View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Repository

Enhanced Covers of Regular & Indeterminate
Strings using Prefix Tables

Ali Alatabbi®, A. S. Sohidull Islam?, M. Sohel Rahman*"3,
Jamie Simpson*®, and W. F. Smyth**2?

! Department of Informatics, King’s College London
ali.alatabbi@kcl.ac.uk
2 Algorithms Research Group, Department of Computing & Software
McMaster University
sohansayed@gmail.com, smyth@mcmaster.ca
3 Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology
msrahman@cse.buet.ac.bd
4 Department of Mathematics and Statistics, Curtin University of Technology
Jamie.Simpson@curtin.edu.au
® School of Engineering & Information Technology
Murdoch University

Abstract. A cover of a string € = x[1..n] is a proper substring u of x
such that @ can be constructed from possibly overlapping instances of u.
A recent paper [12] relaxes this definition — an enhanced cover u of x
is a border of @ (that is, a proper prefix that is also a suffix) that covers a
mazimum number of positions in @ (not necessarily all) — and proposes
efficient algorithms for the computation of enhanced covers. These algo-
rithms depend on the prior computation of the border array B[1..n],
where 3[i] is the length of the longest border of [1..7], 1 < ¢ < n. In this
paper, we first show how to compute enhanced covers using instead the
prefiz table: an array m[l..n] such that #[i] is the length of the longest
substring of & beginning at position i that matches a prefix of . Unlike
the border array, the prefix table is robust: its properties hold also for
indeterminate strings — that is, strings defined on subsets of the al-
phabet X' rather than individual elements of Y. Thus, our algorithms, in
addition to being faster in practice and more space-efficient than those
of [12], allow us to easily extend the computation of enhanced covers to
indeterminate strings. Both for regular and indeterminate strings, our
algorithms execute in expected linear time. Along the way we establish
an important theoretical result: that the expected maximum length of
any border of any prefix of a regular string « is approximately 1.64 for
binary alphabets, less for larger ones.

1506.06793v1 [cs.DS] 22 Jun 2015

arXiv

* Supported in part by a Commonwealth Academic Fellowship and a ACU Titular
Fellowship. Currently on a sabbatical leave from BUET.

** Supported in part by a grant from the Natural Sciences & Engineering Research
Council (NSERC) of Canada.

https://core.ac.uk/display/77136764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The concept of periodicity is fundamental to combinatorics on words and
related algorithms: it is difficult to imagine a research contribution that
does not somehow involve periods of strings. But periodicity alone may
not be the best descriptor of a string; for example, * = abaababab, a string
of length n = 9, has period 7 and corresponding generatmﬁ abaabab,
but it could well be more interesting that every position but one in x lies
within an occurrence of ab. In 1990 Apostolico & Ehrenfeucht [3] intro-
duced the idea of quasiperiodicity: a quasiperiod or cover of a string
x is a proper substring uw of @ such that any position in @ is contained
in an occurrence of u; u is then said to cover x, which is said to be
quasiperiodic. Thus, for example, u = aba is a cover of x = ababaaba.
Several linear-time algorithms were proposed for the computation of cov-
ers [48I7I8], culminating in an algorithm [I6] to compute the cover
array ~, where ~[i] gives the length j of the longest cover of x[1..7].
Since the longest cover of x[l..j] is also a cover of x[l..i], v implicitly
specifies all the covers of every prefix of . A recent paper [2] extends the
computation of 7 to “indeterminate strings” (see below for definition).

Even though the cover of a string can provide useful information,
quasiperiodic strings are on the other hand infrequent among strings in
general. Another approach to string covering was therefore proposed in
[15]: a set Uy = Ug(x) of strings, each of length k, is said to be a mini-
mum k-cover of x if every position in @ lies within some occurrence of
an element of Uy, and no smaller set of k-strings has this property. Thus
Uz (abaababab) = Us(ababaaba) = {ab,ba}. In [10] the computation of Uy,
was shown to be NP-complete, though an approximate polynomial-time
algorithm was presented in [14].

Recall that a border of x is a possibly empty proper prefix of x
that is also a suffix: every nonempty string has a border of length zero.
Recently the promising idea of an enhanced cover was introduced [12];
that is, a border u of = x[1..n] that covers a maximum number m < n
of positions in . Then the minimum enhanced cover mec(x) is the
shortest border u that covers m positions, and [12] presented an algorithm
to compute mec(x) in ©(n) time. Thus for & = abaababab, mec(x) = ab.
Further, on the analogy of the cover array defined above, the authors
proposed the minimum enhanced cover array MECgz — for every i €
1..n, MECg[1i] = |mec(x[1..i])]|, the length of the minimum enhanced cover
of x[1..i] — and showed how to compute it in O(nlogn) time. In this

5 Notation and terminology generally follow [19].

paper we introduce in addition the CMEC array, where CMEC|i] specifies the
number of positions in @ covered by the border of length MEC[:]. Thus, for
example, MEC,paabapap = 001123232 and CMEC puababab = 002346688.

In order to compute MECg, the authors of [12] made use of a variant of
the border array — that is, an integer array B[1..n] in which for every
i € 1..n, B[i] is the length of the longest border of x[1..i]. In this paper
we adopt a different approach to the computation of MECg, using, instead
of a border array, the prefix table @ = w[l..n], where for every i € 1..n,
7[i] is the length of the longest substring at position 7 of @ that equals a
prefix of . It has long been folklore that 3 and 7r are “equivalent”, but it
has only recently been made explicit [6] that each can be computed from
the other in linear time. However, this equivalence holds only for regular
strings @ in which each entry «[i] is constrained to be a single element of
the underlying alphabet Y.

We say that a letter A is indeterminate if it is any nonempty subset
of X, and thus a string « is said to be indeterminate if some constituent
letter x[i] is indeterminate. The idea of an indeterminate string was first
introduced in [IT] — with letters constrained to be either regular (single
elements of X') or X itself — and the properties of these strings have
been much studied by Blanchet-Sadri [7] and her collaborators as “partial
words” or “strings with holes”. Indeterminate strings can model DNA
sequences on X = {A,C,G,T} when ambiguities arise in determining
individual nucleotides (letters).

Two indeterminate letters A and p are said to match (written \ ~ p)
whenever A N p # (), a relation that is in general nontransitive [13J22]:
a ~ {a,b} and {a,b} ~ b, but a % b. An important consequence of this
nontransitivity is that the border array no longer correctly describes all of
the borders of x: it is no longer necessarily true, as for regular strings, that
if w is the longest border of v, in turn the longest border of «, then u is a
border of . On the other hand, the prefix array retains all its properties
for indeterminate strings & and, in particular, correctly identifies all the
borders of every prefix of x [6]. [20] describes algorithms to compute the
prefix table of an indeterminate string; conversely, [9] proves that there
exists an indeterminate string corresponding to every feasible prefix table,
while [I] describes an algorithm to compute the lexicographically least
indeterminate string determined by any given feasible prefix table. There
is thus a many-many relationship between the set of all indeterminate
strings and the set of all prefix tables. Consequently, computing MECg (or
simply MEC when there is no ambiguity) from the prefix table w = mg

rather than from a variant of the border array allows us to extend the
computation to indeterminate strings.

In Section [2] we outline the basic methodology and data structures
used to compute the minimum enhanced cover array from the prefix ta-
ble, while illustrating the ideas with an example. Then Section [3| provides
a proof of the algorithm’s correctness, as well as an analysis of its com-
plexity, both worst and average case. In Section |4 we discuss the practical
application of our algorithms, in terms of time and space requirements,
and compare our prefix-based implementation with the border-based im-
plementation of [I2]. Section [5| extends the enhanced cover array algo-
rithm to indeteterminate strings (for rooted covers) and outlines various
other extensions, particularly to generalizations of MECs.

2 Methodology

In this section we describe the computation of MECg, the enhanced cover
array of x, based on the prefix array m. Since every minimum enhanced
cover of x is also a border of x, we are initially interested in the covers
of prefixes of x. For this purpose we need arrays whose size is B, the
maximum length of any border of any prefix of . Noting that B must be
the maximum entry in the prefix array 7, we write B = maxo<i<p 7[i].

Definition 1 In the maximum no cover array MNC = MNC[1..B], for
every q € 1..B, MNC[q] = ¢/, where ¢’ is the mazimum integer in 1..q such
that the prefix x[1..q'] has no cover — that is, such that v[¢'] = 0.

As shown in Figure([I] once B is computed in ©(n) time from the prefix
array 7, MNC can be easily computed in ©(B) time using the cover array
~[1..B] of [1..B]. Note that the entries in MNC are monotone nondecreasing
with 1 < MNC[g] < g for every ¢ € 1..B. The following is fundamental to
the execution of our main algorithm:

Observation 2 If a prefit v = x[l..q] of * has a cover u, then v #
mec(x) (since |u| < g and w covers every position covered by v).

Thus MNC[q] specifies an upper bound ¢’ € 1..q on the length of a
minimum enhanced cover of ®. Two other arrays are required for the
computation, both of length B:

Definition 3 For every q € 1..B:

e PR[q| is the rightmost position in & at which the prefix [l..q] occurs;

procedure Compute MNC(n,m; B,~y,MNC)
B « m[2]
for i «+ 3 to n do
B < max(B, m[i])
> Compute «[1..B] of [1..B] using
> the algorithm Compute_PCR of [2].
Compute PCR(B, 7; ~)
> Note that MNC can overwrite ~y.
for ¢ + 1 to B do
if v[¢] = 0 then MNC[q] < ¢
else MNC[g] < MNC[qg—1]

Fig. 1. Computing MNC from the prefix array [1..n] and the cover array «[1..B].

e CPR[q] is the number of positions in & covered by occurrences of x[1..q|.

Here is an example of the arrays introduced thus far:

12345678910
r=ababaababa
w=10030150301

+=00023
MNC=123 3 3
PR=108 8 6 6

CPR=6810810
MEC=0012312323
CMEC=00 245468810

Note that for «[1..9] and x[1..10], there are actually two borders that cover
a maximum number of positions; in each case the border of minimum
length is identified in MEC.

The algorithm Compute_MEC is shown in Figure [2| In the first stage,
B and MNC are computed and the arrays CMEC, PR and CPR are initialized.
Then every position i > 1 such that ¢ = ~[i] > 0 is considered. Using
MNC, the longest prefix Q' = x[1..¢] of x[l..q] that does not have a cover
is identified; for prefixes of x[l..q] that do have a cover, the appropriate
PR and CPR values have already been updated. There are two main steps
in the processing of Q’:

e Since 7 has now become the rightmost occurrence of Q’ in x[1..i], we
must set PR[¢’] - i and increment the corresponding number CPR[¢/]
of positions covered.

procedure Compute_ MEC(7r; MEC, CMEC)
n <« ||
Compute_ MNC(n, 7; B,~,MNC)
MEC <+ 0"; CMEC « 0"; PR < 1B
for ¢ + 1 to B do CPR[q] < q
for i < 2 ton do
q + mli]
> xfi..i+q¢—1] = x[l..q].
while ¢ > 0 do
> «x[l..¢'] is the longest prefix of x[l..q] without a cover.
¢ + Miclg
> x[1..¢'] also occurs at i: update CPR[¢] & PR[¢'].
if i—PR[¢'] < ¢’ then
CPR[¢'| < CPR[¢']+i—PR[{]
else
CPR[¢'] - CPR[¢]+¢’
PR[¢] i
> Update CMEC & MEC accordingly for interval i..i+q' —1.
if CPR[¢/] > CMEC[i+¢'—1] then
MEC[i+¢' —1] « ¢
if CPR[¢/] > CMEC[i+¢'—1] then
CMEC[i+¢' —1] < CPR[{]
qg+q -1

Fig. 2. Computing MEC amd CMEC from the prefix array .

e If the number CPR[¢] of positions covered by occurrences of Q’ exceeds
CMEC[i+q—1], then CMEC and MEC must be updated accordingly.

These steps are repeated recursively for the longest proper prefix of Q’
that does not have a cover.

3 Correctness & Complexity of Compute MEC

We begin by proving the correctness of Compute_ MEC, which depends
on the prior computation of w = 7y [6]. Consider first procedure Com-
pute_MNC, where B is computed, followed by the cover array «[1..B]. Then
for every ¢ € 1..B, MNC|[q| +— ¢ whenever there is no cover of x[l..q], with
MNC[g] < MNC[¢—1] otherwise, an easy and straightforward calculation.
Compute_MEC then independently considers positions i = 2,3,...,n
for which m[¢] > 0; that is, such that a border of @ of length g = i

begins at ¢. The internal while loop then processes in decreasing order of
length the prefixes Q' = x[1..¢'] of x[1..q] that have no cover — and that
therefore, by Observation 2] can possibly be minimum enhanced covers of
x[1..i+q'—1]. Thus, for every i € 2..n, all such borders z[1..q] = x[i..i+q—1]
are considered and, for each one, all such prefixes Q’. For each ¢':

e the number CPR[q'] of positions covered by Q' is updated, as well as
the position PR[q'] = i of rightmost occurrence of Q’;

e MEC[i+q'—1] and CMEC[i+q'—1] are updated accordingly for sufficiently
large CPR[q].

We claim therefore that

Theorem 4 For a given string , Compute_MEC' correctly computes the
minimum enhanced cover array MECg and the number CMECg of positions
covered by it, based solely on the prefix array wg.

We have seen that in aggregate Compute_MEC processes a subset of
the nonempty borders of every prefix x[1..i7], devoting O(1) time to each
one. As we have seen, each border Q' in each such subset is constrained
to have no cover. We say that a string v is strongly periodic if it has a
border w such that |u| > |v|/2; otherwise v is said to be weakly periodic.
Observe that the borders Q' must all be weakly periodic; if not, then they
would have a cover w with |u| > |v|/2. In [I2] the following result is
proved:

Lemma 5 There are at most logyn weakly periodic borders of a string
of length n.

It follows then that for each ¢ € 2..n, there are at most log,i borders
considered, thus overall O(nlogn) time.

The space requirement of Compute_ MEC, apart from the 7, MEC and
CMEC arrays, each of length n, consists of three integer arrays (MNC (over-
writing 7), PR, CPR), each of length B < n. Thus

Theorem 6 In the worst case, Compute_MEC computes MEC and CMEC
from m using

(a) O(nlogn) time;
(b) three additional arrays 1.B of integers 1..n, thus ©(Blogn) bits of
space.

Now consider the expected (average) case behaviour of Compute_ MEC.
This depends critically on the expected length of the maximum border of

x[1..n]; that is, the expected value of B. We show in the Appendix that for
a given alphabet size, B approaches a limit as n goes to infinity. The limit
is approximately 1.64 for binary alphabets, 0.69 for ternary alphabets,
and monotone decreasing in alphabet size. Thus

Theorem 7 In the average case, ComputeMEC requires O(n) time and
O(logn) additional bits of space.

4 Comparing Border-Based and Prefix-Based Algorithms

As has been mentioned above, in order to compute MECg, the authors of
[12] made use of the border array. On the other hand Compute MEC
is based on the prefix table. We have already highlighted the advantage
Compute_MEC has because of the use of a prefix table in lieu of a border
array especially in the context of indeterminate strings. Additionally,
the simplicity and low space usage of Compute_MEC encourage us to
compare its practical performance with the algorithm of [12]. To this end
this can be seen as a comparison between a border-based algorithm (i.e.,
the algorithm of [I2]) for computing MECz and a prefix-based algorithm
(i.e, Compute MEC of the current paper) for doing the same. In what
follows we will refer to the former algorithm as ECB and the latter as
ECP.

We have implemented ECP (i.e., Compute_MEC) in C# using Visual
Studio 2010. We got the implementation of ECB from the authors of [12].
However, ECB was implemented in C. To ensure a level playing ground,
we re-implemented ECB in C# following their implementation. Then we
have run both the algorithms on all binary strings of lengths 2 to 30.
The experiments have been carried out on a Windows Server 2008 R2
64-bit Operating System, with Intel(R) Core(TM) i7 2600 processor @
3.40GHz having an installed memory (RAM) of 8.00 GB. The results are
illustrated in Figure [3| and 4] where the maximum number of operations
carried out by each algorithm is reported in Figure [3] Figure] shows the
ratio of the total number of operations performed by the Border-Based
(ECB) [12] and Prefix-Based (ECP) algorithm to the length n of string,
for all strings on the binary alphabet. As is evident from Figure [3| and
, ECP outperforms ECB and in fact it does show a linear behaviour
verifying the claim in Theorem [7] above.

ECB vs. ECP

350.00

w—n X 10

300.00 ~
e ECB //

250.00 ~
e ECP ///

200.00

150.00 ///

100.00 ///

50.00

0.00

maximum number of operations

123456 7 8 91011121314151617 18192021 22 2324252627 28293031

length

Fig. 3. The maximum number of operations performed by the Border-Based (ECB)
[12] and Prefix-Based (ECP) algorithm (i.e., Compute_-MEC) to compute the Minimum
Enhanced Cover array, for all strings on the binary alphabet.

ECB vs. ECP
9.00
——log n ——ECB e ECP
8.00
—

. 1/
ol - ——
1
1

3.00

ratio of total number of operations

2.00 /
1.00

0.00

123456 7 8 91011121314151617 18192021 222324252627 28293031

length

Fig. 4. Ratio of the total number of operations performed by the Border-Based (ECB)
[12] and Prefix-Based (ECP) algorithm to the length n of string, for all strings on the
binary alphabet.

10

5 Extensions

In Sections [2] and [3| we describe an algorithm to compute the minimum
enhanced cover array MECz of a given string x, based only on the prefix
array mg. As noted in the Introduction, since the prefix array can be
computed also for indeterminate strings [20], this immediately raises the
possibility of extending the MEC calculation to indeterminate strings.

In [2] two definitions of “cover” for an indeterminate string are pro-
posed: a sliding cover where adjacent or overlapping covering substrings
of must match, and a rooted cover where each covering substring is
constrained only to match a prefix of . The nontransitivity of matching
(see Section [1]) inhibits implementation of a sliding cover, but [2] shows
how to compute all the rooted covers of indeterminate x from its prefix
array in O(n?) worst case time, ©(n) in the average case. Thus it becomes
possible to execute Compute MNC for rooted covers, simply by replacing
the function call to Compute_.PCR by a function call to PCInd of [2];
that is, to compute the rooted cover array -,[1..B], hence MNC[1..B] and
thus MECg, all for indeterminate strings. Let us call this new algorithm
Compute_-MEC_Ind. We recall now a lemma from [5] stating that the ex-
pected number of borders in an indeterminate string is bounded above by
a constant, approximately 29. Therefore, also for indeterminate strings, B
can be treated as a constant, and we have the following remarkable result:

Theorem 8 In the average case, Compute_MEC_Ind requires O(n) time
and O(logn) additional bits of space.

We note further that the prefix array can be efficiently computed in
a compressed form [20], taking advantage of the fact that for i € 1..n,
w([i] # 0 if and only if x[i] = «[1]. Thus we can use two arrays P0OS and
LEN to store nonzero positions in 7 and the values at those positions,
respectively, thus saving much space in cases that arise in practice. We
have designed a POS/LEN version of Compute_ MEC that space restrictions
do not allow us to describe here.

Finally, [12] describes extensions of the minimum enhanced cover ar-
ray calculation, as follows:

e computation of the enhanced left-cover array of x;
e computation of the enhanced left-seed array of x.

Our prefix array approach yields efficient algorithms for these problems
also, that may similarly be extended to rooted covers of indeterminate
strings.

11

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Ali Alatabbi, M. Sohel Rahman & W. F. Smyth, Inferring an indeterminate
string from a prefix graph, J. Discrete Algorithms (2014) to appear.

. Ali Alatabbi, M. Sohel Rahman & W. F. Smyth, Computing covers using

prefix tables, http://arxiv.org/abs/1412.3016/

Alberto Apostolico & Andrzej Ehrenfeucht, Efficient Detection of Quasi-
periodicities in Strings, Tech. Report No. 90.5, The Leonardo Fibonacci Institute,
Trento, Italy (1990).

Alberto Apostolico, Martin Farach & C. S. Iliopoulos, Optimal superprimitivity
testing for strings, Inform. Process. Lett. 39-1 (1991) 17-20.

Md. Faizul Bari, Mohammad Sohel Rahman, Rifat Shahriyar, Finding All Cov-
ers of an Indeterminate String in O(n) Time on Average. Proc. Prague
Stringology Conference (2009) 263-271

Widmer Bland, Gregory Kucherov & W. F. Smyth, Prefix table construction
& conversion, Proc. 2/th IWOCA, Springer Lecture Notes in Computer Science
LNCS 8288 (2013) 41-53.

Francine Blanchet-Sadri, Algorithmic Combinatorics on Partial Words, Chapman
& Hall/CRC (2008) 385 pp.

D. Breslauer, An on-line string superprimitivity test, Inform. Process. Lett. 44-6
(1992) 345-347.

Manolis Christodoulakis, P, J. Ryan, W. F. Smyth & Shu Wang,. Indeterminate
strings, prefix arrays & undirected graphs, submitted for publication (2013).
Richard Cole, C. S. Tliopoulos, Manal Mohamed, W. F. Smyth & Lu Yang, The
complexity of the minimum k-cover problem, J. Automata, Languages &
Combinatorics 10-5/6 (2005) 641-653.

Michael J. Fischer & Michael S. Paterson, String-matching and other prod-
ucts, Complezity of Computation, Proc. STAM-AMS 7 (1974) 113-125.

Tom&s Flouri, C. S. Iliopoulos, Tomasz Kociumaka, Solon P. Pissis, Simon J.
Puglisi, W. F. Smyth & Wojciech Tyczynski, Enhanced string covering, The-
oret. Comput. Sci. 506 (2013) 102-114.

Jan Holub & W. F. Smyth, Algorithms on indeterminate strings, Proc. 1jth
Australasian Workshop on Combinatorial Algs. (2003) 36-45.

C. S. lliopoulos, Manal Mohamed & W. F. Smyth, New complexity results for
the k-covers problem, Inform. Sciences 181 (2011) 2571-2575.

C. S. Iliopoulos & W. F. Smyth, On-line algorithms for k-covering, Proc.
Ninth Australasian Workshop on Combinatorial Algs. (1998) 64-73.

Yin Li & W. F. Smyth, An optimal on-line algorithm to compute all the
covers of a string, Algorithmica 32-1 (2002) 95-106.

Dennis Moore & W. F. Smyth, An optimal algorithm to compute all the covers of
a string, Inform. Process. Lett. 50 (1994) 239-246.

Dennis Moore & W. F. Smyth, Correction to: An optimal algorithm to compute
all the covers of a string, Inform. Process. Lett. 54 (1995) 101-103.

Bill Smyth, Computing Patterns in Strings, Pearson Addison-Wesley (2003) 423
pp-

W. F. Smyth & Shu Wang, New perspectives on the prefix array, Proc. 15th
String Processing & Inform. Retrieval Symp., Springer Lecture Notes in Computer
Science LNCS 5280 (2008) 133-143.

W. F. Smyth & Shu Wang, A new approach to the periodicity lemma on
strings with holes, Theoret. Comput. Sci. 410-43 (2009) 4295-4302.

http://arxiv.org/abs/1412.3016

12

22. W. F. Smyth & Shu Wang, An adaptive hybrid pattern-matching algorithm
on indeterminate strings, Internat. J. Foundations of Computer Science 20—-6
(2009) 985-1004.

APPENDIX

We write || for the length of string . Here we show that the expected
length of the longest border of a string @ approaches a limit as || tends
to infinity, the limit depending on the alphabet size. For a binary alpha-
bet it is approximately 1.64. We use the following notation. o = |X| is
the alphabet size, B(w) is length of longest border of string w and By (w)
is length of longest border of string w which has length at most & (ie, ig-
noring any borders longer than k). Thus if = babaabababbabaabab then
B(x) = 8 since z has longest border babaabab and Bs(x) = 3 since the
longest border of & which has length at most 4 is aba. W, is the set of all
strings of length n on an alphabet of size o. Since Wy contains only the
empty string we have |Wy| = 1.

Lemma 9 The number of strings of length n on an alphabet of size o
which have a border of length k (not necessarily the longest border) is
ok,

Proof. A string with border of length k is periodic with period n — k and
so s determined by its length n — k prefiz. This prefix can be chosen in
o * ways. a
We also need the following formula (which can be obtained using a com-

puter algebra system).
ot (o (b+1)—o—b—1) o%(aoc—a—o)

Lemma 10 Zf:a mo™ = o 17 — e

Clearly |W,| = o™. The expected size of the longest border of a string
of length n on an alphabet of size o is therefore

E(n)zg—ln S B(w). (1)

’u}GWn

Similarly, the expected size of the longest border not exceeding k is

Bun) = 3" Bulw).)

13
Clearly B(w) > Bg(w) so
B(n) > By(n). (3)

Note that if n > 2k then W,, = {uvw : v € Wy, x € W,,_gx,v € Wi} and

Bun=— > Y Y Buuaw) (®)

ueEWy, x€Wyp o veEW)

Now By (uxv) = By(uv) so if n > 2k,

Bin)=— 3 3 Bw) Y1 (5)

ueW, veWy, zeW, ok
Jank
TS Y B
ueWy veWy
1
= > Biw)
weWsy,
— Bi(2k).

With we then have, for n > 2k,
B(n) > By,(2k). (6)

Now any border that is counted in the right hand side of but not
counted on the right hand side of has length at least k£ + 1. The sum
of the lengths of such borders is, by Lemma [9]

n
g mo™ ",

m=k-+1

So, by Lemma [10| and ,

— 1 i .
B(n) < —(> Bp(w)+ > mo™™) (7)
weWn, m=k-+1
— 1 okl 4 gn—htl _gnkl _on—0+4+n
= Bi(n) + —(2)
o (c—1)
okt 4 gkt _ o=k

(o —1)°

= Br(2k) + O(ko ™).

14

Thus for all n > 2k
Bi(2k) < B(n) < B(2k) + O(c™")

so they’re contained in an arbitrarily small interval. Call this interval I
and define J; = I; and for ¢ > 2 J; = I, N J;_1. Then Ji,J5,... is a
sequence of nested intervals whose lengths have limit 0. By the Nested
Intervals Theorem this means the limit of B,, exists.

Using and with k& = 11 we find that lim, .. B(n) lies in the
interval (1.6356, 1.6420) for binary alphabets. For ternary alphabets using
k = 6 the limit lies in (0.6811,0.6864).

	Enhanced Covers of Regular & Indeterminate Strings using Prefix Tables

