Manganese(III) and its Hydroxo- and Chloro-complexes in Aqueous Perchloric Acid: Comparison with similar Transition-metal(III) Complexes

By David R. Rosseinsky,* Michael J. Nicol,† Kenneth Kite and R. John Hill ‡

Department of Chemistry, The University, Exeter EX4 4QD

Received 10th April, 1974

At 25°C the formation constant of $MnCl^{2+}$ is found by spectrophotometry to be 13.2 ± 0.9 dm³ mol⁻¹ at ionic strength 3.26 mol dm⁻³; for $MnCl_2^+$ the value is 1.1 ± 0.7 dm³ mol⁻¹. Increase in the number of chloride ions in complexes results in longer wavelengths for the corresponding absorption maxima. In the absence of chloride the hydrolysis constant of MnIII at ionic strength 5.6 mol dm⁻³ is found from voltammetry and potentiometry to be $1.0_5\pm0.2_6$ mol dm⁻³. Aged manganese(III) is found to be 15-25% polymeric, from both kinetic and e.m.f. measurements. Comparison of formation constants for halogeno- and hydroxo-complexes of M³⁺ (first transition series) shows that a combination of charge-transfer, ligand-field and coulomb interactions underlies the observed sequences ; the dipole moment of OH⁻ is also a factor.

The extent of interest in halide (X⁻) and hydroxo complexes of the trivalent cations M³⁺ of the first-row transition metals is evident from the growing number of measurements of stability constants K collated 1 or being recorded.²⁻⁵ Solutions in quite concentrated HClO₄ have often to be used; however, at ionic strengths I > 0.5mol dm⁻³ ionic activity coefficients change but slowly with composition, and for our purposes, comparison of log K values in this range, such high electrolyte concentrations present few problems. Some K values ¹ are less well founded than most. That ¹ for FeI²⁺ cannot be obtained in HClO₄, since oxidation of I⁻ occurs by a mechanism which does not give a stability constant from the rate equation.⁴ For MnCl²⁺ an estimate, from kinetics, of 8.9 dm³ mol⁻¹ in 2 mol dm⁻³ HClO₄ has been recalculated ⁵ as 13.5 mol dm⁻³. This revision may well reflect only the uncertainty of the estimate. For MnOH²⁺ formation the original ⁶ spectrophotometric value of the hydrolysis constant $K_{\rm h} \approx 4 \text{ mol dm}^{-3}$ in $I = 6 \text{ mol dm}^{-3}$, was re-measured ^{7a} as 0.93 mol dm⁻³ in ionic strength 4 mol dm⁻³, and 0.96 mol dm⁻³ (at 23°C).^{7b} Values of K for both of these Mn^{III} complexes clearly need to be redetermined, by independent techniques if possible, and in this paper we report such measurements, first of K_h by electrochemical methods ⁹ and secondly of K_{Cl} for MnCl²⁺ by spectrophotometry. Fresh Mn^{III} differs from aged Mn^{III} in that with time, a fraction of the fresh sample forms a polymeric species which reacts slowly in some electron transfer reactions.⁸ It is possible to use e.m.f. data ^{9, 13} to substantiate a kinetic estimate of the fraction polymerised, which has some effect on the K values. Finally we compare K values for most of the MX²⁺ species, and elicit the major molecular factors governing the values observed.

[†] National Institute of Metallurgy, Johannesburg; [‡] Dept. of Physical Chemistry, The University, Leeds.

EXPERIMENTAL

The voltammetric cell for measuring the variation of exchange current, and of e.m.f., with [H⁺] was used ⁹ in the determination of transfer coefficient α and rate constant in 3 mol dm⁻³ HClO₄ for the electrode reaction Mn^{III}+e_{Pt} \rightarrow Mn²⁺. The ionic strength was now made 5.6 mol dm⁻³ in HClO₄ + NaClO₄ so as to accommodate a sufficiently large change of [H⁺], from the minimum commensurate with the stability of Mn^{III}, 0.75 mol dm⁻³, to 5.3 mol dm⁻³. The solution was made 0.1 mol dm⁻³ in Mn(ClO₄)₂ to suppress the disproportionation of Mn^{III}, the concentration of which was kept at 1.89×10^{-4} mol dm⁻³ throughout. The Mn^{III}, at near this concentration, was prepared at room temperature by the reaction ⁸, ⁹ 4 Mn^{II} + Mn^{VII}, and aged for >36 h, at which time after a prolonged period of decrease the absorbance at 470 nm remained constant. Mn^{III} was standardised by amperometric titration ⁸ with iron(II).

To determine the MnCl²⁺ stability constant at ionic strength 3.26 mol dm⁻³ (a value chosen in connection with other work ⁸) twenty four solutions of 4×10^{-4} mol dm⁻³ Mn^{ur}, 3 mol dm⁻³ HClO₄ and 0.05 mol dm⁻³ Mn(ClO₄)₂ containing 0.01-0.2 mol dm⁻³ Cl⁻, were examined at 25.0°C in 0.2-4 cm cells being Unicam SP500 spectrophotometer over the wavelength range 230-400 nm, where neither Mn^{II} nor Cl⁻ absorb. Enhancements of absorbance occurred, which were checked with doubled [Mn^{III}] at the two extreme [Cl⁻] values. For both [Cl⁻] values the enhancements were doubled, indicating that the absorbing complex(es) were monatomic in Mn^{III}. Further elaboration depended on assumptions regarding $K_{\rm h}$.

RESULTS AND DISCUSSION

HYDROXO-COMPLEX

The value of the exchange current ⁹ i_0 and the e.m.f. *E* at 25°C are given in table 1 for five different solutions at compositions differing only in [H⁺] and [Na⁺], with [H⁺] + [Na⁺] constant. Notably, the transfer coefficient α is identical for both acidities, strongly implying constancy of electroactive species.⁹ The relationship between i_0 at 5.3 mol dm⁻³ H⁺ and at 0.75 mol dm⁻³ H⁺ is

 $\log\{i_0(5.3)/i_0(0.75)\} = (1-\alpha) \log\{5.3[(K_h/\text{mol } dm^{-3})+0.75]/0.75[(K_h/\text{mol } dm^{-3})+5.3]\}.$

Table 1.—Voltammetry and potentiometry on Mn^{ini} solutions at two different acidities

$[Mn^{m}] = 1.89 \times 10^{-4} \text{ m}$	ol dm^{-3} , $[Mn^{u}] =$	0.1 mol dm ⁻³ , $I =$	$= 5.60 \text{ mol } \text{dm}^{-3}, 25^{\circ}\text{C}$
[H+]/mol dm-3	E/V	$-\log(i_0/A)$	α
0.75	1.008	6.993	0.249
	1.006	6.998	0.255
	1.010	6.976	0.257
	1.009	6.994	0.256
	1.008	6.957	0.248
mean :	1.008 ± 0.002	6.977±0.016	0.253 ± 0.004
	[0.3657] ^a		
5.30	1.052	6.794	0.251
	1.056	6.731	0.248
	1.057	6.781	0.250
	1.055	6.745	0.253
	1.056	6.777	0.258
mean :	1.055±0.001 [0.2877] ^a	6.767±0.021	0.252 ± 0.003

^a E for H₂|HClO₄, NaClO₄, NaCl|Hg₂Cl₂|Hg; 0.01 mol dm⁻³ NaCl.

This expression follows irrespective of whether Mn^{3+} or $MnOH^{2+}$ is assumed to be reduced, as it is kinetically impossible to identify the electroactive species. Indirect arguments from the mechanism ⁹ invoked to explain the low value of α suggest that it is Mn^{3+} . From table 1 the left side of the equation is 0.210 ± 0.037 , whence the value of K_h is 0.95 ± 0.35 mol dm⁻³.

The E values were combined with those for a cell

H₂|HClO₄, NaClO₄|HClO₄, NaClO₄, NaCl|Hg₂Cl₂|Hg

([NaCl] small), to give at the two $[H^+]$ employed, E' values for the cell,

H₂|HClO₄, NaClO₄|HClO₄, NaClO₄, Mn(ClO₄)₂, Mn(ClO₄)₃|Pt

with $I = 5.6 \text{ mol } dm^{-3}$ throughout ([Mn^{z+}] small). Hence $(E')_{5.3} - (E')_{0.75} = RT/F \ln\{[(K_h/\text{mol } dm^{-3}) + 0.75]/[(K_h/\text{mol } dm^{-3}) + 5.30]\}$ which was $1.374 \pm 0.002 - (1.342 \pm 0.001)$ V or -32 ± 3 mV, giving $K_h = 1.1 \pm 0.20$ mol dm^{-3} .

Preliminary measurements were carried out with calomel electrodes having electrolyte which differed in composition from that of the Mn^{3+} , Mn^{2+} and hydrogen electrodes. The liquid junctions introduced slightly irreproducible error; nevertheless, the current against voltage curves (with $\alpha 0.249 \pm 0.005$ and 0.255 ± 0.004 at 0.75 and 5.3 mol dm⁻³ H⁺) gave a K_h of 1.05 ± 0.30 mol dm⁻³, and from E' differences, -31 ± 2 mV, a K_h of 1.1 ± 0.20 mol dm⁻³. Since the additional uncertainty is only slight, we include all these values to obtain a mean of $K_h = 1.0_5 \pm 0.2_6$ mol dm⁻³. While a different ratio of activity coefficients is implicitly assumed constant in going from i_0 to E to calculate K_h , the consequence is clearly within the experimental error of either method. The agreement of our value with the 0.93 obtained in a predominantly Mn(ClO₄)₂ medium at I = 4 mol dm⁻³ is satisfactory considering the difficulties of electrometry with this reactive ion, and the problems of extrapolation to zero time (to correct for polymer formation) involved in the spectrophotometry.⁷ We have hitherto considered Mn^{III} monomeric : taking account of the polymeric fraction (below) shows that the high side of the quoted limits should be emphasized for the truly mononuclear equilibria.

CHLORO-COMPLEXES

By straightforward use of Beer's law and including an appropriate value of K_h , a three stage computation was employed. First it was assumed that $MnCl^{2+}$ is the only chloro-complex. Then these initial K_{Cl} values obtained from 230-290 nm data

TABLE 2.—VALUES OF K_{Cl} for $Mn^{3+}+Cl^{-} \rightleftharpoons MnCl^{2+}$ at various wavelengths

λ/nm	$K_{\rm C1}/{\rm dm^3~mol^{-1}}$	λ/nm	$K_{\rm C1}/{\rm dm^3~mol^{-1}}$
230	12.9	255	12.5
235	15.8	265	14.7
240	12.2	270	12.4
245	12.6	275	12.7
250	12.9	mean	13.2 ± 0.9

 $K_{\rm h} = 1.0 \text{ mol } \mathrm{dm^{-3}} \text{ assumed}$

were used to estimate K_{2C1} for MnCl²⁺+Cl⁻ \Rightarrow MnCl², which is invoked to account for the higher-wavelength absorption. This gave a small K_{2C1} and a large ε (MnCl⁺₂) which justify the original assumptions and support the actual values of K_{C1} initially obtained (table 2). Finally a complete Beer's law expression for the total absorbance gave better values of K_{2C1} , see table 3. The algebra, straightforward but cumbersome,

2234

is detailed elsewhere,¹⁰ as are all individual measurements. Because the value of K_{Cl} depends on the value assumed for K_h , the calculation was repeated for a range of K_h , which established (table 4) that the dependence is not oversensitive, and is small enough to ensure that any further uncertainty introduced is smaller than that already inherent (table 2) in the parameter fitting. The K_h range almost certainly encompasses the true value for this medium.

Table 3.—Approximate values of K_{2Cl} for $MnCl^{2+}+Cl \Rightarrow MnCl^{+}_{2}$ at various wavelengths

λ/nm	$K_{2C1}/dm^3 mcl^{-1}$		
300	0.8		
320	0.3		
340	1.6		
360	0.5		
380	2.3		

mean 1.1 ± 0.7 dm³ mol⁻¹, with $K_{Cl} = 13.2$ dm³ mol⁻¹

The spectra observed and calculated are shown in fig. 1. If we add the longest wavelength maximum observed ¹¹ in 10 mol dm⁻³ HCl, which presumably indicates an even higher complex, the following sequence of absorbance maxima is seen :

species	Mn ³⁺	MnCl ²⁺	$MnCl_2^+$	$MnCl_n^{(3-n)}$
$\lambda_{\rm max}/{\rm nm}$	210	240	300	550.

It is thus possible that the absorption bands are due to ligand-to-metal ion charge transfer. Our spectrophotometry results agree satisfactorily with earlier qualitative observations.¹² Again as with MnOH²⁺ the upper limits of K_{Cl} (13.2±0.9 dm⁻³

TABLE 4.—DEPENDENCE OF DERIVED K_{Cl} on assumed values of K_{h}

$K_{\rm h}/{ m mol}~{ m dm}^{-3}$	$K_{\rm Cl}/{\rm dm^3~mol^{-1}}$		
0.6	12.8		
0.93	13.0		
1.0	13.2		
1.20	14.0		

mol⁻¹) are to be emphasized when the fraction of hydrolytic polymer present is allowed for. It is unlikely that the $I = 2 \mod \text{dm}^{-3}$ value, 13.5 dm³ mol⁻¹ is truly coincident with our $I = 3.26 \mod \text{dm}^{-3}$ value of 13.2 dm³ mol⁻¹, especially in view of the variation ¹ of the FeCl²⁺ value with I, 5.0 and 7.8 dm³ mol⁻¹ at I = 2 and 3 mol dm⁻³ respectively. As we are quite certain of our limits, this conclusion reflects the uncertainty in the indirect kinetic measurement mentioned in the introduction.

The size of the error limits calls for comment. For K_h and K_{Cl} these are about five times larger than is commonly quoted, and they arise from the highly reactive nature of the cation. Mn^{III} reacts, albeit slowly, *ca.* 1 % per day, with the solvent, and it partially polymerises (below). For K_h the effect being measured, while unambiguous, is not so large as to diminish these errors to the ordinary level of parameter fitting. For K_{Cl} the MnCl⁺₂ equilibrium is a marginal complication, but the effect measured is much larger, so diminishing, relatively, the errors resulting from the nature of Mn^{III}. (Ce^{IV} and Co^{III} present comparable problems.^{16, 17})

FIG. 1.—A, Calculated (+) and observed (----) values of logarithm of absorbance, A, for 0.15 mol dm⁻³ Cl⁻ solution; $[Mn^{II}] = 4.00 \times 10^{-4} \text{ mol dm}^{-3}$, $[Mn^{II}] = 0.05 \text{ mol dm}^{-3}$, $[HClO_4] = 3 \text{ mol dm}^{-3}$ 25.0°C; B, log A for Mn^{III} without Cl⁻, otherwise as A; C, log(ε_{MnCl^2} +/dm³ mol cm⁻¹); D, log(ε_{MnCl^2} /dm³ mol⁻¹ cm⁻¹).

MANGANESE(III) IN PERCHLORIC ACID

In the chloride catalysed oxidation of Tl¹ by Mn^{III} with 10⁻⁴ mol dm⁻³ < [Mn^{III}] < 10⁻³ mol dm⁻³, it was found that a multi-step mechanism could explain the observations up to *ca*. 70 or 80 % consumption of Mn^{III}, but thereafter the rate plots were curved. The plots could be made linear by assuming that about 10-20 % Mn^{III} was present as unreactive polymer. There is clear evidence for some hydrolytic polymerisation in the marked spectral changes occurring in Mn^{III} for more than 24 h after preparation. Therefore in the spectrophotometric K_h determination, readings had to be extrapolated to zero time (see above). Further evidence comes from e.m.f. measurements. All our observations in this and preceding papers have been made on aged Mn^{III}, and our ⁹ conditional (3 mol dm⁻³ HClO₄) standard e.m.f. was found to be 1.535±0.003 V, while for fresh Mn^{III} the value was 1.541 V.¹³ If the difference 6 ± 3 mV is attributed to the presence of polymer in the former, the fraction of polymer is 25 ± 14 %. Combining the kinetic and the e.m.f. estimated values leads to the conclusion that ~15-25 % of the Mn^{III} is polymeric. The precise amount is determined by preparative conditions, since such hydrolytic equilibria are often extremely sluggish.

The conditional e.m.f. values quoted here are for Mn^{III} , $3 \mod dm^{-3} HClO_4$, without account of the first hydrolysis. Inclusion of $K_h \approx 1 \mod dm^{-3}$, as the value appropriate for $I = 3 \mod dm^{-3}$, gives as the conditional ($3 \mod dm^{-3} HClO_4$) standard e.m.f. for $Mn^{3+}(unhydrolysed) + e = Mn^{2+}$ the value 1.559 V calculated from the fresh Mn^{III} measurement.¹³

COMPARISON OF MX^{2+} formation constants of first transition series metal ions M^{3+}

Values are tabulated in table 5 for perchlorate solutions between 0.5 mol dm⁻³ and 2 mol dm⁻³ in ionic strength; most have $I = 1 \text{ mol dm}^{-3}$, MnOH²⁺ has 4 mol dm⁻³. Hydrolysis constants have been converted for comparative purposes to formation

constants by subtraction of log K_w at the appropriate ionic strength. Neglecting the only slight irregularities introduced by *I* variations, we can immediately make two generalisations which are in almost complete accord with earlier views ^{6, 14} on the bonding in MOH²⁺ and MF²⁺. First, the decrease, with only one minor deviation,

TABLE 5.—SELECTED VALUES ^{*a*} OF LOGARITHMS OF FORMATION CONSTANTS FOR $M^{3+} + X^{-} \cong MX^{2+}$ IN PERCHLORATE SOLUTION OF IONIC STRENGTH USUALLY ^{*b*} 1 mol dm⁻³ at 25°C

	ОН	F	Cl	Br	I	$E^{\circ}(M^{3+,2+})/V$
Sc	8.84	6.19	$1.07)_{0.5}$	1.21		·
Ti	11.7		$(0.34)_{0.5}$			-1.29
v	11.1					-0.26
Cr	9.8	4.36)0.5	-0.65	$-2.67)_{2}$	- 5.0 ^c	0.41
Mn	13.7) ₃	5.63	0.95) ₂			1.56
Fe	11.0	5.06	0.56 e	-0.25		0.77
Co	<11.8 ^d		1.49)1.5			1.85

^{*a*} from ref. (1) unless otherwise indicated; $\log(K_X/dm^3 \text{ mol}^{-1})$ given. ^{*b*} Other ionic strengths given in mol dm⁻³ as subscripts. ^{*c*} T. W. Swaddle and G. Guestalla, *Inorg. Chem.*, 1968, 9, 1915. ^{*d*} G. Davies and B. Warnquist, *Coord. Chem. Rev.*, 1970, 5, 349. ^{*e*} Ref. (1), and J. K. Rowley and N. Sutin, J. Phys. Chem., 1970, 74, 2043. ^{*f*} Ref. (3).

from OH^- and F^- to I^- can be attributed to the decreases in coulomb interaction and in the X⁻ ligand field stabilisation parameter. Very low values probably indicate outer sphere association. Secondly, in the variation with M, considering the Sc, Cr and Fe complexes for which the data are most complete, the Cr values always fall low

FIG. 2.—Approximate parallelism of trends in log K_X for MX^{2+} and $E^{\circ}(M^{3+,2+})$. Data from table 5. at 25°C. A, log K_{OH} ; B, log K_{CI} ; C, E° .

n a plot of log K against the M atomic number, which supports the view that charge transfer interaction is important. This follows from the fact that of the three $E^{\circ}(M^{3+,2+})$ values, that for Cr is negative. Mn^{3+} has the second highest, positive, E° and, again in agreement, the K values fall *high* relative to the Sc-Fe line. These trends are illustrated in fig. 2. The detailed dependences on ionic properties further involve the effect of replacing the originally co-ordinated OH₂ by X⁻, and the variation of dielectric saturation with M^{3+} —X⁻ separation in the coulomb interaction. These variables apart from charge transfer are amenable to quite exact theoretical treatment, which however we do not pursue here.

We note that the earlier ¹⁴ coincidence, of F⁻ and OH⁻ complexing dependences on M³⁺, arose from the use of Latimer's outdated quantities for fluorine reactions, and OH⁻ complexes turn out to be more stable than F⁻ complexes by an amount which cannot be explained solely by easier charge transfer ¹⁴ from OH⁻. (The anion radii are nearly identical.) However, this excess stability is readily understood as arising from the fact that OH⁻ is O²⁻ with an attached H⁺, and a large part of the interaction is M³⁺O²⁻; put alternatively, OH⁻ has a large dipole moment, absent in F⁻, which enhances M³⁺—OH⁻ interactions. (A similar enhancement of interaction arising this time within the cation is found ¹⁵ in [NO₂CO^{III}(NH₃)₅]²⁺ SO²₄⁻ ion association, which greatly exceeds that for e.g. Co²⁺SO²₄⁻ by virtue of the *cationic* dipole moment in the former. Further examples are available,¹⁵ e.g. VO²⁺ cf. Fe²⁺, where the dipole moment in the V^{IV} cation is evident in relative rate and equilibrium effects.)

- ¹ Stability Constants of Metal Ion Complexes, ed. L. G. Sillén and A. E. Martell (Chem. Soc. London, 1964), and Suppl. I, 1971.
- ² D. W. Carlyle and J. H. Espenson, Inorg. Chem., 1969, 8, 575.
- ³ A. McAuley, M. N. Malik and J. Hill, J. Chem. Soc. A, 1970, 2641.
- ⁴ G. S. Laurence and K. J. Ellis, J.C.S. Dalton, 1972, 2229.
- ⁵ G. Davies and K. Kustin, Inorg. Chem., 1969, 8, 1196.
- ⁶ H. Diebler and N. Sutin, J. Phys. Chem., 1964, 68, 174.
- ⁷ (a) C. F. Wells and G. Davies, J. Chem. Soc. A, 1967, 1858; (b) V. B. Goncharik, L. P. Tikhonova and K. B. Yatsimirskii, Russ. J. Inorg. Chem., 1973, 18, 658.
- ⁸ D. R. Rosseinsky and R. J. Hill, J.C.S. Dalton, 1972, 715.
- ⁹ D. R. Rosseinsky and R. J. Hill, J.C.S. Faraday I, 1974, 70, 1140.
- ¹⁰ R. J. Hill, *Thesis* (Exeter, 1971).
- ¹¹ J. A. Ibers and N. Davidson, J. Amer. Chem. Soc., 1950, 72, 4744.
- ¹² C. F. Wells, D. Mays and C. Barnes, J. Inorg. Nuclear Chem., 1968, 30, 1341.
- ¹³ L. Ciavatta and M. Grimaldi, J. Inorg. Nuclear Chem., 1969, 31, 3071.
- ¹⁴ D. R. Rosseinsky, Nature, 1967, 216, 791.
- ¹⁵ D. R. Rosseinsky, Ann. Rep. Chem. Soc. A, 1971, 95; Chem. Rev., 1972, 72, 220.
- ¹⁶ M. G. Adamson, F. S. Dainton and P. Glentworth, Trans. Faraday Soc., 1965, 61, 700.
- ¹⁷ C. F. Wells and M. Husain, Trans. Faraday Soc., 1971, 67, 767.