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ABSTRACT

Clostridium difficile is commonly associated with healthcare-related infectiohanmansand is
an emerging pathogen in food animal species. There ist@t®r transmission of. difficile
from animals or animal products to humans. This stughg@ to determine I€C. difficile RT 237
had persisted in a Western Australian piggery or if thacebdeen a temporal changedn
difficile diversity.C. difficile carriage in litters with and without diarrhea was investigaas
was the acquisition df. difficile over time using cohort surveyRectal swabs were obtained
from piglets aged 1-10 days to determine prevalen€e diffficile carriage and samples were
obtained from 20 piglets on days 1, 7, 13, 20, andf4ige to determine duration of shedding.
Isolation ofC. difficile from feces was achieved by selective enrichment culliresolates
were characterized by standard molecular typing. Antobial susceptibility testing was
performed on selected isolates-29). Diarrheic piglets were more likely to sheddifficile than
the non-disease£0.0124 7). In the cohort studyG. difficile was isolated from 40% samples
on day 1, 50% on day 7, 20% on day 13, and 0% gg& 2@ and 42. All isolates were RT 237
and no antimicrobial resistance was detected. The dexflsteedding ofC. difficile to zero has
public health implications because slaughter age pigsdéwe likelihood of spreadinG.

difficile to consumers via pig meat.

Keywords: Clostridium difficile; Epidemiology;C. difficile shedding; Neonatal pigs; Diarrhea.
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1. Introduction

Clostridium difficile is a Gram positive, strictly anaerobic, spore formingdyamm
commonly associated with healthcare-related infecti@ndifficile infection, CDI) and
responsible for 20% of all antibiotic-associated diardrgcolitis in humans [1T. difficile
produces two toxins, A (an enterotoxin) and B (a cytotoxumich are the main virulence factors
[2]. Some strains produce a third unrelated toxin, an AD&syltransferase (binary toxin), the
exact role for which is yet to be determined - althoughesstudies suggest that it contributes to

disease severity [3].

C. difficile is an emerging pathogen in food animals that has leeewered from the
gastrointestinal tracts of multiple production animal specig$jglets are colonized soon after
birth, generally within 1-7 days [4, 5]. Colonization is mo@inmon in younger piglets, with
older pigs being culture-negative by 2 months of ageLj&f other porcine enteric pathogens,
C. difficile has been isolated from both non-diseased piglets anel Withsclinical diarrhea [2,
6, 7]. Toxins A and B, or just B alone, have been datdatéoth diarrheic and non-diarrheic
piglets [7]. This suggests that several other factorgrgvertant in the manifestation of disease
[3]. Infected piglets may succumb to diarrhea and rhtyrtates of up to 50% have been
reported in some outbreaks. Those that survive canderweight by 10%-15%, which can

delay weaning [8] and may affect profitability of pigrfes.

Outbreaks of CDI in pig herds, and also humans, baee reported frequently since the
early 2000s [9, 10]. Of particular interest was the risagidence of a so-called “hypervirulent”
strain PCR ribotype (RT) 027 (also known as NAP1/Bijiaty in North America and later in
Europe [10]. This coincided with CDI outbreaks in animalthough RT 078 was reported as the
predominant strain colonizing cattle and pigs [3, 11, [h2}easingly, studies have shown
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genetic overlap between animal and human strai@s difficile RT 078 [13, 14], supporting the
theory of zoonotic transmission.

In 2009, a farrow to finish commercial piggery in WestAustralian was experiencing
idiopathic diarrhea in up to 80% of neonatal pigs with mortalithe range 11-14%. The
affected piglets had early-onset of diarrhea which yedlow, non-hemorrhagic, and pasty to
watery. Untreated piglets had ill-thrift, became anorexid dehydrated, and some died.
Apparently healthy piglets (1-3 days old) were proptiytally treated with amoxicillin or
penicillin. A cross-sectional study in the piggery four@. difficile prevalence of 62%
(114/185) in 5-7 day-old piglets [15]. In that study, malactyping revealed all isolates Gf
difficile recovered were an unusual RT 237, toxinotype XXdA', tcdB™), binary toxin
positive(cdtA/B") strain. Few studies have described the epidemiologyfegtions in livestock
with RTs ofC. difficile other than RT 078 [12, 15-17]. This study aimed tewhaine ifC.
difficile RT 237 had persisted in the same piggery or whether tHaet been a temporal change
in C. difficile diversity.C. difficile carriage in litters with and without diarrhea was investigated

as was the acquisition @f difficile over time.
2. Materialsand Methods
2.1  Study design

The study designs used to address the aims welle siogs-sectional and prospective
cohort studies, with sampling conducted from October webwer 2014. The piggery was
located across two sites. The farrow-to-wean sitetlacholdings separated by a fence, with
approximately 5000 sows; holding “A” consisted of oldexdaling sows (parity>1) and holding
“B” consisted of gilts. Holding “C” was the finishing site ser20 km away. The sample size for
the cross-sectional study was determined using Fleig®od®etvith a continued correction factor
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[18]. We estimated that 47.4% of non-diarrheic pigletssvetreddingC. difficile and 92.8% of

diarrheic piglets were exposed. The ratio of non-exppggets to exposed piglets was assumed
to be 0.5, and with an odds ratio of 14, and a pow80% to detect the difference if it existed, a
sample size of 43 piglets was selecta@sh fecal samples were collected via rectal swabs from

4 or 5 piglets randomly selected from each of 9 litteeslalg10 days.

For the cohort study, we estimated a difference of 2&abence oL. difficile shedding
between 1 day-old (77%) and 42 day-old piglets (56&sed on earlier studies [15]. Using a two
tail Z-test for logistic regression, withof 0.05% and power of 80%, we determined that a total
sample of 88 piglets was required. To account for pleskibs to follow up of 12%, 12 piglets
were added to the sample to make a total of 100. Facglles (n=20) were randomly obtained
from 5 piglets from each of 4 litters as described almovdays 1, 7, 13 and 20, at the farrow-to-
wean holding and on day 42 at the finishing site. Onebeé&yre weaning, 20 piglets were ear
tagged to allow follow-up at the finishing site. Among the fdters studied, two had 10 piglets
each and the others had 14 piglets each. All swabstveergported in Amies transport medium
with charcoal (Thermo Fisher Scientific, Waltham, MA, USAR cooler box at°€ to The
University of Western Australia, School of Pathology anddratory Medicine, for processing

within 24 h.

This piggery had a two stage in-series anaerobic pgstgém for treatment of effluent. The
primary aerobic pond has an inlet design to facilitate eds&udging of the pond. After moving
through the primary pond, effluent moved to a secongangl which allowed reuse and storage.
No chemical disinfection was applied to the water. Theretorexdditional four 30 ml specimen
jars (Techno-Plas Pty Ltd, St Marys, Australia) of tréatater held for under-pen flushing in

storage tanks located adjacent to the farrowing shad3fd ml effluent samples from a drainage
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channel leading to the aerobic pond, and six shed fleabs transported in Amies transport
medium with charcoal were obtained from holding “A”. Thefkor swabs were obtained by

directly swabbing the wet floor from six pens.

Additional data were collected such as the health statire @iglets, age, litter size,
mortality, parity of sow and farrowing date. A pigleasvconsidered diarrheic at the sampling
time using the following criteria: i) had yellow, non-hemogitaand pasty to watery feces and
i) any piglet painted red at the dorsum by personnel emdsis of diarrhea being observed, and
that had a perineum soiled with watery feces. A litter elassified as diarrheic if one or more

piglets had diarrhea at the time of sampling.

2.2 Isolation ofC. difficile

C. difficile was isolated as previously described, with minor maatibnis [19]. Briefly,
the swabs were cultured directly on ChromID™ agar (l&o&ux, Marcy I'Etoile, France) and in
an enrichment broth containing cefoxitin, cycloserine gentamicin. Following alcohol shock
when 1 ml of 48 h broth culture was mixed with 1ml anbydrethanol (96%) and left for 1 h,
0.01 ml of mixture was cultured on ChromID™ agar. Efiuand treated water samples (10 ul)
were cultured directly on ChromID™ agar or followingtirenrichment. An aliquot of 1 ml of
either effluent or treated water was transferred to thetengat broth and processed similarly to

feces.

All cultures were incubated anaerobically (A35 anaierobamber, Don Whitley
Scientific Ltd., Shipley, West Yorkshire, UK) at 37°C, wiéh atmospheric gas composition of
80% N, 10% CQ and 10% H. Two to three probabl€. difficile colonieson ChromID™ agar

were cultivated on blood agar and identified on the bagtseaf characteristic chartreuse
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fluorescence detected with UV light (~360nm wavelengtblpnial morphological
characteristics (ground glass appearance) and horgeodon. Identification of uncertain
isolates was achieved by Gram staining and detection ablinpraminopeptidase (Remel Inc.,

Lenexa, KS, USA).

2.3 Molecular characterization

All isolates were characterized by PCR to determingtasence of toxin Ati¢dA), B
(tcdB), and binary toxinddtA andcdtB) genes and changes in the repetitive region of the toxin A
gene [20]. PCR ribotyping was performed on straindessribed elsewhere [21]. RTs were
identified by comparing their banding patterns with thossumreference library of animal and
humanC. difficile strains, consisting of a collection of 50 Anaerobe Referé aboratory (ARL,
Cardiff, UK) ribotypes that included 15 reference stréiom the European Centre for Disease
Prevention and Control (ECDC) and the most prevalent f6eRy/pes currently circulating in

Australia [B. Elliott, T. V. Riley, unpublished data].

2.4 Antimicrobial susceptibility testing

Minimum inhibitory concentrations (MICs) for 14 antimicrolgiavere determined for a selection
of isolates using the agar incorporation method as desdriptgte Clinical and Laboratory
Standards Institute (CLSI, M11-A7) [22]. A combinationGifSI and European Committee on
Antimicrobial Susceptibility Testing (EUCAST) breakpoints wasdiif available [23, 24]. The
quality control strains used weBacteroides fragilis ATCC 25285 Bacteroides

thetaiotaomicron ATCC 29741 C. difficile ATCC 700057 ané&ubacterium lentum ATCC

43055.

2.5  Statistical analysis



159 The Chi-squared test was used to evaluate the assotatiween isolation of. difficile
160 and diarrhea in the cross-sectional stu@ydifficile shedding over time was evaluated by the
161  generalized estimating equations (GEES) for longitudinal ddliected in clusters that are

162 repeated measures. The outcome variable was consatebadary (presence or absenc€of
163  difficile per sample) and fixed effects models were employedEiEg3o adjust for the response
164  variable from within clusters (litters) as well as over tiiG@veeks). In fitting the data to the
165 model we used the independent working correlation strietsithis implies that the within-litter
166  correlation between all sampling was equal to zero. Gtakis been shown to be robust even
167  when there is an error in specifying the working correlasiomcture [25]. All associations with
168  ap value< 0.05 were considered significant. All analyses wereoperéd in Epi-Infd" 7.1.4.0
169  statistical software from the Centers for Disease ContbPaavention (CDC) and R version

170 3.2.2.

171 Animal ethics committee approval. This study was approved by The University of

172 Western Australia Animal Ethics Committee (reference nurR#€3/500/75).
173 3. Resaults
174  3.1.C. difficile carriage in piglets

175 C. difficile was isolated from 19/43 (44.2%, 95% CIl 29.3%-59.1@¢ql swabs by direct
176  culture and 29/43 (67.4%, 95% CI 53.39- 81.41) withclament media from holding “A”.

177 Enrichment culture was significantly more sensitive thiagcti culture p=0.0002, ¥?). Of the

178  diarrheic piglets, 20 of 24 (83.3%) weZedifficile culture positive compared to 9 of 19 (47.4 %)
179  non-diarrheic pigletsp(= 0.0124,%?). C. difficile was isolated from piglets in 7 out of 9 pens

180 (77.9%).
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A total of 13/106 (12.3%) piglets died across the nine ligamspled in the cross-
sectional study, however, the association betveelifficile positive status and mortality was
not significant p=0.74). There were seven litters with and two withoutrtea and a total of 24
out of 43 diarrheic piglets. The comparison between pantC. difficile positive status of
piglets was made between parity 3 (referent) and cadipiglets from sows with parity 4, 5
and 6 because of sparse d&adifficile distribution in piglets by parity of sow was parity 3
(13/19; 68.4%), parity 4 (7/10; 70%), parity 5 (5/9; 55)6&fd parity 6 (4/5; 80%). ALL.

difficile isolates from piglets were RT 237.

3.2. The prospective cohort study

C. difficile was isolated from 8/20 fecal samples (40%) on da@/201(50%) on day 7,
4/20 (20%) on day 13, 0/20 (0%) on day 20, and 0320) (on day 42 (Table 1). The multivariate
model evaluated the following variables: age of piglets, kiteg, mortality and diarrhea (Table
1). There was no significant difference betwe€enlifficile shedding on day 1 versus dayp# (
0.10), nor day 1 versus day 18-(0.10). However, there was a significant differenc€.in
difficile shedding between 1 day-old piglets and piglets ahd®a days of agg€0.000). The
regression coefficients were positively associated @itthfficile shedding on day 7 but were
strongest and negatively (inversely) associated with shgad day 13 to day 42 (Table 1). The
risk of sheddingdC. difficile in the feces by piglets significantly declined from d8yonwards, as
the regression coefficients were negative (inverse) (TBblEhe overall prevalence Gf
difficilewas 22% (22/100). There was a total of 48 piglets fraarfahr litters studied. This
means that 42% of piglets were sampled at each time pdionatimg that each piglet had 42%
chance of being sampled every we€kdifficile was isolated at least once from all study litters

100% (4/4).
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C. difficile was not isolated from piglets aged 20 days and 42 @e20) (Table 1).
There was a total of 36/100 cases (36%) of diarrhe@ng the sampled piglets. The cases of
diarrhea in piglets per sampling time were as follows:1dé8/20; 40%), day 7 (6/20; 30%), day
13 (11/20; 55%), day 20 (9/20; 45%) and day 42 (2/2%)18lowever, the association between

C. difficile positive status and diarrhea for all cases was noifisemt (p= 0.67).

Nine piglets from four litters died in this study, giving% #nortality rate. Seven of the
piglets were from diarrheic pens whé&edifficile was identified, while two were from non-
diseased buT. difficile positive pens. The regression coefficient for mortali@g \wositively

associated witlC. difficile shedding f=0.001) (Table 1).

The toxin B genet¢dB) but nottcdA was detected by PCR in &8l difficile isolates from
the 22 infected piglets, including both diarrheic and nianHaeic animals. Binary toxin genes

(cdtA andcdtB) also were detected in all isolates and all were RT 237.

3.3. Environmental samples

The effluent samples (n=4) obtained from a drainagaraidefore the two-stage
treatment ponds were all positive fordifficile by enrichment culture. Additionally, two of the
four samples of treated water collected from the farrowheggs were positive. Furthermore,
four of the six floor swab samples collected from soffrth® pens of diarrheic and non-diarrheic

litters were positive (67%). All environmental isolates were2RT.

3.4. Antimicrobial susceptibility profiles

MICs for 14 antimicrobials were determined for 29 isedatourced from the cross-
sectional study (Table 2). Despite the probability that treedates were clonal, there were some

small variations in susceptibility; however, all were susbépto the antimicrobials for which
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breakpoints were available. There are no CLSI and EUC#83akpoints available for the
following antimicrobials; gentamicin had MIC range (32-64/h), spectinomycin (128 mg/L),

tobramycin (32-128mg/L), and trimethoprim (32-64mg/L).

4. Discussion

This study aimed to determineGf difficile RT 237 had persisted in the Western
Australian piggery that we investigated in 2009 [I5]difficile RT 237 was found again and the
prevalence in the cross-sectional study (67.4%) was sitoitae earlier study (62%) [15], and
the same as a national prevalence study conducted keiteRil Australian piggeries (67%)

[16]. In the Australian national survey RT 014, a strammonly reported in human hospital
settings [26, 27], was the most prevalent RT found (36/25%). Overall these prevalence
results are consistent with findings in studies from Eufbppand North America [11].

However, the reasons for continuing predominance o2&in this piggery are unclear. One
possible explanation is that the piggery generates its emlacement breeding stock and this
could have prevented introduction of n@adifficile strains from other piggeries. Our findings
suggest that new strains ©f difficile are not commonly introduced from other sources such as
rodents or birds on this piggery. An important factor ctnddhe geographical location of the
piggery both within the State of Western Australia, and withistfalia generally where there is
a large expanse of desert and great distances sepaesdiageand western Australia.

The prevalence in the cross-sectional study on holdihgvas 67.4% in piglets aged 1-
10 days, and the overall prevalenceéoftlifficile from the cohort study was 22% (22/100). There
was a gradual decline @. difficile shedding in feces with increasing age of piglets in therto
study on holdings “B” and “C”. These findings are inesgnent with similar studies from

11



249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

elsewhere [4, 28] and with other cross-sectional styéljelb- 17, 29] which reported a lower
prevalence o€. difficile in older (>14 days) piglets than in younger piglets. AdzaPérezt al.

[6] reported a 26% prevalence@©fdifficile in piglets aged 1-7 days in Spain but zero
prevalence in pigs aged 1 to 2 months, while a studyumted in an integrated swine production
system in the USA found that fecal sheddin@oflifficile was 50% in suckling piglets, 6.5% in
weaner pigs (3-10 weeks old) and 3.9% in both fattepigs (up to 22 weeks) and adult
breeding boars and sows [29]. Another longitudinal stutjertaken in Canada foundCa

difficile prevalence of 74% (day 2), 55% (day 7), 40% (d@y 33% (day 44) and 3.7% (day 62)
[4]. These findings support the hypothesis atifficile colonization declines with increasing
age, possibly due to interference from developing comptsnof the normal intestinal

microbiota in a phenomenon referred to as “colonizatisistance” [30].

A high prevalence dt. difficile in slaughter age pigs could pose a risk of foodborne
infection to humans through consumption of contaminateatnThe current study did not
examine slaughter age pigs, but the overall prevalenralfm younger pigs was 22% (22/100),
lower than that reported in Canada (96%) [4] and irNidnerlands (100%) [5], but similar to
that reported in Spain (25.6%) [28], although the RTs detectee different. Alvarez -Peret
al, [28] found a peak prevalence on day 15 (85%) @egbto day 7 (50%; 10/20), but they
sampled from the same piglets over time up to day Sppssed to sampling a subset of the
same litters over time. The declineGndifficile shedding to zero by day 20 was earlier than
reported in other studies [4, 28] wh&edifficile shedding continued up to day 50. Weese and
colleagues [31] reported a farm le&ldifficile prevalence of 6.5% (30/346) in slaughter age
pigs in Canada. In that study, various strain€.dfifficile were detected, but RT 078 was the

predominant strain on farms, with a prevalence of 67% [3any other studies have
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documented the presencefdifficile in meat products such as retail beef, pork and tyday
33]. The fact tha€. difficile was not isolated in older pigs (6 weeks old) in the pitestedy
suggests that slaughter age pigs at this piggery areelynitkpose a risk for human infection.
However, there is a need to carry out further studiescat ppggeries with different circulating
RTs and in abattoir environments to be able to excludé heeat products as a sourcef

difficile.

The contaminated farm environment may provide a safr€edifficile for human
infection. C. difficile can be dispersed by wildlife [34], vermin (mice andslon a piggery) [35],
wind [36], and manure [33]. RT 078, a well-establishatmal pathogen, has increasingly been
isolated from humans, particularly those living near pighfain Europe [13, 37]. Knetsehal
reported indistinguishable strains@fdifficile RT 078 in pig farmers and pigs by whole genome
sequence techniques [11]. In the present study, RWwa3Hetected from the floor, treated
water, and also from effluent from a drainage chanrferée¢he two—stage treatment pond at the
piggery. Similarly, Squire and colleagues isolatedifficile RT 237 from treated pig effluent
planned for use in cleaning the pig sheds [38]. HowdR&r237 has been detected rarely in
clinical specimens obtained from human patients in Westastrélia [26, 39], suggesting,
perhaps, that it does not adapt well to a human host.

At the study piggery, a sporicidal disinfectant (sodium keparite) has been used in pig
sheds for the last few years. An explanation for detecfi@ difficile from pen floor and waste-
water is not obvious although suboptimal concentrationeflitinfectant used cannot be ruled
out. C. difficile spores can persist in the environment for a long tineeetbre additional control

measures such as providing education to all workirf§atéhe farm could further reduce the

13
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incidence of CDI. Overall, these findings suggest thatisiplal disinfectants in pig sheds

analogous to hospital environments may reduce piglet infedd@hs

All the C. difficile isolates sourced from the cross-sectional study had simila
susceptiblities to a panel of antimicrobials, with no resistdetected (Table 2). This finding
was expected because all isolates were most likely clonah earlier smaller study of RT 237
isolates from the same piggery no resistance was defddfedn contrast, Pelaeat al. [42]
reported a 9% prevalence of metronidazole resistand@XR86 mg/ml) and nearly 50% multi-
drug resistance i@. difficilein swine herds in Spain. In general, there is a paucityfofmation

on antimicrobial susceptibility of. difficile in livestock.

4.1 Conclusions

RT 237 has persisted for at least 5 years and rem&msedominant strain &. difficile
in piglets on a piggery in Western Australia. This unuRiahas been detected in human
patients in Australia but not in high numbers. The declin@. dffficile shedding to zero by day
20 suggests that slaughter age pigs are unlikely to b#ygteataminated witlC. difficile in this
piggery. Further research is warranted to determinsdheces of the persisting RT 237 on the
piggery, and to reduce contamination levels in the piggewyronments to limit piglet and

potentially human exposure.
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440 Tablel Diarrhea andC. difficile shedding over time by piglets in relation to trege.

Variabl & C. difficile positive C. difficile negative GEEsRegression

aravie °D* D “Total D* D “Total Coefficients Std.error  P-value
Intercept 1.9218 2.40
Day 1 2 6 8 6 6 12 Referent
Day 7 3 7 10 3 7 10 1511 1.10 0.10
Day 13 4 0 4 7 9 16 -1.1701 0.82 0.10
Day 20 0 0 0 9 11 20 -43.15 1.09 0.000
Day 42 0 0 0 2 18 20 -43.15 1.14 0.000
Litter size -0.28 0.17 0.05
Mortality 7 2 9 0 0 0 0.48 0.17 0.001

441

442  Note?C. difficiletest,’D" diarrheic ‘D™ non-diarrheic“Total

443
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444  Table 2 Minimal inhibitory concentration (MIC) range andrpentage distribution for RT 237 isolates 29) against a panel of 14
445  antimicrobial agents.
MIC range Clinical breakpoints Percentage distribution (%)
Agent
[mg/L] S | R S | R
Vancomycin 1 <2 NR >2 100 0 0
Metronidazole 0.25-1 <8 16 >32 100 0 0
Clindamycin 0.25-4 <2 4 >8 65.5 34.5 0
Erythromycin 0.25-0.5 NR NR >8 NR NR 0
Amox-clavulanate 0.12-0.25 <4 8 >16 100 0 0
Ceftriaxone 8 <16 32 >64 100 0 0
Moxifloxacin 1 <2 4 >8 100 0 0
Meropenem 0.25-2 <4 8 >16 100 0 0
Tetracycline 0.12 <4 8 >16 100 0 0
Piperacillin/tazobactam 2-4 <32 64 >128 100 0 0
446

447  Note. The susceptible (S), intermediate (1), arsistance (R) interpretive values when availableavadatained from CLSI or

448  EUCAST (vancomycin only). If breakpoints were neadable from CLSI and EUCAST then a no range (NfR)al was written.

449
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Highlights

* Wedescribe the epidemiology of Clostridium difficilein a Western Australia piggery

* We have demonstrated a relationship between age of piglets and fecal shedding of C.
difficile.

« We have shown that ribotype 237 has persisted in one piggery in Western Australia

for over six years.
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