Model Prediction - Capacity Model 
% Determine the slope of the line. 
finaly = PVdevSnip(length(PVdevSnip)); 
finalx = TimedevSnip(length(TimedevSnip)); 
SumErrorLin = 0; 
KLin = finaly / finalx / A; 
% Calculate the sum of the error squared 
for ii = 1:length(PVdevSnip) 
    % Extract actual data and calculate the predicted 
    time = (ii-1)*dt; 
    ModelPredicted = A*KLin*time; 
    ModelActual = PVdevSnip(ii); 
    % Calculate the error 
    Error = ModelPredicted - ModelActual; 
    SumErrorLin = SumErrorLin + (Error)^2; 
End 

 
%% Result 
% Plot the result to confirm the operation of the model predictor in 
% addition to display the results. This can be used as a reference 

against 
% user predicted models. 
% Determine which model gave a better response and output data 
if SumErrorLin < SumError 
    fprintf('Linear Model Found:  A = %0.3f  K = %0.3f  dt = 

%0.3f\nThe sum of the squared error is %0.4f\n', A, KLin, dt, 

SumErrorLin) 
    %plot(TimedevSnip, PVdevSnip, 'b', TimedevSnip, 

A*KLin*TimedevSnip, 'r') 
    mod = tf(KLin,[1 0]); 
else 
    fprintf('First Order Model Found:  A = %0.3f  K = %0.3f  Tau = 

%0.3f  dt = %0.3f\nThe sum of the squared error is %0.4f\n', A, K, 

Tau, dt, Err) 
    %plot(TimedevSnip, PVdevSnip, 'b', TimedevSnip, A*K*(1-exp(-

(TimedevSnip/Tau))), 'r') 
    mod = tf(K,[Tau 1]); 
end 
end 
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10.16 Appendix 16 

MATLAB Automatic MIMO TF Modeller Script 

In order to use the MPC Toolbox in MATLAB and Simulink a model must be obtained. The issue 

associated with integrating MATLAB to APD is the MPC Toolbox is not able to automatically 

linearise the plant and determine the plant model. To overcome this issue a script has been 

written which performs unit steps on the inputs, in the open loop Simulink file, one by one and 

determines the transfer function for each output to the inputs. These transfer functions are 

then saved into a MIMO transfer function and input into the MPC Toolbox. 

 

The user can define the Simulink file to open, the final time in the simulation and the time of 

the input step. It will then do a single iteration simulation of the Simulink file to determine 

how many inputs and outputs are connected to the sinks in addition to the sampling time of 

the simulation. Once this is completed it will reset all the inputs back to zero and all step times 

back to zero before stepping the first input by the amplitude and at the time specified at the 

start of the program. Once the simulation is completed for the first input, the input and the 

first output is sent to the model predictor. This is performed within a loop in order to find a 

model for all the outputs against that input. 

 

Once this is completed, the input is reset to zero and the second input is stepped. This process 

will repeat until the final input has been stepped and the entire MIMO transfer function matrix 

constructed. It is possible to then import the variable ‘MIMOPlantModel’ into the MPC 

Toolbox and design the advanced controller against this model. The full script, with comments, 

is given below. The function to identify the system model is found in 10.15 Appendix 15. 

 

%% Solve for the MIMO transfer function models of a plant 
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% Joshua M Eggins, Murdoch University, 13/10/2015 
% This dynamic predictor can be used in conjunction with Simulink to 
% determine the MIMO transfer function matrix for the plant. 
% This script is dynamic and will work for any plant provided the 

inputs 
% are connected to a 'to workspace' sink labelled 'inputs' and the 

outputs 
% connected to a separate sink labels 'outputs'.  
clear 
clc 

 
%% Set the name of the Simulink file to open 
simulinkFile = 'FileNameOpenLoop'; 
finalTime = 3000; 
stepTime = 500; 
stepAmplitude = 1; 

 
%% Initiate the Simulation 
% Run the simulation as a test to determine the data to be examined 

and how 
% many of each variable exists 
set_param(simulinkFile, 'StopTime', '1'); 
simOutput = sim(simulinkFile, 'ReturnWorkspaceOutputs', 'on'); 
set_param(simulinkFile, 'StopTime', num2str(finalTime)); 
inputs = simOutput.get('inputs'); 
noinputs = size(inputs, 2); 
outputs = simOutput.get('outputs'); 
nooutputs = size(outputs, 2); 
tout = simOutput.get('tout'); 
timestep = tout(2) - tout(1); 
tout = [0:timestep:finalTime]'; 

 
%% Initiate the Input Array 
% Empty array to input the sample time for each transfer function 
dt = zeros(nooutputs, noinputs); 
inputname = cell(noinputs, 1); 
for position = 1:noinputs 
    % Determines and store the name of each input step block to enable 
    % dynamic analysis 
    inputname{position} = strcat(simulinkFile, strcat('/Input', 

num2str(position))); 
    % Reset all the step data to 0, step time to 10 
    set_param(inputname{position},'Before','0'); 
    set_param(inputname{position},'After','0'); 
    set_param(inputname{position},'Time',num2str(stepTime)); 
end 

 
%% Model Predictions 
% Step each input separately and determine the model of the response. 
% Call the function solverlstsq to determine the transfer function 

model 
% These models will be stored within a MIMO transfer function matrix. 
for input = 1:1%noinputs 
    % Step the step amplitude 
    set_param(inputname{input},'After',num2str(stepAmplitude)); 
    % Rerun the simulation and extracts the outputs 
    simOutput = sim(simulinkFile, 'ReturnWorkspaceOutputs', 'on'); 
    inputs = simOutput.get('inputs'); 
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    outputs = simOutput.get('outputs'); 
    for output = 1:nooutputs 
        % Put the raw data into an array and send to the function 
        rawdata=[outputs(:, output), inputs(:, input)]; 
        [MIMOPlantModel(output, input), dt(output, input)] = 

solverlstsq(rawdata, tout); 
    end 
    set_param(inputname{input},'After','0'); 
end 

% Step each input seperatly and 
MIMOPlantModel 

 

 

10.17 Appendix 17 

MATLAB MPC Toolbox 

A major issue with MIMO control schemes is loop coupling. Traditional PI feedback loops do 

not have the capabilities to deal with this and thus advanced control implemented. 

MathWorks’ MPC Toolbox optimises the controller action for MIMO systems subject to 

defined variable constraints. This documentation will outline the necessary steps for 

implementing MPC control in Simulink. 

 

Initially the MPC Controller found in Figure 98 is 

added to the Simulink model. The PV, SP and DVs 

are connected to the controller block. Although 

the DVs are not essential it is recommended to connect them into the controller even if they 

will be unmeasured. Within the estimate window it is possible to allocate what type of variable 

these DVs are, measured or unmeasured. Once the inputs are connected the output, MV, 

should be connected to the plant. 

Figure 98: MPC Toolbox Controller Blocks in 
Simulink. 



Murdoch University   10.0 Appendices  

 132 

 

By double clicking on the MPC block Simulink launches 

the MPC controller mask shown in Figure 99. Within this 

window it is possible to allocate ports for additional 

inputs and outputs as well as controller parameters, 

such as: 

 Constraints; 

 Weightings; and 

 Sample time. 

 

By pressing Design the controller will ask the user to 

specify the number of MVs and PVs to be controlled in 

addition to the sample time of the data acquisition. Once 

these have been entered, as shown in Figure 100, the 

toolbox will analyse the plant to determine the operating 

points and linearise around those points. Figure 101 is the 

window prompt when performing these tasks. Once it has 

linearised the plant the MPC toolbox will provide the model in the following representations: 

 SS; 

 TF; and 

 Zero-pole gain. 

 

Figure 99: MPC Controller Mask in 
Simulink. 

Figure 100: Variable Specifications in 
Simulink. 
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Figure 101: MPC Toolbox Design Task Linearisation in Simulink. 

 

When using this method for the integrated software the linearisation will fail. This is occurs 

because the MPC Toolbox uses the Simulink blocks to linearise the plant, as the plant is 

actually a script it cannot determine the variables or model. In order to overcome this a 

MATLAB script, which can be found in 

10.16 Appendix 16, was written to 

perform step tests on each input and 

determine the MIMO TF matrix. Once this 

matrix is created the toolbox can be 

launched from the MATLAB Command 

Window using ‘mpctool’. When the 

Control and Estimation Tools Manager 

has launched it is possible to import the 

plant model using the Import Plant 

button shown in Figure 102.  

 

Figure 102: Control and Estimation Tools Manager in 
MATLAB. 
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With the plant imported the variable names can be changed in addition to the nominal values 

set. The description and units fields shown in Figure 102 are used only for reference and will 

not affect the performance of the controller. Note that if the controller linearised the plant 

automatically it will determine the nominal values as well. If the plant model was imported 

these values must be entered by the user. 

 

Now the controller parameters can be entered by selecting the 

Controllers tab. If a previous controller was designed it can be 

imported here otherwise a new MPC can be designed. Figure 103 

displays the initial parameters which must be specified for the MPC 

controller. The specified plant model will be used as a reference to 

perform the prediction inside the MPC algorithm. Similarly, the 

horizons are entered and sample time, inherit from the initial specifications window shown 

previously in Figure 100. Note the control horizon should be less than the prediction horizon, 

which typically should be long enough to capture the major dynamic behaviour of the plant. 

Once these variables are selected the next tab allows input and output constraints to be 

quantified. As stated previously these can be input via the Simulink model or inside the MPC 

Manager. The variables which can be 

specified are, as given in Figure 104: 

 Absolute minimum; 

 Absolute maximum; 

 Maximum rate of change downwards; and 

 Maximum rate of change upwards. 

If there are no constraints it is possible to enter ‘inf’ as the limitation. 

 

Figure 103: MPC Parameters 
in MATLAB. 

Figure 104: Variable Constraints in MATLAB. 



Murdoch University   10.0 Appendices  

 135 

The Weighting Tuning tab allows different weights to be applied to the inputs and outputs. 

These can be specified in the Simulink model or through this tab. If they are specified on the 

model then those values override those set inside the controller.  

 

Figure 105: Scroll Bar to Select the Response Type in MATLAB. 

The overall performance of the controller can also be manipulated by using the scroll bar 

shown in Figure 105. These variables can be changed later. Once satisfied with the weighting 

the controller tuning is completed and the MPC controller can be tested against the plant 

model. 

 

Figure 106: MPC Controller Simulation in MATLAB. 
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Figure 106 shows the MPC simulation window. On this window it is possible to test the 

controller developed against the plant model for SP tracking and DV rejection. The SPs or DVs 

can be changed to one of the following, as shown in Figure 107: 

 Constant 

 Step; 

 Ramp; 

 Sine; 

 Pulse; or 

 Gaussian. 

Once the type of scenario and variables are selected the simulation can be run by selecting the 

Simulate button located at the bottom of the window. Once the simulation has completed two 

plots will appear. The first will display the PVs against their SP. The other shows the DVs. If the 

user is not happy with the performance of the controller the parameters can be altered in the 

Controllers tab and the scenarios run again. Once the MPC controller is performing as wanted 

it can be exported to MATLAB by returning to the Controllers tab and selecting Export. This will 

launch the Controller Exporter, 

shown in Figure 108, which will 

ask for which controller to 

export and the name.  

 

With the controller exported to 

the MATLAB workspace it can 

now be used in the MPC 

Figure 107: Different 
Signal Types in 

MATLAB. 

Figure 108: MPC Controller Exporter in MATLAB. 
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Controller block in Simulink. Return to the Simulink model and double click on the MPC block. 

This will launch the MPC controller mask shown in Figure 99 again. However this time instead 

of selecting design, the name of the controller can be entered in MPC Controller field. 

 

10.18 Appendix 18 

MATLAB DMC Function 

As an alternative to the MPC Toolbox in MATLAB and Simulink, a DMC script was created. This 

script takes advantage of the SISO system identification function found in 10.15 Appendix 15 

to determine the transfer function for the given input and output pairing. This is then used as 

the convolution model to design the reference for the DMC. Following the theory found in 

2.2.4.1 Dynamic Matrix Control, the controller was implemented as a function which requires 

three sets of information to be specified. First are the controller specifications: PV; SP; and MV 

Bias. Then the first order step response model parameters: step amplitude; model gain; and 

model time constant. Finally the DMC algorithm parameters: control horizon; prediction 

horizon; and the weighting matrices. 

 

This function will then perform the DMC algorithm for the current plant variables and 

determine the action it should take to achieve the SP. Using the first control action and bias it 

will output the MV for this current time period. The function script is given below. 

 

function MV = DMC(PV, SP, Bias, A, K, Tau, v, u, w1, w2) 
% DMC.m, Joshua M Eggins, Murdoch University, 18/08/2015 
% Function to computer the controller action of DMC. The user must 

% input the transfer function model parameters determined from the 

% SISO system identification function solverlstsq as well as the 

% DMC parameters. 

% v is the control horizon 

% u is the prediction horizon 

% w1 and w2 are the weighting matrices 



Murdoch University   10.0 Appendices  

 138 

 
%% Time 

% Initial time array and the sample time, the user should change 

% this is using a different time. 
dt = 0.5; 
Tdmc=dt:dt:v+dt; 
Tdmc=Tdmc'; 
% Reference First Order Model 
CP=A*K*(1+exp(-Tdmc/Tau)); 

 

%% Definitions 

% Define A matrix 
A=zeros(v,u); 
for j = 1:1:u 
    for i = j:1:v 
        A(i,j) = CP(i-j+1,1); 
    end 
end 
% Define diagonal weighting matrices 
W1 = w1*eye(v); 
W2 = w2*eye(u); 
% Define H matrix 
st = max(size(CP))-1; 
fh = zeros(st+v,1); 
h = zeros(v,st); 
for i = 1 :1 :st 
    fh(i,1) = CP(i+1,1) - CP(i,1); 
end 
for j = 1 :1 :st 
    for i = 1 :1 :v 
        h(i,j) = fh(i+j-1,1); 
    end 
end 
% Define Controller Gain 
Kdmc=inv(A'*W1*A + W2)*A'*W1; 

%% DMC Calculations 

% Initialise Arrays 
E = SP - PV; 
P = zeros(v,1); 
dmv = zeros(st,1); 
cv = zeros(st,1); 
% Calculate change in MV and the predicted outputs  
dMV = Kdmc * E; 
dmv(1,1) = dMV(1,1); 
CV = A * dMV; 
cv(1,1) = CV(1,1); 
s = h * dmv; 
P(1,1) = s(1,1); 
for j = 2:1:v 
    P(j,1) = P((j-1),1) + s(j,1); 
end 

%% Controller Action 

% Calculate the error 
ER = E - P - cv(1,1); 

% Extract current MV and add bias term 
MV = Kdmc * ER; 
MV = Bias + MV(1,1); 
end 
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10.19 Appendix 19 

LabVIEW MPC Toolkit 

Within the LabVIEW Control Design and 

Simulation Module is the Control Design 

Toolkit. The Predictive Control palette 

contains various Vis which are used to develop 

MPC control. Figure 109 shows the Predictive 

Control Palette in LabVIEW. If the user wishes 

to set up dynamically informed SPs and DVs 

the real-time target RT FIFO VIs are used. These blocks queue the information each iteration 

before removing it from memory. It is typically used when there are large amounts of 

information being accessed every loop. 

 

For smaller systems the CD Create MPC block is used to create the initial controller instance. 

Figure 42 displays this block, shown previously in 6.2 LabVIEW Control Design Toolkit. It 

expects the SS model of the plant to be input in addition to the controller and weighting 

parameters. The MPC controller parameters are: 

 Prediction horizon; 

 Control horizon; and 

 Integral action. 

 

The integral action is used when the SS model provided has large variations on the actual 

performance of the plant. If the behaviour of plant is represented accurately by the discrete SS 

the performance of the MPC controller will be improved. 

Figure 109: The Predictive Control Palette in the Control 
Design Toolkit in LabVIEW. 
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The error weightings follow the idea that no penalty is applied when at unity. However if the 

weighting coefficient it less than one it will decrease the weight of that item, similarly, if the 

coefficient is greater than one it will increase the weighting of that item. Also note that the 

weight cannot be less than zero. The weighting matrices for the MPC controller are: 

 PVs error; 

 MVs rate of change; and 

 MVs error. 

 

When creating the MPC controller the constraints must be set via the MPC Constraints input. 

These constraints cover minimum and maximum: 

 MVs; 

 MVs rate of change; and 

 PVs. 

If any of the variables are not specified LabVIEW will assume  Inf. Furthermore, it is possible 

to specify optimisation stopping criteria within this category. These conditions cover the total 

time elapsed, iterations and rate of change. 

 

Finally, the initial conditions of the controller can be specified. If these are not identified then 

LabVIEW will assume they are all zero. This can result in unexpected behaviour from the 

controller on startup, such as offset. The following conditions can be fed into the MPC Initial 

Conditions: 

 MVs; 

 PVs; 

 DVs; and 

 MVs rate of change. 
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With all these variables setup the controller is ready to fed into a while loop and the CD 

Implement MPC block. This block, shown in Figure 110, received the created MPC controller 

and PVs to determine the MVs. 

 

Figure 110: CD Implement MPC VI in LabVIEW. 

 

It is possible to change between manual and automatic control using the top input ports. If 

TRUE is quantified the controller will not complete its algorithm and simply pass through the 

value input to the Manual Control Action port. However if FALSE then that input is ignored and 

the controller will calculate the MVs based on the PVs and SPs. The PVs are input through the 

Measured Output input while the SPs must be specified previously in the CD Step Forward 

MPC Window VI. 

 

Figure 111 shows the Step 

Forward Window VI. This block 

transforms the SP values into 

the Output Reference Window 

which is sent to the Implement MPC VI. The MPC controller reference is passed from the 

Create MPC VI to the Step Forward MPC VI then to the Implement MPC VI. 

 

It is recommended the previous measured output is fed into the controller as this allows the 

block to know if an actuator is not able to execute its suggested MV. It is possible saturation 

Figure 111: CD Step Forward MPC Window VI in LabVIEW. 
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within the system might not have been input and this check allows the controller to easily 

detect any issues within the systems behaviour and update itself accordingly. Moreover, the 

predicted PVs can be withdrawn for the system through the Estimated Output port. These can 

provide insight into the validity of the plant model. If the controller has large errors between 

the predicted and actual PVs then it is possible the model being used is not viable for MPC 

reference. 

 

Figure 112 displays the setup of MPC control within LabVIEW. The controller is created given 

the specifications input on the Front Panel. However these variables can be constants set on 

the Block Diagram as they will not be updated once the simulation is underway and loop 

entered. The MPC controller is sent to the Step Forward VI and the SPs set. Finally the 

Implement MPC VI receives the SPs, PVs, previous MVs and the MPC controller reference. 

Using these it calculates the MVs to reach the predicted PVs. 

 

Figure 112: MPC Controller Design in LabVIEW. 

 

10.20 Appendix 20 

MIMO TF Model 

The MIMO TF was determined from open loop Simulink model provided in Figure 44 in 7.0 

Control Scheme Comparison. By stepping each input independently the system identification 

function, found in 10.15 Appendix 15, determined the following: 
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MIMOPlantModel = 

 

  

  From input 1 to output... 

 

         1.896 

   1:  ---------- 

       0.14 s + 1 

  

       -3.171 

   2:  ------ 

         s 

  

       3.316 

   3:  ----- 

         s 

  

        -0.1981 

   4:  ---------- 

       0.16 s + 1 

  

         0.1034 

   5:  ---------- 

       0.14 s + 1 

 

  

  From input 2 to output... 

 

         1.761 

   1:  ---------- 

       0.15 s + 1 

  

       1.565 

   2:  ----- 

         s 

  

       -1.633 

   3:  ------ 

         s 

  

         0.1158 

   4:  ---------- 

       0.17 s + 1 

  

        -0.04785 

   5:  ---------- 

       0.02 s + 1 

 

  

  From input 3 to output... 

 

       -1.358e-05 

   1:  ---------- 

       0.14 s + 1 

  

       -0.0004891 

   2:  ---------- 

           s 
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       0.0005256 

   3:  --------- 

           s 

  

       -5.082e-05 

   4:  ---------- 

       0.15 s + 1 

  

       9.218e-06 

   5:  ---------- 

       0.13 s + 1 

 

  

  From input 4 to output... 

 

       -6.618e-07 

   1:  ---------- 

       0.13 s + 1 

  

       -0.0004508 

   2:  ---------- 

           s 

  

       -5.806e-05 

   3:  ---------- 

       1.34 s + 1 

  

       8.687e-08 

   4:  ---------- 

       0.14 s + 1 

  

       -7.482e-08 

   5:  ---------- 

       0.12 s + 1 

 

  

  From input 5 to output... 

 

       -9.206e-07 

   1:  ---------- 

       0.14 s + 1 

  

       7.359e-06 

   2:  ---------- 

       0.01 s + 1 

  

       -0.002249 

   3:  ---------- 

       1.83 s + 1 

  

       -5.803e-08 

   4:  ---------- 

       0.17 s + 1 

  

       1.524e-09 

   5:  ---------- 

       0.02 s + 1 

  

Continuous-time transfer function. 
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10.21 Appendix 21 

Comparison Plots 

The following figures have been provided as a reference to the scenarios run. These 

compliment the ITAE values found in Table 5 in 7.0 Control Scheme Comparison. 

 

Figure 113: Plot of the Condenser Pressure Tracking the SP as Pressure Increase 20%. 
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Figure 114: Plot of the Drum Level Rejecting Disturbance as the Pressure Increases 20%. 
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Figure 115: Plot of the Sump Level Rejecting Disturbance as the Pressure Increases 20%. 
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Figure 116: Plot of the Condenser Pressure Tracking the SP as Pressure Decreases 20%. 
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Figure 117: Plot of the Drum Level Rejecting Disturbance as the Pressure Increases 20%. 
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Figure 118: Plot of the Sump Level Rejecting Disturbance as the Pressure Increases 20%. 
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Figure 119: Plot of the Drum Level Tracking the SP as Level Increases 20%. 
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Figure 120: Plot of the Drum Level Tracking the SP as Level Decreases 20%. 
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Figure 121: Plot of the Sump Level Tracking the SP as Level Increases 20%. 
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Figure 122: Plot of the Sump Level Tracking the SP as Level Decreases 20%. 

 

 


