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In order to understand why carbon dioxide (CO2) and methane (CH4) molecules interact differently with
surfaces, we investigate the Casimir-Polder energy of a linearly polarizable CO2 molecule and an isotropically
polarizable CH4 molecule in front of an atomically thin gold film and an amorphous silica slab. We quantitatively
analyze how the anisotropy in the polarizability of the molecule influences the van der Waals contribution to the
binding energy of the molecule.
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I. INTRODUCTION

The van der Waals force, and more generally, the Casimir-
Polder force are topics of considerable interest in a wide range
of interdisciplinary subjects from pure to applied sciences
[1]. These forces describe the interaction between two neutral
polarizable objects in nonretarded and retarded limits, respec-
tively. They could play an important role in nanoscale devices
[2,3], stability of trapped Bose-Einstein condensate [4,5],
dynamical Casimir effect and friction [6–10], surface adsorp-
tion [11], etc. For a more comprehensive view of the subject
see [1,12,13].

In this paper we shall investigate the anisotropic
characteristic of the van der Waals and the Casimir-Polder
interactions, which has precursors going back to Axilrod and
Teller in 1943 [14], and Craig and Power in 1969 [15,16].
The anisotropic polarizabilities of the interacting objects lead
to preferential orientation of the atom or molecule above
the surface. This could play a significant role in preferential
adsorption of the molecules such as carbon dioxide (CO2)
and methane (CH4) [17,18].

From previous studies [19,20] we know that an isotropically
averaged CO2 molecule and an isotropic CH4 molecule adhere
to surfaces with very similar van der Waals energies. In the
present paper we generalize this by developing a formalism
to include the effect of anisotropic properties of the atom
or molecule interacting with the perpendicularly anisotropic
surface (see Fig. 1). This has been partially addressed earlier
in [21,22].
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The arrangement of the electron cloud in a CH4 molecule is
such that overall it has zero static dipole moment. This means
that in a uniform electric field the molecule has no preferred
orientation, and the induced dipole is simply formed parallel
to the electric field. That is, the polarizability tensor for CH4

is isotropic even though the molecule is not spherical. The
nonsphericity of the molecule is expressed as anisotropy in
higher order polarizability tensors (quadrupole, octupole, etc.).
A CO2 molecule, on the other hand, is linearly polarizable.
In particular, we study the contribution from anisotropic
polarizabilities to the Casimir-Polder interaction energy of a
CO2 and a CH4 molecule in front of an atomically thin gold
film and an amorphous silica slab. We choose an isotropic
surface (amorphous silica) and an anisotropic surface (gold)
in order to study the effect of anisotropy of the surface on
the interaction as well. The dielectric function of amorphous
silica is calculated using density functional theory (DFT). For
gold, we explore the data of the dielectric function available
in Ref. [23] also based on DFT. The dielectric function data of
gold films of different thicknesses available in this reference
facilitate the study of the variation of the interaction energy
with film thickness.

In Sec. II, we present the formalism of the Casimir-Polder
interaction energy between a completely anisotropic molecule
and a dielectric slab which is anisotropic in the direction
perpendicular to the surface. In Sec. III, we briefly summarize
the method used for the calculation of the dielectric properties
of the slabs. We also briefly describe the procedure used to
obtain the anisotropic polarizabilities of the molecules. The
anisotropic polarizabilities of CO2 and CH4 molecules are
obtained from ab initio calculations [24,25]. Together the
dielectric properties thus obtained are used to determine how
the difference in the nature of polarizabilities of CO2 and
CH4 distinguish their interaction energies near a surface. We
present our results in Sec. IV, and end with a few conclusions
in Sec. V.
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FIG. 1. (Color online) Left: Schematic figure of an anisotropi-
cally polarizable molecule above a dielectric slab. Right: Schematic
figure showing the anisotropy of the CO2 molecule and the isotropy
of the CH4 molecule in their polarizabilities.

II. FORMALISM

Consider an anisotropically polarizable molecule described
by a frequency dependent molecular polarizability

α(ω) = α1(ω)ê1ê1 + α2(ω)ê2ê2 + α3(ω)ê3ê3, (1)

at a distance a above an anisotropically polarizable dielectric
slab of thickness d. The dielectric slab is described by dielectric
permittivity

ε(ω) = ε⊥(ω)1⊥ + ε‖(ω)ẑẑ, (2)

where ⊥ components are in the x-y plane containing the
dielectric slab and the ‖ component is normal to the surface
of the slab (see Fig. 1). For an isotropic material such as
amorphous silica, we can set ε⊥ = ε‖. Magnetic permeabilities
for both the molecule and the dielectric slab are set to 1.

Here, the principal axes of the molecule are

ê1 = cos β θ̂ + sin β φ̂, (3a)

ê2 = − sin β θ̂ + cos β φ̂, (3b)

ê3 = r̂, (3c)

where β is the rotation about the unit vector ê3, and r̂, θ̂ , and
φ̂ are the unit vectors in the spherical polar coordinates,

r̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ, (4a)

θ̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ, (4b)

φ̂ = − sin φ x̂ + cos φ ŷ. (4c)

Our configuration with an anisotropic molecule above a
dielectric slab with isotropic polarizability in the x-y plane
renders the interaction energy independent of φ. The inter-
action energy, neglecting quadrupole and higher moments, at
zero temperature in the Fourier transformed space is

E = −�c

∫ ∞

−∞

dζ

c

∫ ∞

0

k⊥dk⊥
2π

∫ 2π

0

dφk

2π

e−2κa

2κ
I (iζ ), (5)

which is a generalization of the result given in Ref. [21]. The
details of the derivation leading to Eq. (5) has been omitted
for brevity. Here,

I (iζ ) = rH [κ2(k̂⊥ · α · k̂⊥) + k2
⊥(ẑ · α · ẑ)]

− rEζ 2[(ẑ × k̂⊥) · α · (ẑ × k̂⊥)]. (6)

The particular choice of (k̂⊥,ẑ × k̂⊥,ẑ) basis facilitates
separation of TM (transverse magnetic) and TE (transverse
electric) modes. Specifically,

k̂⊥ = cos φk x̂ + sin φk ŷ, (7a)

ẑ × k̂⊥ = − sin φk x̂ + cos φk ŷ. (7b)

rH and rE are the reflection coefficients for TM and TE modes:

rH = −
(

κ̄H − κ

κ̄H + κ

)
(1 − e−2κH d )[

1 − (
κ̄H −κ
κ̄H +κ

)2
e−2κH d

] , (8a)

rE = −
(

κE − κ

κE + κ

)
(1 − e−2κEd )[

1 − (
κE−κ
κE+κ

)2
e−2κEd

] , (8b)

where

κH =
√

k2
⊥

ε⊥

ε‖ + ζ 2

c2
ε⊥, κ̄H = κH

ε⊥ , (9a)

κE =
√

k2
⊥ + ζ 2

c2
ε⊥, κ =

√
k2
⊥ + ζ 2

c2
. (9b)

The interaction energy after performing the φk integration is

E = −�c

∫ ∞

−∞

dζ

c

∫ ∞

0

k⊥dk⊥
2π

e−2κa

2κ

{
k2
⊥rHα3

+
(

ζ 2

c2
(rH − rE) + k2

⊥rH

)(
α1 + α2

2

)

+ 1

2

(
ζ 2

c2
(rH − rE) − k2

⊥rH

)

×
[
α3 − α1 + α2

2
+

(
α2 − α1

2

)
cos 2β

]
sin2 θ

}
, (10)

where we have suppressed the frequency dependence. The
orientation dependence appears only in the last term, which
vanishes for θ = 0 and π .

A. Validity of weak approximation

The energy calculated in Eq. (10) is valid in the weak
approximation, which was described in [21,22]. The validity
of the weak approximation is decided by convergence of the
series of the logarithm in the multiple scattering formula
for the interaction energy. This series is in essence captured
by defining an effective polarizability of an atom above the
plate [10]

αeff = α − 1
2α · � · α + · · · , (11)

where � is Green’s dyadic for the dielectric slab [21] and
α is the atomic polarizability defined in Eq. (1). To get an
estimate of the validity of our approximation we note that at
low frequencies the TM mode dominates

� ∼ 1

16πa3

ε − 1

ε + 1
, (12)

where (ε − 1)/(ε + 1) ≈ 1 at low frequency. Our approxima-
tion involves keeping only the first term in Eq. (11), which is
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valid if
(

α

16π

)1/3

∼ a. (13)

For a typical value of the atomic polarizability used in this

paper, α ∼ 4 Å
3
, we can check that the separation distance

should be larger than 0.4 Å. However, the continuum picture
is not valid at such short distances. Consequently, we would
only expect our result to be meaningful at distances above
some angstroms, or ζn > 0.1. (1 a.u. corresponds to 100 Å).

B. Perfect conductor limit

In the retarded (Casimir-Polder) regime, the molecular
polarizability gets contribution from its static value at zero fre-
quency. The perfect conductor limit (rH → 1 and rE → −1)
in this retarded regime reproduces the known result for the
Casimir-Polder energy between an anisotropic molecule and a
perfectly conducting slab:

E = −�c
α1 + α2 + α3

8πa4
, (14)

where the last term in Eq. (10) uniformly integrates to zero.
Thus, in this case the orientation of the molecule has no effect
on the interaction energy.

C. Temperature dependence

To account for the temperature (T ) dependence, we simply
replace the integration over imaginary frequencies by a
summation over discrete Matsubara frequencies ζn [26,27],

E = −2kBT

∞∑
n=0

′
∫ ∞

0
dk⊥k⊥

e−2κa

2κ
I (iζn), (15)

where ζn = 2πnkBT /�, kB is the Boltzmann constant, and the
prime indicates that the n = 0 term should be divided by 2.
I (iζn) is given by Eq. (6), with ζ replaced by ζn.

D. Nonretarded limit

In the nonretarded London–van der Waals limit ζca 	 1,
where ζc is some characteristic frequency of the polarizability
or permittivity, we can omit the frequency dependence except
in the material properties. Then, the finite temperature inter-
action energy between an anisotropic molecule at a distance a

above an isotropic half-space Eq. (10) turns out to be

ENR = −2kBT

∞∑
n=0

′
∫ ∞

0
dk⊥k2

⊥�e−2k⊥a

{
α3 +

(
α1 + α2

2

)

− 1

2

[
α3 − α1 + α2

2
+

(
α2 − α1

2

)
cos 2β

]
sin2 θ

}
,

(16)

using rH → � = (ε − 1)/(ε + 1) and rE → 0, where � and
αi are functions of ζn = 2πnkBT /�. This energy is propor-
tional to 1/a3.

III. DIELECTRIC FUNCTION AND POLARIZABILITY

All calculations for amorphous silica were carried out
using the Vienna ab initio simulation package (VASP) with
the Perdew-Burke-Ernzerhof (PBE) [28] functional. Projec-
tor augmented wave pseudopotentials [29,30] were used to
model the effect of core electrons. The nonlocal parts of
the pseudopotentials were treated in the real space for the
Born-Oppenheimer molecular dynamics (BOMD) and in the
reciprocal space for all other DFT calculations. The structure of
amorphous silica was generated using the BOMD simulations
of a 72-atom supercell with different annealing-quenching
temperature protocols similar to earlier studies [31,32]. The
dielectric properties of amorphous silica were then calcu-
lated using the scissors-operator approximation (� = 3.6) for
PBE calculations. The dielectric function on the imaginary
frequency axis was determined using the Kramers-Kronig
dispersion relation. The low-energy spectra are verified by
calculating the static dielectric constants from the Born
effective charges. The static dielectric constant was found to
be 4.08 ± 0.11. The details of the calculations of anisotropic
dielectric functions for gold sheets were presented by Boström
et al. in Ref. [23]. We plot the parallel and perpendicular di-
electric constants as defined in Eq. (2) of different thicknesses
of gold films, and of amorphous silica in Fig. 2.

The anisotropic polarizability tensors at imaginary frequen-
cies for CO2 and CH4 were calculated using the quantum
chemistry package MOLPRO [33]. Calculations were performed
at the coupled clusters, singles and doubles (CCSD) level of
theory. The correlation-consistent aug-cc-pVQZ basis set [34]
was used. The geometries of the molecules were first optimized
by energy minimization before being used in polarizability
calculations. All calculations were done at room temperature.
The polarizabilities were calculated in free space. It is plausible
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FIG. 2. (Color online) The perpendicular and parallel dielectric
constants for N = 1, 3, 6, and 15 atomic layers of gold, and for an
amorphous silica slab (written as a-SiO2 in the figure) in terms of
the Matsubara frequencies. The perpendicular components of the
3-, 6-, and 15-atomic-layer-thick gold films almost overlap. The
dielectric constants at zero frequency are shown on the y axis.
1 a.u. = 6.57968×1015Hz = 27.212 eV.
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FIG. 3. (Color online) The anisotropic polarizabilities of CO2

and CH4 in units of Å
3

in terms of the Matsubara frequencies. The
zero frequency polarizabilities are indicated on the y axis. Note that
CO2 is much more polarizable in the parallel direction.

that proximity to a surface may induce some distortion of
the electron cloud of the molecule, introducing a degree of
anisotropy into the dipolar polarizability. The degree of any
such surface-induced anisotropy is likely to be small compared
with the native anisotropy found in molecules such as CO2.
This is supported by the estimate given in Sec. II A. We show
the anisotropic polarizabilities of CO2 and CH4 molecules
in Fig. 3.

IV. NUMERICAL RESULTS

For a linear molecule such as CO2, the two most notable
configurations are the parallel and perpendicular orientations
with respect to the dielectric slab, and we are interested in the
change in interaction energies in going from one orientation to
the other. By parallel orientation, we refer to the configuration
in which ê3 is aligned along ẑ, while perpendicular orientation
refers to the case when they make an angle θ = π/2. A CO2

molecule has anisotropy in one direction in its diagonal basis
as shown in Fig. 3. Thus, choosing ê3 along the unique linear
axis of the molecule, it is obvious from Eq. (10) that there is no
β dependent term in the interaction energy. In this particular
choice of axes, the unique linear axis of the CO2 molecule is
perpendicular to the surface when θ = 0 (parallel orientation)
and parallel to the surface when θ = π/2 (perpendicular
orientation). The curves in Fig. 4 show the Casimir-Polder
interaction energies of a CO2 and a CH4 molecule for different
θ orientations placed at a distance of 10 Å from an amorphous
silica slab. As expected, a methane molecule being highly
isotropic shows no change in energy with change in θ . A
CO2 molecule, on the other hand, exhibits a slight change
in the interaction energy at different orientations. The curve
in Fig. 4 shows that the CO2 molecule has lower energy
at the parallel orientation (θ = 0) than at the perpendicular
orientation (θ = π/2) near an amorphous silica slab. Thus, the
molecule is most stable when its unique linear axis is aligned

0 0.5 1 1.5
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−0.052

−0.05

−0.048

−0.046

−0.044

−0.042

−0.04

θ (rad)

E
(k

B
T

)

CO2 near a-SiO2

CH4 near a-SiO2

a = 10 Å

FIG. 4. (Color online) Comparing the interaction energies of
CO2 and CH4 molecules at a distance of 10 Å from an amorphous
silica slab with respect to θ orientation. We refer to the configuration
θ = 0 as the parallel orientation and θ = π/2 as the perpendicular
orientation. All energies are in units of kBT .

perpendicular to the slab. Irrespective of their orientations, the
magnitude of the energy is larger for a CO2 molecule than for
a CH4 molecule. These interaction energies are, however, very
small compared to kBT . They become comparable when the
molecule is very near the surface (see insets of Figs. 6 and 7).
It should be noted that the dielectric continuum picture of our
model breaks down at the small distance limit (roughly below
10 Å). A more rigorous quantum chemistry calculation will
be required to take into account the effects due to surface,
bonding, etc.

To make an estimate within our model with regard to the
observed preference of CO2 over CH4 molecules in surface
adsorption, we calculate the energy of a system consisting of
an amorphous silica slab with CO2 molecules in the parallel
orientation at, say, 8 Å and CH4 molecules at, say, 5 Å from
the slab mimicking the condition when the CO2 gas is being
injected. We then consider the reverse system when the CO2

molecules are at 5 Å and CH4 molecules at 8 Å. The difference
in the interaction energies between the two configurations is
0.078kBT , which is roughly 18% compared to the energy in
the first configuration. Thus, the second system with CO2 near
the surface is more favorable. As stated earlier, at such small
separation distances there would be considerable contributions
to the interaction energy from other effects.

In Fig. 5, we plot curves for the variation of molecule-
surface interaction energy with respect to θ for a CO2 molecule
near gold films of different thicknesses. As can be observed
from the figure, thicker films give larger magnitudes of
interaction energies. Only the interaction energy with the one-
atomic-layer-thick gold film displays appreciable difference in
comparison with the energy curve for N = 15 atomic-layer-
thick gold film while the interaction energies with the three
and six-atomic-layer-thick gold films gradually approach that
of 15-atomic-layer-thick gold film. From Figs. 4 and 5, we
can see that the trends of the energy curves are alike but
the molecules have energies larger in magnitude for a gold
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FIG. 5. (Color online) Interaction energies in units of kBT of
a CO2 molecule for different θ orientations near gold films of
N -atomic-layer thickness. The corresponding energies for a CH4

molecule are −57.9, −77.8, −84.8, and −87.8 in units of 10−3kBT

for N = 1, 3, 6, and 15, respectively.

film compared to the 100-Å-thick amorphous silica. We also
provide the corresponding energies for a CH4 molecule near
gold films of varying thickness in the caption of Fig. 5.

In Fig. 6, we fix the CO2 molecule in the parallel and
perpendicular orientations and plot the interaction energy with
respect to separation distance from the amorphous silica slab
on a logarithmic scale. The energy curve for CH4, which is ori-
entation independent, is also shown. A small difference in the
energy curves for the parallel and perpendicular orientations is
observed for a CO2 molecule. The interaction energy is larger

101 102
−100

−10−1

−10−2

−10−3

−10−4

a (Å)

E
(k

B
T

)

3 4 5 6

−2

−1.5

−1

−0.5

CO2, θ = 0

CO2, θ=π/2

CH4

FIG. 6. (Color online) Comparing the interaction energies (in
units of kBT ) of CH4 and CO2 molecules at the parallel (θ = 0)
and the perpendicular (θ = π/2) orientations at a varying distance
from an amorphous silica slab. The interaction energy for a methane
molecule is independent of θ orientation. The inset figure shows
the small distance limit. The axis labels and the legends of the outer
figure hold for the inset figure as well.
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FIG. 7. (Color online) Same as in Fig. 6, but for a 15-atomic-
layer-thick gold film.

in magnitude for a CO2 molecule than for a CH4 molecule
at all separation distances from the slab owing to greater
polarizabilities of a CO2 molecule. The curves follow the 1/a3

dependence of the nonretarded approximation (16) up to a
separation distance of a few angstroms, and gradually deviate.
The inset figure shows the interaction energy in the small
molecule-slab separation distance limit (on a linear scale).
Figure 7 shows similar curves near a 15-atomic-layer-thick
gold film.

V. CONCLUSIONS

In this work, we present a generalized expression for the
interaction energy between a completely anisotropic molecule
and a dielectric slab polarizable in the direction perpendicular
to the surface. Applying this to the specific case of a linearly
polarizable CO2 molecule and an isotropically polarizable
CH4 molecule, we show that anisotropy influences the van
der Waals energy to a small degree. The parallel orientation
(θ = 0) is more favored in comparison to the perpendicular
orientation (θ = π/2) in the case of a CO2 molecule. In
subsequent studies, it will be interesting to incorporate the
effects of finite size of the molecule in which one has to
carefully consider different radii of the anisotropic molecule in
different directions for determination of the interaction energy
for different orientations; in other words, go beyond the dipole
approximation. Very recently, Bimonte et al. pointed out the
importance of the role of the curvature of the surface on
preferred orientation of the particle [35]. In the future, we
hope that it will prove possible to transcend the limitations of
the continuum approximation, to get more reliable estimates
of Casimir-Polder energies at very short distances than we can
provide here.
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