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Highlights 

• First detection of extended-spectrum cephalosporin and fluoroquinolone-
resistant Escherichia coli in Australian food-producing animals. 

• These isolates resistant to critically important antimicrobials (CIAs) belong to 
internationally disseminated, multidrug-resistant zooanthroponotic clonal 
lineages. 

• Frequency of resistance to CIAs among E. coli isolates causing clinical 
disease in Australian food-producing animals is defined. 
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ABSTRACT 

This study aimed to define the frequency of resistance to critically important 

antimicrobials (CIAs) [i.e. extended-spectrum cephalosporins (ESCs), 

fluoroquinolones (FQs) and carbapenems] among Escherichia coli isolates causing 

clinical disease in Australian food-producing animals. Clinical E. coli isolates (n = 

324) from Australian food-producing animals [cattle (n = 169), porcine (n = 114), 

poultry (n = 32) and sheep (n = 9)] were compiled from all veterinary diagnostic 

laboratories across Australia over a 1-year period. Isolates underwent antimicrobial 

susceptibility testing to 18 antimicrobials using the Clinical and Laboratory Standards 

Institute disk diffusion method. Isolates resistant to CIAs underwent minimum 

inhibitory concentration determination, multilocus sequence typing (MLST), 

phylogenetic analysis, plasmid replicon typing, plasmid identification, and virulence 

and antimicrobial resistance gene typing. The 324 E. coli isolates from different 

sources exhibited a variable frequency of resistance to tetracycline (29.0–88.6%), 

ampicillin (9.4–71.1%), trimethoprim/sulfamethoxazole (11.1–67.5%) and 

streptomycin (21.9–69.3%), whereas none were resistant to imipenem or amikacin. 

Resistance was detected, albeit at low frequency, to ESCs (bovine isolates, 1%; 

porcine isolates, 3%) and FQs (porcine isolates, 1%). Most ESC- and FQ-resistant 

isolates represented globally disseminated E. coli lineages (ST117, ST744, ST10 

and ST1). Only a single porcine E. coli isolate (ST100) was identified as a classic 

porcine enterotoxigenic E. coli strain (non-zoonotic animal pathogen) that exhibited 

ESC resistance via acquisition of blaCMY-2. This study uniquely establishes the 

presence of resistance to CIAs among clinical E. coli isolates from Australian food-

producing animals, largely attributed to globally disseminated FQ- and ESC-resistant 

E. coli lineages.
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1. Introduction 

The World Health Organization (WHO) has recently highlighted the major public 

health risks posed by resistance to critically important antimicrobials (CIAs) such as 

extended-spectrum cephalosporins (ESCs), fluoroquinolones (FQs) and 

carbapenems among Enterobacteriaceae [1]. Concerns are heightened when such 

resistance occurs in food-producing animals because of the potential risk of 

transmission to humans through the food chain and/or the environment [2,3]. 

Plasmid-mediated ESC resistance (mediated by blaCMY-2) was first detected in 

Escherichia coli from US livestock in 1996 and in Salmonella Newport shortly 

thereafter in Canada [4,5]. Similarly, in Asia and Europe, ESC resistance in E. coli 

isolated from livestock has been attributed to the emergence and spread of plasmid-

mediated blaCTX-M genes and blaCMY-2 [6–8]. In several countries in these regions, 

extensive use of FQs in some food-animal species has been linked to the 

emergence of FQ-resistant E. coli and Salmonella [9,10]. More recently, 

carbapenemases (NDM-1, VIM, OXA-23) have been detected in Enterobacteriaceae 

isolated from livestock systems both in Asia and Europe [3]. 

 

Recent studies have suggested that the ecology of antimicrobial resistance among 

Enterobacteriaceae isolated from food-producing animals in Australia is different to 

that in other parts of the world [11,12]. Resistance to ESCs, FQs and carbapenems 

has yet to be reported among Enterobacteriaceae from Australian livestock [11,12]. 

This has been attributed to Australia’s geographic isolation, restrictions placed on the 

importation of live animals and some foods, and strong regulation governing the use 

of CIAs [13,14]. The latter includes bans on the use of FQs and carbapenems in any 



Page 6 of 24

Acc
ep

te
d 

M
an

us
cr

ip
t

food-producing animal and of ceftiofur (an ESC) for mass medication [13]. In this 

study, we sought to define the frequency of resistance to these three critically 

important classes of antimicrobial among E. coli isolates causing clinical disease in 

Australian food-producing animals. 

 

2. Materials and methods 

2.1. Bacterial strains 

A collection of 324 clinical E. coli isolates from Australian food-producing animals 

was compiled within the first national Australian veterinary antimicrobial resistance 

survey, which took place over 12 months (January 2013 to January 2014) with the 

co-operation of all veterinary diagnostic laboratories (n = 22) in all Australian states 

and territories. The study isolates were from bovine (n = 169), porcine (n = 114), 

poultry (n = 32) and ovine (n = 9) and were considered by the diagnostic 

microbiologist to be involved in the aetiology of the presenting disease. 

 

2.2. Phenotypic detection of antimicrobial resistance 

All isolates underwent disk diffusion susceptibility testing as per Clinical and 

Laboratory Standards Institute (CLSI) guidelines to 18 antimicrobials of veterinary 

and human health importance, including amoxicillin/clavulanic acid, amikacin, 

ampicillin, apramycin, cefoxitin, ceftazidime, ceftiofur, cefalotin, chloramphenicol, 

ciprofloxacin, florfenicol, gentamicin, imipenem, neomycin, spectinomycin, 

streptomycin, trimethoprim/sulfamethoxazole (SXT) and tetracycline. The 

breakpoints used were those recommended in CLSI document VET01-S2 [15] and 

M100-S24 [16]. For antimicrobials that lacked published CLSI breakpoints, 
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Australian veterinary laboratory breakpoints were used [apramycin and neomycin, 

resistant (R), ≤12 mm; and florfenicol, R, ≤14 mm]. Isolates that demonstrated 

resistance to ciprofloxacin, ceftiofur or ceftazidime underwent minimum inhibitory 

concentration (MIC) testing by microbroth dilution to ciprofloxacin, enrofloxacin, 

pradofloxacin, ceftriaxone, ceftiofur, cefovecin, ceftazidime and moxifloxacin as per 

CLSI guidelines [15]. In addition, all ESC- and FQ-resistant isolates underwent 

ciprofloxacin and enrofloxacin MIC testing in the presence of the efflux pump 

inhibitor Phe-Arg-β-naphthylamide (PAβN) at 64 mg/L [17]. Isolates resistant to at 

least three antimicrobial classes were classed as multidrug-resistant (MDR). 

 

2.3. Molecular characterisation of Escherichia coli resistant to critically important 

antimicrobials 

All ESC- and FQ-resistant isolates underwent PCR-based phylotyping [18], 

identification of blaCTX-M and blaCMY-2 genes by PCR and amplicon sequencing [12], 

plasmid replicon typing [19,20], screening for virulence genes typical of bovine and 

porcine enterotoxigenic E. coli (ETEC) (f4, f5, f6, f18, lt1, sta, stb and stx2e) [21] and 

multilocus sequence typing (MLST) (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli) as 

previously described. PCR and amplicon-sequencing of the quinolone resistance-

determining region (QRDR) for the gyrA, gyrB, parC and parE genes and plasmid-

mediated quinolone resistance (PMQR) genes qnrA, qnrB, qnrS, qepA, aac(6')-Ib 

and aac(6’)-Ib-cr were performed as previously described [17,22]. 
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2.4. Plasmid characterisation 

Plasmid characterisation was performed by S1 pulsed-field gel electrophoresis 

(PFGE) and in-gel hybridisation. Genomic DNA in agarose blocks was digested with 

the restriction enzyme S1 (Invitrogen, Abingdon, UK). DNA fragments were 

separated by PFGE. In-gel hybridisation was done with a blaCMY and blaCTX-M probe 

labelled with ³²P by random priming using 9-mer oligomers and a commercial kit 

(Stratagene, Amsterdam, The Netherlands). 

 

2.5. Statistical analysis 

The prevalence of resistance amongst the animal species groups was evaluated 

using Fisher’s exact test. 

 

3. Results 

3.1. Phenotypic characterisation of antimicrobial resistance 

The 324 E. coli isolates from food animal sources exhibited a high prevalence of 

resistance to tetracycline, ampicillin, SXT and streptomycin, whereas none were 

resistant to imipenem or amikacin (Table 1). Resistance to ESCs (ceftiofur and/or 

ceftazidime) was detected in five isolates (1.5%) [two bovine (1.2%) and three 

porcine (2.6%)] (Tables 1 and 2). These ESC-resistant phenotypes were confirmed 

by MIC testing to ESCs (ceftiofur, ceftriaxone, cefovecin and/or ceftazidime; Table 

2). One of the porcine isolates (#03/13/4/59) was also resistant to ciprofloxacin. The 

FQ-resistant phenotype was confirmed by ciprofloxacin, enrofloxacin, moxifloxacin 

and pradofloxacin MIC testing (Table 2). 
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Overall, in comparison with bovine, ovine and poultry isolates, porcine isolates 

demonstrated a higher resistance prevalence for most antimicrobial agents (Table 

1). These differences between species were statistically significant (P < 0.05) for 13 

of the 18 antimicrobials evaluated in this study. Porcine isolates demonstrated a 

remarkably high frequency of resistance to tetracycline, ampicillin, SXT, 

streptomycin, chloramphenicol, apramycin, florfenicol and gentamicin (Table 1). 

Among the isolates characterised in this study, 79% of porcine, 33% of poultry, 26% 

of bovine and 22% of ovine isolates qualified as MDR. 

 

3.2. Molecular characterisation of Escherichia coli resistant to critically important 

antimicrobials 

Molecular characterisation of the ESC-resistant isolates revealed that blaCMY-2, 

blaCTX-M-14 and blaCTX-M-9 were the genes that encoded ESC resistance among the E. 

coli isolates in this study. Molecular characterisation also showed that only one 

isolate (ST100) was a classic porcine ETEC isolate based on the presence of ETEC 

virulence genes f4, f6, lt1 and stb (Table 2). The other four isolates each belonged to 

a distinct clonal lineage such as ST1-D, ST10-A, ST117-F and ST744-A. The 

ST744-A isolate was also resistant to FQs. This isolate demonstrated known 

mutations in the QRDRs, including a double mutation in gyrA (83Ser→Leu; 

87Asp→Asn) and a single mutation in parC (80Ser→Ile). In addition, its ciprofloxacin 

and enrofloxacin MICs showed a two- to four-fold decrease in the presence of the 

efflux inhibitor PAβN. No PMQR genes were identified. 
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3.3. Characterisation of plasmids from Escherichia coli resistant to critically important 

antimicrobials 

Plasmid characterisation by S1 PFGE revealed a number of different plasmids 

among the ESC-resistant E. coli isolates. Each ESC-resistant E. coli strain contained 

one to five plasmids (Table 3). Probe hybridisation revealed that blaCMY-2 and blaCTX-

M-14 were carried on plasmids, whilst blaCTX-M-9 was present on the chromosomal 

DNA. One of the strains (#03/13/4/91) also carried blaCMY-2 on the chromosomal 

DNA (Table 3). The ESC-resistant plasmids were of different sizes, ranging from 75 

kb to 250 kb (Table 3). One of the isolates (#02/13/1/13) appeared to have lost a 

number of plasmids, including the blaCMY-2-bearing plasmid, following storage at –80 

°C (Table 3). However, this isolate still maintained one of the ESC resistance 

plasmids containing blaCTX-M-14. 

 

4. Discussion 

Here we report the first detection of ESC- and FQ-resistant E. coli from Australian 

food-producing animals. The presence of blaCTXM-14, blaCTX-M-9 and blaCMY-2 in E. coli 

from food-producing animals is of potential public health significance because of the 

risk of direct transfer of such strains to humans via the food chain or environment 

and/or through the mobilisation of plasmids that can potentially transfer the ESC 

resistance genes to other Gram-negative bacteria, including Salmonella spp. 

 

Four of the five ESC-resistant (± FQ-resistant) E. coli isolates represented clonal 

lineages previously isolated both from animals and humans. ST117 strains are 

important pathogens identified predominantly as avian pathogenic E. coli in the USA 
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and Europe, but also as a sporadic cause of human extraintestinal infections in 

Canada, Chile, France, Spain and Brazil [23,24] 

(http://mlst.warwick.ac.uk/mlst/dbs/Ecoli). ST10 is an extremely diverse and broad-

host-range lineage causing extraintestinal infections in hospitalised and community-

dwelling humans in The Netherlands and Canada [24–26], and is also detected in 

poultry, wild birds and pigs as well as retail chicken and pork meat [24–27]. ST1 has 

also been reported to be both a pig and a human pathogen in Germany 

(http://mlst.warwick.ac.uk/mlst/dbs/Ecoli). Finally, the ESC- and FQ-resistant strain 

(ST744) has been identified previously as an extended-spectrum β-lactamase 

(ESBL)-producing lineage associated with wild birds in Bangladesh and with human 

extraintestinal infection in Laos [28]. This demonstrates that these ESC-resistant E. 

coli strains are potentially strains that may move bidirectionally between humans and 

animals. 

 

To our knowledge, these ESC-resistant E. coli strains belonging to the sequence 

types identified in this study have not been reported previously in Australia either 

from food-producing animals or as a cause of human infection. Their low frequency 

among clinical isolates from Australian animals suggests that they have potentially 

been introduced. This plausibly could occur via either human carriers or migratory 

wild birds due to Australian quarantine restrictions on the importation of livestock and 

regulation on the use of CIAs in livestock [13,14,25,27,28]. Australia has banned the 

importation of livestock since the 1970s [14], and FQs cannot legally be administered 

to food-producing animals in this country [13]. Furthermore, ESC-resistant clones 

identified in this study have also been detected among humans and birds in other 

continents as previously described. Therefore, it is unlikely that strains such as 
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ST744-A, which is resistant both to ESCs and FQs, evolved from an animal-

associated susceptible progenitor strain under local FQ selection pressure. 

 

The detection of a single ESC-resistant porcine ETEC (ST100-A) strain carrying 

blaCMY-2 is potentially significant for animal health. Our previous study on porcine 

ETEC identified ST100 as a prominent clonal lineage among Australian porcine 

ETEC isolates of serogroup O149, and the majority of these clones are resistant to a 

wider range of antimicrobials that are regularly used to treat post-weaning diarrhoea 

[12]. However, none of the O149/ST100 ETEC isolates in that study were ESC-

resistant [12]. This is the first time ESC resistance has been reported in Australian 

porcine ETEC. In Australia, ceftiofur (an ESC) is used as a last-line off-label 

antimicrobial for parenteral treatment of seriously ill pigs with MDR ETEC infection. 

Therefore, detection of ESC-resistant porcine O149/ST100 ETEC has potential 

animal health implications in Australia owing to the limited therapeutic options. 

Detection of ESC resistance in a single Australian porcine ETEC isolate indicates a 

need for both ongoing surveillance at the national level and closer scrutiny of the off-

label use of ESCs to avoid the spread of ESC-resistant ETEC in Australian pig 

herds. 

 

Despite the detection of ESC-resistant E. coli clones from food-producing animals in 

Australia, it is difficult to evaluate the public health impact of the detected ESC-

resistant E. coli clones. This is because there are limited data regarding the CTX-M 

and CMY types detected among human clinical E. coli isolates in Australia. The 

Australian human Gram-negative surveillance reports the ESC-resistant isolates as 

CTX-M or CMY without identifying the specific types [29]. Therefore, it is difficult to 
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track the movement of ESC-resistant clones and ESC resistance-encoding plasmids 

from animals to humans. Further work is therefore required to evaluate the public 

health impact of the ESC-resistant E. coli clones identified in this study. 

 

In summary, this study establishes the presence of resistance to CIAs among clinical 

E. coli isolates from Australian food-producing animals, largely attributed to globally 

disseminated FQ- and ESC-resistant E. coli lineages. 
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Table 1 

Percentage of clinical Escherichia coli isolates from different food animal species 

expressing phenotypic resistance to each of 18 antimicrobials 

Frequency of resistance (%) Antimicrobial 

Bovine (n = 

169) 

Ovine (n = 

9) 

Porcine (n = 

114) 

Poultry (n = 

32) 

P-value 
a 

AMC 4.14 0.00 14.91 0.00 0.008 

AMK 0.00 0.00 0.00 0.00 N/A 

AMP 39.05 22.22 71.05 9.38 <0.001 

APM 0.59 0.00 34.21 3.13 <0.001 

CAZ 0.59 0.00 0.88 0.00 1.000 

CEF 8.28 0.00 24.56 6.25 0.005 

CFT 1.18 0.00 2.63 0.00 0.693 

CHL 1.18 11.11 44.74 0.00 <0.001 

CIP 0.00 0.00 0.88 0.00 0.480 

FFC 0.59 0.00 26.32 3.13 <0.001 

FOX 2.37 0.00 11.40 0.00 0.012 

GEN 1.18 0.00 28.95 3.13 <0.001 

IPM 0.00 0.00 0.00 0.00 N/A 

NEO 17.16 11.11 35.96 3.13 0.002 

SPT 0.59 0.00 21.93 0.00 <0.001 

STR 26.04 33.33 69.30 21.88 <0.001 

SXT 23.08 11.11 67.54 37.50 <0.001 

TET 28.99 33.33 88.60 75.00 <0.001 

AMC, amoxicillin/clavulanic acid; AMK, amikacin; AMP, ampicillin; APM, apramycin; 

CAZ, ceftazidime; CEF, cefalotin; CFT, ceftiofur; CHL, chloramphenicol; CIP, 

ciprofloxacin; FFC, florfenicol; FOX, cefoxitin; GEN, gentamicin; IPM, imipenem; 

NEO, neomycin; SPT, spectinomycin; STR, streptomycin; SXT, 

trimethoprim/sulfamethoxazole; TET, tetracycline; N/A, not applicable. 



Page 21 of 24

Acc
ep

te
d 

M
an

us
cr

ip
t

a P-value tests the equality of prevalence of resistance for each drug across all 

animal species. 
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Table 2 

Minimum inhibitory concentrations (MICs) and molecular characteristics of extended-spectrum cephalosporin (ESC)-resistant 

Escherichia coli from Australian food-producing animals 

Isolate ID Source MIC (mg/L) ESC 

resista

nce 

gene 

ETE

C 

VGs 

Plas

mid 

replic

on 

(Inc) 

Phyloty

pe 

ST 

Ho

st 

Site/speci

men 

CF

T 

CV

N 

CA

Z 

CT

X 

MOX PR

D 

CIP CIP 

+ 

EPI 

EN

R 

ENR 

+ 

EPI 

#02/13/1/

13 

Cal

f 

Liver >6

4 

>6

4 

>6

4 

>6

4 

0.06 0.0

08 

0.0

08 

<0.0

04 

0.0

3 

<0.0

04 

blaCTX-

M-14, 

blaCMY

-2 

Non

e 

fou

nd 

FIB, 

I1 

F ST1

17 

#01/13/2/

25 

Cal

f 

Faeces 64 16 0.2

5 

32 0.06 0.0

15 

0.0

08 

0.00

4–

0.0

08 

0.0

3 

<0.0

04 

blaCTX-

M-9 

Non

e 

fou

nd 

None 

foun

d 

A ST1

0 

#03/13/4/

59 

Pig Small 

intestine 

>6

4 

>6

4 

4 >6

4 

16 4 16 4 32 2 blaCTX-

M-14 

Non

e 

fou

nd 

FIB, 

A/C, 

Y, I1 

A ST7

44 
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#03/13/4/

91 

Pig Colon 32 >6

4 

64 32 0.06 0.0

15 

0.0

15 

N/G 0.0

6 

N/G blaCMY-2 f4, 

f6, 

lt1, 

stb 

FIC, 

FIB 

A ST1

00 

#03/13/4/

134 

Pig Small 

intestine 

16 >6

4 

64 32 0.01

5–

0.0

3 

0.0

04 

0.0

08 

<0.0

04 

0.0

15 

<0.0

04 

blaCMY-2 Non

e 

fou

nd 

B/O, 

I1 

D ST1 

CFT, ceftiofur; CVN, cefovecin; CAZ, ceftazidime; CTX, ceftriaxone; MOX, moxifloxacin; PRD, pradofloxacin; CIP, ciprofloxacin; 

EPI, efflux pump inhibitor (Phe-Arg--naphthylamide at 64 mg/L); ENR, enrofloxacin; ETEC VGs, enterotoxigenic E. coli virulence 

genes; ST, sequence type; N/G, no growth. 
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Table 3 

Plasmid characteristics of extended-spectrum cephalosporin-resistant Escherichia coli from Australian food-producing animals 

Isolate ID blaCTX-M blaCMY-2 Chromosomal blaCMY-2 plasmid size blaCTX-M plasmid size No. of plasmids 

#01/13/2/25 +  blaCTX-M-9   2 

#03/13/4/134  +  75 kb  4 

#03/13/4/59 +    140 kb (blaCTX-M-14) 4 

#03/13/4/91  + blaCMY-2 200 kb  5 

#02/13/1/13 + +  100 kb 250 kb (blaCTXM-14) 5 

#02/13/1/13 a +    250 kb (blaCTXM-14) 1 

a This clone demonstrated different colony morphology after storage. 
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