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Previous genome-wide association studies (GWAS) of HIV-1–infected
populations have been underpowered to detect common variants
with moderate impact on disease outcome and have not assessed
the phenotypic variance explained by genome-wide additive effects.
By combining the majority of available genome-wide genotyping
data in HIV-infected populations, we tested for association between
∼8 million variants and viral load (HIV RNA copies per milliliter of
plasma) in 6,315 individuals of European ancestry. The strongest sig-
nal of association was observed in the HLA class I region that was
fully explained by independent effects mapping to five variable
amino acid positions in the peptide binding grooves of the HLA-B
and HLA-A proteins. We observed a second genome-wide significant
association signal in the chemokine (C-C motif) receptor (CCR) gene
cluster on chromosome 3. Conditional analysis showed that this signal
could not be fully attributed to the known protective CCR5Δ32 allele
and the risk P1 haplotype, suggesting further causal variants in this
region. Heritability analysis demonstrated that common human ge-
netic variation—mostly in the HLA and CCR5 regions—explains 25%
of the variability in viral load. This study suggests that analyses in
non-European populations and of variant classes not assessed by
GWAS should be priorities for the field going forward.
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Upon infection with human immunodeficiency virus type 1
(HIV-1), there is substantial variability in viral control and

rate of disease progression. After primary infection, character-
ized by high levels of viremia (HIV-1 RNA copies per milliliter
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of plasma) and transient loss of CD4+ T cells, most patients
enter an asymptomatic period and maintain a relatively stable viral
load off therapy. It has been well-established that this set point
viral load (spVL) varies in the infected population and positively
correlates with rate of disease progression (1). Thus, spVL is an
easily measured and informative marker of clinical outcome.
Variability in spVL is influenced by host, viral, and environ-

mental factors, including human genetic variation. Genome-wide
association studies (GWAS) have consistently identified varia-
tion in the major histocompatibility complex (MHC) region on
chromosome 6 as the major host determinant of HIV-1 viral load
and disease progression (usually rate of CD4+ T-cell decline)
(2–6). Similarly, studies of extreme phenotypes of HIV-1 pro-
gression [i.e., elite controllers (7, 8), long-term nonprogressors
(9), and rapid progressors (10)] have underscored the primary
role of the MHC in determining HIV-1 outcome. However, the
GWAS of HIV-1—related phenotypes performed to date have
been underpowered to identify the types of variants with modest
effect sizes that have been observed to influence other complex
human traits. To what extent additional host genetic factors
contribute to HIV-1 control and the total variability in spVL
explained by host genetics remain open questions.
Here, we report the results from the second phase of the In-

ternational Collaboration for the Genomics of HIV-1 (for a
complete list of contributors see SI Appendix, Note S1) (11),
which has collected the majority of available genome-wide ge-
notype data from HIV-1–infected patients with clinical follow-up.
We tested ∼8 million variants, including single nucleotide poly-
morphisms (SNPs), short insertions and deletions (indels), clas-
sical human leukocyte antigen (HLA) alleles, and variable amino

acids in HLA proteins for association with spVL in 6,315 HIV-1–
infected individuals of European ancestry. We demonstrate that
multiple independent signals exist at two genomic loci and im-
plicate novel, potentially causal variants within these regions.
Through heritability analysis, we estimate that the additive genetic
contribution to spVL measurable through GWAS is 24.6%, the
majority of which maps to variants in these two associated regions.

Results
Genome-Wide Association Analysis.High-quality genotype data were
obtained for 7,468 individuals of European ancestry from eight
independent GWAS forming 10 genotype groups (SI Appendix,
Table S1). The phenotypic endpoint most commonly shared be-
tween contributing centers was spVL, available for 6,315 individ-
uals. After genome-wide genotype imputation, we tested ∼8 million
common variants for association with spVL per group by linear
regression and combined results using inverse-variance weighted
metaanalysis. We observed significant associations on chromosomes
6 and 3, with several SNPs passing the threshold of genome-wide
significance (P < 5 × 10−8) (Fig. 1). The strongest associated SNP
on chromosome 6, rs59440261 (P = 2.0 × 10−83), lies in the
MHC regions and is in strong linkage disequilibrium (LD) with the
previously reported SNP rs2395029 (3) [r2= 0.78, D′= 1, minor allele
frequency (MAF) rs59440261 = 0.06, MAF rs2395029 = 0.05].
The top chromosome 3 SNP, rs1015164 (P = 1.5 × 10−19), lies
downstream of CCRL2, near an antisense transcribed sequence
that overlaps chemokine (C-C motif) receptor 5 (CCR5) and is
only weakly correlated to the CCR5Δ32 polymorphism known to
impact HIV-1 disease progression (r2 = 0.03, D′ = 0.89, MAF
rs1015164 = 0.30, MAF CCR5Δ32 = 0.10). Per-group analyses
using the primary phenotypic endpoint (i.e., not necessarily
spVL) (SI Appendix, Table S1) did not reveal any additional
associated regions, and metaanalysis of these results was con-
sistent with analysis of spVL (SI Appendix, Fig. S1).
Additionally, we performed association analyses restricting the

sample to extreme phenotypes of elite control (n = 887 HIV-1
controllers; n = 2,745 noncontrollers) or disease progression
(n = 517 rapid progressors; n = 467 long-term nonprogressors).
Association results were comparable with those obtained in the
spVL analysis, with regions on chromosomes 6 and 3 being strongly
associated (SI Appendix, Fig. S2). Thus, all further analyses were
performed using the spVL phenotype.

Effect of Classical HLA Alleles on spVL. The SNP association signal
on chromosome 6 centers on the class I HLA gene HLA-B, which
is known to impact spVL (2, 8, 12). To gain a better under-
standing of functional variants in this region, we imputed classical
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Fig. 1. Manhattan plot of genome-wide association
results. After genotype imputation, ∼8 million com-
mon variants were tested for association with spVL in
6,315 individuals of European ancestry using linear
regression. Per SNP -log10(P value) (y axis) are plotted
by physical position (x axis). Genome-wide signals of
association (P < 5 × 10−8, dotted line) were observed
on chromosomes 6 and 3. The strongest associated
SNPs per region were rs59440261 on chromosome
6 (P = 2.0 × 10−83) and rs1015164 on chromosome 3
(P = 1.5 × 10−19).

Significance

A proportion of the variation in HIV-1 viral load in the infected
population is influenced by host genetics. Using a large sample
of infected individuals (n = 6,315) with genome-wide genotype
data, we sought to map genomic regions that influence HIV
viral load and quantify their impact. We identified amino acid
positions located in the binding groove of class I HLA proteins
(HLA-A and -B) and SNPs in the chemokine (C-C motif) receptor
5 gene region that together explain 14.5% of the observed
variation in HIV viral load. Controlling for these signals, we
estimated that an additional 5.5% can be explained by com-
mon, additive genetic variation. Thus, we demonstrate that
common variants of large effect explain the majority of the
host genetic component of HIV viral load.
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class I and II HLA alleles, variable amino acid positions in HLA
proteins, and additional single nucleotide variants. Association
testing at these variants showed an increase in signal, with several
variants having lower P values than those observed after genome-
wide SNP imputation (Fig. 2).
Several classical HLA-A, HLA-B, and HLA-C alleles were

associated with spVL, ranging in effect from strongly decreasing
(notably HLA-B*57:01, effect size = −0.84) to strongly in-
creasing (notably HLA-B*35:02, effect size = 0.36) (SI Appendix,
Table S2). Given the presumed benefit of recognizing multiple
viral epitopes through increased diversity at HLA alleles, we next
tested for evidence of nonadditive effects at the HLA-B locus.
Controlling for the additive effect at each allele, we observed
evidence for a general heterozygote advantage across all HLA-B
alleles that decreased spVL (P = 0.016, df = 1, effect size =
−0.14) (SI Appendix, Fig. S3). Modeling per-allele nonadditive
effects did not improve the fit over the general heterozygosity
effect (P = 0.14, df = 13), and no single allele showed significant
departure from additivity after accounting for multiple compar-
isons (SI Appendix, Table S3). Additionally, testing for a multi-
plicative effect between all pairs of HLA-B alleles did not
uncover any significant interactions. These data confirm a pro-
tective role for general heterozygosity at HLA-B beyond the in-
dividual allelic additive effects.

Fine Mapping of MHC Association Signals. Variable amino acid
positions within the HLA class I proteins showed the strongest
signal for association (Fig. 2). Notably, HLA-B position 97 (P =
4.6 × 10−143) was the strongest observed association study-wide,
consistent with previous reports (7, 8). To determine which
amino acid positions associated independently with spVL, we
performed a forward conditional regression analysis. We iden-
tified (in order) positions 97, 67, and 45 in HLA-B and positions
77 and 95 in HLA-A as independently associated with spVL
(Table 1). These positions fall within the peptide-binding groove
of the respective protein (Fig. 3 A and B), and alleles at these
positions had varying impact on spVL, ranging in effect from
strongly decreasing to strongly increasing (Fig. 3C and SI Ap-
pendix, Table S4). Combining all alleles at these five positions
explained 12.3% of the variance in spVL and accounted for the
majority of the association signal at this locus (SI Appendix, Fig.
S4). The relationship between these amino acid positions and
classical HLA alleles is listed in SI Appendix, Table S5.

Fine Mapping of CCR5 Region Association Signals. The second highly
significant signal of association centered over the CCR gene
cluster on chromosome 3. Variation in the CCR5 gene is known
to impact HIV-1 pathogenesis (13–16). The strongest known
causal variant in this region is CCR5Δ32, which is known to re-
duce HIV-1 susceptibility and slow disease progression (13).
Additionally, the CCR5 promoter haplotype P1 (Hap-P1) has
been shown to associate with AIDS progression (15, 17). To
account for these effects, we restricted the conditional analysis to
5,559 individuals for whom the CCR5Δ32 genotype was available
and Hap-P1 carriage could be determined (Fig. 4). The top SNP
association in this subset, rs4317138 (P = 7.7 × 10−22) (Fig. 4),
is highly correlated to the top SNP identified in the analysis of the
full sample (rs1015164, r2 = 0.97, D′ = 1, MAF rs4317138 = 0.31).
Consistent with expectation, we observed a strong association
between CCR5Δ32 and reduced spVL (P = 1.6 × 10−16, effect
size = −0.28) and between CCR5Hap-P1 haplotype and increased
spVL (P = 1.8 × 10−19, effect size = 0.18).
Conditioning on CCR5Δ32, 122 SNPs remained genome-wide

significant (SI Appendix, Fig. S5). The top seven SNPs are in
strong LD and fall within/near an antisense transcribed sequence
RP11-24F11.2 (LOC102724297) that overlaps CCR5 (SI Appen-
dix, Fig. S6). Conditioning on Hap-P1, these SNPs remained
associated, with the strongest signal being rs1015164 (conditional
P = 1.6 × 10−4). This SNP remained associated when condi-
tioning on both Hap-P1 and CCR5Δ32 (P = 5.2 × 10−4) (Table
2). Interestingly, conditioning on rs1015164 explained the observed
effect of Hap-P1 (conditional P = 0.09) but not CCR5Δ32 (P =
1.4 × 10−10), suggesting that this SNP tags additional, undescribed
causal variants in this region. Taken together, these three variants
explained 2.2% of the variance in spVL.

Assessing Narrow-Sense Heritability of HIV-1 spVL. Combining the
effects of the independently associated common variants in the
HLA and CCR5 region explained 14.5% of the variability in
spVL. We used genome-wide complex trait analysis (GCTA) (18)
to address the extent to which additional, additive genetic factors
may influence spVL and observed that genome-wide variation
explains 24.6% [standard deviation (SD) = 3%] of the narrow-
sense heritability (i.e., additive effects). We assessed the sensitivity
of this estimate to potential overfitting by verifying that a ran-
domly permuted phenotype vector (30 permutations) showed zero
heritability. This genome-wide estimate decreased to 5.5% (SD =
3%) after controlling for the effects in the MHC/CCR5 regions. A
series of analyses where we randomly selected two-thirds of all
available samples supported this estimate (median 5% heritability,
6.9% interquartile range). Additionally, a complementary analysis

Fig. 2. Regional association plot of the chromosome 6 association peak.
Association results, −log10(P value), for SNPs (gray circles), classical HLA al-
leles (blue boxes), and amino acids within HLA proteins (red diamonds). For
biallelic markers, results were calculated by linear regression, including
covariates. Association at amino acid positions with more than two alleles
was calculated using a multi–degree-of-freedom omnibus test. The dashed
line indicates genome-wide significance (P = 5 × 10−8). Amino acid position
97 (P = 4.6 × 10−143) in HLA-B showed the strongest association signal of any
variant tested genome-wide.

Table 1. Independently associated amino acid positions in HLA
proteins identified by stepwise forward conditional analysis

Step Position Alleles* Position P† Model P‡

Cumulative
variance

explained§

1 HLA-B 97 V/N/W/T/R/S 4.6 x 10−143 na 0.102
2 HLA-B 67 Y/F/S/C/M 3.7 x 10−112 3.2 x 10−15 0.112
3 HLA-B 45 E/T/K/M 8.2 x 10−49 1.8 x 10−4 0.114
4 HLA-A 77 N/S/D 1.8 x 10−12 9.4 x 10−12 0.122
5 HLA-A 95 L/I/V 3.6 x 10−5 3.2 x 10−7 0.123

na, not applicable.
*Per allele association statistics and frequencies are listed in SI Appendix,
Table S4.
†Position P values were calculated by a multi–degree-of-freedom omnibus
test, including covariates and all alleles at that position.
‡Model P values were calculated by the likelihood ratio test comparing the
model from the previous step to a model including the next position.
§Cumulative variance explained was calculated by linear regression and
represents the variance explained by including the positions identified at
each step to the model from the previous step.
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using a polygenic score test demonstrated a similar lack of con-
tribution from variants outside of the MHC and CCR5 regions (SI
Appendix, Fig. S7). These results suggest that the identified com-
mon variants of large effect explain the majority of the host ge-
netic component of HIV-1 spVL.

Discussion
Previous GWAS of HIV-1 control and disease progression
lacked power to detect variants with modest effect sizes. By
combining available genome-wide genotypes and clinical data
from 6,315 HIV-1–infected individuals, we sought to get a more
complete picture of the impact of common human genetic var-
iation on HIV-1 disease across a range of effect sizes.
The MHC region demonstrated the strongest signal of asso-

ciation with spVL, with multiple, independent common variants
of large effect mapping to this region. The long-range LD structure
and high gene density (including many immunologically relevant
genes) of the MHC make it impossible to definitively assign cau-
sality to any particular variant through purely statistical methods.
However, the abundance of functional evidence and the centrality
of the association signal in this study point to the class I HLA genes
and, in particular, to HLA-B as being causal. Here, we observed
strong associations between spVL and multiple alleles at HLA-A,
-B, and -C over a broad range of effect sizes. Consistent with
previous results (19), we observed evidence for a heterozygote
advantage at the HLA-B locus. The comparatively weak statis-
tical strength we report here may be due to methodological
differences because (i) we control for additive effects at each
allele and (ii) the larger sample size allows the consideration of
an increased number of homozygous genotypes, reducing bias
due to the low frequency (and thus increased proportion of
heterozygosity) of strongly protective alleles. Thus, our results
may more accurately reflect the true heterozygous effect.

By testing variant amino acid positions in classical HLA pro-
teins, we confirmed the strong associations at positions 97 and 67
in HLA-B and observed additional signals at position 45 in
HLA-B and positions 77 and 95 in HLA-A. The location of these
amino acids in the peptide-binding groove of the respective pro-
teins supports the hypothesis that the presentation of specific viral
epitopes, directly dependent on the shape of the HLA peptide
binding groove, is critical in determining the efficiency of the
cytotoxic T-cell response. In addition to peptide presentation,
HLA-C expression levels (20) and variation in non-HLA genes in
the MHC region (21) have been proposed as impacting HIV-1
control. Detailed functional analyses of these effects will be re-
quired to fully understand the extent of the influence of MHC
variation on the natural history of HIV-1 disease.
Although the impact of CCR5Δ32 on HIV-1 acquisition and

disease progression has been well-described, this association
has not been previously identified through GWAS. This lack of
detection is likely due to the relatively limited LD between
common SNPs and the CCR5Δ32 allele. Indeed, the top SNP
identified on chromosome 3 in the full sample, rs1015164, is only
weakly correlated to CCR5Δ32 (r2 = 0.03). Conditional analysis
showed that several SNPs in this region were independently as-
sociated after controlling for the known effects of CCR5Δ32 and
Hap-P1. These SNPs are located within/near an antisense tran-
scribed sequence that overlaps CCR5 and thus may play a role in
regulating its expression. Demonstration of causality of these
variants and/or a silencing effect of the antisense transcribed
sequence will require functional studies.
Measurable narrow-sense heritability attributable to non–

genome-wide significant loci has been demonstrated for multiple
complex traits (22, 23). Using genome-wide variants, we estimated
that additive host genetic effects explain approximately one-
quarter of the variance in HIV-1 spVL. However, after control-
ling for the genome-wide significant signals, the remainder of the
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Fig. 3. Location and effect of independently asso-
ciated amino acids. Three-dimensional structures of
(A) HLA-B (PDB ID code 2bvp) and (B) HLA-A (PDB ID
code 4hwz) proteins. Conditional analysis identified
five independent amino acid positions [positions 97,
67, and 45 in HLA-B and positions 77 and 95 in HLA-A
(orange residues)] that line the peptide-binding
groove and explain the majority of the association
signal in the MHC. (C) Effect on spVL (i.e., change in
log10 HIV-1 spVL per allele copy) of individual amino
acid residues at each position. Results were calculated
per allele using linear regression models, including
allele dosage and principal components. Gray bars
indicate the estimated change in spVL per amino acid
allele at each position with standard error (whiskers). All
identified positions accommodate >2 amino acid alleles,
with allelic effects ranging from strongly protective
(i.e., viral load decreasing) to deleterious (viral load
increasing). Full association statistics and amino acid
allele frequencies are listed in SI Appendix, Table S4.
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genome explained only ∼5%. This limited residual heritability un-
derscores the primary role of common variants of large effects in
the MHC and CCR5 in HIV-1 control. Interestingly, analyses aimed
at estimating the viral genetic component of heritability have been
generally higher, ∼30–50%, than our estimated host component
(24). However, it is difficult to disentangle these two values because
host genetic variation, in particular the class I HLA region, exerts
substantial pressure on the viral genetic sequence (25). Indeed, if
the influence of host and viral genetics highly overlaps, up to an
additional 70% of variability in spVL may remain unaccounted for.
In addition to known nongenetic factors that impact spVL, such as
age and sex, host genetic factors not measured by this study design
(e.g., somatic recombination of T- and B-cell receptors, copy
number variation, and rare variation) may also explain a substantial
proportion of the variation. Comprehensive, joint analysis of the
host and viral genetic components of spVL variation in large sam-
ples will also be of great interest due to the high sensitivity of HIV
to reflect variation in the host environment.
For single variant analysis, this study had ∼80% power to detect

common variants (at 10% frequency) that explain >0.5% of the
variability in spVL. This level of sensitivity suggests that previous
candidate gene studies that have claimed associations with spVL
(of variants with relatively large effect size) are unlikely to be valid,
given their lack of replication in the present study. This observa-
tion is consistent with previous GWAS that have directly examined
(and failed to replicate) a number of these associations (2, 8).
The results presented herein combine the majority of genetic

data available on untreated HIV-1–infected individuals of Eu-
ropean ancestry. Because a substantial increase in sample size is
unrealistic, because of current antiretroviral treatment guidelines
(26), additional GWAS in this population are unlikely to provide
further insight into the genetic architecture of HIV-1 control.

Thus, studies in non-European populations, which heretofore
have been underrepresented in GWAS, as well as investigations of
other classes of genetic variation and genome-wide nonadditive
and/or epistatic effects, should now be clear priorities in the field.

Methods
Ethics Statement. All participants were HIV-1–infected adults, and written
informed consent for genetic testing was obtained from all individuals as
part of the original study in which they were enrolled (SI Appendix, Note S1).
Ethical approval was obtained from institutional review boards for each of
the respective contributing centers.

Samples and Contributing Centers. DNA samples obtained from 21 individual
cohorts or centers were genotyped as part of eight independent GWAS using
various genotyping platforms (2, 5, 6, 8–10, 27, 28) and combined as part of
the International Collaboration for the Genomics of HIV (SI Appendix, Table
S1 and Note S1). All individuals were infected with HIV-1 and had pheno-
typic data relevant to viral control or disease progression. Primary pheno-
types included spVL, long-term nonprogression, and elite control of HIV-1
viremia. The phenotype most commonly available was spVL (n = 6,315),
which was used for the primary analysis. Additional analyses were per-
formed on extreme phenotypes (elite control, long-term nonprogression,
and rapid progression) and are presented in SI Appendix.

Genotype Quality Control and Imputation. All quality control steps were
performed per study using PLINK version 1.07 (29). Genotype data were
combined based on geographic origin of the samples and/or genotyping
platform, resulting in 10 genotype groups (SI Appendix, Table S1). Ancestry
was inferred by principal components analysis using EIGENSTRAT (30), taking
the HapMap 3 (31) sample as a reference. Only samples clustering with the
HapMap Europeans were included. Study participants were excluded based
on the following criteria: identity-by-descent of >0.125 (one individual per
pair was removed), missingness of >2%, and inbreeding coefficients of <−0.1
or >0.1. SNPs were removed based on missingness of >5%, MAF of <1%, or
Hardy–Weinberg equilibrium of P < 1 × 10−7.

Per group, genotypes for additional polymorphisms not directly assessed by
the original genotyping platform were inferred using haplotype information
(i.e., imputation of missing genotypes) (32) from the 1,000 Genomes Project
Phase 1 v3 reference panel. Genotypes were prephased with mach v1 (33) and
imputed using minimac (34). An additional imputation protocol using shapeit
v2 (35, 36) and impute2 (37) was also implemented with highly concordant
results. Imputed SNPs having a reported r2 score of <0.3 and minor allele
frequency of <0.5% were excluded from downstream analysis.

Association Testing and Metaanalysis. Single marker association tests were per-
formed per genotype group regressing spVL on variant dosage using linear re-
gression including principal components (PCs) to correct for population structure
(30). In all cases, inclusion of PCs was sufficient to control for genomic inflation
(lambda of ∼1) (SI Appendix, Table S1). Results were combined across genotype
groups using inverse-variance weighted metaanalysis (38). In some cases, the
primary endpoint for the original study was a binary trait (SI Appendix, Table S1).
For these cohorts, we also tested the binary phenotype for association using
logistic regression, including covariates as above and metaanalyzed across binary
and quantitative endpoints using z-scores weighted by the group sample size.
Power for detection of single variants was estimated using the genetic power
calculator for quantitative traits (39).

Imputation and Association Testing in the MHC Region. Classical HLA alleles,
variant amino acids within HLA proteins, and additional SNPs in the MHC

Fig. 4. Regional association plot of the chromosome 3 association peak. As-
sociation results for Mb 45.5–47 (Hg19) of chromosome 3 in a subset of indi-
viduals genotyped for CCR5Δ32 (n = 5,559). P values were calculated by linear
regression, including covariates. The blue diamond, red square, and red di-
amond indicate the association strength of the top SNP (rs4317138, P = 7.7 ×
10−22), Hap-P1 (P = 1.8 × 10−19), and CCR5Δ32 (P = 1.6 × 10−16), respectively.
The dashed line indicates genome-wide significance (P = 5 × 10−8).

Table 2. Conditional association results for variants in the CCR5 region

Variant

Condition

None CCR5Δ32 Hap-P1 rs1015164 CCR5Δ32 and Hap-P1

Effect size P value Effect size P value Effect size P value Effect size P value Effect size P value

CCR5Δ32 −0.28 1.6 x 10−16 na na −0.22 1.4 x 10−10 −0.22 1.4 x 10−10 na na
Hap-P1 0.18 1.8 x 10−19 0.15 1.4 x 10−13 na na 0.06 0.09 na na
rs1015164(A) 0.23 1.5 x 10−21 0.20 1.2 x 10−15 0.17 1.6 x 10−4 na na 0.15 5.2 x 10−4

Effect size and P values were calculated using linear regression, including covariates to adjust for population structure and, where applicable, the variant/
haplotype dosage (condition).
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were imputed using the SNP2HLA pipeline, with a reference panel consisting
of 5,225 individuals of European ancestry from the Type 1 Diabetes Genetics
Consortium (40). Classical alleles and binary amino acid positions were in-
dividually tested for association using linear regression corrected for PCs and
study-specific effects. Association was tested at multiallelic amino acid po-
sitions (i.e., three or more possible states) using a multi–degree-of-freedom
omnibus test including covariates as above.

Testing for Nonadditive Effects of HLA-B Alleles. Evidence of nonadditive effects
at the HLA-B locus was assessed in a subset of individuals (n = 3,882) that
carried two common alleles (minimum of five homozygous observations, n =
14 alleles). We first compared a model that included covariates (PCs and ge-
notype group) and additive effects for each classical allele to a model that
additionally included a heterozygosity effect; this approach is equivalent to
having a general dominance term across all alleles. We similarly assessed the
nonadditive effect of each allele individually. To estimate effect sizes of ho-
mozygote and heterozygote genotypes on spVL, we constructed additive
models after excluding all homozygous individuals (for heterozygous effects)
or excluding all heterozygous individuals (for homozygous effects). Interac-
tions between specific alleles were assessed using models that contained ad-
ditive terms for each allele and interaction terms between each pair of alleles.

Fine Mapping of Associated Regions. To identify independent variants in as-
sociated regions, we used step-wise forward conditional testing, including
covariates as above. In the MHC, due to the presence of multiallelic variants
(i.e., >2 states), we used the likelihood ratio test (LRT). A position was con-
sidered independently associated if its addition to the model improved the

fit after correcting for the total number of amino acids considered (LRT of
P > 2 × 10−4). In the CCR5 region, conditional analysis was restricted to a
subset of 5,559 participants genotyped for CCR5Δ32 and for whom the CCR5
Hap-P1 haplotype could be inferred (15, 17, 41). Variance explained by in-
dependently associated variants was calculated by comparing the adjusted r2

values from linear regression models, including covariates alone to one
containing covariates and the selected variants.

Assessment of Narrow-Sense Heritability of spVL. Heritability analysis was con-
ducted with the GCTA software package (18) using common variants (MAF of
>1%), which were accurately imputed in at least 99% of samples, pruned based
on LD (r2 < 0.1). To avoid deflation of the total heritability estimate, the in-
dependently associated variants from the conditional analysis were also in-
cluded. To reduce bias due to nonnormally distributed spVL measurements,
cohorts enriched for HIV-1 controllers were removed. To empirically assess the
error of the estimated variance component, we performed the analyses on 30
bootstrap replicates, by resampling the included individuals with replacement.
To check for potential overfitting, we performed heritability analyses on 30
random assignments of the phenotypes to the genotypes.We assessed the effect
of sample size by repeating the analysis over a grid of different sample sizes.
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