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Discovery of Novel Plant 
Interaction Determinants from 
the Genomes of 163 Root Nodule 
Bacteria
Rekha Seshadri1, Wayne G. Reeve2, Julie K. Ardley2, Kristin Tennessen1, Tanja Woyke1, 
Nikos C. Kyrpides1,3 & Natalia N. Ivanova1

Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by 
their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized 
in sustainable agricultural production of legume crops and pastures. In this study, we sequenced 
the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global 
exploration of all available RNB genera with the aim of identifying novel genetic determinants 
of symbiotic association and plant growth promotion. Specifically, we performed a subtractive 
comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged 
phylogenetic distribution patterns and sequence signatures based on known precepts of symbiotic- 
and host-microbe interactions. A total of 184 protein families were delineated, including known 
factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for 
which a role in host-interaction, -regulation, biocontrol, and more, could be posited. These analyses 
expand our knowledge of the RNB purview and provide novel targets for strain improvement in the 
ultimate quest to enhance plant productivity and agricultural sustainability.

The use of plant growth promoting bacteria to enhance crop yield and control disease is gaining world-
wide acceptance as a sustainable agricultural practice, while reducing costs by supplanting the use of 
expensive (and polluting) agrochemicals. These bacteria can facilitate plant growth either directly, by 
providing essential nutrients (nitrogen, phosphorus and essential minerals), modulating plant hormones 
and development, or indirectly, by suppressing inhibitory effects of various plant pathogens, improv-
ing soil structure and bioremediating polluted soils1,2. In particular, root nodule bacteria (RNB) are 
free-living soil bacteria that have the ability to form nitrogen-fixing symbioses with legumes, and have 
been exploited for centuries to improve soil fertility and agricultural productivity3. The symbiosis is 
typically host-specific (although more promiscuous strains exist) and mediated by signaling molecules 
produced by both plant host and the bacterium4. RNB convert inert atmospheric nitrogen gas into bio-
available ammonia for their host in exchange for carbon (and shelter) within specialized root or stem 
nodules, resulting in improved plant growth and productivity5.

The legume-RNB symbiosis is one of the best-studied associations between bacteria and eukarya 
due to both ecological and economic importance. It is estimated that increasing the efficiency of symbi-
otic nitrogen fixation (SNF) may have an annual benefit of $1,067 million in the U.S alone, while total 
elimination of nitrogen fertilization of major crops would have an annual benefit of $4,484 million6. 
Additionally, SNF reduces greenhouse gas emissions by displacing 873 m3 of natural gas and the ultimate 
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release of ~2 tons of CO2
7 in the manufacture every ton of conventional nitrogenous fertilizer, as well as 

reducing annual nitrous oxide emissions and NO3
−  in surface runoff. Other benefits to the environment 

include reducing dryland salinity, increasing soil fertility, promoting carbon sequestration and prevent-
ing eutrophication of water bodies. Furthermore, RNB play a role in the production of biofuel crops–Mil-
lettia pinnata, for example, is a leguminous tree nodulated by Bradyrhizobium and Rhizobium spp. that 
produces biodiesel, starch, ethanol and biogas8. With a burgeoning world population and increasing food 
demands, harnessing the innate potential of RNB to improve sustainable agricultural productivity is of 
paramount importance.

However, despite these significant environmental and economic incentives, only a few genomes of a 
phylogenetically restricted group of model RNB strains had been sequenced at the inception of this study. 
These strains were mostly laboratory “work horses”, whereas sequencing of commercial inoculants that 
have the highly prized attributes of survival and persistence in soil, competitiveness, and high rates of 
N2-fixation, had not been a priority. In addition, preliminary analyses focused on questions pertaining to 
genome evolution and structure, intra-genus conservation and physiological diversity9–11. A more recent 
paper surveyed the occurrence of known plant growth promotion genes in all available proteobacterial 
genomes12, and clearly many RNB were found to possess plant growth promotion traits beyond nitrogen 
fixation, but little had been done to explore novel effectors of plant growth or even the accessory factors 
mediating RNB-plant interactions (including symbiosis). Thus, the primary objective of our study was 
to (i) increase the repertoire of available RNB genomes in terms of their phylogenetic, biogeographic 
and host legume diversity, and (ii) identify novel microbial effectors of symbiosis, and plant growth and 
productivity, beyond what is currently known about nodulation and nitrogen fixation. We sequenced the 
genomes of 110 RNB isolates sourced from a variety of leguminous hosts from diverse biogeographical 
locations, performed a comprehensive analysis of all RNB genera, and identified novel determinants 
of plant interaction and growth. These data not only provide a resource and conceptual framework for 
studying RNB-legume interactions, but our results highlight many new potential plant beneficial genes 
that could be targeted to improve legume productivity around the globe.

Results and Discussion
Overview of the Project.  This study falls under the auspices of the Genomic Encyclopedia of Bacteria 
and Archaea (GEBA) project, which was conceived to maximize the phylogenetic coverage of publicly 
available prokaryotic genomes13–15. Correspondingly, the GEBA-RNB sub-project was designed to cap-
ture RNB phylogenetic and symbiotic diversity, with the participation of an international consortium 
consisting of more than 30 experts in the field, from 15 different countries, and major culture collection 
centers in Australia, Belgium and the USA14. RNB strains were selected on the basis of (i) phylogenetic 
diversity, (ii) host legume diversity (spanning all the Vavilov centers of origin16) (iii) economic or com-
mercial significance and, (iv) biogeographic origin (Fig. 1). Strains were also required to have compre-
hensive experimental and metadata records and well-characterized phenotypes, in particular, relating 
to symbiotic efficiency and host specificity. Biogeographic considerations were relevant as RNB survival 
and persistence as soil saprophytes is governed by environmental and edaphic constraints such as pH, 
temperature, salinity, soil moisture- and clay content. The RNB were therefore collected from sites that 
spanned a broad range of soils (varying pH, salinity) and climates (e.g. tropical, arid, temperate). Chosen 
RNB also varied in their physiological traits (e.g., ability to recycle hydrogen, methylotrophy, salt or acid 
tolerance, rhizobitoxine production, heavy metal resistance, etc.) and host specificities (ranging from 
strictly specific to highly promiscuous). Moreover, each sequenced RNB strain has been cryopreserved 
in a dedicated long term storage culture collection and is available to the global research community by 
request through the Centre for Rhizobium Studies (CRS).

To summarize, 110 RNB isolates from 70 diverse legume hosts from various biomes in over 30 coun-
tries were sequenced by us, and an additional 50 genomes were released to Genbank during the course of 
this study, resulting in a total of 163 RNB genomes analyzed here (Fig. 1). All major RNB lineages were 
represented with the overwhelming majority (145 genomes) belonging to seven genera within the Order 
Rhizobiales of Class α -proteobacteria, and 18 genomes belong to two genera from Class β -proteobacteria. 
The complete list of RNB genomes, metrics and metadata is presented in Supplementary Table 1. General 
assembly and annotation metrics are presented in Supplementary Table 2.

Predicting Novel Effectors of RNB-plant interaction.  The RNB-legume symbiosis has been 
long-heralded as an excellent model for investigating plant-microbe associations; however, few studies 
have attempted to venture beyond describing the mechanisms and underpinnings of nodulation and 
N2-fixation, the hallmark ability of RNB. With few exceptions, auxiliary functions that are undoubt-
edly necessary to colonize, communicate or interact with their plant host, and possibly regulate plant 
development, are largely anonymous. It is also evident that many RNB possess capacities well beyond 
bio-fertilization through N2-fixation - for example, 1-aminocyclopropane-1-carboxylate (ACC) deam-
inase (TIGR01274), known to modulate plant development by reducing levels of the plant stress hor-
mone, ethylene17, is almost ubiquitously present in all the sequenced RNB genera with the exception of 
several strains of Ensifer spp. and Rhizobium spp. Furthermore, the introduction of an exogenous ACC 



www.nature.com/scientificreports/

3Scientific Reports | 5:16825 | DOI: 10.1038/srep16825

deaminase gene into the laboratory strain Ensifer meliloti Rm 1021, which lacks this gene, increased 
biomass and nodulation of host Medicago sativa (alfalfa or Lucerne) by over 40%18.

A multi-step strategy was therefore devised to help identify novel plant-beneficial determinants from 
the 163 RNB genomes (Fig.  2), involving a subtractive comparative analysis with non-RNB genomes, 
leveraging relevant transcriptomic data for substantiation, and employing additional filters such as phy-
logenetic occurrence and sequence signatures based on known precepts of symbiotic and plant-microbe 
interactions. The first step identified functions that are over-represented or enriched in the RNB genomes 
set compared to a “negative control” (NC) genome set. To minimize the identification of false positives, 
the NC members were carefully selected from available genomes of phylogenetically-related organisms 
that are not known to be associated with the phytosphere (e.g., rhizosphere, phyllosphere) environment 
(based on available metadata for genomes from the GOLD database19). This resulted in a NC set contain-
ing 69 genomes from 35 genera belonging to either Order Rhizobiales of Class α -proteobacteria, or Class 
β -proteobacteria (Supplementary Table 3). To the best of our knowledge, these 69 isolates originated 
from a variety of aquatic, terrestrial and few host-associated habitats, and are not typically associated 
with the phytosphere, based on available GOLD metadata entries and published literature.

Next, gene counts for each protein family (Pfam) domain were retrieved and contrasted between the 
RNB and NC genomes. Pfam was chosen for this analysis because it is the largest and most widely used 
collection of manually-curated protein families20, with > 80% coverage (on average) of total CDS in these 
microbial genomes.

A primary approach to identify Pfams that were “over-represented” in the RNB involved contrasting 
median or upper and lower quartile gene counts between the RNB and NC genomes. A total of 437 Pfams 
(out of 4896 Pfam domains recruited by 163 RNB genomes) could be delineated based on a total RNB 
median (2nd quartile) gene count of ≥ 1 and a total NC median gene count of 0 (Supplementary Table 4). 
Encouragingly, many core nodulation and nitrogen fixation-related Pfams (e.g., NodA (PF02474), NifD 
(PF00148), NifK (PF11844)) were identified and served to validate our approach (core components not 
represented could be attributed to the absence of a suitable or specific Pfam domain for that particular 
function (e.g., NifH)). For many others, a role in plant host interaction, biocontrol, stress tolerance, or 
more could be posited (discussed below), however, this approach also yielded 123 Pfams containing 
domains of unknown function (DUFs), which may also be important in legume-RNB interactions.

Figure 1.  Summary of biogeography and taxonomy of 163 RNB strains analyzed in this study. 
Biogeographic information is depicted as world map overlaid with pie charts showing the legume clade of 
the plant host for strains originating from that geographic location; size of the pie scales to the total number 
of RNB strains from that location (ranging from 1 to 17 strains). Taxonomic composition of 163 RNB 
strains is shown as a separate pie chart in the bottom left side of the figure. See Supplementary Tables 1 and 
2 for genome statistics and metadata details. Figure was generated using the R package “maps” (Brownrigg, 
R., Minka, T. P., Becker, R. A. & Wilks, A. R. maps: Draw Geographical Maps. R package version 2.1-5. 
http://CRAN.R-project.org/package= maps (2010), and edited further using Adobe Illustrator.

http://CRAN.R-project.org/package=maps
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To garner further support for a proposed role for these over-represented Pfams in phytosphere inter-
actions, corroboration by transcript expression (designated “EXP”) under relevant experimental con-
ditions was used as a key filtering step (Fig.  2). Out of 437 over-represented Pfams, 180 had a single 
candidate gene that showed upregulation or induction in one or more of four published RNB transcrip-
tome studies of symbiotic nitrogen fixation21–24. For example, PhoD-like phosphatase family (PF09423) 
candidates were induced > 64X in the symbiosome, in two independent RNA-seq-based transcriptome 
studies (Ensifer fredii NGR_c31990 and E. meliloti SM11_chr3272)21,23. It has previously been shown 
that plants obtaining nitrogen from symbiosis require higher levels of phosphorus for optimal growth 
than do plants grown with nitrogen fertilizers25, and it is tempting to speculate a role in inorganic 
phosphate-solubilization to enable nodule bioavailability. Another example is CopC domain (PF04234) 
candidates that showed at least 16X induction in both RNA-seq experiments (E. fredii NGR_b06130 
and E. meliloti SM11_pC0976). In the phytopathogen Pseudomonas syringae, CopC has been implicated 
in mediating copper resistance by binding and sequestering copper in the periplasm26 and is believed 
to function in copper trafficking into cells27,28. Copper is a cofactor of the high-affinity cbb3-type 
(heme-copper sub-family) cytochrome oxidase, encoded by the fixNOQP operon, that terminates the 
symbiosis-specific respiratory chain of rhizobia29,30 and CopC may play a role in trafficking copper to 
cbb3-type cytochrome oxidases. In this regard, it is interesting to note that in E. meliloti genomes, the 
locus encoding the CopC domain protein is found downstream of a pSym cluster of fix genes including 
fixNOQP and fixGHISK. A caveat of employing the EXP criterion is that false negatives are likely because 
of possible limitations of the method, such as inability to detect significant changes in genes with typi-
cally low levels of expression such as regulators.

Within the over-represented subset, we also observed Pfams with primarily eukaryal origin, i. e., the 
majority of all known sequences that are assigned to these Pfams originated from eukaryal genomes. 
This led to the hypothesis that RNB may produce eukarya-like factors in order to better interact with, 
or modulate plant host responses. Indeed, the notion of horizontal gene transfer from a plant host to its 
bacterial resident has been previously explored31,32, although merely speculative here. We systematically 
looked for Pfams of primarily eukaryal origin within the RNB-over-represented set and identified 5 Pfam 
domains. However, to factor in a previously described observation of shared mechanisms of virulence 
between plant and animal pathogens, or shared strategies for infection and adaptation to growth within 
the eukaryal host between pathogens and symbionts33,34, we extended the search beyond simply “eukaryal 
origin” to those recruiting sequences from a limited group of prokaryotic lineages (such as primarily 
Family Rhizobiaceae, or including alpha-proteobacterial pathogens (e.g., Brucella spp. and Bartonella 
spp.). This additional data filtering criterion was designated “LPD” for limited phylogenetic distribution 
(Fig. 2).

Figure 2.  Delineating novel plant interaction determinants from 163 RNB genomes. Overall strategy 
devised to filter and identify protein family domains associated with plant interaction or growth promotion 
from 163 RNB genomes. LPD – limited phylogenetic distribution, EXP - upregulation or induction in 
published transcriptomic studies21–24, PID – plant interaction determinants, “Secreted” refers to Pfam 
candidates that bear a signal peptide for possible secretion into the external milieu. See Supplementary Table 
4 for list with details.
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Intriguing examples of these LPD Pfams (Supplementary Table 4) that were over-represented in 
the RNB included the sterile alpha motif (SAM) domain (PF00536), PAN domain (PF00024), and 
many DUFs (e.g., PF06191). SAM domains are described as protein interaction modules involved in 
developmental processes in diverse eukarya. Almost 80% of the total number of sequences assigned 
to this Pfam within the IMG database belonged to Domain Eukarya. RNB SAM candidates are large 
multidomain proteins predominantly associated with adenylate guanylate cyclase (PF00211) and AAA 
ATPase (PF13191) domains, and a role in modulating host response seems likely. The PAN domain 
(PF00024) has a described role in mediating protein-protein or protein-carbohydrate interactions in 
eukarya. Again, many RNB PAN domain candidates are large multi-domain sequences associated with 
alpha-2-macroglobulin domains (PF11974, PF01835, PF07703, PF00207, PF10569) which were them-
selves not over-represented in the RNB set, however, we speculate the presence of the N-terminal PAN 
domain (perhaps due to a gene fusion event) may confer a new utility or specificity relevant to RNB 
activity within its eukaryal host. PAN candidates from eukaryal parasites (Toxoplasma gondii, Sarcocystis 
muris) are characterized as lectin adhesins mediating host binding and invasion by such parasites35,36. A 
similar role may be proposed for the RNB PAN domain candidates; this is supported by the presence of 
a classical signal peptidase I cleavage site (predicted by SignalP) for secretion in most instances.

The third obvious data-filtering criterion was therefore to determine if over-represented Pfam candi-
dates were potentially secreted (see Methods), in order to identify products that may specifically interact 
with host cell components. Out of the list of 437 over-represented Pfams, 39 had a major proportion 
(≧ 50%) of assigned sequences bearing a SignalP motif. For Pfams not meeting this criterion, it is still 
possible that candidates may be translocated directly into the plant milieu by one of many protein secre-
tion systems (e.g., Type III, Type IV) encoded by the RNB. Only 3 Pfam domains met all three criteria 
(EXP, LPD, Secretion), while 30 Pfams (out of the over-represented 437) satisfied two or more. Overall, 
we put forward 184 Pfam domains fulfilling one or more criteria to be designated as determinants of 
plant interaction or “PID” (Fig. 2, Supplementary Table 4). A proposed role for these can encompass phy-
tostimulation, biocontrol, rhizosphere competence, stress tolerance, in addition to nodulation (including 
symbiotic signaling, triggering endocytosis and host cell differentiation) and nitrogen fixation. Out of 
184 PID Pfams, at least 10 were clearly associated with nodulation and nitrogen fixation, about 8 Pfams 
may be assigned a regulatory role, and 74 Pfams were implicated in secondary metabolite degradation 
or synthesis (based on cross-referencing with Pfams used by AntiSMASH37 for secondary metabolite 
operon identification). For example, a role in the hydrolysis of host secondary metabolites is proposed 
for Epoxide hydrolase N terminus (PF06441) candidates that are mostly predicted to be secreted, how-
ever, a role in synthesis may be possible in a few instances where co-localized polyketide biosynthesis 
genes are present (e.g., Mesorhizobium loti USDA 3471). A second example is the berberine-like domain 
(PF08031), with limited phylogenetic distribution, which typically is found in plant proteins that are 
involved in the synthesis of isoquinoline alkaloids as a pathogen defense response38. Plant berberine 
bridge enzymes are highly induced during various defense responses, when they may contribute to the 
oxidative burst leading to cell death, through H2O2 synthesis; intriguingly, they have been found in the 
secretome of the phytopathogen Phytophthora infestans, where they have been postulated to play a role 
in virulence39. In many RNB strains, the presence of an upstream decarboxylase gene with a putative 
role in alkaloid synthesis40,41 favors a role in secondary metabolite biosynthesis, therefore a role in bio-
control of plant pathogens may be conjectured. In instances where domain candidates appear without 
a co-localized cognate function, a role in the degradation of plant alkaloids may be hypothesized, as 
seen in Arthrobacter spp.42 In general, the biological activity of secondary metabolites produced by plant 
growth promoting bacteria ranges from antimicrobial to phytostimulatory43,44.

A large number of the 184 PID Pfams were DUFs - DUF2950 (PF11453) and DUF3300 (PF11737) 
were particularly compelling examples that showed significant induction in both RNA-seq transcriptome 
studies21,23, and possessed signal peptides for putative secretion (Supplementary Table 4). Furthermore, 
the CDS encoding these domains were universally co-localized (DUF3300 is upstream of DUF2950), 
suggesting cognate function. No other hints regarding their function could be gleaned based on gene 
neighborhood, and no characterized members were found in public databases.

Many PID candidates were also clearly arranged in discrete operons (Fig. 3) – predictably, the nitrogen 
fixation Pfams were co-localized in a large operon (Fig. 3a). Another notable PID operon was involved 
in phenyl acetic acid synthesis (Fig.  3b), which is a potential phytohormone (auxinomimetic) with a 
demonstrated role in nodulation and regulation of nitrogen fixation by Frankia spp.45, or may func-
tion as an antimicrobial agent as suggested for Azospirillum brasilense46. Other PID operons have more 
cryptic functions, for example, the operon depicted in Fig. 3c is comprised of a serine protein kinase, a 
DUF and an unknown gene tenuously associated with sporulation (SpoVR). Certainly bacterial serine 
kinases have been previously implicated in mediating host-pathogen interactions47, and a similar role 
in mediating plant interaction may be suggested for this operon. Constituents of the operon depicted 
in Fig. 3d appear to be mostly involved in carbohydrate metabolism and a role in secondary metabolite 
synthesis is suspected.

In addition to the strategy presented above, we also employed a statistical analysis using Fisher’s 
Exact Test on pairwise comparisons of gene counts for each Pfam from 163 RNB genomes versus 69 
non-phytosphere-associated control or NC genomes described above (see Methods for details). A total of 
19 Pfam domains were significantly different in at least 25% of the pairings with a Benjamin-Hochberg 
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P-Value correction cutoff of < 0.05 (Supplementary Table 5). Almost all of these significantly “enriched” 
domains were non-overlapping with the above discussed “over-represented” set because this method 
teases out domains that contain increased functional potential within the RNB, and likely results from 
lifestyle-specific expansions of gene families in the RNB compared to the NC genomes. The majority of 
the domains captured in the enriched set were associated with either transporter or regulatory functions. 
A role in microbe-host interactions may be postulated for many - for example, a PF13407 (periplasmic 
binding protein domain) candidate in E. meliloti (MocB) is involved in the uptake and degradation of a 
nodule-specific compound, rhizopine, which plays an important role in symbiosis48. Also, many of the 
candidate genes for this Pfam - 26 out of 38 PF13407 candidates show > 2X induction in Ensifer meliloti 
transcriptome experiments21. Similarly, PF00211 (adenylate guanylate cyclase domain) candidates show 
significant induction in transcriptomic studies21,23 – these genes are involved in the formation of the 
secondary messengers, cAMP and cGMP49, which are triggered by an unknown plant host signal, and 
involved in establishing infection and symbiosis50–53. Secondary messenger signaling plays a major role 
in coordinating virulence gene expression in animal pathogens, as well as suppressing eukaryal host 
immune responses54. A list of these relatively-enriched candidate Pfams is presented in Supplementary 
Table 5.

In conclusion, we have performed an all-inclusive sequencing and analysis of RNB genomes across 
taxonomic genera, plant host types and biogeographical origins, providing an important scientific 
resource, and identifying a novel repertoire of determinants of the RNB lifestyle, including those with 
potential plant beneficial effects. We anticipate that a more comprehensive understanding of these mech-
anisms will aid the quest to extend N2-fixation to non-legume crops, a goal described as essential for 
future sustainable food production55. An additional outcome is a furthering of our appreciation of the 
role of the RNB in plant growth promotion beyond its known biofertilization effects. Indeed, experimen-
tal validation including quantifying the production and relative contribution of these putative effectors 
of plant growth, relative to the effects of nitrogen fixation, will be very enlightening.

Methods
Sequencing, assembly, annotation.  The draft genomes of RNB strains were generated at the DOE 
Joint Genome Institute (JGI) using Illumina technology56. For all genomes, we constructed and sequenced 
an Illumina short-insert paired-end library with an average insert size of 270 bp. All general aspects of 
library construction and sequencing performed at the JGI can be found at the JGI website (http://www.
jgi.doe.gov). The details of sequencing and assembly of individual genomes are reported in the respective 
genome publications in the Standards in Genome Sciences (http://www.standardsingenomics.org/index.
php/sigen/index).

Genomes were annotated by the DOE-JGI genome annotation pipeline57. Briefly, protein-coding 
genes (CDSs) were identified using Prodigal58, followed by a round of automated and manual cura-
tion using the JGI GenePrimp pipeline59. Non-coding genes and miscellaneous features were predicted 
using tRNAscan-SE60, RNAMMer61, Rfam62. The predicted CDSs were translated and transmembrane 

Figure 3.  Operons encoding putative determinants of plant interaction. Examples of PID Pfam 
candidates (colored green) that are co-localized in a putative operon in E. meliloti strain 2011. Log2 fold 
increase of transcript in the E. meliloti transcriptome experiment21 is shown as green bars above the CDS, 
ranging from 2 to 10. Red bar denotes decrease in transcript abundance in tested condition. Depicted lengths 
of coding sequences are not to scale.

http://www.jgi.doe.gov
http://www.jgi.doe.gov
http://www.standardsingenomics.org/index.php/sigen/index
http://www.standardsingenomics.org/index.php/sigen/index
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regions and signal peptides were predicted using TMHMM63, and SignalP64. Functional annotation 
and additional analyses were performed within the Integrated Microbial Genomes (IMG-ER) platform 
(https://img.jgi.doe.gov/cgi-bin/mer/main.cgi)65 including searches against IMG non-redundant data-
base, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. These data sources were 
combined to assert a product description for each predicted protein. General genome assembly and 
annotation statistics are presented in Supplementary Table 2. All available genomic data and annotations 
may be accessed through the IMG portal (https://img.jgi.doe.gov/cgi-bin/mer/main.cgi).

Statistical analysis of significantly different or “enriched” Pfams in RNB versus control 
sets.  Pairwise comparisons of gene counts for each Pfam for 163 RNB genomes versus 69 control 
genomes (163 * 69 =  11,247 comparisons) were performed. Using Fisher’s Exact Test, Pfams that were 
significantly different in at least 25% of the pairings with a Benjamin-Hochberg P-Value correction cut-
off of < 0.05 were identified. Normalization of gene counts was determined to be unnecessary since no 
consistent correlation between number of Pfam hits per genome and genome size were found. Results of 
this pairwise comparison are presented in Supplementary Table 5.

References
1.	 Glick, B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 963401, doi: 10.6064/2012/963401 

(2012).
2.	 Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annual review of microbiology 63, 541–556, doi: 10.1146/

annurev.micro.62.081307.162918 (2009).
3.	 Howieson, J. G., O’Hara, G. W. & Carr, S. J. Changing roles for legumes in Mediterranean agriculture: developments from an 

Australian perspective. Field Crop Res 65, 107–122, doi: 10.1016/S0378-4290(99)00081-7 (2000).
4.	 Oldroyd, G. E. D., Murray, J. D., Poole, P. S. & Downie, J. A. The Rules of Engagement in the Legume-Rhizobial Symbiosis. Annu 

Rev Genet 45, 119–144, doi: 10.1146/annurev-genet-110410-132549 (2011).
5.	 Lindstrom, K., Murwira, M., Willems, A. & Altier, N. The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. 

Research in microbiology 161, 453–463, doi: 10.1016/j.resmic.2010.05.005 (2010).
6.	 Tauer, L. W. Economic-Impact of Future Biological Nitrogen-Fixation Technologies on United-States Agriculture. Plant Soil 119, 

261–270, doi: 10.1007/Bf02370418 (1989).
7.	 Vance, C. P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. 

Plant physiology 127, 390–397 (2001).
8.	 Rasul, A., Amalraj, E. L., Praveen Kumar, G., Grover, M. & Venkateswarlu, B. Characterization of rhizobial isolates nodulating 

Millettia pinnata in India. FEMS microbiology letters 336, 148–158, doi: 10.1111/1574-6968.12001 (2012).
9.	 Tian, C. F. et al. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes 

in adaptations. Proceedings of the National Academy of Sciences of the United States of America 109, 8629–8634, doi: 10.1073/
pnas.1120436109 (2012).

10.	 Sugawara, M. et al. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five 
genospecies. Genome biology 14, R17, doi: 10.1186/gb-2013-14-2-r17 (2013).

11.	 Kumar, N. et al. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. 
Open Biol 5, doi: Unsp 140133 doi: 10.1098/Rsob.140133 (2015).

12.	 Bruto, M., Prigent-Combaret, C., Muller, D. & Moenne-Loccoz, Y. Analysis of genes contributing to plant-beneficial functions 
in Plant Growth-Promoting Rhizobacteria and related Proteobacteria. Scientific reports 4, 6261, doi: 10.1038/srep06261 (2014).

13.	 Wu, D. et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462, 1056–1060, doi: 10.1038/
nature08656 (2009).

14.	 Reeve, W. et al. A Genomic Encyclopedia of the Root Nodule Bacteria: assessing genetic diversity through a systematic 
biogeographic survey. Standards in genomic sciences 10, 14, doi: 10.1186/1944-3277-10-14 (2015).

15.	 Kyrpides, N. C. et al. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS biology 12, 
e1001920, doi: 10.1371/journal.pbio.1001920 (2014).

16.	 Vavilov, N. I. Centers of origin of cultivated plants. Trends Pract Bot Gener Sel 16, 3–24 (1926).
17.	 Glick, B. R. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS microbiology letters 251, 1–7, 

doi: 10.1016/j.femsle.2005.07.030 (2005).
18.	 Ma, W., Charles, T. C. & Glick, B. R. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in 

Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70, 5891–5897, doi: 10.1128/
AEM.70.10.5891-5897.2004 (2004).

19.	 Reddy, T. B. K. et al. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)
genome project classification. Nucleic acids research 43, D1099–D1106, doi: 10.1093/Nar/Gku950 (2015).

20.	 Finn, R. D. et al. Pfam: the protein families database. Nucleic acids research 42, D222–D230 (2013).
21.	 Roux, B. et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture 

microdissection coupled to RNA sequencing. Plant J 77, 817–837, doi: 10.1111/tpj.12442 (2014).
22.	 Tsukada, S. et al. Comparative genome-wide transcriptional profiling of Azorhizobium caulinodans ORS571 grown under free-

living and symbiotic conditions. Appl Environ Microbiol 75, 5037–5046, doi: AEM.00398-09 (2009).
23.	 Li, Y. et al. High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna 

unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS One 8, e70531, doi: 10.1371/journal.pone.0070531 
(2013).

24.	 Chang, W. S. et al. An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. Mol Plant 
Microbe Interact 20, 1298–1307, doi: 10.1094/MPMI-20-10-1298 (2007).

25.	 Israel, D. W. Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant physiology 84, 835–840 (1987).
26.	 Cha, J. S. & Cooksey, D. A. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. 

Proceedings of the National Academy of Sciences of the United States of America 88, 8915–8919 (1991).
27.	 Puig, S., Rees, E. M. & Thiele, D. J. The ABCDs of periplasmic copper trafficking. Structure 10, 1292–1295 (2002).
28.	 Cooksey, D. A. Copper uptake and resistance in bacteria. Molecular microbiology 7, 1–5 (1993).
29.	 Preisig, O., Zufferey, R., Thony-Meyer, L., Appleby, C. A. & Hennecke, H. A high-affinity cbb3-type cytochrome oxidase 

terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. Journal of bacteriology 178, 1532–1538 (1996).
30.	 Delgado, M. J., Bedmar, E. J. & Downie, J. A. Genes involved in the formation and assembly of rhizobial cytochromes and their 

role in symbiotic nitrogen fixation. Advances in microbial physiology 40, 191–231 (1998).

https://img.jgi.doe.gov/cgi-bin/mer/main.cgi
https://img.jgi.doe.gov/cgi-bin/mer/main.cgi


www.nature.com/scientificreports/

8Scientific Reports | 5:16825 | DOI: 10.1038/srep16825

31.	 Nielsen, K. M., Bones, A. M., Smalla, K. & van Elsas, J. D. Horizontal gene transfer from transgenic plants to terrestrial bacteria–a 
rare event? FEMS microbiology reviews 22, 79–103 (1998).

32.	 Pontiroli, A. et al. Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic 
tobacco. Appl Environ Microbiol 75, 3314–3322, doi: 10.1128/AEM.02632-08 (2009).

33.	 Buttner, D. & Bonas, U. Common infection strategies of plant and animal pathogenic bacteria. Current opinion in plant biology 
6, 312–319 (2003).

34.	 Hardt, W. D. & Galan, J. E. A secreted Salmonella protein with homology to an avirulence determinant of plant pathogenic 
bacteria. Proceedings of the National Academy of Sciences of the United States of America 94, 9887–9892 (1997).

35.	 Lourenco, E. V. et al. Toxoplasma gondii micronemal protein MIC1 is a lactose-binding lectin. Glycobiology 11, 541–547 (2001).
36.	 Muller, J. J., Weiss, M. S. & Heinemann, U. PAN-modular structure of microneme protein SML-2 from the parasite Sarcocystis 

muris at 1.95 A resolution and its complex with 1-thio-beta-D-galactose. Acta crystallographica. Section D, Biological 
crystallography 67, 936–944, doi: 10.1107/S0907444911037796 (2011).

37.	 Blin, K. et al. antiSMASH 2.0–a versatile platform for genome mining of secondary metabolite producers. Nucleic acids research 
41, W204–212, doi: 10.1093/nar/gkt449 (2013).

38.	 Dittrich, H. & Kutchan, T. M. Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to 
the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proceedings of the National 
Academy of Sciences of the United States of America 88, 9969–9973 (1991).

39.	 Raffaele, S., Win, J., Cano, L. M. & Kamoun, S. Analyses of genome architecture and gene expression reveal novel candidate 
virulence factors in the secretome of Phytophthora infestans. BMC genomics 11, 637, doi: 10.1186/1471-2164-11-637 (2010).

40.	 Herbert, R. B. The biosynthesis of plant alkaloids and nitrogenous microbial metabolites. Natural product reports 20, 494–508 
(2003).

41.	 Facchini, P. J., Huber-Allanach, K. L. & Tari, L. W. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, 
regulation, and metabolic engineering applications. Phytochemistry 54, 121–138 (2000).

42.	 Decker, K. & Bleeg, H. Induction and purification of stereospecific nicotine oxidizing enzymes from Arthrobacter oxidans. 
Biochimica et biophysica acta 105, 313–324 (1965).

43.	 Bloemberg, G. V. & Lugtenberg, B. J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current opinion 
in plant biology 4, 343–350 (2001).

44.	 Compant, S., Duffy, B., Nowak, J., Clement, C. & Barka, E. A. Use of plant growth-promoting bacteria for biocontrol of plant 
diseases: Principles, mechanisms of action, and future prospects. Appl Environ Microb 71, 4951–4959, doi: 10.1128/Aem.71.9.4951-
4959.2005 (2005).

45.	 Hammad, Y. et al. A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254, 
193–205, doi: 10.1023/A:1024971417777 (2003).

46.	 Somers, E., Ptacek, D., Gysegom, P., Srinivasan, M. & Vanderleyden, J. Azospirillum brasilense produces the auxin-like 
phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71, 1803–1810, doi: 
10.1128/AEM.71.4.1803-1810.2005 (2005).

47.	 Canova, M. J. & Molle, V. Bacterial serine/threonine protein kinases in host-pathogen interactions. The Journal of biological 
chemistry 289, 9473–9479, doi: 10.1074/jbc.R113.529917 (2014).

48.	 Rossbach, S., Kulpa, D. A., Rossbach, U. & de Bruijn, F. J. Molecular and genetic characterization of the rhizopine catabolism 
(mocABRC) genes of Rhizobium meliloti L5-30. Molecular & general genetics: MGG 245, 11–24 (1994).

49.	 Beuve, A., Boesten, B., Crasnier, M., Danchin, A. & O’Gara, F. Rhizobium meliloti adenylate cyclase is related to eucaryotic 
adenylate and guanylate cyclases. Journal of bacteriology 172, 2614–2621 (1990).

50.	 Tian, C. F., Garnerone, A. M., Mathieu-Demaziere, C., Masson-Boivin, C. & Batut, J. Plant-activated bacterial receptor adenylate 
cyclases modulate epidermal infection in the Sinorhizobium meliloti-Medicago symbiosis. Proceedings of the National Academy 
of Sciences of the United States of America 109, 6751–6756, doi: 10.1073/pnas.1120260109 (2012).

51.	 Catanese, C. A., Emerich, D. W. & Zahler, W. L. Adenylate cyclase and cyclic AMP phosphodiesterase in Bradyrhizobium 
japonicum bacteroids. Journal of bacteriology 171, 4531–4536 (1989).

52.	 Tellez-Sosa, J., Soberon, N., Vega-Segura, A., Torres-Marquez, M. E. & Cevallos, M. A. The Rhizobium etli cyaC product: 
characterization of a novel adenylate cyclase class. Journal of bacteriology 184, 3560–3568 (2002).

53.	 An, S. Q. et al. A cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesis. The EMBO journal 32, 
2430–2438, doi: 10.1038/emboj.2013.165 (2013).

54.	 McDonough, K. A. & Rodriguez, A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nature 
reviews. Microbiology 10, 27–38, doi: 10.1038/nrmicro2688 (2012).

55.	 Charpentier, M. & Oldroyd, G. How close are we to nitrogen-fixing cereals? Current opinion in plant biology 13, 556–564, doi: 
10.1016/j.pbi.2010.08.003 (2010).

56.	 Bennett, S. Solexa Ltd. Pharmacogenomics 5, 433–438, doi: 10.1517/14622416.5.4.433 (2004).
57.	 Huntemann, M. et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). 

Standards in Genomic Sciences 10, 86, 10.1186/s40793-015-0077-y (2015).
58.	 Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC bioinformatics 11, 119, 

doi: 10.1186/1471-2105-11-119 (2010).
59.	 Pati, A. et al. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nature methods 7, 455–457, doi: 

10.1038/nmeth.1457 (2010).
60.	 Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic 

acids research 25, 955–964 (1997).
61.	 Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic acids research 35, 3100–3108, 

doi: 10.1093/nar/gkm160 (2007).
62.	 Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. & Eddy, S. R. Rfam: an RNA family database. Nucleic acids research 

31, 439–441 (2003).
63.	 Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov 

model: application to complete genomes. Journal of molecular biology 305, 567–580, doi: 10.1006/jmbi.2000.4315 (2001).
64.	 Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. Journal of molecular 

biology 340, 783–795, doi: 10.1016/j.jmb.2004.05.028 (2004).
65.	 Markowitz, V. M. et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25, 

2271–2278, doi: 10.1093/bioinformatics/btp393 (2009).

Acknowledgements
We thank Amrita Pati at Roche Molecular Systems for help with gathering Pfams for secondary metabolite 
detection from AntiSMASH and Emiley Eloe-Fadrosh at Joint Genome Institute for assistance with 



www.nature.com/scientificreports/

9Scientific Reports | 5:16825 | DOI: 10.1038/srep16825

illustrations. We also thank the DOE JGI production sequencing, IMG, and Genomes OnLine Database 
teams for their support. This work was conducted by the U.S. Department of Energy Joint Genome 
Institute, a DOE Office of Science User Facility, under Contract No. DE-AC02-05CH11231.

Author Contributions
N.C.K., N.N.I, W.G.R. and T.W. conceived the project. W.G.R., J.K.A., N.C.K., N.N.I. and T.W. collected 
and sequenced the microbial strains. R.S. conceived and executed the analysis plan, N.N.I. and K.T. 
analyzed the data. R.S., N.N.I. and N.C.K. wrote the manuscript and produced tables and figures. All 
authors edited and approved the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Seshadri, R. et al. Discovery of Novel Plant Interaction Determinants from 
the Genomes of 163 Root Nodule Bacteria. Sci. Rep. 5, 16825; doi: 10.1038/srep16825 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Discovery of Novel Plant Interaction Determinants from the Genomes of 163 Root Nodule Bacteria

	Results and Discussion

	Overview of the Project. 
	Predicting Novel Effectors of RNB-plant interaction. 

	Methods

	Sequencing, assembly, annotation. 
	Statistical analysis of significantly different or “enriched” Pfams in RNB versus control sets. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Summary of biogeography and taxonomy of 163 RNB strains analyzed in this study.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Delineating novel plant interaction determinants from 163 RNB genomes.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Operons encoding putative determinants of plant interaction.



 
    
       
          application/pdf
          
             
                Discovery of Novel Plant Interaction Determinants from the Genomes of 163 Root Nodule Bacteria
            
         
          
             
                srep ,  (2015). doi:10.1038/srep16825
            
         
          
             
                Rekha Seshadri
                Wayne G. Reeve
                Julie K. Ardley
                Kristin Tennessen
                Tanja Woyke
                Nikos C. Kyrpides
                Natalia N. Ivanova
            
         
          doi:10.1038/srep16825
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep16825
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep16825
            
         
      
       
          
          
          
             
                doi:10.1038/srep16825
            
         
          
             
                srep ,  (2015). doi:10.1038/srep16825
            
         
          
          
      
       
       
          True
      
   




