Kinetics of the Aqueous Manganese(III)+Iron(II) Reaction by Platinum-Electrode Polarography

BY D. R. ROSSEINSKY* AND M. J. NICOL[†]

Received 21st January, 1968

The rate equation $-d[FeII]/dt = k_{obs}[FeII][Mn^{III}]$ was established by measurements of the iron(II) diffusion current. For 0.3-15°C in 0.54-3 M HClO₄ the variation of k_{obs} was consistent with the relation $k_{obs} = (k_0[H^+] + k_1K_h)/([H^+] + K_h)$, where K_h is the manganese(III) hydrolysis constant. Values of k_0 are just less than k_1 as in the comparable oxidation of vanadium(IV). It is concluded from further comparisons of rates that the activated complexes are outer-sphere.

Kinetic studies of oxidations by manganese(III)¹ include two brief reports on the reaction with iron(II),^{2, 3} each dealing only sketchily with the acidity dependence of rate. Here a wider study again reveals the extensive hydrolysis of manganese(III), and allows comparisons in detail with the oxidation of vanadium(IV).¹ Rates were measured from the change with time of the diffusion current due to iron(II) at a rotating platinum electrode immersed in the reaction solution.

EXPERIMENTAL

Preparations of reactants have been described.¹ The polarographic apparatus was that ⁴ used for the Fe^{II}+V^V reaction; there the results agreed satisfactorily with independent e.m.f.⁵ and spectrophotometric ⁶ measurements. The reactions were conducted in aqueous sodium + hydrogen perchlorate solutions of total concentration 3.04 M except where otherwise stated. Reactions were initiated by addition of manganese(III) to iron(II) solutions. Half-lives of 10-30 sec were found at tractable reactant concentrations ($\sim 10^{-5}$ M); a recorder for tracing the diffusion current was necessary. The possibility of catalysis by the platinum electrode was tested for by increasing the electrode area threefold, addition of 20 cm^2 of Pt foil, and change of the applied potential from 0.8 to 1.0 V.

For a second-order reaction at constant $[H^+]$, $-d[Fe^{II}]/dt = k_{obs}[Fe^{II}][Mn^{III}] =$ $k_{obs}(a-x)(b-x)$. Taking the observed diffusion current $(i_t - i_{\infty})$ as being proportional to [Fe^{II}], with i_0 , i_t and i_{∞} representing the currents observed initially, at time t, and after completion of reaction respectively, we have

$$a = g(i_0 - i_\infty)$$
 where g is the proportionality factor,
 $a - x = g(i_t - i_\infty) = a(i_t - i_\infty)/(i_0 - i_\infty)$,
and $b - x = (a - x) + (b - a)$.
Hence the integrated equation

and

$$k_{abs}t = (b-a)^{-1} \ln\left(\frac{b(i_0 - i_{\infty}) - a(i_0 - i_t)}{a(i_t - i_{\infty})}\right) + \text{constant.}$$

With [Fe^{II}] \leq [Mn^{III}], $k_{obs}tb = -\ln(i_t - i_{\infty})$ + second constant. Values of k_{obs} were obtained from plots of the r.h.s. function against t.

- * The University, Exeter.
- † University of the Witwatersrand, Johannesburg.

D. R. ROSSEINSKY AND M. J. NICOL

RESULTS

Linearity of graphs of the second-order function (fig. 1A) and of the first-order function (fig. 1B) indicates the bimolecularity of the reaction. The reproducibility for second-order conditions over a range of reactant concentrations is shown in table 1 (\pm 3-4 %); first-order measurements were rejected for quantitative purposes

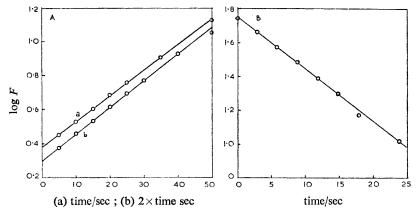


FIG. 1.—A: Typical second-order plots. For these, F is $\{b(i_0-i_{\infty})-a(i_0-i_t)\}/a(i_t-i_{\infty})$. (a) 3.04 M H⁺, 0.3°C; (b) 2.04 M H⁺, 15°C. B: first-order plot. Here F is (i_t-i_{∞}) . 1.64 M H⁺, -13.4°C.

TABLE 1.—RATE CONSTANTS AT 0.3° C in 3.04 M HClO ₄ solut
--

Solutions with 2×10^{-3} M Mn^{II}:

105[Fe ^{II}] mole <i>l</i> . ⁻¹	10 ⁵ [Mn ^{III}] mole <i>l</i> . ⁻¹	$10^{-5}k_{\rm obs}$ <i>l</i> . mole ⁻¹ min ⁻¹
0.62	6.4	1.05
0.73	1.56	1.07
1.28	1.56	0.98
1.41	3.20	1.14
1.35	6.4	1.07
2.79	3.20	1.10
		mean $1.07 + 0.04$

Solutions with (1.32 to 1.44)×10⁻⁵ M Fe^{II} and 3.2×10^{-5} M Mn^{III}:

	$10^{-5}k_{\rm obs}$ <i>l.</i> mole ⁻¹ min ⁻¹
6.4×10^{-3} M Fe ^{III} added initially	1.04
2.1×10^{-2} M Mn ^{II} added initially	1.12
electrode area increased threefold	1.10
potential increased to 1.0 V	1.05
20 cm ² Pt foil inserted	1.09
	mean 1.08 ± 0.03

because of errors arising from their short duration and the smallness of current at the necessarily low [Fe^{II}], $\leq 10^{-6}$ M. No heterogeneous catalysis was observed, and the absence of any effect of high initial concentrations of product is clear. Variation of [ClO₄⁻] at constant formal ionic strength, by substitution of Zn and Al for Na as medium cation, left k_{obs} unaltered (table 2), suggesting that ClO₄⁻ is not involved. The change in rate with ionic strength is in the expected direction.

KINETICS OF MANGANESE(III) + IRON(II) REACTION

Rate constants k_{obs} (most the mean of two measurements) were shown to decrease with increasing [HClO₄] at constant formal ionic strength (table 3).

TABLE 2.—VARIATION OF k_{obs} with $[ClO_4^-]$ and ionic strength I in 1.00 M HClO₄ at 10.0 °C

 $(0.93 \text{ to } 1.11) \times 10^{-5} \text{ M Fe}^{\text{II}}$; $(2.88 \text{ to } 2.96) \times 10^{-5} \text{ M Mn}^{\text{III}}$; $2 \times 10^{-3} \text{ M Mn}^{\text{III}}$

added salt	$[ClO_4]$ mole <i>l</i> . ⁻¹	I mole l . ⁻¹	$10^{-5}k_{\rm obs}$ <i>l.</i> mole ⁻¹ min ⁻¹
$Al(ClO_4)_3$	2.00	3.00	2.99
$Zn(ClO_4)_2$	2.33	3.00	2.98
NaClO ₄	3.00	3.00	2.97
NaClO ₄	2.00	2.00	2.74
NaClO₄	1.50	1.20	2.56
NaClO ₄	1.00	1.00	2.41

TABLE 3.—VARIATION OF k_{obs} with [H⁺] and temperature

 $(0.76 \text{ to } 1.50) \times 10^{-5} \text{ M Fe}^{\text{II}}$; $(2.45 \text{ to } 4.20) \times 10^{-5} \text{ M Mn}^{\text{III}}$; $2 \times 10^{-3} \text{ M Mn}^{\text{III}}$; ionic strength 3.04 M with NaClO₄

[HClO4]	$10^{-5}(k_{obs}/l. mole^{-1} min^{-1})$				
mole 11	0.3°C	5.0°C	10.0°C	15.0°C	
3.04	1.06	1.53	2.38	3.26	
2.04	1.14	1.68	2.52	3.58	
1.54	1.24	1.79	2.72	3.82	
1.04	1.40	2.01	2.99	4.22	
0.64	1.59	2.30	3.46	5.10	
0.54	1.65	2.40	3.74	5.20	

DISCUSSION

The k_{obs} values are of the same order of magnitude as found for the Ce^{IV}+Fe^{II} reaction.⁷ The variation of k_{obs} with [H⁺] closely resembles that in the Mn^{III} + V^{IV} reaction,¹ being most simply interpreted as indicating the following steps.

$$Mn^{3+} + Fe^{2+} \xrightarrow{\kappa_0} Mn^{2+} + Fe^{3+}$$
$$Mn^{3+} + H_2 O \rightleftharpoons MnOH^{2+} + H^+ \qquad (rapid)$$
$$MnOH^{2+} + Fe^{2+} \xrightarrow{\kappa_1} Mn^{2+} + Fe^{3+} + OH^-.$$

Hence

 $k_{\text{obs}}(\llbracket \mathbf{H}^+ \rrbracket + K_{\text{b}}) = k_0 \llbracket \mathbf{H}^+ \rrbracket + k_1 K_{\text{b}}.$

Though the precision of the present results greatly exceeds that for the $Mn^{III} + V^{IV}$ reaction, again it is not good enough to establish all three parameters k_0 , k_1 and K_h from the measurements. Thus, as before,¹ we assume the value $K_{\rm h} = 0.88$ M at 25°C with $\Delta H_{\rm h} = 4.8$ kcal mole⁻¹, measured at ionic strength 4,⁸ and fit corresponding values of k_0 and k_1 from a plot of the l.h.s. of the preceding equation against [H⁺] (fig. 2). As with the V^{IV} data, an equally good fit is got assuming $K_h = 0.63$ M at 12.5° and $\Delta H_{\rm h} = 10$ kcal mole⁻¹, only the k_1 values being appreciably altered thereby. Both sets of hydrolysis parameters give extrapolated overall rate constants agreeing to within ~17 % of Sutin's k_{obs} values from spectrophotometric stoppedflow measurements at 25°, which is reasonable. The values of k_0 and k_1 in table 4

give the activation parameters of table 5, where a comparison is made with the corresponding quantities for V^{IV} as reductant. (The Fe^{II} values differ slightly from the original ² because of the present wider and better-analysed [H⁺] variation.)

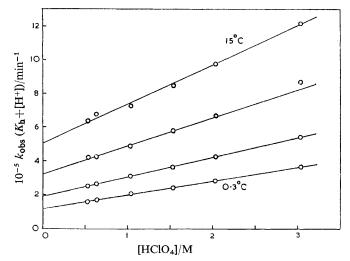


FIG. 2.—[HClO₄] dependence of k_{obs} with assumed K_h (10°C) = 0.59 M and $\Delta H_h = 4.8$ kcal mole⁻¹.

TABLE 4.—-VARIATION OF k_0 and k_1 (in 1 mole⁻¹ min⁻¹) with temp. And with choice

		OF Kh		
temp. °C	$K_{\rm h}$ (10°C) $\Delta H_{\rm h} = 4.8$		$K_{\rm h} (10^{\circ}{\rm C}) = 0.55 {\rm M},$ $\Delta H_{\rm h} = 10 {\rm kcal mole^{-1}}$	
	$10^{-5}k_0$	$10^{-5}k_1$	$10^{-5}k_0$	$10^{-5} k_1$
0.3	0.82	2.67	0.84	3.21
5.0	1.17	3.72	1.17	4 ·17
10.0	1.65	5.40	1.67	5.65
15.0	2.33	7.41	2.24	7.23

	TABLE 5.—ACTIVATION	PARAMETERS FOR	OXIDATIONS BY	MANGANESE(III)
--	---------------------	----------------	---------------	----------------

	assumed ΔH_h kcal mole ⁻¹	ΔH_0^* kcal mole ⁻¹	ΔS_0^* cal mole ⁻¹ deg. ⁻¹	ΔH_1^* kcal mole ⁻¹	ΔS_1^* cal mole ⁻¹ deg. ⁻¹
Fe ^{II} reaction	4.8	10.6	-5.2	10.3	-4.2
V ^{IV} reaction	4 ·8	11.1	-11.5	9.6	-13.9
Fe ^{II} reaction	10	10.0	-7.5	8.3	-11.0
V ^{IV} reaction	10	11.2	-11.5	6.4	-24.9

(For Fe^{II} reactions, fitting errors in ΔH^* are ± 0.2 kcal mole⁻¹, and in $\Delta S^* \pm 0.7$ cal mole⁻¹ deg⁻¹.)

From a comparison of rate constants some conclusions can be reached concerning the mode of electron transfer. As with $Mn^{III} + V^{IV}$, here the k_1 values are just $>k_0$, and the activation parameters for the k_0 and k_1 paths are related to each other in a similar manner for both systems. Furthermore,¹ the rates of the reactions Fe^{II} + oxidant show a remarkable parallelism with those of V^{IV} + oxidant for the oxidants (in order of increasing rate) $Tl^{III} < Fe^{III} < Co^{III} < Mn^{III} < V^{V}$; the reactions of vanadium(IV) are constantly slower. The two reductants have some similarities, but greater differences. Besides being bipositive, both, in a simplified view of the electron arrangements, have one electron in excess of a spherically symmetrical distribution. However, the numbers of 3d electrons do differ, the molecular dissymmetry

2414 KINETICS OF MANGANESE(III) + IRON(II) REACTION

of VO²⁺ is marked, and its electric dipole must be appreciable. The close juxtaposition involved in bridged mechanisms would involve specific oxidant-reductant interactions which are unlikely to allow the parallelism of rate actually observed, and we now believe the activated complexes to be of the outer-sphere type. While the relative rapidity of the iron(II) reactions might arise from the more negative ΔG° values, a greater radial extension of the iron(II) transfer orbital, achieving sufficient overlap at wider transition-state separations, could ensue from the lower core charge (as indicated by the lower oxidation state).

We acknowledge a South African C.S.I.R. bursary to M. J. N.

- ¹ D. R. Rosseinsky and M. J. Nicol, J. Chem. Soc. A, 1968, 1022.
- ² M. J. Nicol and D. R. Rosseinsky, Chem. and Ind., 1963, 1166.
- ³ H. Diebler and N. Sutin, J. Physic. Chem., 1964, 68, 174.
- ⁴ D. R. Rosseinsky and M. J. Nicol, *Electrochim. Acta*, 1966, 11, 1069.
- ⁵ W. C. E. Higginson and A. G. Sykes, J. Chem. Soc., 1962, 2841.
- ⁶ N. A. Daugherty and T. W. Newton, J. Physic. Chem., 1964, 68, 612.
- ⁷ M. G. Adamson, F. S. Dainton and P. Glentworth, Trans. Faraday Soc., 1965, 61, 689.
- ⁸ C. F. Wells and G. Davies, Nature, 1965, 205, 692.