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Abstract

Bradyrhizobium sp. WSM1253 is a novel N2-fixing bacterium isolated from a root nodule of the herbaceous annual
legume Ornithopus compressus that was growing on the Greek Island of Sifnos. WSM1253 emerged as a strain of
interest in an Australian program that was selecting inoculant quality bradyrhizobial strains for inoculation of
Mediterranean species of lupins (Lupinus angustifolius, L. princei, L. atlanticus, L. pilosus). In this report we describe,
for the first time, the genome sequence information and annotation of this legume microsymbiont. The
8,719,808 bp genome has a G + C content of 63.09 % with 71 contigs arranged into two scaffolds. The assembled
genome contains 8,432 protein-coding genes, 66 RNA genes and a single rRNA operon. This improved-high-quality
draft rhizobial genome is one of 20 sequenced through a DOE Joint Genome Institute 2010 Community
Sequencing Project.
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Introduction
Root nodule bacteria are soil microorganisms that can es-
tablish a symbiotic relationship with hosts from the legume
plant family Leguminosae. In this intimate relationship the
bacteria fix atmospheric nitrogen into ammonia for the
legume, in exchange for nutrients. With the continued dis-
covery of a large number of organisms with this capability
through the last century, the slow growing, non-acid pro-
ducing root nodule bacteria were separated from the fast
growing acid-producing forms and designated the bradyr-
hizobia [1]. The initial interest in the bradyrhizobia arose
from the ability of strains to nodulate agriculturally import-
ant crops such as soybean and groundnut. Today the
bradyrhizobia are known to nodulate a wide variety of le-
gumes such as Arachis hypogaea, Adenocarpus spp., Beta
vulgaris, Chamaecytisus spp., Cytisus villosus, Entada
koshunensis, Glycine spp., Dolichos lablab, Lespedeza spp.,
Lupinus spp., Ornithopus spp., Pachyrhizus erosus, Sparto-
cytisus spp. and Teline spp. [2–9].

Two agriculturally important legume genera form a
symbiosis with Bradyhizobium [10], the subject of this
manuscript. Lupinus which is a large and diverse genus,
and Ornithopus, which is a smaller forage legume genus,
both nodulate and fix nitrogen with this bacterium.
Lupinus angustifolius is commonly known as lupin in
Europe and Australia, and lupine in North America, and
its grain is widely used as an animal or human food.
Lupins are either annual or perennial herbs, shrubs or
trees [11]. Ornithopus is commonly known as serradella,
and was originally confined to the Iberian peninsula and
the Mediterranean basin, however it has become a valuable
grazing plant adapted to low rainfall, acidic and infertile
soils world-wide [12]. Hence, appropriate Bradyrhizobium
inoculants are of particular value for the establishment of
effective nitrogen-fixing symbioses with these legume
genera.
In Australia, the challenge was to select inoculant

strains that were optimal for N fixation in symbiosis with
Lupinus angustifolius and several species of Ornithopus.
These are all very important legumes in farming systems
of Western Australia. They are cultivated on the same acid
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Fig. 1 Images of Bradyrhizobium sp. WSM1253 using scanning (Left) and transmission (Center) electron microscopy as well as light microscopy to
visualize colony morphology on solid media (Right)

Table 1 Classification and general features of Bradyrhizobium sp. WSM1253 [44, 45]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [45]

Phylum Proteobacteria TAS [46]

Class Alphaproteobacteria TAS [47, 48]

Order Rhizobiales TAS [49]

Family Bradyrhizobiaceae TAS [50, 51]

Genus Bradyrhizobium TAS [1]

Species sp. IDA

Strain: WSM1253 TAS [14]

Gram stain Negative IDA

Cell shape Rod IDA

Motility Motile IDA

Sporulation Non-sporulating NAS

Temperature range Mesophile NAS

Optimum temperature 28 °C NAS

pH range; Optimum 5-9; 7 NAS

Carbon source Varied IDA

MIGS-6 Habitat Soil, root nodule, on plant host TAS [14]

MIGS-6.3 Salinity Non-halophilie NAS

MIGS-22 Oxygen requirement Aerobic TAS [14]

MIGS-15 Biotic relationship free-living, symbiont TAS [14]

MIGS-14 Pathogenicity Non-pathogenic NAS

MIGS-4 Geographic location Greek Island of Sifnos TAS [14]

MIGS-5 Nodule collection date 1991 IDA

MIGS-4.1 Latitude 39.975 IDA

MIGS-4.2 Longitude 24.743889 IDA

MIGS-4.4 Altitude Not reported IDA
aEvidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are
from the Gene Ontology project [52]
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and sandy soils, and share microsymbionts [13]. Thus,
it was important that any inoculant strain released for
an individual legume species did not compromise the
potential nitrogen fixation from the other legumes.
Bradyrhizobium sp. WSM1253 emerged as a strain of
interest in an Australian program that was selecting
inoculant strains for Mediterranean species of lupins.
Strain WSM1253 was isolated from a nodule of the
herbaceous annual legume Ornithopus compressus in
1991 collected 2.5 km near of Kastro, towards Faros,
on the Greek Island of Sifnos. This strain was found
to be capable of high levels of nitrogen fixation across
many species in the cross-nodulation complex of lu-
pins and Ornithopus, being particularly effective on L.
princei [14]. Here we present a preliminary descrip-
tion of the general features of the Ornithopus com-
pressus microsymbiont Bradyrhizobium sp. WSM1253,

together with the description of the complete genome
sequence and its annotation.

Organism information
Classification and features
Bradyrhizobium sp. WSM1253 is a motile, non-
sporulating, non-encapsulated, Gram-negative rod in the
order Rhizobiales of the class Alphaproteobacteria. The
rod shaped form varies in size and dimensions of ap-
proximately 0.25 μm in width and 1.5-2.0 μm in length
(Fig. 1 Left and Center). It is relatively slow growing,
forming colonies after 6–7 days when grown on ½LA
[15], TY [16] or YMA [17] at 28 °C. Colonies on ½LA
are opaque, slightly domed and moderately mucoid with
smooth margins (Fig. 1 Right).
Minimum Information about the Genome Sequence

(MIGS) is provided in Table 1 and Additional file 1:

Fig. 2 Phylogenetic tree showing the relationship of Bradyrhizobium sp. WSM1253 (shown in bold print) to other root nodule bacteria based on
aligned sequences of a 1,012 bp internal region the 16S rRNA gene. All sites were informative and there were no gap-containing sites. Phylogenetic
analyses were performed using MEGA [41], version 5. The tree was built using the Maximum-Likelihood method with the General Time Reversible
model [42]. Bootstrap analysis [43] with 500 replicates was performed to assess the support of the clusters. Type strains are indicated with a superscript
T. Brackets after the strain name contains a DNA database accession number and/or a GOLD ID (beginning with the prefix G) for a sequencing project
registered in GOLD [22]. Published genomes are indicated with an asterisk
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Table S1. Strain WSM1253 shares 100 % (1369/1369 bp),
99.85 % (1367/1369 bp) and 99.48 % (1362/1369 bp) 16S
rRNA sequence identity with Bradyrhizobium sp.
WSM1417, Bradyrhizobium sp. BTA-1T and Bradyrhizo-
bium japonicum USDA 6T, respectively as determined
using NCBI BLAST analysis [18]. Figure 2 shows the
phylogenetic neighbor-hood of Bradyrhizobium sp.
WSM1253 in a 16S rRNA sequence based tree.

Symbiotaxonomy
Few of the legumes of the Mediterranean basin intro-
duced to agriculture elsewhere are nodulated by bacteria
in the genus Bradyrhizobium [19]. Amongst the notable
exceptions are Lupinus and Ornithopus, which are leg-
ume genera adapted specifically to conditions of acidity
and infertility [20]. Further, these two quite different le-
gumes share a common species of Bradyrhizobium, al-
though their modes of infection and nodule structure
differ substantially [21]. WSM1253 is unusual in being a
highly effective microsymbiont for many species in the
two legume genera discussed, including, L. angustifolius,
L. princei, L. atlanticus, L. pilosus, O. compressus, O.
sativus Brot. and O. pinnatus (Table 2). WSM1253 will
therefore be a valuable strain to study the genetics of

nodulation and nitrogen fixation in legumes of vastly
differing physiology.

Genome sequencing information
Genome project history
This organism was selected for sequencing on the basis of
its environmental and agricultural relevance to issues in
global carbon cycling, alternative energy production, and
biogeochemical importance, and is part of the Community
Sequencing Program at the U.S. Department of Energy,
Joint Genome Institute for projects of relevance to agency
missions. The genome project is deposited in the Ge-
nomes OnLine Database [22] and the improved-high-
quality draft genome sequence in IMG. Sequencing,
finishing and annotation were performed by the JGI. A
summary of the project information is shown in Table 3.

Growth conditions and genomic DNA preparation
Bradyrhizobium sp. WSM1253 was grown on TY solid
medium for 10 days, a single colony was selected and
used to inoculate 5 ml TY broth medium. The culture
was grown for 96 h on a gyratory shaker (200 rpm) at

Table 2 Compatibility of Bradyrhizobium sp. WSM1253 [14] with different wild and cultivated legume species

Species name Family Common name Habit/Growth type Nod Fix

Lupinus atlanticus Fabaceae Atlas Lupin/Moroccan Lupin Annual herbaceous + +

Lupinus pilosus Fabaceae Mountain blue lupin Annual herbaceous + +

Lupinus princei Fabaceae Lupin Annual herbaceous + +

Ornithopus pinnatus Fabaceae Sand Bird’s-foot Annual herbaceous + +

Ornithopus sativus Brot. Fabaceae common bird’s-foot Annual herbaceous + +

Ornithopus compressus Fabaceae Yellow serradella Annual herbaceous + +

+, nodulation/fixation observed

Table 3 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Improved-high-quality draft

MIGS 28 Libraries used Illumina GAii and 454 FLX libraries

MIGS 29 Sequencing platforms Illumina and 454

MIGS 31.2 Fold coverage 659.4 × Illumina; 8.4 × 454

MIGS 30 Assemblers Velvet 1.0.13; Newbler 2.3

MIGS 32 Gene calling methods Prodigal 1.4

Locus Tag Bra1253

GenBank ID AHMB01000000

Genbank Date of Release May 4, 2012

GOLD ID Gp0007394

BIOPROJECT PRJNA62341

MIGS 13 Project relevance Symbiotic N2 fixation, agriculture

Source Material Identifier WSM1253

Table 4 Genome statistics for Bradyhizobium sp. WSM1253

Attribute Value % of Total

Genome size (bp) 8,719,808 100.00

DNA coding (bp) 7,446,464 85.40

DNA G + C (bp) 5,501,733 63.09

DNA scaffolds 2 100.00

Total genes 8,498 100.00

Protein coding genes 8,432 99.22

RNA genes 66 0.78

Pseudo genes 385 4.53

Genes in internal clusters 639 7.52

Genes with function prediction 5,682 66.89

Genes assigned to COGs 5,310 62.49

Genes with Pfam domains 6,484 76.30

Genes with signal peptides 948 11.16

Genes with transmembrane helices 1,953 22.98

CRISPR repeats 0 0.00
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Fig. 3 Graphical map of the two scaffolds from the genome of Bradyhizobium sp. WSM1253. From bottom to the top of each scaffold: Genes on
forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, sRNAs red, other RNAs
black), GC content, GC skew
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28 °C [23]. Subsequently 1 ml was used to inoculate
60 ml TY broth medium and grown on a gyratory
shaker (200 rpm) at 28 °C until OD 0.6 was reached.
DNA was isolated from 60 ml of cells using a CTAB
bacterial genomic DNA isolation method [24]. The quality
of DNA was checked by 0.5 % agarose gel electrophoresis
and its quantity by a NanoDrop ND-1000 Spectropho-
tometer (Nano Drop Technologies, Wilmington, USA). A
DNA concentration of 500 ng/μl and OD 260/OD 280 of
1.90 was obtained.

Genome sequencing and assembly
The draft genome of Bradyrhizobium sp. WSM1253 was
generated at the DOE Joint Genome Institute using a
combination of Illumina [25] and 454 technologies [26].
For this genome, we constructed and sequenced an
Illumina GAii shotgun library which generated 77,541,190
reads totaling 5,893.1 Mbp, a 454 Titanium paired end li-
brary with an average insert size of 12 Kbp which gener-
ated 615,580 reads totaling 123.4 Mbp of 454 data. All
general aspects of library construction and sequencing
performed at the JGI [27]. The initial draft assembly con-
tained 274 contigs in 2 scaffolds. The 454 Titanium stand-
ard data and the 454 paired end data were assembled

together with Newbler, version 2.3-PreRelease-6/30/2009.
The Newbler consensus sequences were computationally
shredded into 2 Kbp overlapping fake reads (shreds). Illu-
mina sequencing data was assembled with VELVET,
version 1.0.13 [28], and the consensus sequence was com-
putationally shredded into 1.5 Kbp overlapping fake reads
(shreds). We integrated the 454 Newbler consensus
shreds, the Illumina VELVET consensus shreds and the
read pairs in the 454 paired end library using parallel
phrap, version SPS - 4.24 (High Performance Software,
LLC). The software Consed [29–31] was used in the fol-
lowing finishing process. Illumina data was used to correct
potential base errors and increase consensus quality using
the software Polisher developed at JGI (Alla Lapidus, un-
published). Possible mis-assemblies were corrected using
gapResolution (Cliff Han, unpublished), Dupfinisher [32],
or sequencing cloned bridging PCR fragments with sub-
cloning. Gaps between contigs were closed by editing in
Consed, by PCR and by Bubble PCR (J-F Cheng, unpub-
lished) primer walks. A total of 226 additional reactions
were necessary to close gaps and to raise the quality of the
finished sequence. The estimated genome size is 8.7 Mbp
and the final assembly is based on 72.7 Mbp of 454 draft
data which provides an average 8.4× coverage of the

Table 5 Number of genes associated with general COG functional categories

Code Value % age COG Category

J 235 3.83 Translation, ribosomal structure and biogenesis

A 0 0.00 RNA processing and modification

K 430 7.01 Transcription

L 1.53 2.50 Replication, recombination and repair

B 2 0.03 Chromatin structure and dynamics

D 39 0.64 Cell cycle control, cell division, chromosome partitioning

V 170 2.77 Defense mechanisms

T 270 4.40 Signal transduction mechanisms

M 322 5.25 Cell wall/membrane/envelope biogenesis

N 105 1.71 Cell motility

U 95 1.55 Intracellular trafficking, secretion, and vesicular transport

O 246 4.01 Posttranslational modification, protein turnover, chaperones

C 441 7.29 Energy production and conversion

G 418 6.82 Carbohydrate transport and metabolism

E 643 10.49 Amino acid transport and metabolism

F 94 1.53 Nucleotide transport and metabolism

H 322 5.25 Coenzyme transport and metabolism

I 387 6.31 Lipid transport and metabolism

P 361 5.89 Inorganic ion transport and metabolism

Q 261 4.26 Secondary metabolite biosynthesis, transport and catabolism

R 667 10.88 General function prediction only

S 360 5.87 Function unknown

- 3,188 37.51 Not in COGS
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genome and 5,736.7 Mbp of Illumina draft data which
provides an average 659.4× coverage of the genome.

Genome annotation
Genes were identified using Prodigal [33], as part of the
DOE-JGI genome annotation pipeline [34, 35] followed
by a round of manual curation using GenePRIMP [36]
for finished genomes and Draft genomes in fewer than
10 scaffolds. The predicted CDSs were translated and
used to search the National Center for Biotechnology
Information non-redundant database, UniProt, TIGR-
Fam, Pfam, KEGG, COG, and InterPro databases. The
tRNAScanSE tool [37] was used to find tRNA genes,
whereas ribosomal RNA genes were found by searches
against models of the ribosomal RNA genes built from
SILVA [38]. Other non–coding RNAs such as the RNA
components of the protein secretion complex and the
RNase P were identified by searching the genome for the
corresponding Rfam profiles using INFERNAL [39]. Add-
itional gene prediction analysis and manual functional an-
notation was performed within the Integrated Microbial
Genomes-Expert Review system [40] developed by the
Joint Genome Institute, Walnut Creek, CA, USA.

Genome properties
The genome is 8,719,808 nucleotides with 63.09 % GC
content (Table 4) and comprised of 2 scaffolds (Fig. 3).
From a total of 8,498 genes, 8,432 were protein encoding
and 66 RNA only encoding genes. The majority of genes
(66.86 %) were assigned a putative function whilst the
remaining genes were annotated as hypothetical. The
distribution of genes into COGs functional categories is
presented in Table 5.

Conclusions
Bradyrhizobium sp. WSM1253 was isolated from a nod-
ule of the herbaceous annual legume Ornithopus com-
pressus that was collected on the Greek Island of Sifnos.
WSM1253 is rather unusual for a Bradyrhizobium strain
in that it is highly efficient in nitrogen fixation for many
species of Lupinus and Ornithopus, including L. angusti-
folius, L. princei, L. atlanticus, L. pilosus, O. compressus,
O. sativus Brot. and O. pinnatus.
Phylogenetic analysis revealed that WSM1253 is most

closely related to Bradyrhizobium sp. WSM1417. Strain
WSM1417 was obtained from a Lupinus sp. nodule from
Chile and differs from WSM1253 in that it cannot form
an effective nitrogen-fixing symbiosis with L. angustifolius.
The genomes of both of these strains have now been se-
quenced and this brings the total number of Bradyrhizo-
bium genome depositions in IMG to 54; of these, strains
which can symbiotically fix nitrogen have the nitrogenase-
RXN MetaCyc pathway that is characterized by the multi-
protein nitrogenase complex. However, strain WSM1253

is unique amongst these in that it can effectively fix nitro-
gen with many species of Lupinus (including L. angustifo-
lius, L. princei, L. atlanticus, L. pilosus) and Ornithopus
compressus. The genome attributes of Bradyrhizobium sp.
WSM1253, in conjunction with other Bradyrhizobium ge-
nomes, will be important resources with which to build an
understanding of interactions required for the successful
establishment of effective symbioses with different species
of Lupinus and Ornithopus.

Additional file

Additional file 1: Table S1. Associated MIGS record. (DOC 73 kb)
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