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Abstract 
There is a need to develop a greater understanding of temperature at the skin-seat interface during 

prolonged seating from the perspectives of both industrial design (comfort/discomfort) and medical 

care (skin ulcer formation). Here we test the concept of predicting temperature at the seat surface and 

skin interface during prolonged sitting (such as required from wheelchair users). As caregivers are 

usually busy, such a method would give them warning ahead of a problem. This paper describes a 

data-driven model capable of predicting thermal changes and thus having the potential to provide an 

early warning (15- to 25-minute ahead prediction) of an impending temperature that may increase the 

risk for potential skin damages for those subject to enforced sitting and who have little or no sensory 

feedback from this area.  

Initially, the oscillations of the original signal are suppressed using the reconstruction strategy of 

empirical mode decomposition (EMD). Consequentially, the autoregressive data-driven model can be 

used to predict future thermal trends based on a shorter period of acquisition, which reduces the 

possibility of introducing human errors and artefacts associated with longer duration “enforced” sitting 

by volunteers. In this study, the method had a maximum predictive error of <0.4 oC when used to 

predict the temperature at the seat and skin interface 15 minutes ahead, but required 45 minutes data 

prior to give this accuracy. Although the 45 minutes front loading of data appears large (in proportion 

to the 15 minute prediction), a relative strength derives from the fact that the same algorithm could be 

used on the other 4 sitting datasets created by the same individual, suggesting that the period of 45 

minutes required to train the algorithm is transferable to other data from the same individual. This 

approach might be developed (along with incorporation of other measures such as movement and 

humidity) into a system that can give caregivers prior warning to help avoid exacerbating the skin 

disorders of patients who suffer from low body insensitivity and disability requiring them to be 

immobile in seats for prolonged periods. 

 

Keywords: temperature prediction; prolonged sitting; EMD filter; autoregressive data-driven model 
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1. Introduction 

 

Research interest in seat design and comfort evaluation has seen continued growth owing to the 

considerable amount of time being spent on sitting, both at home and in the office [1]. Nowhere is this 

more important than in relation to those people who have lost access to their natural feedback mechanisms 

which would warn them of impending skin damage due to hypoxia (compressed blood flow), hyper-

humidity and high temperature. Currently, however there seems to be little consistency in the 

methodologies employed to investigate this area. Most research effort appears to be spent on design of the 

seat rather than on developing an understanding of the physiological issues related to patients with sensory 

deficits or using sensor-based systems as a replacement for neurological deficit. Hampering this further, 

the relationship between objectively measured parameters and the qualitative domain of 

comfort/discomfort are still unclear. 

It is obvious that the thermal properties (heat absorption and dissipation) of a cushion can play a vital 

role in the evaluation of sitting comfort [1-4]. However, thermal characteristics might also have a bearing 

on tissue viability and as a consequence the likelihood of skin ulcer formation [5]. Interestingly, the effect 

of increased temperature due to sitting does not just affect skin viability; lesser changes in temperature can 

also cause more subtle changes. What might otherwise be considered as insignificant changes in 

temperature might contribute to the decrease in both semen quality and quantity; indeed increases in 

scrotal temperature of up to 3oC have been reported following a 20-minute period of sitting on commonly 

used chairs [6], however those with spinal cord injury in wheelchairs tend to have higher scrotal 

temperatures than the non-spinal cord injured [7]. When scrotal skin temperature increases and normal 

thermoregulation mechanism is impaired, the local increase in temperature negatively impacts on semen 

quality (sperm concentration, motility and morphology) as well as sperm chromatin structure. From this 

perspective, it is important to recognise the need to limit the temperature change at the seat-skin interface 

during prolonged periods of sitting. This paper aimed to determine whether it was possible to derive a 

method which can offer advanced warnings of temperature change reaching an undesired level; changes 

which if left unaddressed might put the immobile person at risk of skin or other tissue damage.  

According to the authors’ knowledge [8, 9], direct assessment of the thermal properties between the 

body and seat interface has been subjected to little objective experimentation. Other approaches have 

included a focus on the more subjective domain, using indirect assessment of thermal comfort [10, 11]. 

The direct measurement approach has employed either infrared imaging [8], or direct measurement at the 

site [9]. Ferrarin and Ludwig [8] compared thermal transients of four seat materials at three test points 

(ischial and thighs). However, measurement was intermittent, as the subjects were required to stand up for 

30 seconds every 5 minutes in order to image the seat by thermography, thus potentially adding an 

inconsistency to the temperature profile and increasing uncertainty that the subjects sat in a natural manner. 

Cengiz and Babilik [9], on the other hand, evaluated thermal change effects on comfort by placing eight 
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measurement devices (under thigh, inner thigh, stomach, side of body, chest, waist, back, right bottom) on 

the skin of subjects who attended road trials of automobile seats and assessed seat comfort by 

questionnaires. Although mean temperatures were employed to compare thermal properties of three 

different seat covers, no sensors were placed at the body-seat interface to assess temperature at this site 

during the period of sitting.  

The use of sensor systems with or without modelling to predict temperature change in order to limit 

damage or maintain comfort is not novel. Local skin (microenvironment) temperature has been used to 

predict core temperature variations based on mathematical modelling techniques, as telemetry methods 

suffer from instability (signal could not be detected) and self-generated noise (causing data artefacts) when 

used in more extreme environments [12]. A multi-linear regression model has been applied to predict local 

skin temperatures based on the measurement of 12 body locations (e.g. forehead, upper arms, hands and 

shins) in the study of airplane cabin temperature control [13]. However, in this study all information was 

acquired by infrared sensors, which were incapable measuring between body and seat surface. 

The above synopsis illustrates some of the limitations previously faced when attempting to perform seat 

temperature experiments. From the perspective of subjects, the volunteers are requested to sit “normally” 

for prolonged periods. The stability of both sensors and data recording systems is critical to the success 

and therefore, also imposes challenges. However, it is important to develop a methodology which will 

allow generation of accurate and reproducible data from subjects who would sit in a manner as natural as 

possible, preferably unaware of the experimental data collection. Regardless of these factors, if it was 

possible to reduce the period of sitting required for gathering sufficient data (i.e. by use of a predictive 

system), this might allow development of clinically useful systems for sensory deprived people, or 

caregivers of neurologically compromised people; to warn of potentially damaging temperatures at this 

interface. Additionally, it might also open the door on the development of systems to predict comfort 

levels for customers in commercial outlets. 

In the previous studies [14, 15], we have reported results from an objective seat measurement system 

developed to allow reliable recordings of temperature from 3 areas (thighs and the coccyx) at or close to 

the skin-seat interface microenvironment, using a low profile sensor based solution, without the need to 

disturbing the seated subjects. In this paper, we report the development of a data-driven model capable of 

predicting temperature changes based on experimental sitting data. The accuracy of the model was tested 

on data obtained from sitting experiments using the multi-channel body-seat interface temperature 

measurement system described previously [14].  

 

2. Methodology 

 

2.1. Experiments 
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All selected volunteers were healthy university students (four male and three female) with ages ranging 

from 19 to 23 years old. Based on the experimental requirements, healthy was defined as not suffering any 

condition that might lead to or include an increased core temperature such as a known current viral or 

bacterial infection and or thermoregulatory disorder [12, 13]. The BMI (body mass index) of all 

participants ranged from 19.38 to 24.57 kg/m2.  

Based on our previous studies [14, 15], three temperature sensors (LM35 National 

Semiconductor Corporation, USA), deemed most appropriate for temperature assessment on the 

seating surface, were placed approximately under each of the following relative positions: left mid-

thigh, right mid-thigh and coccyx. As body temperatures would not be expected to vary abruptly 

over short periods (< 5 seconds) [14], the sampling frequency of the data acquisition system (Pico 

ADC-11/12, Pico Technology, UK) was set at 1Hz/sensor. The temperature sensors were calibrated 

before starting the experiments in the environment-controlled chamber of UKAS Accredited 

Calibration Laboratory under National Standard (Certificate of Calibration No. 0034). All acquired 

data were stored on the computer’s hard drive in real time using a laboratory-developed application 

program [14]. Off-line signal processing and data analysis techniques were employed with the help 

of the Matlab software package (MathWorks USA). 

Before taking part in the experiments, volunteers were asked to read an information sheet detailing the 

experimental protocol with their specific requirements and sign a consent form.  Ethical approval was 

granted by the School of Applied Sciences Ethics Committee at the University of Glamorgan (now 

University of South Wales). The experimental protocol comprised each subject sitting for one hour on the 

commercially available foam cushion embedded with three temperature sensors. The cushion was 

mounted in a standard wheelchair. As a requirement, participants were asked not to undertake any 

vigorous physical exercise in the 24 hours prior to the experiment and were requested to only volunteer if 

they were not in a hurry to leave or had other calls on their time (e.g., coursework deadlines). Once in the 

laboratory, the volunteers were allowed to acclimatize to the environment for at least 15 minutes prior to 

taking part in the experiment: as recommended by previous studies [14, 15].  

All volunteers were asked to attend the lab on five separate occasions (different days at their 

convenience, but at the same time of day in order to negate any diurnal differences) to repeat the 

same experiment (all experimental data were acquired from the beginning of December 2013 to the 

beginning of January 2014). During the experimental recording periods, volunteers were provided 

with books or music. All subjects completed their 1 hour of sitting in an upright sitting position 

without getting up (e.g. toilet), engaging in any large or excessive movements, or adopting any 

unusual postures (e.g. crossing their legs). Prior to each data collection, the initial surface 

temperature of the foam cushion was measured to ensure that all data could be referenced to the 

same start level (Mean ± SD: 27.1±0.2 oC). The ambient temperature and relative humidity of the 
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research room were monitored throughout the experimental period (temperature: 26.1±0.5 oC and relative 

humidity: 44%±3%) and air movement was minimal.  

All volunteers were asked to wear cotton material trousers in order to reduce the impact of varying the 

clothing materials on relative insulation (degree of thermal insulation) or water vapour transfer (cooling) 

from the interface between body and seat.  

 

2.2. EMD filter-based pre-processing 

 

To reduce data artefacts and suppress unwanted noise, a data-driven filter, based on the EMD 

(Empirical Mode Decomposition) algorithm, was applied to the temperature data before carrying out 

further analysis. The procedure of EMD was proposed by Huang [16] with the kernel aim of sifting the 

original input signal until the final residual is stationary. The innovative part of the EMD method is the 

introduction of the IMF (Intrinsic Mode Function) components, which are based on the local natural 

properties of the signal and adaptively represent a non-stationary signal as a sum of zero-mean fast and 

slow oscillating modes.  

The EMD method has been successfully used in various fields [17-20] such as engineering mechanics, 

biomedical engineering and mechanical failure detection. For an arbitrary data series, the sifting process is 

[16-18]: 

(1) Extract all of the maxima and minima of the series X(t) 

(2) Calculate the upper envelope u(t) and the lower envelope v(t) with cubic spline function. The mean 

envelope m(t) is 

 

 [ ] 2)()()( tvtutm +=                                                         (1) 

 

(3) A new series with the low frequency removed is calculated by subtracting the mean envelope 

from the series 

 

)()()(1 tmtXth −=                                                           (2) 

 

Generally speaking, h1(t) is still a non-stationary series, so the above procedure must be repeated k times 

until the mean envelope is approximated to zero: 

 

[ ] 2)()()( 111 tvtutm kkk −−− +=                                                (3) 

 

)()()( 11 tmthth kkk −− −=                                                        (4) 
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(4) Then, the first IMF component from the data )(
1

tc , and its residue )(
1

tr  are designated as: 

 

)()(1 thtc k=                                                                  (5) 

 

)()()( 11 tctXtr −=                                                             (6) 

 

In general, c1(t) represents the highest frequency component of the original series. Since the residue 

r1(t), still contains information of longer period components, it is treated as the new data series and 

subjected to a new sifting process. The procedure is repeated for all subsequent residues until rn(t) is less 

than the pre-set threshold value or a monotonic function. 
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Figure 1 Data of the one-hour seating experiment contains fluctuating noise. 
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Figure 2 Demonstration of empirical mode decomposition (EMD) for the body-seat interface temperature data. The first IMF 

component (IMF1) is on the top left, followed by the second IMF component (IMF2) on the top right, and then IMF3 to IMF9 from 

left to right and top to bottom. The last subplot is the residue of the EMD procedure shown on the bottom right. 

 

The original data from one subject who sat on a foam cushion for one hour contained a fast oscillating 

noise (Figure 1). Therefore, the aim is to remove the fluctuation while maintaining the veracity of the 

slowly varying trend in the recording. To accomplish this, the contaminated signal was decomposed into 

some standardized IMF components as well as one residual signal with the help of the EMD method 

(Figure 2). To determine which part of the decomposed components is useful, it is necessary to analyse the 

EMD outcomes theoretically. 

Both Wu [18] and Molla [19] have illustrated that IMF components still belong to a normal distribution 

and that the mathematical expectations of IMFs dominated by noise are nearly zero. Based on this 

assumption, we removed unwanted fluctuating noise by setting a zero-crossing number as the threshold 

and reconstructed the noise-free signal using the decomposed parts that had a zero-crossing number 

smaller than the threshold.  As mentioned in our previous work [20], the IMF5 to IMF9 and the residue 

presented in Figure 2 have slow oscillations and should be retained as the meaningful information. 

Conversely, IMF1 to IMF4 should be removed since they have larger zero-crossing numbers which mean 

higher frequency. Using the inverse EMD procedure, the filtered signal can be reconstructed (Figure 3). 
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Figure 3 Noise-free signal created using the EMD reconstruction method. From this, it is apparent that the curve becomes almost 

plateaued after 45 minutes. This shape suggests accurate predicting of temperature trends should be possible. The advantage of 

temperature prediction would be to provide information for people with impaired sensation who might be restricted to periods of 

prolonged sedentary / seated activities (e.g. wheel-chair bound disabilities) or their caregivers: with the purpose of preventing ulcer 

formation or other forms of skin tissue damages due to prolonged sitting. 

 

2.3. Autoregressive prediction model  

 

In the temperature prediction process, the autoregressive (AR) model [12], one of the most widely used 

data-driven models, is employed as a function for future data estimation using previous observations. The 

AR model is 

 

n

m

i

inin

xx εϕ += ∑
=

−
1

ˆ                                                           (7) 

whereϕ refers to the vector of AR parameters to be calculated, 
n

ε  represents white noise and m denotes 

the order of the model. There are many ways to estimate the AR model parameters. In our application, the 

least square method was used to solve the parameter vectorϕ .  

To compare the prediction performance of temperature based on the AR model, the root mean square 

error (RMSE) was employed and defined as: 
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N
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−
=                                                        (8) 
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where iy is the ith observed response value, i

ŷ is the ith predicted response value and N  is the number of 

data points. 

 

3. Results and discussions 

 

Before carrying out any further analysis, a Kolmogorov-Smirnov test was initially used to determine 

normality of the data. After that, two types of temperature (as recorded at the skin surface-seat interface) 

predicting trials were performed using data from one hour sitting. Predictions made from sections of the 

data (the first 45 minutes, 40 minutes or 35 minutes) were compared to the measured data in order to test 

the accuracy of the prediction model. 

Data Analysis I (Temperature prediction within the same experiment for each participant): the 

purpose of this experiment was to investigate if the data-driven model, trained on part of the data for a 

given experiment, could predict other parts of the data from the same experiment that had not been used 

for training. To test this hypothesis, data from the first 45 minutes (prediction over the final 15 minutes), 

40 minutes (prediction over the final 20 minutes) or 35 minutes (prediction over the final 25 minutes) for 

each subject were selected as training data, while the remaining part belonging to the same experimental 

data set was used as testing data to verify the experiment-specified AR data-driven models. As a result, 15 

different models for each subject (5×3, five repeated experiments for each participant at each of the three 

measurement positions) were developed respectively for each prediction (15-minute, 20-minute and 25-

minute prediction). Then each model was applied to the data in order to predict the body-seat interface 

temperature for the corresponding experiment of each individual. The averaged RMSE values for each 

experiment-specified model are presented in Figure 4 along with the standard deviation functioning as an 

indication of the error.  
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Figure 4 Results of Data Analysis I: RMSE of body-seat interface temperature prediction for the same experiment of each participant. 

The error bounds correspond to the standard deviation which is calculated over the five experiments. Top (a): 15-minute prediction 

using the first 45 minutes data, Middle (b): 20-minute prediction based on the first 40 minutes data, and Bottom (c): 25-minute 

prediction by the first 35 minutes data. 

 

The results appear promising, indicating that the AR data-driven model can perform well if each model 

is applied to predict data outcomes from the same experiments for the same participant under similar 

environmental conditions (e.g. room temperature and relative humidity). As expected, the predictive 

capability of the model relies highly on the amounts of training data: i.e., the larger the training data pool, 

the smaller the prediction error (RMSE). The maximum averaged RMSE values for the 15-minute, 20-

minute and 25-minute predictions were 0.36±0.02 oC, 0.56±0.03 oC and 1.31±0.05 oC (Mean ± SD, 

respectively). Practically, the use of an alarm system based on a 15-minute prediction should be sufficient 

to allow a susceptible, immobile people adequate time to take appropriate intervention measures (e.g. call 

for help, use their upper body to lift their buttocks away for the seat interface, or move their legs to allow 

circulation of air) to prevent prolonged seat-related skin problems developing. As the maximum deviation 
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(Mean + SD) of five repeated experiments for the 15-minute prediction shows the averaged RMSE to be < 

0.4 oC, the AR data-driven model appears to have the ability to offer an acceptable prediction accuracy. 

An ANOVA statistical analysis was employed to compare prediction values generated by the AR data-

driven model in order to study if any relationship existed among the three models developed by the data 

from each of the different sensor locations (Left mid-thigh, Right mid-thigh and Coccyx). The output from 

the ANOVA revealed a significant difference (p<<0.01) between the data from each of the three positions, 

which once more attests to the individuality of the three sensor positions; as outlined in our pilot study 

[15]. 

Data Analysis II (Temperature prediction for cross experiments of each participant): the aim 

was to determine the intra-reliability of the method: for instance can the model developed using an 

element of one individual’s data sets be applied to other data belonging to the same individual, but 

acquired at different times? One of the five experiments (randomly selected) for each participant (3 males 

and 4 females) was used to build up the prediction model, while the other four data sets for each of the 

same participants were used as test data.  

Since the 15-minute prediction is capable of meeting our demands, vide supra, model development 

followed the procedure described above using the first 45 minutes of data. As a result, seven different 

models were developed with each model representing a specific participant. The prediction error values 

(averaged RMSE) for each participant-specified model are presented in Figure 5, along with the standard 

deviation to illustrate error boundaries. It is interesting to note that the prediction satisfied the 

requirements regarding accuracy (max deviation is 0.47±0.06 oC), even though the RMSE values were 

slightly larger than those of the self-generated models (Figure 4(a)).  The sources of deviation may be 

attributed to various factors many of which are physiological and psychological. Although attempts had 

been made to compensate for diurnal changes, by making the measurements at similar times of day, 

numerous factors such as degree of sweating, changes of the metabolic rate (recent food intake and 

exercise), relative differences in mood which could have affected the volunteer’s perception of the 

experiment, will tend to vary across the repeated experiments. As movement (amount and type) probably 

forms part of the normal persons reaction to their perception of the comfort of this environment, it is 

anticipated that the stability of the model will increase when tested on wheelchair users who do not have 

this facility available.  
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Figure 5 Results of Data Analysis II: RMSE of body-seat interface temperature prediction for cross experiments of each participant. 

The error bounds correspond to the standard deviation which is calculated over the other four experiments used as the testing group.  

 

Though the majority of previous studies [21, 22] have paid more attention to the study of pressure 

distribution between the body-seat interface, Gefen [23] proposed a mathematical model that includes the 

connection between the skin temperature and pressure ulcers while suggesting possible interventions to 

reduce potential risks by optimizing microclimate factors (e.g. temperature and relative humidity). Even 

though some guidelines were reported in order to minimise the development of pressure ulcers, to the 

authors’ knowledge, few applicable risk prevention tools have been developed to date [24, 25]. As 

temperature increases so does metabolism. Normally perfused skin reacts by increasing blood flow, 

however in compressed skin (such as that at the interface between person and seat surface) blood flow is 

being compromised and the conditions are generally considered to be ischemic. Therefore, the 

determination of what is a critical temperature in these conditions must take into account skin viability and 

duration of sitting as well as temperature. As yet this work has not been performed, however this study 

gives an opportunity to start the process by both accurately measuring temperature at the region and 

having the capacity to generate a warning in advance. Once consensus has been reached in relation to 

conditions identified above, then a critical temperature can be more sensibly determined. If temperature at 

this interface were to be recognised for its potential clinical importance at present, in order for a clinician 

or caregiver to measure the skin temperature, there would need to be either access made for the probe 

(movement which would defeat the purpose and cost clinician time). Alternatively, a temperature sensor 

could be set in place already; however, this would have a display for the output that would require 

constant awareness by the clinical team. Our suggestion could be used to create an alarm system which not 

only indicates that a critical limit has been reached, but also allows time for the caregiver/clinical team to 

perform the required function, rather than create an emergency situation (which is what would happen if a 
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simple number was displayed). Based upon the predictive results proposed in this paper, 15 minutes 

warning of an impending critical temperature should be a sufficient amount of time for appropriate action 

to be taken at leisure whether by the person or their caregiver.  

 

4. Conclusions  

 

This study has shown the AR data-driven model to be capable of reliably predicting temperature trends 

at the body-seat interface microenvironment 15 minutes ahead of time. The maximum deviation between 

the prediction value and the corresponding measurement is < 0.4 oC when using data from the first 45 

minutes of the one hour data sets. Results of the cross evaluation for the same subject (the model 

developed from any of the five experiments for a participant then applied to each of the other four 

experiments) showed that the AR data-driven model has a good general applicability for use within 

the same normal individual (maximum deviation from 0.41 oC to 0.53 oC for the 15-minute 

prediction).  

The potential uses of the introduced methodology include: 1) development of an alarm 

mechanism to provide a warning temperature in advance of reaching a potentially damaging temperature, 

for example, local exacerbation of skin disorders, or increased risk of thermal acceleration of skin 

ischaemic damage or potential temperature based scrotal viability issues in males (malfunction of scrotal 

thermoregulation can lead to male infertility and semen deterioration) and 2) an attempt to facilitate 

recognition and study of other factors involved in ulcer formation; 3) an easier means to analyse the 

thermal properties of different seating materials while in use.   

It is possible that the predictive methodology could be refined to decrease the data capture time yet 

increase the period of prediction. However, it is anticipated that a wider data collection to include 

environmental parameters (such as room temperature and relative humidity), BMI (body mass index), 

body fat, age and other aspects relevant to clothing and cushion materials will be required to do this.  
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