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Abstract
In this paper, a new approach is developed for robust control of nonlinear chemical processes. The methodology proposed
is based on passivity theory. Uncertainty and perturbations are taken into account in the stability analysis and controller
synthesis such that the resulting closed-loop system can achieve better robustness and performance. The suggested
passivity framework can deal with a large class of uncertainties and perturbations in chemical processes.

Keywords
Process control, Passivity, Robust control

Introduction

The effective control of process plants using high per-
formance control systems must consider both stability
and performance in the face of uncertainty - the so
called robust control problem. Many modern robust
control methods are based on finite gain (H∞) control
theory. However, finite gain designs can be overly con-
servative for some uncertain systems because it ignores
phase information of the feedback systems (Sakamoto
and Suzuki, 1996).

Recent work on robust control design has employed
the concept of passivity(Bao et al., 1999). Often robust
stability of a system can be determined by evaluating
passivity of a subsystem. Many uncertain systems can
be converted into equivalent interconnected feedback sys-
tems which consist of a linear block and possibly a non-
linear and/or time-varying block. By studying the pas-
sivity of the interconnected systems, sufficient stability
conditions can be derived for the original uncertain sys-
tems. Specifically, if the linear block is strictly passive
and the nonlinear block is passive, then the original un-
certain system is robustly stable.

In general, the nonlinear block of the interconnected
system can be classified into four types: 1. Non-passive;
2. Near-passive; 3. Passive; and 4. Over-passive. It
is very difficult to guarantee robust stability and robust
performance if the nonlinear block is strictly non-passive.
In order to apply passivity theory, it is necessary that the
nonlinear is at least near passive.

However, it is not always straightforward or advanta-
geous to combine all of the uncertainties into the nonlin-
ear block. It is sometimes desired to leave some bounded
uncertainties, for example, linearization errors, to the
linear block such that the nonlinear block is passive or
near-passive. It may be relatively simple to guarantee
that the linear block with the bounded uncertainties is
robust strictly passive.

This paper deals with robust stability and control
design using the passivity approach. Near-passive and
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Figure 1: Interconnected feedback system.

over-passive uncertain blocks are considered for the non-
linear block, while the the linear block may also contain
uncertainty. A methodology for robust stability criteria
and controller synthesis is proposed. The results pre-
sented in this work provide better robust stability and
system performance for those systems that have a over
passive nonlinear block or contain other uncertainties in
the linear block. Two examples are presented to high-
light the benefits of the proposed approach.

Preliminaries

Consider the feedback system depicted in Figure 1, where
P is a linear system and ∆ represents a nonlinear/time-
varying uncertainty.

The passivity concept is closely related to energy in an
interconnected feedback system. For stability analysis,
inputs r and d can be set to zero. For such a system,
stability results can be established by observing energy
consumption in the feedback loop. Let us assume that
there is an abnormal energy burst occurring in the feed-
back loop. If the uncertain block ∆ is passive, then at
least this block does not inject energy into the feedback
loop. In addition, if the linear block P is strictly pas-
sive, it means that this block absorbs energy. As there is
no energy injection into the feedback loop, it is expected
that energy in the feedback loop will be finally consumed
by blocks ∆ and P, and hence stability is maintained.
Technical details about the passivity approach can be
found in Desoer and Vidyasagar (1975).

In the sequence, we call ∆ block near passive if it is not
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Figure 2: Transformed feedback system.

passive, but is close to being passive. Similarly, we call
∆ over passive if it remains passive even under certain
additive perturbation.

When ∆ is near passive, transforms (Desoer and
Vidyasagar, 1975; Xie et al., 1998) can be applied on
the interconnected system to render the transformed ∆
block passive, as depicted in Figure 2. Similarly, trans-
forms can also be applied to reduce conservatism if ∆
is over passive. In both cases, stability analysis are per-
formed on the feedback system with two transformed
blocks.

Methodology

In general, there is no unique way to find the transform
T. If ∆ is linear time-invariant and near passive, then
the easiest way to find T is to use the passivity index
v(∆) (Bao et al., 1999) such that T = v(∆)I and T + ∆
is passive. If ∆ is over passive, then it is always possible
to set T = βI where β can be any scalar such that T +∆
is still passive. A general form for T when ∆ is over
passive can be found in Xie et al. (1998).

Once the transformed ∆ block is rendered passive, a
controller can be synthesized to render the other trans-
formed block strictly passive.

A nonlinear chemical process can be represented by
the diagram in Figure 3, where ∆1 is generally used to
represent the output sensor errors or neglected high fre-
quency dynamics for the process, Pp is the linearized
model for the process at a specific operating point, and
K is a controller. However, due to nonlinearity and un-
known perturbations, a better model for the process may
be Pp(∆2), where ∆2 represents all of the uncertainties
which are not absorbed by ∆1. Note that ∆2 can always
be set to zero if the linearized model Pp is relatively ac-
curate. In this case, further constraints can be manually
imposed on ∆1 to cope with the influence of omitting
∆2 (Bao et al., 1999). It can be viewed as a special case
under the framework of Figure 3.

For stability analysis, it is assumed that r(t) = 0. It
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Figure 3: Diagram of a typical chemical process.
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Figure 4: System diagram after ‘pulled out’ uncer-
tainty.

is easy to check that for the special case ∆2 = 0, Figure
3 is equivalent to Figure 1 with ∆ = ∆1 and

P = −PpK(I + PpK)−1.

In general, the uncertainties ∆1 and ∆2 can be ‘pulled
out’ to form an interconnected feedback system (see, for
examples, Zhou et al., 1996), as depicted in Figure 4. We
use operator matrix P1 to denote the remaining linear
system after ‘pulled out’ uncertainties.

If ∆1 is passive, a controller can be synthesized for
the low half part with input ξ1(t) and output z1(t) to
render it robustly strictly passive. The same controller
also guarantees that the closed-loop system in Figure 3
is robustly stable.

If ∆1 is near passive or over passive, a transform T

can be applied to ∆1 and the low half part in Figure 3,
as shown in Figure 5. Note that T is set to T = βI for
both near passive and over passive in this paper, and
β ≥ v(∆1) for the near passive case.

The transformed feedback system can be viewed as an
interconnection of two transformed blocks, namely, ‘Pas-
sive Uncertainty’ block with input z(t) and output ξ(t)
and ‘System’ block with input ξ(t) and output z(t), as
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Figure 5: Transformed feedback system.

shown in Figure 5. K only needs to render the ‘System’
block robustly strictly passive.

The ‘System’ block can be described in the following
state-space form:

ẋ(t) = A(β)x(t) + B(β)u(t) + H1ξ(t) + H2ξ2(t)
y(t) = C(β)x(t) + D(β)ξ(t)
z(t) = E11x(t) + E12u(t) + E13ξ(t)

z2(t) = E21x(t) + E22u(t) + E23ξ(t)

(1)

where x(t) ∈ Rn is the state, y(t) ∈ Rm is the measured
output of the process, u(t) ∈ Rr is the manipulated in-
put to the process. Vectors ξ(t) and z(t) can be viewed
as the input and output of the ‘System’ block. Map-
ping z2(t) → ξ2(t) describes the uncertainty ∆2. This
mapping can be very general, for example, it can be rep-
resented using integral quadratic constraints (IQCs) (see
Boyd et al., 1994, for details). It has been shown that
time delay uncertainties in systems can be represented
by IQCs (see Xie et al., 1998, for details). However,
to represent the linearization errors for a chemical pro-
cess, it is often sufficient to set E22 = 0, E23 = 0 and
ξ2(t) = ∆2(t)z2(t) where ‖∆2(t)‖∞ ≤ 1.

β is a constant scalar. Although β can be pre-selected
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Figure 6: A mixing system.

based on the passivity index, we intentionally leave it
intact as a design parameter. A β dependent controller
can be synthesized, and then an iterative procedure or
quasi-convex optimization can be applied to find the sub-
optimal β which preserves the passive property of the
‘Passive Uncertainty’ block while achieving the best per-
formance for the closed-loop system.

Based on the discussion above, we arrive at the follow-
ing result:

Theorem 1 If there exists a controller u = Ky which
renders system (1) robustly strictly passive, then the
same controller guarantees that the closed-loop system
shown in Figure 3 is robustly stable.

Results are available in the literature to synthesize
controller u = Ky such that system (1) is robustly
strictly passive. We omit the details in this paper due
to page limitations. The interested readers may refer to
Xie and Soh (1995) and the references therein.

Justification in Chemical Processes

In this section, we consider two examples. The main
purpose of this section is to justify the framework pro-
posed above for chemical processes. The details of the
two examples are deleted for clarity.

The first example is a mixing system adopted from Bao
et al. (1999). The well-stirred tank is fed with two inlet
flows with flowrates F1(t) and F2(t). Both inlet flows
contain the same dissolved material with concentrations
c1 and c2 respectively. The outlet flowrate is F (t). F1(t)
and F2(t) are manipulated to control both F (t) and the
outlet concentration c(t).

It was assumed in Bao et al. (1999) that inlet con-
centration disturbances cause the nominal plant trans-
fer matrix P̂ (s) to be shifted to P (s). It was shown
that the control problem can be described by Figure 3
with a near passive ∆1(s) = (P (s) − P̂ (s))P̂−1(s) and
Pp(∆2) = P̂ (s). Following the settings in Bao et al.
(1999), it is straightforward to verify that the feedback
system in Bao et al. (1999) is equivalent to Figure 5 with
E13 = 0, E21 = 0, E22 = 0 and E23 = 0 in (1). As (1)
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is reduced to a linear system with no uncertainty in this
case, standard passivity synthesis procedure can be ap-
plied to (1) to design the controller u = Ky.

It is also easy to show that ∆1(s) = (P (s) −
P̂ (s))P̂−1(s) can be over passive under different inlet
concentration disturbances.

Next, we consider the stability problem of a CSTR.
The component and energy balances for a CSTR with
jacket cooling and first order irreversible exothermic re-
action A → B are:

dC

dt
=

F

V
(C0 − C)− kC

dT

dt
=

F

V
(T0 − T ) +

∆H

ρcp
kC − UAr

V ρcp
(T − TC)

where V is tank volume, F is feed flowrate, C0 is feed
concentration, C is outlet concentration, V is heat trans-
fer coefficient, ρ is density, cp is specific heat, T is reactor
temperature, T0 is feed temperature, ∆H is exothermic
heat of reaction, U is heat transfer coefficient, Ar is heat
transfer area from jacket to reactor, and TC is cooling
water temperature. k is defined by Arrhenius relation
k = k0e

− E
RT where k0 is a rate coefficient factor, E/R

is a activation energy factor. The measured variables
are outlet concentration C and reactor temperature T ,
and the manipulated variables are feed flowrate F and
cooling water temperature TC .

The component and energy balance equations are lin-
earized at a specific operating point to obtain two linear
differential equations. If there is no feed perturbation,
then linearization errors for the two balance equations
depend on the state variables C and T only. It was shown
in Doyle III et al. (1989) that if the linearization errors
are conic-sector bounded, then the process description
can be given by

ẋ(t) = (A + ∆2A1)x(t) + Bu(t)
z1(t) = Cx(t)

where ∆2 is a bounded matrix.
However, the above plant description is obtained by

assuming that the measurements are perfect. The mea-
surement errors may be not significant when the process
is operating at steady state. However, the instrument
measurement response can often be important in the
overall system response in the transition period (Myl-
roi and Calvert, 1986), or when the process is operat-
ing under the influence of uncertainty and perturbations.
Therefore, the true measured output y(t) is not identical
to z1(t) in the above process description.

For simplicity, it is assumed that both temperature
and concentration measurements can be represented by
first-order lag models 1/(τT s + 1) and 1/(τCs + 1)
where τT and τC are time constants which may change
due to the variations in the unit inputs (Mylroi and
Calvert, 1986). Therefore, the measured output is
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Figure 7: Control errors of outlet concentration for
the mixing system.

y = diag{1/(τT s + 1), 1/(τCs + 1)}z1. In the frame-
work of Figure 3, this leads to an uncertain ∆1 =
diag{−τT s/(τT s + 1),−τCs/(τCs + 1)}. It can be easily
verified that ∆1 is a near passive block and the passive
index v(∆1) = 1. Similarly, it is straightforward to see
that the CSTR case fits into the framework of Figure 5
with β = 1, E12 = 0, E13 = 0, E22 = 0 and E23 = 0.
These four matrices can be non-zero, for example, if there
is a disturbance on the feed flowrate F .

Furthermore, it is possible to convert a multi-model
control problem for multi-unit chemical processes in Lee
et al. (2000) into a passivity framework shown in Fig-
ure 5. The passivity based multi-model approach will be
addressed in a subsequent paper.

Illustrative Examples

We again consider the stability problem of the two ex-
amples mentioned above.

The first example verifies that over passive uncertainty
needs to be properly addressed in order to reduce con-
servatism. This example takes the mixing system dis-
cussed in Bao et al. (1999). Differing slightly from (Bao
et al., 1999), it is assumed that the c1(t) changes from
0.5kmol/m3 to 1.0kmol/m3 while c2(t) changes from
2.0kmol/m3 to 3.0kmol/m3. Rest of the values follow
exactly as those in (Bao et al., 1999). Following the same
procedure, it is easy to verify that ∆1 block is over pas-
sive. Two passivity based designs were carried out. As
∆1 is already passive, design based on conventional pas-
sivity approach only renders the nominal system P̂ (s)
strictly passive. Design based on the proposed frame-
work first renders ∆1(s) passive by transform βI where
β is negative, then a controller is synthesized to render
the ‘System’ block strictly passive.

It is also assumed that at the 5th minute both c1 and
c2 change simultaneously, c1 decreases from 1kmol/m3



402 Huaizhong Li, Peter L. Lee and Parisa A. Bahri

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

T
em

pe
ra

tu
re

 C
ha

ng
e

H
∞
 Design

Passivity Design I
Passivity Design II

Figure 8: Closed-loop simulation results for the
CSTR.

to 0.5kmol/m3 and c2 increases from 2kmol/m3 to
3kmol/m3. Simulations shown in Figure 7 verifies that
the proposed design is less conservative. The only pur-
pose of this example is to show that conservatism can be
further reduced in the over passive case by simply ap-
plying a loop transform, therefore, simulation results are
less dramatic as uncertainty ∆2 = 0 in this case.

Our second example demonstrates the advantage of
the framework proposed in this paper. This example uses
the CSTR mentioned above. It is assumed that there
are linearization errors and perturbations on the feed
flowrate F , feed concentration C0 and feed temperature
T0, as well as first-order measurement dynamics. The
object is to design a controller such that the system is
stable under feed perturbations, measurement dynamics
and linearization errors. The details of the example have
to be omitted due to space limitations.

Similar to Bao et al. (1999), a standard H∞ design
was carried out for comparison purpose. The H∞ design
assumes that there are no measurement dynamics.

Two passivity based design were studied, namely, Pas-
sivity Design I and Passivity Design II. Passivity Design
I is similar to the one in Bao et al. (1999) by assuming
that there are no measurement dynamics. The process
was only perturbed by the feed perturbations which lead
to a near passive ∆1 in Figure 3. Similar to Bao et al.
(1999), linearization error was partially taken into ac-
count by the ∆1 block. However, unlike the procedure
in Bao et al. (1999), frequency weighting was not used
for simplicity. Passivity Design II uses the methodol-
ogy proposed in this paper. There was no specific as-
sumption on perturbation, linearization errors or mea-
surement dynamics as those imposed in the H∞ design
and the Passive Design I. Similar to Passive Design I,
frequency weighting was not used. However, it should
be stressed that frequency weighting can be adopted for

all three designs to further improve performance.
Three controllers were synthesized using the three de-

sign methods. They were then applied to the nonlinear
component and energy balance model to simulate the be-
haviour of the closed-loop system. It was assumed that
simultaneously feed perturbations occur at t = 1min af-
ter the closed loop reached steady state. Figure 8 shows
the control errors of the reactor temperature correspond-
ing to the three controllers. It can be observed that the
H∞ controller performs worse with a steady state offset
and longer transition period, and the Passivity Design II
controller is the best.

Conclusion

A new methodology is proposed in this paper to deal
with robust stability analysis and controller synthesis of
nonlinear chemical processes. The proposed approach is
based on passivity theory which may be less conservative
than the commonly used H∞ approach in robust control.
The framework used in this paper enables the consider-
ation of near passive and over passive uncertainties in a
unified way, and also allows a larger class of uncertainties
existing in the chemical processes.
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