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Abstract

A finite difference technique for numerical analysis of the partial
differential equation for advection and dispersion with sorption is pre-
sented in detail. The sorption term is non-linear and it is difficult
to simulate the breakthrough curves when the rate of change of con-
centration is large. A general technique is used which expands the
derivatives in terms of increasing orders of finite differences. This has
become possible with the advent of symboelic manipulation. It is pos-
sible to expand to any order and, importantly, separate out the terms
for each order. Details are presented, together with methods for ex-
ploring the convergence and stability as well as adjusting the time and
spatial differencing to lower or minimise the error.




1 Introduction

Modelling of the movement of soluble and absorbed materials in soils has
long been relegated to approximation procedures, using finite approximations
to the partial differential equations for transport and sorption. The proce-
dures are outlined in the rather comprehensive articles by van Genuchten
and Wierenga [16][15]. In these studies techniques are included to correct for
the numerical dispersion inherent with differencing procedures. They show,
quite clearly, that a better result can be obtained with the use of larger time
and space differences, provided they are related to each other. This min-
imises the error from the numerical roundoff and numerical dispersion from
the upstream (backward) difference in space. The addition of a non-linear
absorption term is also considered but these terms are only estimated, partly
because of the intractability of expanding the combined mass balance equa-
tion. Often the absorption term is approximated by a first order equation
Munns and Fox[11]. Other models contain kinetic terms that are difficult to
fit to breakthrough curves. For instance, Chien and Clayton [7] produced
empirically derived sorption terms that fit the data to an logarithmic form.
In contrast, some models rely on the experimental breakthrough curve to
determine the forward to backward physical absorption.

The actual experimental data for absorption, without flow, is well fitted
by the empirical, time dependent term of Barrow [2]; his work relies on deep
background studies of the dependence of charge on the sorption properties of
phosphorus ions and several related ions. He suggests that two consecutive
reations occur: The first is a rapid surface absorption (or desorption). This
is followed by a slow penetration into (or release from) the inner pores of the
particles. The net effect is accurately predicted by a sorption term of the
form:

S=k-C"-t" (1)

Our work stems from that of Binh [3]; he developed implicit techniques
for solving the advective dispersion equation for Phosphorus transfer in soils.
Now, Notodarmojo et al [14] have included Barrow’s form of the non-linear
term into an advective/dispersion/sorption equation. The finite difference
form has many terms that are difficult to collect and account for in the time
and space steps. A small error might be ignored but their fit to the data, Fig.




10 and Fig.11, is less than satisfactory. This may be some effect of unknown
physical processes or simply a result of a lack of detailed analysis of the
terms in the equations. Indeed, intractable terms were dropped to allow the
computation to proceed and create a stable solution. Little effort has been
made to be sure these terms are unimportant and that the equations used do,
indeed, converge on the infinitesimal-based partial differential equation. This
is a dangerous procedure and is well known to lead to erroneous solutions
even though they may be stable[8].

Today we have an advantage, symbolic manipulation with computers.
One such parodos is Maple!. In this paper we repeat the former analyses of
the equation for mass balance of phosphate.

9C  8C __ 8C pdS
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without error, to many orders of expansion. Though such an analysis can
conceptually be done to any order, we have truncated the terms roughly at
order 5. This needs to be followed up with a refitting of the data to show
the effects of preserving more terms in the expansion,

2 Finite Difference Expansion

The approach is a general one and is presented in terms of finite differences.
To agree with accepted practice, we have used mixed differences. This means
that first order backward differences were used in z ; first order forward
differences in ¢ and a central difference for all high order terms. Index j
relates to time differences and index 7 , to spatial differences. This means
that effectively the grid spacing for terms other than first order is halved.

! Maple is a registered trademark of Waterloo Maple Software




2.1 Definition of the Finite Differences

z-dependent terms: t-dependent terms:
VZC = C - Ci—l AtG == Cj+1 - C
5zzC = AzC - VzC = 5z0i+1/2 - 5z0i—1/2 5tt0 = 5t0j+1/2 - 5th—1/2
62220 = 5zz0i+1/2 - 6zz0i—1/2 5ttt0 = 6tt0j+1/2 - 6tth—1/2
62 . .zC = 62 . 'ZC'i+1/2 — 6; . 'ZCi—l/Z 5t . tC = 6t . -t0j+1/2 - 5t . .tOj—l/Z
N N-1 N-1 N N-1 N-1

where we have used the convention that indices clearly known to be either
i or j are omitted. The number of differences is N. Further,the cross terms
are:

6th = AZCJ - VZCJ == 6ij+1/2 - 620j_1/2
6:2C = 5zz0j+1/2 - 6zij—1/2
6ztt0 = 6zt0j+1/2 - 6zt0j—1/2

62 «ozt . .tC = 62 ozt . .th+1/2 — 62 .zt - .t0j+1/2
S o’ Qo e ! S A !

N-M M N-M M-1 N-M M-1

where M is the number of t differencing operations. The notation uses A as a
forward difference, V as a backward difference, and § as a central difference.
The concentration of Phosphate in the liquid is C in moles/litre. There is no
real reason why the differences need to be equal but here we assume equal
time steps of A; = h; and equal spatial steps of A, = h,.

2.2 Taylor Expansion

We proceed by considering C' to be a smooth, continuous function of z and
t, and expand C in a Taylor series in two dimensions about the nodal point.
We write down the symbolic expressions for the value of the function at
each neighbouring nodal point. Appropriate subtractions, following the dif-
ferencing rules, above, produce a series of expressions for the differences.
Differences of order three are obtained by subtraction of differences of order




two; differences of order two are obtained by subtraction of differences of or-
der one; and differences of order one are obtained by subtraction of function
values themselves. This produces a series of equations for the differences.

V. = hRIZ-BEC Boc Moo, Mec Moo, kog
A= WEAHTE N U+ O S 4 ah s 4
b:r = h2%S +re TR o
b = hhZE o MEEG L MEEC 4 U R+ RS+ M
b= MG +H5¢ rase o
b 2C = hY R +
N
Ot .tz --2C = hiv_Mhyém%ga—zﬁ +
N-M M
6.40 = RIEE 4

N

It is important to realise that all the derivatives are evaluated at the nodal
point of concern, say (0,0); the evaluation arguments is omitted for conve-
nience. This in no way detracts from the generality of the expansion because
of the subtractions involved. That is, expanding about some arbitrary point,
say (a,b), gives identically the same differences. Simply noting the nodal
point as a point of expansion is sufficient.

3 Derivative Formulas to Seventh Order

The above set of equations is now solved for the derivatives in terms of the
differences. The form is equivalent to a sparce matrix set and relatively
easily solved. The next few listings show the results with the major differ-
encing schemes though the present application requires mixed differences.




The other tables show the standard difference formulas and are presented
for comparison purposes. Later, we see that they allow the construction of
general expressions for n’h order terms.

Here we leave the partial derivative forms to conform with the Maple
output. The nomenclature is such that

2< =D[2, 2)(£)(0, 0)

ot2

The expresions for all the sixth and seventh partials are omitted because
they are precisely the differences divided by Az and ht.

3.1 Derivatives from Forward Differences

This is a the most common difference though it has a forward bias.

D[1]1(£) (0, 0) =
Dz Dz=z Dzzz Dzzzz Dzzzzz Dzzzzzz Dzzzzzzz

-- - 1/2 ——= + 1/3 ——— - 1/4 ————- +1/56 —————- - 1/6 ——————- +1/7 ———-———- ,
hz hz hz hz hz hz hz

D[2](£) (0, 0) =
Dt Dtt Dttt Dtttt Dttttt Dtttttt Detttttt

-~ =-1/2 - + 1/3 ———- - 1/4 ~-——- + 1/5 —————- - 1/6 =—=———- + 1/7 == ,
ht ht ht ht ht ht ht

D[1, 1](£)(0, 0) =

Dzz Dzzz 11 Dzzzz Dzzzzz 137 Dzzzzzz Dzzzzzzz
e i - 5/6 —————- + = - 7/10 ———————- s
2 2 12 2 2 180 2 2
hz hz hz hz hz hz
Dzt Dzttt Dzzt Dzttt Dzztt
D1, 2]1(£)(0, 0) = ————- -1/2 ———— -1/2 ———- + 1/3 ————- + 1/4 ————-
hz ht hz ht hz ht hz ht hz ht
Dzzzt Dztttt Dzzttt Dzzztt Dzzzzt
+1/3 ————- - 1/4 —————- - 1/6 ————— -1/6 —————- -1/4 —————
hz ht hz ht hz ht hz ht hz ht
Dzttttt Dzztttt Dzzzttt Dzzzztt Dzzzzzt
+ 1/5 ——==-—m +1/8 ——————- + 1/9 ——=mm—m +1/8 ——————- + 1/5 ———====
hz ht hz ht hz ht hz ht hz ht




Dztttett Dzzttttt Dzzztttt Dzzzzttt

-1/6 ——=————- - 1/10 ~=——=——- - 1/12 ———-meme -1/12 =——————-
hz ht hz ht hz ht hz ht
Dzzzzztt Dzzzzzzt
- 1/10 ~=m—e—em - 1/6 w=—————- s
hz ht hz ht

D[2, 21(£)(0, 0) =

Dtt Dttt 11 Dttt Dttttt 137 Dtttttt Dttttttt
- - + - 6/6 ~————- $ommm e - 7/10 ———=——-- ,
2 2 12 2 2 180 2 2

ht ht . ht ht ht ht

pl1, 1, 11(£)(0, 0) =

Dzzz Dzzzz Dzzzzz Dzzzzzz 29 Dzzzzzzz
———— = 32— + 7/4 —————- - 16/8 ~=~—==m + - s
3 3 3 3 i5 3
hz hz hz hz hz
Dzzt Dzztt Dzzzt Dzzttt Dzzztt
pl1, 1, 21(£)(0, 0) = —————- - 1/2 - + 1/3 ——eme +1/2 ————m-
2 2 2 2 2
hz ht hz ht hz ht hz ht hz ht
11 Dzzzzt Dzztttt Dzzzttt 11 Dzzzztt Dzzzzzt
+ ———— - 1/4 ——————- - 1/3 = - e e ~ 5/6 ——————-
12 2 2 2 24 2 2
hz ht hz ht hz ht hz ht hz ht
Dzzttttt Dzzztttt i1 Dzzzzttt Dzzzzztt
+1/8 ——————-~ +1/4 ———————- + - - + 5/12 —————-—~
2 2 36 2 2
hz ht hz ht hz ht hz ht
137 Dzzzzzzt
+ ——— —————— .
180 2
hz ht
Dztt Dzttt Dzztt 11 Dztttt Dzzttt
D[1, 2, 21(£)(0, 0) = === ~ ———m—m - 1/2 —————— + m——— —————— + 1/2 ————-
2 2 2 12 2 2
hz ht hz ht hz ht hz ht hz ht
Dzzztt Dzttttt 11 Dzztttt Dzzzttt Dzzzztt
+1/3 —————- = B/6 ——==m—= = mmem mmeeeee - 1/3 ——————- -1/4 —————-
2 2 24 2 2 2
hz ht hz ht hz ht hz ht hz ht
7




137 Dztttttt Dzzttttt 11 Dzzztttt Dzzzzttt

D2, 2, 21(£)(0, 0) =

Dttt Dtttt Dttttt Dtttttt 29 Dttttttte
-——— - 3/2 ————~ +7/4 —————- - 15/8 -— + ,
3 3 3 3 15 3
ht ht ht ht ht
Dzzzz Dzzzzz Dzzzzzz Dzzzzzzz
D[1, 1, 1, 11(£)(0, 0) = ————~ -2 e + 17/6 —==mmmm - 7/2 = ,
4 4 4 4
hz hz hz hz
Dzzzt Dzzztt Dzzzzt Dzzzttt
pl1, 1, 1, 21(£)(0, 0) = —————~ - 1/2 —eeeee - 3/2 —-emem + 1/3 ————mmv
3 3 3 3
hz ht hz ht hz ht hz ht
Dzzzztt Dzzzzzt Dzzztttt Dzzzzttt Dzzzzztt
+ 3/4 ——————- + 7/4 -—————- -1/4 -——————- - 1/2 ———————- - 7/8 ———————-
3 3 3 3 3
hz ht hz ht hz ht hz ht hz ht
Dzzzzzzt
- 15/8 ———————- .
3
hz ht
Dzztt Dzzttt Dzzztt i1 Dzztttt Dzzzttt
Df1, 1, 2, 2]J(£)(0, 0) = - ——————— = mm————— + ———- + -
2 2 2 2 2 2 12 2 2 2 2
hz ht hz ht hz ht hz ht hz ht
11 Dzzzztt Dzzttttt 11 Dzzztttt i1 Dzzzzttt
+ ———= —m————— = B/6 —mmmmmm m mmmm e e
12 2 2 2 2 12 2 2 12 2 2
hz ht hz ht hz ht hz ht
Dzzzzztt
- 5/6 ——————— R
2 2
hz ht




Dzttt Dztttt Dzzttt Dzttttt
pl1, 2, 2, 21(£)(0, 0) = =~==~=—= = 3/2 ——mun - 1/2 —————= + 7/4 ——me——
3 3 3 3
hz ht hz ht hz ht hz ht
Dzztttt Dzzzttt Dztttttt Dzzttttt Dzzztttt
+ 3/4 ——————- +1/3 ———mmmm - 15/8 ——===mmm - 7/8 ——=————= - 1/2 —mm————
3 3 3 3 3
hz ht hz ht hz ht hz ht hz ht
Dzzzzttt
- 1/4 ———————- s
3
hz ht
Dttt Dttttt Dtttttt Dttttttt
ni2, 2, 2, 23(£)(0, 0) = -2 + 17/6 ——————- -7/2 ———————- .
4 4 4 4
ht ht ht ht
Dzzzzz Dzzzzzz Dzzzzzzz
Dpl1, &, 1, 1, 11(£)(0, 0) = ——==== - §/2 —~~——m—- + 25/6 =——————- s
5 [ 5
hz hz hz
D[l’ 1, 1,1, 2](f)(0, 0) =
Dzzzzt Dzzzztt Dzzzzzt Dzzzzttt Dzzzzztt Dzzzzzzt
—————— -1/2 --- -2 + 1/3 + -= + 17/6 —=——mm—
4 4 4 4 4 4
hz ht hz ht hz ht hz ht hz ht hz ht
pl1, 1, 1, 2, 21(£)(0, 0) =
Dzzztt Dzzzttt Dzzzztt 11 Dzzztttt Dzzzzttt Dzzzzztt
- - ——— - 3/2 - + + 3/2 ~—mmmm—— + 7/4 ———————- s
3 2 3 2 3 2 12 3 2 3 2 3 2
hz ht hz ht . hz ht hz ht hz ht hz ht
D1, 1, 2, 2, 21(£)(0, 0) =
Dzzttt Dzztttt Dzzzttt Dzzttttt Dzzztttt 11 Dzzzzttt
——————— - 3/2 mmmmmmm = e 4 T[4 ——ee———— + 3/2 +
2 3 2 3 2 3 2 3 2 3 12 2 3
hz ht hz ht hz ht hz ht hz ht hz ht
Dl1, 2, 2, 2, 21(£)(0, 0) =



Dzttt Dzttstt Dzztttt Dztttttt Dzzttttt Dzzztttt

-2 - 1/2 ——m———e + 17/6 -—-mm—— + —————— +1/3 —————-m s
4 4 4 4 4 4
hz ht hz ht hz ht hz ht hz ht hz ht
Dttttt Dtttttt Dttttttt
D[2’ 29 2, 2’ 2](f)(o, 0) = mmm 5/2 _______ + 25/6 ------ N
5 5 5
ht ht ht
Dzzzzzz Dzzzzzzz
D[l’ 1,1, 1, 1, 1](f)(0, 0) = -3 ’
6 6
hz hz
Dzzzzzt Dzzzzztt Dzzzzzzt
D[1, 1, 1, 1, 1, 2]1(£)(0, 0) = ——————- - 1/2 ====mmm- - 6/2 ——————-- ,
5 5 5
hz ht hz ht hz ht
Dzzzztt Dzzzzttt Dzzzzztt
D[la 1,1, 1, 2, 2](f)(0, 0) = - -2 - s
4 2 4 2 4 2
hz ht hz ht hz ht
Dzzzttt Dzzztttt Dzzzzttt
pl1, 1, 1, 2, 2, 21(£)(0, 0) = ————- - 3/2 ~mmm———— - 3/2 ———————- s
3 3 3 3 3 3
hz ht hz ht hz ht
Dzztttt Dzzttttt Dzzztttt
D[i’ 1, 2, 2, 2, 2](f)(°9 0) = T -2 == - N
2 4 2 4 2 4
hz ht hz ht hz ht
Dzttttt Dztttttt Dzzttttt
pl1, 2, 2, 2, 2, 21(£)(0, 0) = ~————em - 6/2 ———————- -1/2 ————mmmm ,
5 5 5
hz ht - hz ht hz ht
Dtttttt Dttttttt
D[2, 2, 2,2, 2, 2](f)(0, 0) = -3 »
’ 6 6
ht ht

3.2 Derivatives from Backward Differences

These differences are identical to the forward differences, except for the sign.
None of the coefficients of the backward differences have a negative sign.
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Only two derivatives are shown as an example.

pl11(£)(0, 0) =
Dz Dzz Dzzz Dzzzz Dzzzzz Dzzzzzz Dzzzzzzz

-~ +1/2 === + 1/3 --—- + 1/4 --——- + 1/6 —————- +1/6 —————-- + /7T ——————- »
hz hz hz hz hz hz hz

pf2](£) (0, 0) =

Dt Dtt Dttt Dttt Dtittt Dtttttt Dtttettt
-~ + 1/2 —=~ 4+ 1/3 ~——~ + 1/4 ————- + 1/6 —————- +1/6 ——————- + 1/7 —————- ;
ht ht ht ht ht ht ht
etc.

3.3 Derivatives from Central Differences

The central difference is heuristically considered the appropriate difference.
As is shown, it exhibits much better convergence.

Dz Dzzz Dzzzzz Dzzzzzzz
D[11(£)(0, 0) = ———— - 1/6 —--- + 3/40 ------ - 6/112 ——=mm——v ,
hz hz hz hz
Dt Dttt Dttttt Dttttttt
pf2l(£)(o0, 0) = -~ - 1/6 ———— + 3/40 —————- - 5/142 ————m——m ’
ht ht ht ht
Dzz Dzzzz Dzzzzzz
D[1, 11(£)(0, 0) = ——— - 1/3 ————- + 8/46 ————-—- )
2 2 2
hz hz hz
Dl1, 2](£)(0, 0) =
Dzt Dzttt Dzzzt Dzttttt Dzzzttt Dzzzzzt
————— -1/6 -———— - 1/6 ————— + 3/40 -—————- + 1/36 -—-—=—-~ + 3/40 ——————-
hz ht hz ht hz ht hz ht hz ht hz ht
.’
Dtt Dtttt Dtttttt
pl2, 21(£)(0, 0) = -~ - 1/3 ~~——- + 8/45 —————— .
2 2 2
ht ht ht
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D[1,

D[1,

Dl1,

p[2,

D[1,

D[1,

Dl1,

D[1,

Dzzz Dzzzzz 37 Dzzzzzzz

1, 1J(£)(0, 0) = ——== =~ 1/2 —=mmm + == —ee————— ,
3 3 120 3
hz hz hz
Dzzt Dzzttt Dzzzzt Dzzttttt
1, 21(£)(0, 0) = —————~ - 1/6 —~—=—v -1/3 —==m— + 3/40 —~-————-
2 2 2 2
hz ht hz ht hz ht hz ht
Dzzzzttt Dzzzzzzt
+ 1/18 ~~—————- + 8/45 ~——————- »
2 2
hz ht hz ht
Dztt Dztttt Dzzztt Dztttttt
2, 21(£)(0, 0) = ———==- - 1/3 w=——- - 1/6 =—=——- + 8/45 —————=—-
2 2 2 2
hz ht hz ht hz ht hz ht
Dzzztttt Dzzzzztt
+ 1/18 —————w—- + 3/40 -w-————- ,
2 2
hz ht hz ht
Dttt Dttttt 37 Dttttttt
2, 2J(£)(0, 0) = —=——— - 1/2 ——=wm- + - e s
3 3 120 3
ht ht ht
Dzzzz Dzzzzzz
1, 1, 11(£)(0, 0) = ———== =~ 2/3 —==———- s
4 4
hz hz
Dzzzt Dzzzttt Dzzzzzt
1, 1, 21(£)(0, 0) = ———=—- - 1/6 ~—————- - 1/2 —-—=--- ,
3 3 3
hz ht hz ht hz ht
Dzztt Dzztttt Dzzzztt
1, 2, 21(£)(0, 0) = —————- ~1/3 ——=—mme - 1/3 ——mmm—m ,
2 2 2 2 2 2
hz ht hz ht hz ht
. Dzttt Dzttttt Dzzzttt
29 2: 2](f)(0’ 0) = e = - 1/2 _______ - 1/6 ______ ’
3 3 3
hz ht hz ht hz ht
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Dtttt Dtttttt

pl2, 2, 2, 21(£)(0, 0) = ————- - 2/3 ——mmm——— ,
4 4
ht ht
Dzzzzz Dzzzzzzz
plt, 1, 1, 1, 11(£)(0, 0) = === - §/6 ———————~ .
5 5
hz hz
Dzzzzt Dzzzzttt Dzzzzzzt
pl1, 1, 1, 1, 21(£)(0, 0) = —=—-—= - 1/6 ———————- - 2/3 ———mmmm- ,
4 4 4
hz ht hz ht hz ht
Dzzztt Dzzztttt Dzzzzztt
pf1, 1, 1, 2, 21(£)(0, 0) = ——————- - 1/3 ————mem - 1/2 ——————— s
3 2 3 2 3 2
hz ht hz ht hz ht
Dzzttt Dzzttttt Dzzzzttt
pli, 1, 2, 2, 21(£)(0, 0) = ——————~ - 1/2 -~ - 1/3 ———-=——- s
2 3 2 3 2 3
hz ht hz ht hz ht
Dztttt Dztttttt Dzzztttt
pl1, 2, 2, 2, 2]1(£)(0, 0) = —————= - 2/3 = -1/6 ———————- ,
4 4 4
hz ht hz ht hz ht
Dttttt Detttttt
D[29 2’ 2, 29 2](f)(0, 0) T mmmm - 5/6 ________ 3
5 5
ht ht

3.4 Derivatives from Mixed Differences

The following table is the solution sol as calculated using the program mdel.mpl
of Section 5.1.4 for mixed differences.

Dz Dzz Dzzz Dzzzz=z Dzzzzzzz
pf1l(£)(0, 0) = -- + 1/2 — - 1/6 ——— + 1/80 —————- - 3/1792 ——==—mmm

hz hz hz hz hz

Dt Dtt Dttt Dttttt DEtttttt
pf2)(£)(0, 0) = - - 1/2 -—— - 1/6 ~=—— + 1/80 —————- - 3/1792 ——————--

ht ht ht ht ht
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Dzz Dzzzz Dzzzzzz

D1, 11(£)(0, 0) = -~ - 1/12 ——-=- + 1/90 —————- ,
2 2 2
hz hz hz
Dzt Dzttt Dzzzt Dzttttt
D[1, 21(£f)(0, 0) = ——~— - 1/24 ———— -1/24 ———- + 3/640 ——--——-
hz ht hz ht hz ht hz ht
Dzzzttt Dzzzzzt
+ 1/576 ~—————- + 3/640 —~————- s
hz ht hz ht
Dtt Dtttt Dtttttt
p[2, 21(£)(0, 0) = ~—— - 1/12 ————- + 1/90 ———=—=m s
2 2 -2
ht ht ht
Dzzz Dzzzzz 37 Dzzzzzzz
D[l’ 1’ 1](f)(0, 0) = mm——— 1/8 + - »
3 3 1920 3
hz hz hz
Dzzt Dzzttt Dzzzzt
D[1, 1, 21(£)(0, 0) = —————- -1/24 ~———— - 1/12 —————-
2 2 2
hz ht hz ht hz ht
Dzzttttt Dzzzzttt Dzzzzzzt
+ 3/640 -—————— + 1/288 ——~———— + 1/90 - ——————- ,
2 2 2
hz ht hz ht hz ht
Dztt Dztttt Dzzztt
D[1, 2, 2]1(£)(0, 0) = ————== - 1/12 ——e——m - 1/24 ~~———
2 2 2
hz ht hz ht hz ht
Dztttttt Dzzztttt Dzzzzztt
+ 1/90 ~—————-- + 1/288 ———————- + 3/640 ——————=- ,
2 2 2
hz ht hz ht hz ht
Dttt Dttttt 37 Dttttttt
pl2, 2, 21(£)(0, 0) = ——— - 1/8 + s
3 : 3 1920 3
ht ht ht
Dzzzz Dzzzzzz
pl1, 1, 1, 13(£)(0, 0) = ~~—== = 1/6 ~————— ,
4 4
hz hz
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D[1,

D[1,

D[1,

D2,

D[1,

D1,

D[1,

D[1,

D[1,

D{2,

2]1(£) (0, 0)

2] (£) (0, 0)

21(£) (0, 0)

21(£) (o, 0)

11(£) (o,

21(£) (o,

2]1(£) (o,

21(£) (o,

2]1(£) (o,

2]1(£) (o,

0)

0)

0)

0)

0)

0)

Dz

3
hz

Dz

2
hz

Dz

hz

Dtt

ht

zzt Dzzzttt Dzzzzzt
—————— = 1/24 m—————— -1/8 —————~ s
3 3
ht hz ht hz ht
ztt Dzztttt Dzzzztt
——————— - 1/12 ————=== = 1/12 —=m————
2 2 2 2 2
ht hz ht hz ht
ttt Dzttttt Dzzzttt
————— = 1/8 e - 1/24 -—————- ,
3 3 3
ht hz ht hz ht
tt Dtttttt
- = 1/6 —momm- ,
4 4
ht
Dzzzzz Dzzzzzzz
—————— = §/24 ——m——— e
5 5
hz hz
Dzzzzt Dzzzzttt Dzzzzzzt
—————— - 1/24 - - 1/6 =—=————m
4 4 4
hz ht hz ht hz ht
Dzzztt Dzzztttt Dzzzzztt
——————— - 1/12 ———————— - 1/8 ~——m———-
3 2 3 2 3 2
hz ht hz ht hz ht
Dzzttt Dzzttttt Dzzzzttt
------- - 1/8 ———————- - 1/12 ——------
2 3 2 3 2
hz ht hz ht hz ht
Dztttt Dztttttt Dzzztttt
T v/ - 1/24 ——————
4 4 4
hz ht hz ht hz ht
Dttttt Dttttttt
B 24 —m———
5 5
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4 Expanding the Advection/Dispersion/Sorption
Equation

The finite difference expansions for the derivatives are now substituted into
the Equation. First the whole linear portion of the equation is expanded
into a Taylor series in the two variables. Substitution for the derivatives
evaluated at (0,0) gives the finite difference expansion form for the linear
part of the equation. Then the non-linear, sorption term is expanded. C™
is considered as a logarithmic Taylor Expansion and, again, a substitution
converts the derivatives at (0,0) to the equivalent finite difference form. The
t™ term is also expanded in a series and multiplied by the C™ term. The
combined sorption term is then differentiated and subtracted from the linear
form. Note that all expansions are done with reference to the start of the
time step and that z and y become hx and hy at the end of the steps. Also,
all the substitutions are done with the mixed difference expansion to follow
normal useage. Expansions are to 5" order?.

4.1 Linear Advection/Dispersion Equation

The general form of this equation is:

2
oc_, B0 o "
Oy Oz? Jy
The variables = and y are purposely used instead of z and ¢ and little ’d’
is used in place of *D’. This is essential to allow for a recognition of the order
of the expansion in terms of the arbitrary variable ¢ = 1. It also allows the
normal operator convention for ’D’.

The result of this expansion is:

In this manuscript, the order of a term is defined as a combined difference level as-
sociated with the both the difference in the dependent variable and the increment in the
independent variable. That is, an ordinary first derivative, approximated by finite dif-
ferences would be of zero order, as would a second derivative, etc. Only when there are
more differences in the numerator than the denominator does the order go to one or two
or three or more. We will use the common multiplier (2 = 1) to take account of the order
with t? multiplying a second order difference, 2 multiplying a third order difference, etc.
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Terms of order 0

v Dx Dy d Dxx

— e mmee 4 ————

hx hy 2

Terms of order 1

/ v Dxx / v 1\ Dyy d Dxxx d Dxxy\
|- 3/2 ————- + |- ==== = ———| Dxy - 1/2 —— + + | ¢
I hx \ hx hy / hy 2 2 |
\ /

hx hx

Terms of order 2

v Dxxx / v 1\ / v 1\ Dyyy
(- 1/3 + |- - | Dxxy + |- 1/2 ---= = —=—- | Dxyy - 1/3 ———-
hx \ hx 2 hy/ \ hx hy / hy
d Dxxxx d Dxxxy d Dxxyy 2
+ 6/12 -+ -+ 1/2 - ) t
2 2 2
hx hx hx

Terms of order 3

v Dxxxx / 1 11 v\ / v 1\
(- 1/12 ——-———- + |- === = === ————] Dxxxy + |- 1/2 ———— - -——- | Dxxyy
hx \ 8 hy 24 hx / \ hx 2 hy/
/ 11 v\ Dyyyy d Dxxxxx d Dxxxxy
+ |- -———- - 1/8 ----| Dxyyy - 1/12 ———- + 1/24 —=—m—mem + 5/12 —=——m——v
\ 24 hy hx / hy 2 2
hx hx

d Dxxxyy d Dxxyyy 3
1/8 )t

Terms of order 4

v Dxxxxx v Dxxxxy / 1 i1 v\
(1/120 —==----- - 1/12 == + |= ==== = === ———-| Dxxxyy
hx hx \ 8 hy 48 hx /
/ 11 v\ Dxyyyy Dyyyyy 4
+ |- ----- - 1/8 --—~| Dxxyyy - 1/12 —————- + 1/120 ————- )t
\ 48 hy hx / hy hy
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Here, the 4** order terms are very likely affected by the size of the chosen
grid. The difference table pyramid converges at the top and becomes limited
by the size chosen at the bottom. In other words, the choice of a larger base
might have slightly more terms at high orders.

Nevertheless, the first order terms clearly show the numerical diffusion
from the upstream spatial difference; this produces a second derivative form
and effectively alters the dispersion coefficient d. Also, this differencing pro-
duces derivatives of nearly every order (see Section 3.3)

4.2 Function to a Power

Here the In of the C™ term is expanded in a power series

Terms of order 0

n
Co

Terms of order 1

n .
n Co t (Dx + Dy)

Co

Terms of order 2

n 2
ncCo t
2 2
((-1/2+1/2n)Dx + (n-1) Dy Dx + (- 1/2 + 1/2 n) Dy + Dxx Co + Dxy Co)
/2
/ Co
/
Terms of order 3
n 3 2 3 2 2

ncCo t ((-1/2n+1/6n +1/3) Dx + (- 3/2n+ 1/2n + 1) Dy Dx

2 2
+ ((-3/2n+1/2n + 1) Dy + (n~1) Co Dxx + (n - 1) Co Dxy) Dx

2 3
+ (-1/2n+1/6 n +1/3) Dy + ((n - 1) Co Dxx + (n - 1) Co Dxy) Dy
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2 2 /3
+ 1/2 Dxxy Co + 1/2 Dxyy Co ) / Co
/

Terms of order 4

n 4 /11 2 3 \ 4
n€ t (l---——-n-1/4n + 1/24n - 1/4] Dx
\ 24 /
2 3 3
+(-n +11/6n + 1/6n - 1) Dy Dx
2 3 2 2
+ ((-3/2+11/4n-3/2n +1/4n ) Dy + %1 Co Dxx + %1 Co Dxy) Dx + (
2 3 3
(-n +11/6n+1/6n - 1) Dy
2 2
+((n +2-3n) Cobxx + {(n + 2 - 3n) Co Dxy) Dy
2 2
+ (- 1/2 + 1/2 n) Co Dxxy + (- 1/2 + 1/2 n) Co Dxyy) Dx
/ 11 2 3 A\ 4 2
+ |--———n-1/4n + 1/24n - 1/41 Dy + (%1 Co Dxx + %1 Co Dxy) Dy
\ 24 /
2 2
+ ((- 1/2 + 1/2 n) Co Dxxy + (- 1/2 + 1/2 n) Co Dxyy) Dy
2 2 2
+ {-1/2 +1/2 n) Co Dxx + (n ~ 1) Co Dxy Dxx
2 2 3 3 3
+ (- 1/2 + 1/2 n) Co Dxy + 1/8 Dxxxy Co + 1/4 Dxxyy Co + 1/8 Dxyyy Co
/4
) / Co
/
2
AR -3/2n+1/2n +1

Noteworthy here is the fact that this form has no dependence whatever on
the value of the increments hx and hy. This means that the function and its
powers are determined wholly by the difference values. This follows from a
difference table where one makes up the function from the differences. The
whole function is simply a sum of its parts; it doesn’t depend on the size of
the parts. All the parts are there in the sum.
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4.3 The time term y™

This is a simple series derived from Newton’s Binonial Theorem. It is only
affected by changes in time and the value of hy at the end of the time
increment. Remember that C™ and t™ are combined and then differentiated.
The differentiation cannot be done on this form since since it has already
been evaluated at y = hy.

m m hy m(m - 1) hy m(m=-1) (m - 2) hy
tm := yo (1 + -—— + 1/2 ——————rm———- 4+ 1/6 ——=m———mm
yo 2 3
yo yo
4
m{m-1) (m-2) (m~ 3) hy
+ 1/24
4
yo
5
m(m-1) (m-2) (m~-3) (m-4) hy
+ 1/120
5
yo
6
m(m-1) (m-2) (m-3) (m-4) (m-5)hy
+ 1/720 )
6
yo

The variable y (or the time) remains in this form. This term is combined
with the O™ term of the last section and the kinetic constant k to make the
full non-linear term.

4.4 The Non-Linear Term

The full term is a combination of the forms of the last two sections. When
differentiated, it completes the mass balance requirement of the full equation

(1)-
Terms of order 0
n n/ m Dy \

nkC yo |-— 4 -——- |
\yo n hy Co/
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n
t nk Co

Dxy
$ e
hy

2 n
t nk Co

Terms of order 1

/ 2 \ 2

n | (2n

- 2n) by (2n -2n)D

2
y Dy m

Dx + 1/2 -

yo (l1/2
\

(-2m

+

m |
|
n Co hy yo / n Co hy

2
+2m) Cohy Dy

+ 1/2

/

y
----- + 1/2 ---)/Co
2 hy
yo n
Terms of order 2

3 2 2 \

m | (3n +6n-9n) Dy 3mn -3 mnnl

+ 1/6 | Dx

yo (li/6
\

3

(6 n + 12 n - 18

n Co hy n yo /

2 2 2
n ) Dy (12mn - 12 m n) Dy
+ 1/6 -

1/6 -~

+ 1/86

+ 1/6

+ 1/6

+ 1/6

n Co hy

2
(-6n+6n)

o= 4 1/6

n yo

2
Dxy (3n -3 n) Dyy

n hy

n hy

2 3 2

(-6mn+6m n) Cohy (3n +6n-9n) Dy

-+ D ———
yo

2
+ (

3

) Dx + 1/6 - - -

n yo

2
(9mn -9m

2 n Co hy

2 2
n) Dy (-6n+6n) Dxx

n yo

(- 12 n + 12 n ) Dxy

+ (1/6 - -
n hy

2 2
(3n - 3n) Dyy

n hy

2
9m n-9m

+ 1/6 -
n hy

n) Co hy m Co Dxx m Co Dxy
+
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2 3 2 2

Co Dxxy Co Dxyy (-9m +3m +6m) Co hy Dyyy Co
+1/2 + +1/6 +1/3 ——————-
hy hy 3 hy
yo n
/2
/ Co
/
Terms of order 3
3 n mn
t nkCo yo (
/ 2 4 3 3 2\
|- (44n -24n+4n -24n) Dy 4mn +8mn-12mn | 3
[1/24 + 1/24 ----| Dx
\ n Co hy n yo /
4 2 3 2
(-72n+12n +132n -72n ) Dy
+ (1/24 -
n Co hy
3 2 3 2
(48mn+24mn -72mn ) Dy (24n+12n ~ 36n ) Dxy
+ 1/24 + 1/24
n yo n hy
3 2
(6 n + 12 n - 18 n ) Dyy
+ 1/24
n hy
2 2 2 2
(-12mn +12mn+12m n -12m n) Co hy 2
+ 1/24 ) Dx + (
2
n yo
4 2 3 3
(-72n+12n +132n -72n ) Dy
1/24
n.Co hy
3 2 2

(72mn+36mn - 108 nn ) Dy
+ 1/24

+ (

n yo
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3 2 2 3
(24n -72n + 48 n) Dxx (-144n + 96 n + 48 n ) Dxy
1/24 + 1/24
n hy : n hy

3 2
(24n+12n - 36 n ) Dyy
+ 1/24 ——-

n hy

2 2 2 2
(36mn-36nmnn -36m n+36m n) Cohy
+ 1/24 ) Dy
2
n yo

2 2
(24 mn - 24 mn) Co Dxx (48mmn - 48 m n) Co Dxy
+ 1/24 - 1/24 - ———-
n yo n yo

+

2 2

(i2mn - 12 m n) Co Dyy (- 12 n + 12 n ) Co Dxxy

+ 1/24 --- - -+ 1/24 ——— -
n yo n hy

%1 Co Dxyy (8 n - 8 n) Co Dyyy
+ 1/24 ~mmmmmmes +1/24
n hy n hy

(-36m n+12m n + 24 nn) Co hy
+ 1/24 - ~—-) Dx
3
n yo

2 4 3 4
24n+4n -24n) Dy

,.\

[

[
=]
|

+ 1/2¢ -
n Co hy

3 2 3 3 2
(16 mn +32mn-48mn ) Dy (24n ~72n + 48 n) Dxx
+1/28 —mmmm e + (1/24 =—=mmmmmm -
n yo n hy

2 3 3 2
(-108n + 36n + 72mn) Dxy (6n + 12 n - 18 n ) Dyy
+1/24 —mmmm e T Y Y S— -
n hy n hy
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2 2 2 2
(24m n -24mn +24mn-24m n) Cohy 2
+ 1/24 )Dy + (
2
n yo

2 2

(48mn - 48 m n) Co Dxx (-72mn+72mn ) Co Dxy

1/24 O Y/ R — 2
h yo n yo

2
(12mn - 12 m n) Co Dyy %1 Co Dxxy
+ 1/24 + 1/24 -
n yo n hy

2 2
(-3 n+ 36n) CoDxyy (8 n - 8 n) Co Dyyy
+ 1/24 - +1/24 -
n hy n hy

3 2 2 2
(32mn+16m n-48m n) Co hy %1 Co Dxy
+1/24 - ) Dy + (1/24 ~=——-—-—-
3 n hy
n yo

2 . 2 2
(-12n + 12 n ) Co Dyy (-24mn+24m n) Co hy
+ 1/24 + 1/24 -) Dxx
n hy 2
n yo

/ 2 2 2\

| (-12n + 12 n ) Co Dyy (-3 mn+36m n) Co hyl
+ |1/24 + 1/24 ——- ---=| Dxy
I
\

n hy 2 |
n yo /

2 2 2 2
(6m n-6mn) Co hy Dyy m Co Dxxy m Co Dxyy
, + + 3/2 me—mm— e
2 yo yo
n ‘yo

+ 1/24
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2 2 2 2

m Dyyy Co Co Dxxxy Co Dxxyy 11 Co Dxyyy
+1/3 ————————- +1/8 —————-——- +1/2 -———————- + —mmm e
yo hy hy 24 hy
4 2 3 3 3 2
(-24m+4m +44m - 24m) Co hy Dyyyy Co /
+ 1/24 - e +1/12 == ) / Co
4 hy
yo n
2
% o= - 24n+24n
Only three orders of the terms are shown to save space.
4.5 The Full Expression
This is the entire equation converted to finite difference form. Note that it
is rather arbitrary what is intended by order. Here we chose to attach an
arbitrary factor ¢ = 1 to each of the differences and each hz and hy. The
result is that the simpliest expansion is that of zero order. We consider later
how to deal with the higher order terms. The listing below is configured to
give a simplest expression but not necessarily the one that is the most useful.
Note that R—1=Co"!-n-k-yo™.
Terms of Order 0
dDxx vDx RDy mCo (R~-1)
2 hx hy n yo
hx
Terms of Order 1
/ 2\
I m |
im/n - -=—=| Co (R - 1) hy
\ n/ d Dxxx d Dxxy m (R - 1) Dy
- - + + -2
2 2 2 yo
yo hx hx
/ R-1 1\ / v i R - 1\ m (R - 1) Dx
P Y, Juuum— [ Dyy + |- —=== = ———= = ————"| Dxy = =—==—mmmmmmmm
\ hy 2 hy/ \ hx hy hy / yo
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/1 n \ 2 /1 n\
[mmme = - | (R - 1) Dy [-=== = —=—- I (R - 1) Dy Dx
v Dxx \ hy hy / \ hy hy /
- 3/2 =m——- 4 ———— + - -
hx Co Co

Terms of Order 2

/ 2 3\
| m m | 2
i3/2 =——— - m/n - 1/2 ——-~| Co (R - 1) hy
\ n n/ / R -1 v 1\
— |- m———— - 1/2 e = = | Dxyy
3 \ hy hx hy /
yo
d Dxxyy d Dxxxy d Dxxxx v Dxxx
+ 1/2 + + 5/12 —==memm -1/3 ————-=
2 2 2 hx
hx hx hx
/ R-1 1\ / R -1 1 v\
+ |~ 1/3 ——~== = ———- | Dyyy + |- 1/2 ===== = === - ————| Dxxy
\ hy 3 hy/ \ hy 2 hy hx /
2
(3/2m=-3/2m) (R - 1) hy Dy m (R - 1) Dyy m (R - 1) Dxy
+ - - 1/2 -2 -=
2 yo yo
yo
2
(-m +m) (R-1)hyDdx m (R - 1) Dxx
+ -
2 yo
yo
2 2
(-3/2mn +3/2m) (R - 1) Dy (1/2m-1/2mn) (R - 1) Dx
+ +
Co yo Co yo
/ 2\
/ 1 n\ ] n 2 n | 2
[-——= - ===~ | (R - 1) Dxy Dx |3 - - | (R - 1) Dy Dx
\ hy hy / \ hy hy hy /
+ + - -
Co 2

Co
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/ 2 \
| n n 1|
[3/2 ———— ~ 1/2 = = ——— | (R - 1) Dyy Dy Dx
\ hy hy hy /
+ -
2
Co
/ n 1\ /1 n \ 2
|- 1/2 === + --—=| (R - 1) Dyy Dxx |-——— - ———- | (R - 1) Dxy
\ hy 2 hy/ \hy - hy /
Co ;e Co
/1 n \ / n 1\
|~--- - =] (R - 1) Dxy Dxx |- 1/2 ——— + ————| (R - 1) Dxxy Dx
\ hy hy / \ hy 2 hy/
+ + -——
Co Co
/ 2 \
| n n 1| 2
13/2 ———= - 1/2 === - ——- | (R ~ 1) Dxy Dx
\ hy hy hy /
+
2
Co
(2m-2mn) (R - 1) Dxy Dx
+
Co yo
2 2
(-3/2mn +9/2mn-3m) (R-1) Dy Dx
+
2
Co yo
/1 n\
|---- - 1/3 --=—-| (R - 1) Dyyy Dy
(2m~2mn) (R-1) Dy Dxx \3 hy hy /
+ + -—
Co yo Co
/1 n \
[-——— = ——- | (R -~ 1) Dxxy Dy
(m-mn) (R-1) Dxx Dx \ hy hy /
+ +
Co yo Co
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/ 1 n\ / 2 n \

|=mmm = ———- | (R - 1) Dy Dxx |---- - 2 =———| (R - 1) Dxy Dy
\ hy hy / \ hy hy /
+ +
Co Co
/ 2 \
| n n I : 2
13/2 === = 1/2 —=== = ———- | (R - 1) Dy Dx
\ hy hy hy /
+
2
Co
/ n 1\ / n 1\
[-1/2 === + ——| (R - 1) Dyy Dx |- 1/2 -——— + ———=| (R - 1) Dyy Dy
\ hy 2 hy/ \ hy 2 hy/
+ - +
Co Co
/ 2
| n n 1| 3
13/2 ————= - 1/2 ===~ = ——=- | (R - 1) Dy
\ hy hy hy / E (2m-2mn) (R - 1) Dy Dx
+ === +
2 Co yo
Co
Terms of Order 3
d Dxxxyy d Dxxxxx d Dxxxxy d Dxxyyy v Dxxxx
———————— + 1/24 ——————== 4 5/12 ~—=—==== + 1/8 ———————— - 1/12 ——————-
2 2 2 2 hx
hx hx hx hx
2 3
(-4/3m+2mn-2/3mn) (R-1) Dy
+ -— —— —
2
Co yo
2 2
(3/2mn-3/2m n-3/2m+3/2m) (R~-1) hy Dy D
F mm———————————————————— —
2
Co yo
2 3
(-1/6mn +1/2mn-1/3m) (R - 1) Dx
4 ——
2
Co yo
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/ 1 n \

j==— - 1/3 ———-| (R - 1) Dyyy Dx
\3 hy hy / :
Co
/ 2 3 \
| n n n 1] 3
|- 11/6 -——— + -——= - 1/6 -—— + -——=| (R - 1) Dy Dx
\ hy hy hy hy /
3
Co
/ 2 \
! n n 1] 2
13/4 ———- - 1/4 —=—= = ———= | (R - 1) Dyy Dy
\ hy hy 2 hy/
' 2
Co

n\
=== = ———- | (R - 1) Dxyy Dx
\ hy hy /

Co
/ 2 \
[ n n 1| 2
[3/4 ——-- - 1/4 ———— - ——== | (R - 1) Dyy Dx
\ hy hy 2 hy/
2
Co
/ n 3\
|- 3/2 =--- + ———| (R - 1) Dxyy Dy
\ hy 2 hy/
Co
/ 3 2 \
] n n 3 n | 2 2
|- 1/2 ———- + 3 ~——— + =———— - 11/2 -=——=| (R - 1) Dy Dx
\ hy hy hy hy /
3
Co
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2

/ 2\
[ n 2 n | '
13 - - | (R - 1) Dxx Dy Dx
\ hy hy hy /
2
Co
/ 2\
! n 2 n. | 2
[3: - - | (R"- 1) Dy Dxx
\ hy hy hy /
2
Co
2 2. 2
(-1/2m-1/2m n+1/2mnn+1/2m) (R - 1) hy Dx
2
Co yo
/ n: 1\
|- 1/2 === 4o | (R - 1) Dyy Dxy
hy 2 hy/ :
Co
/ 2\
| n 4 n |
l6 - -2 | (R - 1) Dxy Dy Dx
\" hy hy hy /
2
Co
2
Bm-3mn) R-1)DxyDy (-2m-mn +3mn) (R~ 1) Dy Dx
_+ -—
Co yo 2
Co yo

(1/2m-1/2mmn) (R - 1) Dyy Dx  (1/2m - 1/2 mn) (R - 1) Dyy Dy

+
Co yo Co yo

/ 2 \ :

. n 3 n | : 2
- 3/2 === = —=—- +9/2--—-] (R - 1) Dxy Dy
\ hy hy hy /

Co
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/ 3 2 \
| n n 3 n | 3
- 1/2 + 3 + - 11/2 -———-| (R - 1) Dy Dx
\ hy hy hy hy /
+
3
Co
/ 2 3 \
| n n n 11 4
|- 11/6 =-—- + -~—— - 1/6 ———— + ——==| (R - 1) D _ B
\ hy hy hy hy / - m (R ~ 1) Dyyy
+ - 1/3
3 ‘ : : yo
Co L
3 2 2

m(R-1)Dxxy (-2/3m +2m -4/3m) (R-1) hy Dy
- - +
yo 3
yo

2 2
(1/4m-1/4m) (R-1) hy Dyy (3/2m - 3/2m ) (R - 1) hy Dxy
+ - - +

2 2
yo yo
3 2 2 2

(-m-1/2m +3/2m) (R-1)hy Dx (-m +m) (R - 1) hy Dxx

+ ———- ——— +
3 2
yo yo
2 2 2

(m -m+mn-m n) (R-1) hy Dy m (R - 1) Dxyy

+ - - 3/2
2 yo
Co yo

/ i v R - 1\
|- - 1/2 e - 1/2 e | Dxxyy

\ 2hy hx sy /

/ R-1 1 i1 v\ / i R - 1\
+ |- 1/8 ——==- - - [ Dxxxy + |- ---—- - 1/12 —=-—- | Dyyyy

\ hy 8 hy 24 bhx / \ 12 hy hy /

/ 11 v 11 R - 1\
+ |- ————- - 1/8 - | Dxyyy

\ 24 hy hx 24  hy/
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/ 4 3 2\
| n m m | 3
|- 1/6 === + === + m/n - 11/6 ----| Co (R - 1) hy
\ n n n/
+
4
yo
Terms of Order 4
v Dxxxxx v Dxxxxy m (R - 1) Dxxyy m (R - 1) Dxxxy
1/120 —=————~- - 1/12 ————mmme - 3/4 --1/4
hx hx yo yo
2
(-1/6 m +1/6m) (R - 1) hy Dyyy %2 (R - 1) Dxy Dxx Dx
+ +
2 2
yo Co
/ 2 3\
| n n 6 n | 2
|-'11 + 6 + - | (R - 1) Dxx By Dx
\ hy hy hy hy /
+ .
3
Co
’ 2 2 2
(3/2mn-m-1/2mn) (R - 1) Dxx Dx %1 (R - 1) Dxyy Dx
+ +
2 2
Co yo Co
/ 3 2 \
| n n 4 n | 3
I- 2/3 +4 + - 22/3 -=--—| (R - 1) Dxy Dy
\ hy hy hy hy /
+
3
Co
2
%2 (R - 1) bxy Dx
+
2
Co
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/ 3 2 \
[ n n 3 n | 2
|- 1/2 ~——— + 3 ———= 4+ ———— - 11/2 ———| (R - 1) Dy Dxx Dx
\ hy hy hy hy /
+ e o e et e i e . e e . e S v o e e e e e -
: 3
Co
/1 n\
| = - 1/12 ——-| (R - 1) Dyyyy Dx
\12 hy hy /
+
Co
/ 2 3 \
| n n 3 n | 2
|3/2 =———- - 1/4 --—— + ———- - 11/4 ———-| (R - 1) Dyy Dy Dx
\ hy hy 2 hy hy / ’
+ _______________________________________ -
3
Co
/ 2 3\
| 1 n 11 n n | 3
[-=== + 1/2 === = —=== ——=—— - 1/12 ——~| (R - 1) Dyy Dx
\2 hy hy 12  hy hy /
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5 Maple Codes

The codes behind the expressions are simpler and present a view of the
structure of the calculations.

5.1 Derivative Formulas

The first Maple programs calculate the differences, name them, and solve
for the derivatives at the nodal point. The simplest case uses forward differ-
ences. Complete versions of all these programs are presented to remove any
possibility of error.

5.1.1 Forward Differences

Program fdel.mpl

Calculates the expression for the derivatives in terms of finite
differences for two independent variables, here named x and y,
to order N

HEHH

Early, workable, FORWARD DIFFERENCE routine

Calculates a double delta expression for two variables

set a and b, the initial x values, and N, the number of terms
before reading.

a :=0; b:=0; N :=T7; NP := N+1;

# NP the terms in the polynominal

®, R

readlib(mtaylor);
# usage: tay(g(2+%x,y),x,y);
tay := proc(g,x,y) local ti;
t1 := mtaylor(g, [x=a,y=b] ,NP); ti := convert(ti,polynom);
end;

# Bookkeeping:

-the name of each difference is Dx.. wusage: Dx Dxx Dxy Dxxx Dxyyy
where x is for the x direction and y, for the y direction.

-use primary running vector g[Dx..][i,j] to maintain the list of
values of the dependent values -- to be operated upon.

-m is the number of lower-order differences to be processed.

-1 is the order of the difference -- outer loop

-the array ’nameD[i,j]’ contains the name of each calculated difference.

-similarily ’namep[i,jl’ is the indexed x,y position at which the
forward partial difference is formed.

HRBEHBEEEEHR
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# form the initial, first differences and associated tables:
m:=0:
# counter for the calculated differences of like order
# with 2 dimensions, there are two types of differences to be produced
# for the two directions, x & y.

1:=0:
# 0 order is considered as the function values themselves
for i from 0 to N do;
for j from 0 to N do;
m:=m+1;
g[DI[i,j]:=tay(£(i*x,j*y),x,y);
nameD[1,m] :=D; namep([l,m]:=i,j;
od;
od;
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# There are many different differences. The following uses the
# concept that once the differences are formed, the next order
# is formed from all differences of the first
eqns := NULL:
# Equations are built up during the calculations.
# wuses only the terms that are forward differences at position 0,0.
nl:=N:
# nl - data points available in either directions for a given difference
for 1 from 1 to N do
Im:=1-1: mm:=m: m:=0:
# with 2 dimensions, two types of differences are produced - x & y.
for k from 1 to mm do;
nmme :=nameD [1m,k] ;
len:=length(nmme) ;
nd:=substring(nmme,len..len};
rr:=namep[im,k]; i:=rr[1]; j:=rrl2];
if i < nl then; if (nd = ’D’) or (nd = ’x’) then;
# limits the differencing and only allows for lexigraphic order
# i.e., Dx,Dy,Dxx,Dxy,Dyy,Dxxx,Dxxy,Dxyy,Dyyy,Dxxxx,Dxxxy,Dxxyy,Dxyyy,Dyyyy,etc.
nmmx:=‘‘ . nmme.x;
difference := glnmme] [i+1,j]-glnmme][i,j];
ginmmx] [i,j] := difference;
if i=0 and j=0 then; eqns:=eqns,nmmx = difference; fij;
m:=m+1; nameD[1,m] :=nmmx; namep[l,m]:=i,j;
fi; £fi;
# x difference & name stored
if j < nl then;
nmmy:=¢‘¢.nmme.y;
difference := glnmme] [i,j+1]-ginmmel[i,j];
glnmmyl fi,j] := differencs;
if i=0 and j=0 then; eqns:=eqns,nmmy = difference; fi;
m:=m+1; nameD[1,m]:=nmmy; namep[l,m]:=i,j;
fi;
# y difference & name stored after each x difference
od;
wuw:=‘Differences of order ‘.l1.°‘, calculated ‘.m.‘ terms‘:
print(wew); mm:=m: nl:=nl-1i:
od:

# solve the simultaneous equations for the derivatives:
eqns = {eqns};
nops(eqgns) ;
vars := select(has,indets(eqns,function),D);
nops(vars);
solve(eqns,vars);
sol := expand(");
save(sol, ‘fsol‘);

45




5.1.2 Backward Differences

Program bdel.mpl

Calculates the expression for the derivatives in terms of finite
differences for two independent variables, here named x and ¥
to order N

BACKWARD difference form

Calculates a double delta expression for two variables

set a and b, the initial x values, and N, the number of terms
before reading.

a :=0; b :=0; N :=7; NP := N+1;

# NP is the terms in the polynominal

#

readlib(mtaylor);

# usage: tay(g(2*x,y),x,y);

tay := proc(g,x,y) local t1;

t1 := mtaylor(g,[x=a,y=b],NP); t1 := convert(ti,polynom);

end;

HH R R

# Bookkeeping:
-the name of each difference is Dx.. usage: Dx Dxx Dxy Dxxx Dxyyy
where x is for the x direction and y, for the y direction.
—use primary running vector g[Dx..][i,j] to maintain the list of
values of the dependent values -- to be operated upon.
-m is the number of lower-order differences to be processed.
BACKWARD DIFFERENCE routine derived from del.mpl
-1 is the order of the difference -- outer loop
-the array ’nameD[i,j]’ contains the name of each calculated difference.
-similarily ’'namep[i,j1’ is the indexed x,y position at which the
forward partial difference is formed.

form the initial, first differences and associated tables:

m:=0:

counter for the calculated differences of like order

with 2 dimensions, there are two types of differences to be produced
for the two directions, x & y.

" ** HHEFHHAEHERTR S

1:=0:
# 0 order is considered as the function values themselves
for i from -N to 0 do;
for j from -N to 0 do;
m:=m+1;
g[D1[i,j]1:=tay(£(i*x,j*y),x,y);
nameD[1,m]:=D; namep[l,m]:=i,j;
od;
od;
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# There are many different differences. The following uses the
# concept that once the differences are formed, the next order
# is formed from all differences of the first
eqns := NULL:
# Equations are built up during the calculations.
# uses only the terms that are forward differences at position 0,0.
nl:=N:
# nl - data points available in either directions for a given difference
for 1 from 1 to K do
Im:=1-1: mm:=m: m:=0:
# with 2 dimensions, two types of differences are produced — x & y.
for k from 1 to mm do;
nmme : =nameD [1m,k] ;
len:=length(nmme) ;
nd:=substring(nmme,len..len);
rr:=namep[im,k]; i:=rrl1]; j:=rrl2];
if -i < nl then; if (md = ’D’) or (nd = ’x’) then;
# limits the differencing and only allows for lexigraphic order
# i.e., Dx,Dy,Dxx,Dxy,Dyy,Dxxx,Dxxy,Dxyy,Dyyy,Dxxxx,Dxxxy,Dxxyy,Dxyyy,Dyyyy,etc.
nmmx = ¢ . nmme.x;
difference := glnmme] [i,j]l-glnmmel [i-1,j];
glnmmx] [i,j] := difference;
if i=0 and j=0 then; eqns:=egns,nmmx = difference; fi;
m:=m+1; nameD[1l,m] :=nmmx; namep[l,m]}:=1,j;
£i; fi;
# x difference & name stored
if j < nl then;
nmmy:=¢‘.nmme.y;
difference := glnmme] [i,j]-glnmme] [1,j-1];
glnmmy] [i,j] := difference;
if i=0 and j=0 then; egns:=eqns,nmmy = difference; fi;
m:=m+1i; nameD[l,m] :=nmmy; namep[l,m]:=i,j;
£fi;
# y difference & name stored after each x difference
od;
www:=‘Differences of order ‘.1l.°, calculated ‘.m.‘ terms‘:
print{(www); mm:=m: nl:=nl-1:
od:

# solve the simultaneous equations for the derivatives:
eqns := {eqns};
nops(egns) ;
vare := select(has,indets(eqns,function),D);
nops(vars);
solve(eqns,vars);
g0l := expand(");
save(sol, ‘bsol’);
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5.1.3 Central Differences

# Program cdel.mpl
# Calculates the expression for the derivatives in terms of finite
# differences for two independent variables, here named x and y,
# to order N
# CENTRAL difference form 4Jun92
# Calculates a double delta expression for two variables
# set a and b are left as offsets in x and y in the series
N :=7; NP := N+1: a := 0: b:= 0:
# N is the number of orders of the differences
# NP the terms in the polynominal
# a and b are set to zero -~ this should make no difference because all
# the expansions are relative to the initial point anyway.

readlib(mtaylor);
# usage: tay(g(2*x,y),x,y);
tay := proc(g,x,y) local t1;
t1 := mtaylor(g, [x=a,y=b] ,NP); t1 := convert(tl,polynom);
end; :

# Bookkeeping:

# -the name of each difference is Dx.. usage: Dx Dxx Dxy Dxxx Dxyyy

# where x is for the x direction and y, for the y direction.

# -use primary running vector g[Dx..][i,j] to maintain the list of

# values of the dependent values -- to be operated upon.

# -m is the number of lower-order differences to be processed.

# -1 is the order of the difference -- outer loop

# -the array ’nameD[i,j]’ contains the name of each calculated difference.
# -gimilarily ’namepli,j]’ is the indexed x,y position at which the

# forward partial difference is formed.

#

form the initial, first differences and associated tables:

m:=0:
# counter for the calculated differences of like order
# with 2 dimensions, there are two types of differences to be produced
# for the two directions, x & y.

1:=0:
# 0 order is considered as the function values themselves
for i from -N to N do;
for j from -N to N do;

m:=m+1;

gD [i,j]:=tay (£ (i*x,j*y),x,y);

nameD[1,m] :=D; namep[l,m]:=i,j;
od; .
od;
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# There are many different differences. The following uses the
# concept that once the differences are formed, the next order

# is formed from all differences of the first
eqns := NULL:
# Equations are built up during the calculations.

# uses only the terms that are forward differences at position 0,0.

nl:=N:

# nl - data points available in either direction for a given difference

for 1 from 1 to ¥ do
Im:=1-1: mm:=m: m:=0:

# with 2 dimensions, two types of differences are produced - x & y.

for k from 1 to mm do;

nmme : =nameD [1m,k] ;
len:=length(nmme) ;

nd:=substring (nmme,len..len);
rr:=namep[lm,k]; i:=rr[1]; j:=rr[2];

if (-nl < i and i < nl) then; if (nd = ’D’) or (nd = ’x’) then;
# limits the differencing and only allows for lexigraphic order
# i.e., Dx,Dy,Dxx,Dxy,Dyy,Dxxx,Dxxy,Dxyy,Dyyy,Dxxxx,Dxxxy,Dxxyy,Dxyyy,Dyyyy,etc.

nmmx:=‘‘ . nmme.x;
difference := (glnmme] [i+1,j]l-glnmme] [i-1,3]1)/2;
glnmmx] [i,j] := difference;

if i=0 and j=0 then; eqns:=eqns,nmmx = difference; fi;

m:=nm+1; nameD[1,m]:=nmmx; namep[l,m]:=i,j;
fi; £i;
# x difference & name stored
if (-nl < j and j < nl) then;
nomy:=¢ ¢ .nmme.y;
difference := (g[nmmel[i,j+1]-glnmmel [i,j-11)/2;
glnmmy] [i,j] := difference;

if i=0 and j=0 then; eqns:=eqns,nmmy = difference; fi;

m:=m+1; nameD{1,m]:=nmmy; namep{l,m]l:=i,j;

£i;
# y difference & name stored after each x difference
od;

waw:=‘Differences of order ‘.1.¢, calculated ‘.m.‘ terms‘:

print(www); mm:=m: nl:=nl-1:
od:

# solve the simultaneous equations for the derivatives:

eqns := {eqns};
nops (eqns) ;
vars := select(has,indets(eqns,function),D);
nops(vars) ;
gsolve(eqns,vars);
sol := expand(");
save(sol, ‘csol‘):
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5.1.4 Mixed Differences

Program mdel.mpl

Calculates the expression for the derivatives in terms of finite
differences for two independent variables, here named x and y,
to order N

MIXED difference form for the phorphorus problem 9Jun92

This is the central difference form called cdel.mpl
except:
- initial functional values are derived for half the spacing
- the differences formed are not divided by two
(this gives the same effect as the differences used by
Notodarmojo et al, with All higher order differences
considered as central differences)
- first order differences are corrupted so that:
Dx is a backward difference
Dy is a forward difference

HBEHBBHAEEHTERER HHHH

N := 65; NP := N+1: NH := N/2: a := 0: b:= 0:
# N is the number of orders of differences
# NP the terms in the polynominal; NH the number of half differences
# a and b are offsets in x and y of the Taylor series expansion
# They are set to zero -- this should produce no limitation on the
# validity of the expressions because the approximation process is
# always relative to the initial notal point.

readlib(mtaylor);
# usage: tay(g(2*x,y),x,y);
tay := proc(g,x,y) local ti;
t1 := mtaylor(g, [x=a,y=b],NP); t1 := convert(tl,polynom);

end;
Bookkeeping:

-the name of each difference is Dx.. usage: Dx Dxx Dxy Dxxx Dxyyy
where x is for the x direction and y, for the y direction.

-use primary running vector g[bDx..}[i,j] to maintain the list of
values of the dependent values -- to be operated upon.

-m is the number of lower-order differences to be processed.

-1 is the order of the difference —— outer loop

-the array ’nameD[i,j]’ contains the name of each calculated difference.
-gimilarily ’namep[i,j]’ is the indexed x,y position at which the
forvard partial difference is formed.

form the initial, first differences and associated tables:

m:=0:

counter for the calculated differences of like order

with 2 dimensions, there are two types of differences to be produced
for the two directions, x & y.

HHH +#* HHEHRATERETREHER
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1:=0:
# Here 0 order is considered as the function values themselves
for i from -NH by 1/2 to NH do;
for j from -NH by 1/2 to NH do;
m:=m+i;
gDl [i,j]:= tay(£(i*x,j*y),x,y);
nameD[1,m] :=D; namep[l,m]:=i,j;
od;
od;

# We first calculate the functional values, the 0 order differences.
# Then the first order differences, second order differences, etc.

# are formed

eqns := NULL:

# Equations are built up during the calculations.

# only the terms at position 0,0 are collected.

nl:=HH:
# nl - data points available in a given direction

for 1 from 1 to N do
Im:=1-1: mm:=m: m:=0:
# with 2 dimensions, two types of differences are produced - x & y.

for k from 1 to mm do;

nmme : =nameD [1m,k] ;
len:=length(nmme) ;
nd:=substring(nmme,len..len);
rr:=namep[lm,k]; i:=rr[1]; j:=rrl2];

# first calculate the x difference
if (-n1 < i and i < nl) then; if (nd = 'D’) or (nd = ’x’) then;
# limits the differencing and only allows lexigraphic order,
# i.e., Dx,Dy,Dxx,Dxy,Dyy,Dxxx,Dxxy,Dxyy,Dyyy,etc.
nmux:=‘ ¢ .nmme.x;
difference := (glnmme] [i+1/2,j1-gnmme] [i-1/2,j1);
glnmmx] [i,j] := difference;
if i=0 and j=0 then;
ijf 1 = 1 then; difference := (g[nmme] [i,j]l-glnmmel[i-1,j1); £i;
# backward difference corruption to match Phosphorus calculation
eqns:=eqns ,nmmx = difference; fi;
m:=m+1; nameD[1l,m] :=nmmx; namep[l,m]:=1,j;
£i;
£i;
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# then calculate the y difference
if (-nl1 < j and j < nl) then;
nmmy :=‘ ¢ .nmme.y;
difference := (glnmme][i,j+1/2]-g[nmme] [i,j-1/2]1);
gnmmyl [i,j] := difference;
if i=0 and j=0 then:
if 1 = 1 then; difference := (glomme] [i,j+1]-g[nmme] [1,j]1); £i;
# forvard difference corruption to match Phosphorus calculation
eqns :=eqns ,nmmy = difference;
fi;
m:=m+1; nameD[1,m]:=nmmy; namep[l,m]:=i,j;
£i;
# y difference & name stored after each x difference

od;

www:=‘Differences of order ¢.1.¢, calculated ‘.m.‘ terms‘:
print(www); mm:=m: nl:=nl-1/2:

od:

# solve the simultaneous equations for the derivatives:
eqns := {eqns};

nops(eqns);
vars := select(has,indets(eqns,function),D);
eee := collect(eqns,vars):

# save ees, ‘eqn.m‘;
solve(eqns,vars):
sol := expand(");

save sol,‘msol.m¢;
quit;

5.2 Full Equation

Basically, the above expressions produce a set of solutions for the deriva-
tives at the nodal point (0,0). The P.D.E. is expanded as a whole and
substitutions made for the derivatives. This is done in two parts, the linear,
advective/dispersion portion to the equation and, separately, the non-linear
absorption term.

# Program sf.ml
# Expands the Phosphorus advection/dispersion/sorption equation and
# substitutes for the derivatives at the nodal point.

read msol.m:
# To change to other differences, replace this line.
# File produced by mdel.mpl contains the finite difference
# solutions for the derivatives, called sol

N := 6: NP := N+1:
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# Build a list of equations marking the differences by
# t-(Order of difference)
Assign := proc(a,b) a=b; end:
tot := NULL:
for i from 0 to N do
for j from 0 to N do
tname := cat(D,x$i,y$j);
tot := tot,tname =t~ (i+j)*tname;
od: od;
sol := subs({f=C,tot},s0l):
sol := subs(x=t*hx,y=t*hy,sol):
# C is now the dependent variable
# the t is to keep track of the order
# the x&y in sol are really increments.

readlib(mtaylor):

pde := - vxdiff(C(x,y),x) + d*diff(C(x,y),x,x) - aiff(C(x,y),y);

# Note the signs and the order of the terms

# the non-linear term dSdt with S = k C"m t"n is subtracted later
mtaylor(pde, [x=0,y=01 ,NP):
convert( " ,polynom):
subs(sol, " ):
subs(C(0,0)=Co, " ):
subs (C=proc(x,y) 0 end , " ): # removes unwanted high order terms
subs (x=t*x,y=t*y, " ):

# remember t is a dummy variable (=1) just to keep track of orders
subs (x=hx,y=hy, " ); #remove to preserve x & y dependence
taylor( " ,t,NP):
result := convert( " ,polynom);

# save result, ‘result.m‘;

read ‘fn.m‘:

# The function f£°n is returned as a double taylor series fn from
# program fn.mpl

subs (£f=C,fn):

subs(sol, " ):

subs(C(0,0)=Co, " ):

Cn := convert( " ,polynom);
# save Cn, ‘Cn.m¢;

# the generation of the time term tm
(1+yy)"m:
series( " ,yy,NP+1): convert( " ,polynom):
tm := yo~m¥subs(yy=y/yo, " );
# save tm, ‘tm.m‘;
# The term is written this way to allow an expansion about yo,
# the value of time at the start of the time step.

# The non-linear sorption isotherm for the concentration
# on the solid:
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S := k*Cn*tm:

# Substitute into the non-linear term in the full equation

diff£(S,y):
subs(y=t#*y,x=t*x, " ):
subs(x=hx,y=hy, " ): #remove to preserve x & y

# remember t is a dummy variable (=1) just to keep track of orders
series(",t,NP):
term := convert( " ,polynom);

# save term, ‘term.m‘;

# The final result is:

series(result-term,t,NP):
convert( " ,polynom):
expand( " ):
F := collect( " ,%t):
save F,‘F.n‘;
quit;
This file is run in a Unix environment with the command
>maple <sf.ml >sf.out
though many variations are possible depending on the amount of interaction
intermediate results or checkout required. Several intermediate forms may
need to be explored; these are obtained by activating the lines that save files
result.m, Cn.m, tm.m, and F.m. Important is the factor t which is used to
mark the order of the difference, defined such that each delta, independent
and dependent is prefaced with a single ¢.

The first routine, builds a list of names with the ¢ attached. The next
routine expands the linear, advection/dispersion portion of the equation.
Then the C™ term is formed as a taylor series in x and y. This function is
made up from a combination of exponential and logarithmic forms and is
obtained from separate program fn.mpl and read in as fn. The time power
t™ is formed from a simple binomial series, note that it is expanded about
the initial time, here yo. The sorption term is then formed, differentiated,
and, through substitution, converted to the expanded, difference form. A
final subtraction of the differentiated, sorption term gives the final expanded
form of the P.D.E. A little cleanup along the way is required to keep the size
of the expressions minimal and make the final result clear.
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5.3 Other Codes

The function C™ is obtained indirectly from program fn.mpl. It uses a double
expansion of an exponential and logarithm.

# Program fn.mpl

# creates an series expansion for. (f(x,y))™n
N :=5: NP := N+i:

# NP is the number of terms in the polynominal

expr := £(x,y)"n;

# The working form is exp(ln(expr)). The technique uses the ’homogenous

# form’ x->xt and y->yt to construct a multidimensional series from a single
# dimensional series. This automatically carries the x and y along even

# though the expansion is in terms of t. later, t is set equal to 1.

# The 1n(expr) series
subs ({x=x#t,y=y*t},expr);
expand{In("));
series(",t,NP):
convert (" ,polynom) :

A := expand("):

A := subs(In(t)=0,4):

# The exp(u) series
series(exp(4),t,NP):

B := convert(",polynom):
B := expand("):
B := collect(", t): nops(B);

#B := map(factor,B):
subs(t=1,B):

fn := simplify(");
save(fn,‘fn.m‘):

All of the expressions need some cleanup, depending on how they are to be
analysed. The following are the main programs, somewhat combined. Note
that finites, printlevel and removal of garbage collection gc(0) are common
to most of the cleanup, as is N, the number of terms.

# Program fix.mpl
# used to clean up the terms

e Organise differences and derivatives---—-
printlevel := 0:

words (0) : gc(0):

tt := collect(",t);

finites:= [Dx,Dy, Dxx,Dxy,Dyy, Dxxx,Dxxy,Dxyy,Dyyy,
Dxxxx,Dxxxy,Dxxyy,Dxyyy,Dyyyy, Dxxxxx,Dxxxxy,Dxxxyy,Dxxyyy,Dxyyyy,Dyyyyy,
Dxxxxxx,Dxxxxxy,Dxxxxyy,Dxxxyyy,Dxxyyyy,Dxyyyyy.Dyyyyyy.,
Dxxxxxxx,Dxxxxxxy,Dxxxxxyy,Dxxxxyyy,Dxxxyyyy,Dxxyyyyy ,Dxyyyyyy ,Dyyyyyyyl:
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derivatives
1

(p[1,1,1,1,1,1,11(£)(0,0),[1,1,1,1,1,1,2](£)(0,0),D[1,1,1,1,1,2,2](£) (0,0),
pl1,1,1,1,2,2,2](£)(0,0),0[1,1,1,2,2,2,2]1(£)(0,0),D[1,1,2,2,2,2,21(£)(0,0),
p[1,2,2,2,2,2,21(£)(0,0),0[2,2,2,2,2,2,2]1(£) (0,0),
p[1,1,1,1,1,11(£)(0,0),D[1,1,1,1,1,2]1(£)(0,0),D[1,1,1,1,2,2]1(£)(0,0),
pl1,1,1,2,2,2](£)(0,0),D[1,1,2,2,2,2]1(£)(0,0),D[1,2,2,2,2,21 (£)(0,0),
n[2,2,2,2,2,21(£)(0,0),

D[1,1,1,1,1](£)(0,0),p[1,1,1,1,2]1(£)(0,0),D[1,1,1,2,2]1(£)(0,0),
p[1,1,2,2,21(£)(0,0),0[1,2,2,2,2]1(£) (0,0),D[2,2,2,2,2] (£)(0,0),

D[1,1,1,1](£)(0,0),D[1,1,1,21(£)(0,0),D[1,1,2,21(£)(0,0),
pl1,2,2,2](f)(0,0),0[2,2,2,21(£)(0,0),

p[1,1,1](£)(0,0),p[1,1,21(£)(0,0),D[1,2,2]1(£)(0,0),
p[2,2,2](£)(0,0),D[1,1](£)(0,0),D[1,2](£)(0,0),D[2,2](£)(0,0),
p[11(£)(0,0),p[21(£)(0,0)]:

nf := nops(rfinites):
finites := [seq(rfinites[nf-i],i=0..nf-1)];
# Sometime the list must be reversed, particularily with polynominals

sols := subs(sol,derivatives);
sol := [seq(derivatives[il=sols[i],i=1..nops(sols))];
ff a->sort(a,finites):

. e
[T}

gg := b—>lhs(b)=ff(rhs(b)):
sol := map(gg,sol):

# puts the solution into a sensible, consistent order in sol
# from Dave R. Clark and Greg. J. Fee
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# fix result
N :=6:
read ‘result.ml‘:
expand("):
tt := collect(",t);
for i from 0 to N do
coeff(tt,t,i):
collect( " ,finites,distributed):
sort( " ,finites)*t~i:
cli] := collect( ",t):
print(‘Terms of order ‘.i):
print(");
od;
# fix Cn
read ‘Cn.m‘:
subs (x=t*hx,y=t*hy, " ):
expand("):
tt := collect(",t):
for i from 0 to 5 do:
f£ff := coeff(tt,t,i):
ff := normal(fff):
# if i <= 1 then aa := lcoeff(",t):
# else aa := op(1,"): £i:
fff := n*Co"n/Co~i:
ffff := f£/£1f:
#splits off the denominator term
ffff := collect(ffff,Co);
cl[i] := fffxt i*ffff:
print(‘Terms of order ‘.i):

print(");

od;
#This routine has been changed variously and doesn’t work well
quit;
ittt fix term

read ‘term.ml‘:
subs (hx=x,hy=y, " ):
subs (x=t*hx,y=t*hy, " ):
expand("):
tt := collect(",t):
for i from 0 to 5 do:
coeff(tt,t,1):
normal( " ):
ff := n*Co™n/Co~i:
""/ff .
collect( " ,Co);
c[i] := ff#t~i%*collect( " ,finites):
print (‘Terms of order ‘.i): '
print(");
od;
quit;
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The program to organise the complete expression includes some special
power substitutions to bring the large terms more in line.

#Program to fix up the output of sf.ml
# s8f.ml is the version of the full phosphorus model
# correct 28Jul92 William D. Scott
# displays results properly
printlevel := 0:
words(0) : gc(0): #removes garbage collection
N :=5: ‘
finites:= [Dx,Dy, Dxx,Dxy,Dyy, Dxxx,Dxxy,Dxyy,Dyyy,
Dxxxx,Dxxxy,Dxxyy,Dxyyy,Dyyyy, Dxxxxx,Dxxxxy,Dxxxyy,Dxxyyy,Dxyyyy,Dyyyyy,
Dxxxxxx,Dxxxxxy,Dxxxxyy,Dxxxyyy,Dxxyyyy,Dxyyyyy,Dyyyyyy,
Dxxxxxxx,Dxxxxxxy,Dxxxxxyy,Dxxxxyyy,Dxxxyyyy,Dxxyyyyy,nyyyyyy,Dyyyyyyy];
vars := [Rmi,Co,yo]:
read ‘F.m‘:
F := convert(F,polynom):
printlevel := 0:
words(0) : gc(0): #removes garbage collection
with(student):
for i from 0 to 2 do;
coeff(F,t,i):
powsubs (Co n=Co*(Rm1)/(n*k*yo~m), "):
# allows for the R form to be presented
powsubs (hy/yo=hyyo, " ):
collect( " ,vars):
cclil := collect( " ,finites):
if i=0 then powsubs(Dhy=Dy/hy,");
collect(",Dhy):
subs (Dhy=Dy/hy) :
£fi;
print(‘Terms of Order *.i):
print(cc[il):
od;
# save cc, ‘cc.mf;
#quit;

58




TSR

6 Exploring the Terms

In the numerical solution of partial differential equations it is often not pos-
sible to assess the accuracy of the approximation. The present technique
presents a general structure for such analysis and, perhaps, solution. The
technique only depends on the validity of the expansion about the nodal
point; it is a linear expansion that becomes more accurate with diminished
time and space increments. Usually three criteria are used to assess the qual-
ity of the numerical technique; ’accuracy’, ’convergence’, and ’stability’ (See
Mickley et al [9] ). Accuracy is determined by the size of increments used;
the number of increments contributes to the error in round-off or storage of
floating point numbers. The accuracy expected with smaller increments is
disaffected by the number of calculations and the round-off error of each.
There is a trade-off and an optimal increment size. This is especially so now
that computer storage is in gigabytes and the speeds, in nanoseconds. The
cost of computation has become insignificant.

With linear P.D.E.’s with constant coefficients, if the method is stable,
convergence is likely but not guaranteed. Nothing really definite can be said
about non-linear equations except that, with small increments, they become
linear. There are a number of criteria that establish the stability of difference
schemes with different numbers of terms [9],{14] but we won’t dwell on them
here. Instead we note that, if the differences are written in terms of functional
values and in a matrix form of solution, stability is assured if the matrix is
diagonally dominant. The same applies to the linear algebraic form for the
different orders of differences. This relates to all the expressions here, with
our new tools for analysis.

We consider the last expansion, Section 4.5, with order zero and order one
terms being the best first attempt to improve the accuracy (and stability) of
the calculation. Maple has produced algebraic codes without round-off error
that, within the limits of the truncation of the terms, should emulate the the
original P.D.E., equation2. The zero order terms, as an approximation of the
original equation, are identical to the terms given by Notodarmojo et al [14].
AsV,=h, — 0or A, = h; — 0, the dependent differences in the 1°* and
higher order terms all disappear. The finite, zero order expression converges
on the infinitesimal form, equation2. That does not mean that the expanded
form converges, as a series, when the calculation is stepped along to the next
nodal point.
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Here no attempt is made to look at all the possibilities of analysis but
some ideas are presented. Maple offers an unlimited number of options. First
we look at the usual method of adjusting the parameters (coeflicients) in the
equation. Then, consider the possibility of removal of terms by adjusting the
values of hz or ht and the possibility of minimising the remaining error by
increment adjustment. A alternative view is presented with the possibility
of using an identity expression in Section 6.4.

6.1 Effective Coefficients

Following the ordinary approach, the coeflicients in the zero order expansion
are increased to include some of the linear terms. This procedure is hazardous
because we immediately accept that the equation no longer converges to
the same solution, with the possibility of increased instability with small
changes (errors) in the values of the coefficients. Indeed, there are other
first order terms that may be just as important as the selected, linear ones.
The procedure uses Maple to collect terms in Dzz, Dz, Dy, and the constant
expressions. The effective coefficients are:

0thorder 1*torder
Effective dispersion coefficient = d —3-v-hz/2
Effective advection velocity = v +m(R — 1) - hz/to
Effective Retardation coeflicient = R +2m(R — 1) - ht/to
Effective Sorption term = _ﬂﬂ;’%—u +(%—m—"—2)§;(R-1)M

Remember that with all terms on the right of the equation (2), the retardation
term is negative. If all the above terms are used in the calculation, the
remaining error (to 1* order) is

Error — +L‘E:})_(1__nl . Dw . Dy +L_C}ol(:t;n) . Dy . Dy

Co-ht
—(Z+E) Day —(&;) - Dyy
+(7%) - Dawa +(3z) - Dway

It appears that none of these terms may be removed by simply adjusting
the values of hz or ht, the only really adjustable parameters. This contradicts
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the procedures evolved by van Genucten and Wierenga??. However, noting
that R = 1+ n-k-to™ - Co so that both R and R — 1 are greater than
zero, the top two terms are removed if n = 1. This is unlikely in this case
as we expect n to be around .5. The alternate possibility is to minimise the
magnitude of the terms with increment adjustment. Perhaps the derivatives
of the Error with respect to the two increments could be simply set to zero
but this is a complex problem with unknown, dependent finite difference
problems in the error expression. It is also possible that other types of
differences, including divided differences would make it possible to gain an
advantage either by making the coeflicients zero or making the dependent
terms respond to increment spacing.

6.2 Stability

Looking at the different orders and considering the mixed difference scheme,
the stability of the calculation is difficult to assess. Two considerations come
to mind, taking ratios of the terms of different order with the expectation
that, say, the ratio % will be much less than one. Also, one needs
to look at the expressions (sub-terms) within each order; these terms will
take on a heirarchy of values with some terms dominating during one part
of the calculation. It should happen, however, that the largest sub-term of
one order is much less than the smallest term of the next higher order. Some
experience with the break-up of the equations and these terms and sub-terms

should allow a heuristic assessment of stability, with practical benefit.

6.3 Other Expansion Forms

If the expansion is simply considered as a function of z and y, there is no
real reason why we need to settle on an form that is evaluated at the position
(hz,hy) from the nodal point, as has been done so far. In fact, there is a
continuum of possibilities here (see next section) though it is linked with con-
siderstions of stability. In reality, the finite differences are approximations for
the derivatives at the nodal point and, since the original Partial Differential
Equation is valid over a large domain, the form should retain validity when
the z and y values are evaluated at the nodal point and, say, hz/2 and hy/2,
away. At the nodal point a simplier form obtains which doesn’t contain as
much information from the higher order differences:
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Terms of Order O

mC (R~-1) dbxx / R-1 1\ v Dx
e — 4+ + |- ===== = ———| Dy - -——-

n yo 2 \ hy hy / hx
Terms of Order 1
/ R-1 1\ v Dxx
11/2 -———- + --—-| Dyy - 1/2 ---—-
\ hy 2 hy/ hx
Terms of Order 2
/ 1 R - 1\ d Dxxxx v Dxxx
|-—--+ 1/6 —=-—- | Dyyy - 1/12 —==———- +1/6 —————-
\6 hy hy / 2 hx
Terms of Order 3
0
Terms of Order 4
v Dxxxxx / i R - 1\

- 1/80 ——mmmmm + |- ==—-- - 1/80 —-——- | Dyyyyy
hx \ 80 hy hy /

It is interesting that the terms are limited. There is a entirely different set
of effective coefficients, with only the dispersion coefficient d being different
than the prescribed value.
0thorder  1*order
Effective dispersion coefficient = d —-v-hz/2
which still does not agree with Notodarmojo et al[14]. It is the same form

used by van Genuchten and Wierenga[15] when sorption is ignored. The
remaining error terms are as presented above, to fourth order.

6.4 An Identity Expansion

A different view of the equations is that they should be applicable not only
at specified positions, but all along the path from one node to the next node,
and perhaps, beyond. With Maple, this is a matter of simply arranging that

62

e

T T P T




the interpolation formula contains = and y as arguments. The expansion is
completed and the terms in powers of z or y are collected. If they are to
apply over the entire step, all the coefficients must be zero. This gives an
entirely different set of equations to solve, all of which are set to zero and,
with the t-terms, associated with an order. Considering terms to 2** order,
the equations are given below. The constant terms are identical to those
above, when both = and y are zero. That is, the above constant terms are
an appropriate expansion at the first of the time step; the Newton/Everett
parameters (p and q or pl and p2, see Section 7.4) are zero.

2
Terms in vy
/ 2 \
! n n 1] 3/ m m n\ 2
13/2 ~=—- - 1/2 === = =—-| Rm1 Dy  [3/2 --- - 3/2 -—-| Rm1 Dy
| 3 3 3] I 2 21
2\ hy hy hy / \ hy hy /
t (- + -
2 yo Co
Co
// 3 n \ / 2\ \
[ == - 3/2 -—-| Rmi Dyy | m m | |
H 3 3] 13/2 =--- - 3/2 --—-| Rmi|
I\2 hy hy / \ hy hy /
+ |- -— - | Dy
I Co 2 |
\ yo /
m Rmi Dyy v Dx / Rm1 1\ d Dxxyy
- 3/2 ————-———- - 1/2 —-———- + |- 1/2 - - -———- | Dyyy + 1/2 ————-—
2 2 | 3 2 2
yo hy hx hy \ hy 2 hy / hx hy
/ 2 3\
| m m |
|- m/n + 3/2 ———= - 1/2 --—-| Co Rml
\ n n/
PR EE— )
3
yo

Terms in y
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// n 1\ \ /1 n \ 2
[[--- - ---| Rm1 Dy Dyy I |--- - ---| Rm1 Dy
I 2 2| I | 2 2|
2 |\hy hy / m Rmi Dyyl \hy hy / m Rmi Dy
t | - + | + ¢ ( - - -2 -
\ Co hy yo / Co hy yo
/ 2 \
[ m
|- =———- + m/n| Co Rmi
vbDxy / BRml 1\ d Dxxy \ n /
- T + |- === - ——| Dyy + -+ - - )
hx hy | 2 2| 2 2
\ hy hy / hx hy yo
Terms in x
/ n 1\ /1 n \
[1/2 - - | Rm1 Dx Dyy |---———-- - 1/2 -——-- | Rm1 Dy Dxx
2\ hx hy 2 hx hy/ \2 hx hy hx hy/
t ( - + -
Co Co
m Rmi Dxx
-1/2 ————————- )+t (
yo hx
// n 1\ \
|- === + - | Rmi Dy I
I\ hx hy hx hy/ m Rmi] v Dxx / Rm 1\ ,
! - | Dx - ————- + |- =wwe— = —————| Dxy z
\ Co yo hx/ 2 \ hx hy hx hy/ %{
hx _
d Dxxx
D )
3
hx
Terms in x y
/ 2 \
/2 n \ I n n 2 | 2
=== -2 -——— | Rmi Dy Dxy |3 - - - --| Rmi Dy
| 2 2] I 2 2 2|
2 \hx hy hx hy / \ hx hy hxhy  hx hy /
t ( - + ( e e e
Co 2
Co
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65

/ n 1\
/ m mn\ - + | Rmi Dyy
[2 ————- -2 - | Rm1 Dy I 2
\ hx hy hx hy/ \ hx hy hx hy /
+ +
yo Co Co
/ 2 \
| m m |
|- -——- + ---=] Rmi
\ hx hx / m Rmi Dxy v Dxxy
+ ) Dx - 2 -
2 yo hx hy 2
yo hx hy
/ Rmi 1\ d Dxxxy
+ |- - | Dxyy + —————--
| 2 21
\ hx hy hx hy / hx hy
2
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I n 1 n | / m m n\
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2 I\ hx hy hx hy hx hy/ \ hx hx / [
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I 2 yo Co I
\ Co /
/ n 1\ / n 1\
R + ———— | Rm1 Dx Dxy |- 1/2 + -= | Rm1 Dy Dxx
| 2 2 | ! 2 2 |
\ hx hy hx hy/ \ hx hy 2 hx hy/
+ - - - - + -
Co Co
m Rmi Dxx v Dxxx / Rm1 1\
- 1/2 = -1/2 ————- + 1= 1/2 - | Dxxy
2 3 | 2 2 |
yo hx hx \ hy hx 2 hx hy/
d Dxxxx
+ 1/2 ———me- )
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Note that this is a variation of the approach in the next chapter, using p and
g as measures of the number of increments, where they, generally, may be
fractional or even larger than one.

6.5 Adding Linear Difference Equations

If all the terms of different order were linear, the problem/solution could be
posed in a different way. We look at each series of sub-terms of a given order
as a finite difference equation that has a solution. We find that solution for
the appropriate finite differences, for instance, the value of D¢t as a function
of Dz and Dzzz, etc and solve for Dtt. After Dt is calculated from the
zero order approximation, the D’s are added to give a better approximation.
Of course, it doesn’t work this way; a matrix solution is required. But
the scheme, at least to some degree of approximation, should be able to
correct for errors. Complex non-linear multivariate polynomials could even
be handled by organising the equations using Grobner Bases, lists of easier-
to-solve polynominal equations. Even when the equations are slightly out of
linearity, one would expect some advantage. An example of this approach is
presented in Section 7.5.
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7 Future Developments

This document hopes to have laid down the foundation for a number of
procedures for calculating the difference formulas and the use of them in
analysis and solution of Partial Differential Equations. To be of general use
they need to be more easily calculated® and extended to at least 3 dimensions.
Knowing the values of the coefficients goes a long way toward producing more
general formulas and has, as shown below, led to some general formulas.

7.1 A Simplier, Top-Down Approach

The approach presented forms a grid of functional values and proceeds to take
every difference following certain rules. This builds up a difference pyramid.
By trial and error, the initial sizes of the grid are chosen to produce just the
right number of difference formulas to allow a solution. There are a number
of problems with this bottom-up approach. One is the fact that the higher
order terms may be truncated over the values they would have on an infi-
nite grid. This is particularily so with complex, mixed order schemes for
differencing and happens in any real problem at the edges. A well-structured
analysis would always calculate the right number without ado. The logistics
of location during differencing also gets out of hand. An alternative is to
select a required difference and calculate it, extending the difference pyramid
Top-Down. This approach is attractive since it automatically collects the
right values of the functions when the subtractions are done at the bottom.
It is recursive as well so it requires little code. Though it may repeat sub-
tractions unnessarily, it also does not initially calculate any more differences
or functional values than necessary. Also the look-up is different and com-
binations of terms at the function level may reduce the number of Taylor
expansions. The program below has evolved from this concept.

# Program Fd.mpl

# Must use Maple 5.2 wdscott/jsdevitt Aug92

# Use a Top-Down calculation to produce equations for the finite differences
ndif := 5; ndim := 3: NP := ndif + 1;

# number of differences, number of dimensions, polynominal terms

31t takes, perhaps an hour to complete the calculations in two dimensions with 7t*
degree polynominal expansions
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# —A recursive process for a forward difference scheme:

computes the forward difference with a repeated subtraction,

ending in the functional difference
F(i1*h1,i2+h2, ., (ip+1)*hp,.,in*hn)
- F(ii*h1,i2%h2,...ip*hp....in*hn)

(0ffset, nodal values are omitted here; they make no difference)
—-The F values are approximated using a multivariate taylor

expansion about (0,..0) of the function f.
-The equation set is solved for the derivatives at (0,0,0) as a

function of the finite differences.

HEHHFHETETHERER

# The recursive, finite difference process FD
FD := proc(F:{procedure}) local i,p,idx,argvl,argv2; :
if not type(procname,indexed) then ERROR(‘use indexed name‘) fij;
idx := [op(procname)];
if idx = [J then
RETURN( F );
else
i := nops(idx);
p := idx[il;
i := op( subsop(i=NULL,idx) );
argvl := arguments(F);
argv2 := op(subsop(p=argvilp] + h.p,[argvi]));
unapply( FD[idx](F) (argv2) - FD[idx] (F)(argvi), argvi );
fi;
end;
arguments := proc(g:procedure) local g; #This collects the arguments
op(1,eval(g)); # from the procedure f
end:

F := proc(x1,x2,x3) ’F’(args) end; #Defines F as a process in the
# selected variates x1,x2,x3

#> FDI[1,1,2]1(F)(x,y,2);
#

# F(x +2hl, y+h2, z) - 2F(x +hi, y + h2, z) + F(x, y + h2, z)
# -F(x+2hi, y, z) + 2F(x+hl, y, z) - F(x, y, z)
#
#>
readlib(mtaylor) ;
# Find the names of the finite differences by analogy with D:
argus := seq(t*x.i,i=1..ndim):
taylor(f(argus),t,NP):
partials := select(has,indets(",function),D):

# returns derivatives @ (0,..0)

partial := map( proc(x) op(0,x) end , partials):
# scrapes off the argument list

finite := subs(D=Fd,partial);
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# Set up the equations containing the finite differences Fd
# as a function of F
eqns := NULL:
finites := NULL:
for t in finite do
f£f := t(0,0,0);
finites := finites, fff;
eqns. := eqns, fff = eval(subs(Fd=FD,f=F,fff));
od:
# FD should recursively expand the finite differences in terms of
# functional values.
eqns := {eqns};
whattype(eqns);
nops(eqns) ;

#
# Now we allow the program to make a Taylor series approximation to f

taym := proc(g:algebraic,X:1ist(name));
# suggested args := seq(x.i*h.i,i=1..ndim);
RETURN( unapply( mtaylor(g(op(X)),X,NP),op(X)) );
# note that NP is the number of terms and is a global variable
end;

ans := eval(subs(F=taym(f,[x1,x2,x3]),eqns)):
# - ———

# Calculate the partials in terms of the finite differences
solve(ans,partials);
ans := collect(",finites);

# Some expansion and simplification needs to be done

partials := [sort(partials,lexorder)]; #sorted partial derivative names
finites := [sort(finites,lexorder)]; #sorted finite difference names
ff := a->sort(a,finites):

gg := b->1lhs(b)=ff(rhs(b)):
sol := map(gg,ans):
sel := [sort(sol,lexorder)];

The recursive process F' D breaks down the forward difference. That is*.
Normally this form would be applied to a function f and be evaluated at
a position, say (z1,z2,z3); written Fd[1,1,2,2,2](f)(z1,22,23). Dzzyy
at position (z,y) becomes Dzzy at position (z,y) subtracted from Dzzy
at position (x,y+hy). In turn, Dxxy is broken into differences Dzz, etc.,
until the last x-difference is taken and the function F remains, finishing the

“We have now gone to a more general, operator notation, as used by Maple for deriva-
tives; the names are derived using the analogy with the D operator, Fd[1,1,2,2,2] =
Dzzyyy




calculation®. This creates a difference pyramid with a 'progenator’ at the top
with ’generations’ below that form the ’base’.

After the differences are all formed, a substitution is make for the F values
with the taylor series expansion for f, minimising the number of substitutions.
The equation set is solved for the derivatives (partials) at (0,0,0) in terms of
the finite differences (finites). After a little ordering, the solution is complete.
The program can produce a fifth-Order expansion in about two hours.

7.2 Newton/Everett Difference Forms

Substitution of the difference equations for the derivatives in a Taylor ex-
pansion of the function yields a difference equation for the function. This is
used in interpolation to positions less than (p < 1) or more than (p > 1) the
increment hz. (The arguments are now z and ¢.) Also the forms can be used
to derive expressions for the derivatives in terms of the differences by simply
differentiating. In the case of a single argument, these latter forms are called
the Markov formulas. Variations of the formulas are given in Abranowitz and
Stegen [1] and the Mathematical Tables of the National Bureau of Standards
[?]. However, in these standard tables the general expressions are not given
for either the multivariate cases or are they given for the central difference
form.
Maple program newton creates the series:

# Program newton

# Substitutes the finite difference expansions back into the Taylor
# series expansion, to interpolate to position p*hz and q*ht

# uses arguments z and t.

N :=7; NP := N+1; a := 0: b:= 0:
readlib(mtaylor) ;
# usage: tay(g(2*x,y),x,y);
tay := proc(g,x,y) local ti;
t1 := mtaylor(g,[x=a,y=b],NP); t1 := convert(ti,polynom);
end;

f££f := tay(£(z,t),z,t);=:

5Tt is important at this point that we have not evaluated the function F interms of a
Taylor series—in fact it could be any function, even experimental values. The taylor series
form of the function f is substituted later
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read ‘msol.m‘;
# Change statement to read the appropriate differencing solution as sol

80l := convert(sol,set):
new := subs(sol,ffff):
new := subs(z=p*hz,t=q*ht,new):

finites:= [Dx,Dy, Dxx,Dxy,Dyy, Dxxx,Dxxy,Dxyy,Dyyy,
Dxxxx,Dxxxy,Dxxyy,Dxyyy,Dyyyy, Dxxxxx,Dxxxxy,Dxxxyy,Dxxyyy,Dxyyyy.Dyyyyy,
Dxxxxxx,Dxxxxxy,Dxxxxyy,Dxxxyyy.Dxxyyyy,.Dxyyyyy.Dyyyyyy,
Dxxxxxxx,Dxxxxxxy,Dxxxxxyy,Dxxxxyyy,Dxxxyyyy,Dxxyyyyy,nyyyyyy,Dyyyyyyy]:

ew := collect(new,finites):
ew := sort(new,finites);
quit;

n
n

7.2.1 Forward Differences, a multivariate case of Newton’s For-
ward Difference Formula

f(p hz, q ht) =
2 2
qDt +pDz + (- 1/2 q+ 1/2q ) Dtt + pq Dzt + (- 1/2 p + 1/2 p ) Dzz
3 2 2
+ (1/3q+1/6 q -1/2q ) bttt + (1/2p q - 1/2 p q) Dztt
2 2 3
+ (1/2p q-1/2pq) Dzzt + (1/3p - 1/2p + 1/6 p ) Dzzz
/ 3 4 11 2\
+ |- 1/4q -1/4 q+ 1/24 q + --—- q | Dtttt
\ 24 /
3 2
+ (1/3pq+1/6pgqg - 1/2 pq ) Dzttt
2 » 2 2 2
| +(-1/4p q+1/4pq+1/4p q - 1/4 p q ) Dzztt
2 3
+ (1/3pq-1/2p q+ 1/6 p q) Dzzzt
/112 4 3\
+ |--—p -1/4p + 1/24p - 1/4 p | Dzzzz
g \ 24 /
| 5 3 4 2
!

+

(1/5 q + 1/120 q + 7/24 q - 1/i2 q - 5/12 q ) Dttttt

/ 3 11 2 4 \
|-1/4pq +-———pgq +1/24pq - 1/4 p ql Dztttt +
\ 24 /

o+

71




3 2 2 2 3 2 2
(-1/12pq -1/6pq-1/4p q +1/12p q + 1/4p q + 1/6 p q) Dzzttt

3 2 3 2 2 2 2
(-1/12p q+1/4p q+1/12p q -1/4p q - 1/6 Pq+ 1/6 p q ) Dzzztt

/ 4 3 11 2 \
+11/24p q-1/4p q+ --—p q - 1/4 p ql Dzzzzt
\ 24 /

3 4 2 5
+(7/24p +1/6p-1/12p - 6/12p + 1/120 p ) Dzzzzz
/ 6 5 17 4 137 2 3\
+11/720q -1/48q + --—-q -1/6 q+ -——q - 5/16 q | Dtttttt
\ 144 360 /
5 2 3 4
+(1/120 pq -5/12pq + 7/24p q +1/5pq =~ 1/12 p.q ) Dzttttt +
4 11 2 2 2 2 3 2 4
(-1/48pq +~--——~p q -1/8p q-1/8p q +1/48p q +1/8pgq
48
3 11 2 3 2 3 3
+1/8 pq - --—- p q ) Dzztttt + (1/18 P q-1/6p q+1/36p q
48
2 2 3 2 3 3 2 2

+1/4p q +1/18pq -1/12p q +1/9pq-1/12p q - 1/6 Pq)

3 3 2 11 2 4 2 11 2 2
Dzzzttt + (1/8 p q-1/8p q - ————p q + 1/48 P qQ +-——p q
48 48

4 2
+1/8pq-1/48p q - 1/8 p q ) Dzzzztt
4 3 2 5

+(-1/12p q+7/24p q-5/12p q + 1/5 P q+ 1/120 p q) Dzzzzzt

/ 5 3 137 2 17 4 6\
+1-1/48p -1/6p ~-5/16p + ———p. + ———p + 1/720 p | Dzzzzzz +

\ 360 144 /
/ 29 3 4 5 7 6 2\
|--—-q =-7/48 q +5/144 q + 1/7 q + 1/5040 q - 1/240 q -7/20q |
\ 90 /
Dttttttt +
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/137 2 5 17 4 3 ' 6\
|---pq -1/48pq + -—pgq -5/16pq - 1/6 p q+ 1/720 p q | Dztttttt
\360 144 /

5 2 4 2 3 2 4 3
+(-1/240 pq +1/10p q+1/24pq +7/48p q -1/24p q -T7/48p q

2 2 2 2 5 3 3
-5/26p q +5/24pq +1/240p q - 1/10 p q) Dzzttttt + (- 1/24p q

2 4 3 2 3 11 2 2 11 3 2 3

-1/48p q -1/24p q+1/8p q - -——p q +—p q -1/12pgq
. 48 144

2 3 4 11 2 4
+1/8p q+ 1/144p q +-——pq + 1/72p q - 1/12 p q) Dzzztttt + (
72

3 11 2 3 4 2 4 3 2 4
-1/12p q+-—-p q -1/48p q +1/144p q + 1/8pq +1/72p ¢
144
3 11 2 2 3 2 11 2 3 3

-1/24pq --———p q +1/8p q +-———p q-1/24p q -1/12p q)
48 72

4 2 2 3 2 4 2 2
Dzzzzttt + (- 1/24 p q + 1/10pq + 7/48p q + 1/24p q-5/24p q
5 3 2 5 2
- 1/240 p q - 7/48p q+ 5/24p q + 1/240 p q - 1/10 p q) Dzzzzztt +
/ 3 17 4 5 137 2 6 \
|I-5/16 p q+-——p q-1/48p q-1/6 pq+ -——p q + 1/720 p ql Dzzzzzzt
\ 144 360 /
/ 2 29 3 6 5 4 7\
+|-7/20p +--—-—-p +1/Tp-1/240p +5/144p - 7/48p + 1/6040 p |
\ 90 /

Dzzzzzzz + £(0, 0)

7.2.2 Backward Differences, Newton’s Backward Difference For-
mula

These terms are identical in magnitude to the terms in the forward case, only
they are all of positive sign. For example:

f(p hz, g ht) =
2 2
qDt + pDz + (1/2q + 1/2 q) Dtt + p q Dzt + (1/2 p + 1/2 p ) Dzz
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3 2 2
+(1/3 q+1/6 q + 1/2 q ) Dttt + (1/2 PqQ *+ 1/2 p q) Dztt + etc.

7.2.3 Central Differences, a variation of Everett’s Interpolation
Formula

f(p hz, q ht) =
2 2 3
qQDt +pDz +1/2q Dtt +p qDzt +1/2p Dzz + (1/6 q - 1/6 q) Dttt

2 2 3
+1/2 p q Dztt + 1/2 p q Dzzt + (- 1/6 p+ 1/6 p ) Dzzz

2 4 3
+(-1/6 q +1/24q ) Dtttt + (- 1/6 pq + 1/6 p q ) Dzttt

2 2 3 4 2
+1/4p q Dzztt + (1/6 p q - 1/6 P q) Dzzzt + (1/24 p - 1/6 p ) Dzzzz

5 3 4 2
+ (1/120 @ - 1/12 q + 3/40 q) Dttttt + (1/24 PqQ - 1/6 p q ) Dztttt

2 2 3 3 2 2
+(-1/12p q+ 1/12 p q ) Dzzttt + (1/12 P 9 - 1/12 p q ) Dzzztt

2 4 5 3
+ (-1/6 p q + 1/24 p q) Dzzzzt + (1/120 P - 1/12p + 3/40 p) Dzzzzz

6 4 2
+ (1/720 @ - 1/36 q + 4/45 q ) Dtttttt

5 3
+ (1/120 p q + 3/40 p q - 1/12 P 4 ) Dzttttt

2 2 2 4
+ (-1/12p q + 1/48 p q ) Dzztttt

3 3 3 3
+(-1/36p q+1/36p q - 1/36 p q + 1/36 p q) Dzzzttt

4 2 2 2
+ (1/48p q - 1/12p q ) Dzzzztt

5 3
+ (1/120p q + 3/40 p q - 1/12 P q) Dzzzzzt

6 4 2
+ (1/720 p - 1/36 p + 4/45 p ) Dzzzzzz
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/ 37T 3 7 5\

+ |-——q - 6/112 q + 1/5040 q - 1/144 q | Dttttttt
\720 /
4 2 6
+ (-1/36 pq + 4/45p q + 1/720 p q ) Dztttttt
2 5 2 2 3
+ (1/240p q + 3/80p q ~ 1/24 p q ) Dzzttttt
2 4 -3 2 3 4
+ (1/36 pq -1/144pq - 1/36p q + 1/144 p q ) Dzzztttt
4 3 4 2 3 2
+ (1/144p q - 1/144p q - 1/36 p q + 1/36 p 'q) Dzzzzttt
3 2 5 2 2
+ (-1/24p q + 1/240p q + 3/80 p q ) Dzzzzztt
6 2 4
+ (1/720p q + 4/45p q - 1/36 p q) Dzzzzzzt
/37 3 5 7 \
+ |--——p - 1/144 p + 1/5040 p - 5/112 p| Dzzzzzzz + £(0, 0)
\720 ' /

7.2.4 Mixed Differences, a corruption of the central difference
formula

f(p hz, q ht) =
2 2
qDt +pDz + (1/2q - 1/2 q) Dtt + p gDzt + (1/2 p + 1/2 p ) Dz=z

3 2 2
+ (-1/6 q + 1/6 q ) Dttt + 1/2 p q Dztt + 1/2 p q Dzzt

3 2 4
+ (/6 p - 1/6 p) Dzzz + (- 1/24 q + 1/24 q ) Dtttt

3 2 2
+ (-1/24 pq+ 1/6 p q ) Dzttt + 1/4 p q Dzztt

3 2 4
+ (1/6 p q -~ 1/24 p q) Dzzzt + (- 1/24 p + 1/24 p ) Dzzzz

5 3 2 4
(1/1260 q - 1/48 q + 1/80 q) Dttttt + (- 1/24 p q + 1/24 p q ) Dztttt

-+

2 3 2 2 3 2
(1/12 p q - 1/48 p q) Dzzttt + (- 1/48 p q + 1/12 p q ) Dzzztt

+
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4 2 5 3
(1/24 p q - 1/24 p q) Dzzzzt + (1/120 p + 1/80 p - 1/48 p ) Dzzzzz

6 2 4
(1/720 q + 1/180 q - 1/144 q ) Dtttttt

3 5
(3/640 p q - 1/48 p q + 1/120 p q ) Dzttttt

2 2 2 4
(-1/48p q + 1/48 p q ) Dzztttt

3 3 3 3
(-1/144pq +1/36p q + 1/576 p q - 1/144 P 4q) Dzzzttt

4 2 2 2
(1/48 p q - 1/48 p q ) Dzzzztt

5 3
(1/120 p q - 1/48 p q + 3/640 p q) Dzzzzzt

2 6 4
(1/180 p + 1/720 p - 1/144 p ) Dzzzzzz
/ 37 3 7 5\

|- 3/1792 q + ~———- q + 1/6040 q - 1/576 q | Dttttttt
\ 11520 /

2 6 4
(1/180 p q + 1/720 p q - 1/144 p q ) Dztttttt

2 2 3 2 5
(3/1280 p q - 1/96 p q + 1/240 p q ) Dzzttttt

4 2 3 2 3 4
(-1/876 pq + 1/576 p q - 1/144 p q + 1/144 p q ) Dzzztttt

2 3 4 3 4 2
(-1/144p q +1/144p q - 1/576 p q + 1/576 P Q) Dzzzzttt

2 5 2 3 2
(3/1280 p q + 1/240p q - 1/96 p q ) Dzzzzztt

4 2 6
(-1/144 p q + 1/180p q + 1/720 p q) Dzzzzzzt

/ 7 37 3 5 \
11/5040 p + ————- P - 1/576 p - 3/1792 p| Dzzzzzzz + £(0, 0)
\ /
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This form is asymmetric because the first differences are forward in t and

backward in z.

7.3 Formulas for the Terms

The forward and backward forms are easily converted into a general term.
If we take the term with D zz - -zft - -t where n is the number of differences

with respect to z and m is the number of differences with respect to t®, the

formula for this term is
(2) (_‘_1_) Dzz--ztt -t

and the entire forward difference series is

f(zo+phz,to+qht) = f(zoyto)+PDz+th+ZZ (g) (g) 'D ZZ 2 it .-t

1=1j5=1 J i 3

The backward difference is the same series except all terms are positive.
This is equivalent to replacing the binominal product with

e+ 9) (2 (=)

s J

e e R P S U e e e G ST ,

The central difference form is a product of series of the form

i=1, i=2, i=3, i=4 i=5,

p P -Dpp+1)/6 (—2pp+2) /24 (p—3)(p—1L)p(p+1)(p+3)/120

divided by i!. This series is emulated by the maple process
pp := proc (p,m)

p~(2-m mod 2)*product (p + (2 - m mod 2) + 2 * k, k=0..floor (m/2)-1)
#product (p - (2 - m mod 2) - 2 * k, k=0..floor (m/2)-1)

end:
# Created by Lianxiang Wang, Aug92

®The n and m apply to the last term selected
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No doubt there is an elegant way of writing this in a binomial or multi-
nomial form. It is, however, the factorial quotient

9i-1, p(p/2 +14/2 - 1)!
(p/2 —i/2)!-4!
which does not yield an appropriate binomial form when 7 = 1; the combined

factor of 7+ and jterms becomes 1 when both ¢ and j are zero. This suggests
that a most appropriate central difference expansion form is

f(zo +thato + qht) = D(f(z’t))

where D is the combined difference operator

_T Y 1-,-_2_pq(p/2+i/2—1)!-(q/2+j/24-1)!
P —_g}gw - jt-(p/2 —i/2)!- (g/2 - 3/2)!

and the final evaluation is at the position (z,,%,), the nodal point.

-Dzz.--ztt-.-t

1 J

7.3.1 Creating the Derivatives from the Newton/Everett forms

The whole difference expansion is obtained by differentiating this form with
respect to z and ¢t the number of times required to produce the appropriate
derivative. Then, if the nodal derivative is wanted, p = 0 and ¢ = 0 are

substituted into the differentiated form. Since %:— = %ﬁ— . 53’23 = %ﬁ- . % and

%{ = %5 . %’tl = %5 - 7 , each differentiation will divide the factor by either hz
or ht. For example, the result of differentiating the general term with respect

to pis

gi+i-2L(/2+3/2) -T(p/2 +3/2 +1) - (p* —ip) - (¥(p/2 +1/2) — ¥(p/2 = i/2) = 2i]
I'(j+1)-T(¢/2-35/2+1) (> —4%) - T(p/2 —i/2+ 1) - T(i +1)
We divide this by Az , sum and add the difference forms and have the

approximation to the derivative. If we want the value at the nodal point,
(2o,t,) this becomes a little less daunting.”. '

"The limiting form is tricky. In Maple one has to first establish the number of terms
required and set the ¢ and j values within a written-out sum, then assign 0 to p and q or
take the limits as p and ¢ go to zero. The general term, with ¢ and 7 not defined and 0
for p ands ¢ always evaluates to 0 for all 7 and j;.
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Difference formulas other than these are also important, including the
mixed form used in the present, Phosphorus problem, Section 7.2.4. A future
extension of the present work is to evolve such a form to remove the tedium
of the present calculations when it is extended to multiple dimensions and

more terms.

7.4 Three Dimensions and More

The Top-Down approach lends itself to multiple dimensions and a Newton-
Everett form in three dimensions should be easily extendable to more di-
mensions. The formula from Section 7.3 is already set up to be extended to
three dimensions and the improved program of Section 7.1 allows the three
dimensional terms to be calculated. The basis for the the three dimensional
problem is the three variate Taylor Series expansion with coefficients

1 & . i j n—i-j
o E Z B(n, "’.7)D$(1,,-),$(2,j),$(3,n_i_j)(f)(Oa 0,0)z'y’z ! (4)

3=01=0

Which are the powers with a combined sum of n. B is the multinominal, best

calculated with the program

#Program taylorxyz.mpl

# calculates the 3D taylor expansion as a general form
with(combinat):

oldmultinomial := eval(multinomial);

multinomial := proc(n) local a;
if not type([args],list(nonneg)) then RETURN( ’procname(args)’ ) £fi;
a := convert( [args[2..nargsl],‘+‘);
if a > n then 0
elif a = n then oldmultinomial(args);
else oldmultinomial(args,n-a);
£i;
end;
alias(B=multinomial);

tp := proc(n) local i,j;
Sum(Sum(multinomial(n,i,j)*D[1$i,2$7,38(n-i-j)1(£)\
(0,0,0)%x~i*y~j*z~(n~i-j),i=0..n),j=0..n)

end;
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It rather appears that this may be extended to multi-dimensionial situations
just using the multinominal. The extended Newton/Everett formulas (as a
function of pi,p1,ps, -, ) are not so clear, however. Such a form should
allow a fast and simple calculation of the terms in the finite difference for-
mulas.

The outputs from the Up-Down program (Section 6.1) for three dimen-
sions are in the tables below. The 4** and 5% derivative formulas are ap-
proximated by the appropriate difference divided by the appropriate interval -
values to the level for the 5** power expansions used (6 Taylor series terms).

7.4.1 Forward Difference formulas for the Derivatives

Falil(f)(o, 0, 0) Fdl1, 11(£)(0, 0, 0)
[D[il(f)(oa o’ 0) e b iastntad - 1/2 h -
h1 hi
Fdl1, 1, 1, 11(£)(0, 0, 0)  Fd[1, 1, 1, 1, 11(£)(0, 0, 0)
- 1/4 +1/5 .l
hi h1
Fal1, 1, 11(£)(0, 0, 0)
+ 1/3 - ,
ht
Fd[2](£) (0o, 0, 0) Fd[2, 2, 2, 2](f)(0, 0, 0)
p[2](f) (0, 0, 0) = -1/4 -
, h2 h2
Fal2, 2, 2, 2, 21(£)(0, 0, 0) Fal2, 21(£)(0, 0, 0)
+ 1/8 -1/2
h2 h2
Fdl2, 2, 2]1(£)(0, 0, 0)
+ 1/3 3
h2
Fd[31(£) (0, 0, 0) Fd[3, 3, 3, 3]1(f)(0, 0, 0)
h3 h3
Fd[3, 3, 3, 3, 3](£)(o, 0, 0) Fda[3, 3](£)(0, 0, 0)
+ 1/8 - 1/2 :
h3 h3
Faf3, 3, 31(£)(o, 0, 0)
+ 1/3 3
h3
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Fdl1, 11(£)(0, 0, 0) 11 Fdli, 1, 1, 11(£)(0, 0, 0)

i pl1, 11(£)(0, 0, 0) = +
| 2 12 2
i hi hi
| y Fdl1, 1, 1, 1, 11(£)(0, 0, 0) Fd[1, 1, 11(£)(0, 0, 0)
. - 5/6 - ,
2 2 ‘
; hi . hi
: Fdft, 2]1(£)(o, 0, 0) Fd[1, 2, 2, 2, 21(£)(0o, O, 0)
‘ D[ia 2](1)(0’030) = - 1/4
hi h2 hi h2
g Fali, 1, 1, 2, 21(£)(o0, 0, 0) Fdal1, 1, 1, 1, 2](£)(o0, 0, 0)
: ~-1/6 -1/4
% h1 h2 hi h2
§ Fa[1, 1, 21(£)(0, 0, 0) Fal1, 1, 2, 2, 21(£)(0, 0, 0)
: - 1/2 - - 1/6
z hi h2 hi h2
% Fdl1, 1, 2, 21(£)(0, 0, 0) Fdl1, 1, 1, 21(£)(0, 0, 0)
. +1/4 -- +1/3
i hi h2 hi h2
% Fd[1, 2, 21(f£)(0, 0, 0) Fd[1, 2, 2, 21(f£)(0, 0, 0)
. - 1/2 +1/3 ,
§ hi h2 hi h2
| ‘ Fal1, 31(£)(0, 0, 0) Fdl1, 1, 31(£)(0, 0, 0)
% D[io 3] (f)(O’ 0; 0) = —— 1/2
. hi h3 hi h3
Fdal1, 1, 3, 3, 31(£)(0, 0, 0) Fd[1, 1, 1, 3]1(£)(0, 0, 0)
- 1/6 +1/3
g hi h3 hi h3
. Fdal1, 1, 1, 1, 31(£)(0, 0, 0) Fdl1, 3, 3, 31(£)(0, 0, 0)
. - 1/4 +1/3
é hi h3 hi h3
. Fdl1, 3, 3, 3, 31(£)(0, 0, 0) Fd[1, 3, 31(£)(0, 0, 0)
. - 1/4 -1/2
. hi h3 hi h3
” Fdal1, 1, 3, 31(£)(0, 0, 0) Fdl1, 1, t, 3, 31(f£)(0, 0, 0)
+1/4 - 1/6 3
‘ hi h3 hi h3
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Fd[2, 2](£)(o, 0, 0) 11 Fd[2, 2, 2, 21(£)(0, 0, 0)

D[2, 2](f)(o’ 0, o) = +
2 12 2
h2 h2
Fal2, 2, 2, 2, 21(£)(0, 0, 0) Fd[2, 2, 21(£)(0, 0, 0)
- 8/6 - ,
2 2
h2 h2
Fdl2, 3](£)(o, 0, 0) Fal2, 2, 2, 2, 31(£)(o, 0, 0)
p[2, 31(£)(0,0,0) = - 1/4
h2 h3 h2 h3
Fd[2, 23 39 3’ 3](1)(0, 0, 0) Fd[z, 3, 3’ 3’ 3](f)(0’ 0’ 0)
- 1/6 - 1/4
h2 h3 h2 h3
Fd[2, 2, 31(£)(o, 0, 0) Fd[2, 2, 2, 3]1(£)(0, 0, 0)
- 1/2 + 1/3 - -
. h2 h3 h2 h3
Fdf2, 3, 31(£) (0, 0, 0) Fd[2, 2, 2, 3, 31(£)(0, 0, 0)
- 1/2 - 1/6
h2 h3 h2 h3
Fa[2, 2, 3, 3]1(£)(0, 0, 0) Fd[2, 3, 3, 31(£)(0, 0, 0)
+ 1/4 + 1/3 ,
h2 h3 h2 h3
Fdl3, 3]1(£)(0, 0, 0) 11 Fd[3, 3, 3, 3]1(f)(0, 0, 0)
DI3, 31(£)(0,0,0) = +
2 12 2
h3 h3
Fd[3, 3, 3, 3, 3]1(£)(0, 0, 0) Fd[3, 3, 31(£)(o, 0, 0)
- 5/6 - ’
2 2
h3 h3

Fd[1, 1, 11(£)(o, 0, 0)

D[1, 1, 11(£)(0, 0, 0) =
3
hi

Fd[1, 1, 1, 11(£) (o, 0, 0) : Fdl1, 1, 1, 1, 11(£) (o, 0, 0)
- 3/2 + 7/4 s
. 3 3
hi hi
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L

D[1,

D[1,

pl1,

Fd[1, 1, 2]1(£)(0, 0, 0)

1’ 2](f)(09 o’ 0) =
2
hi h2
~ Fdl1, 1, 2, 2, 21(£)(0, 0, 0) 11 Fdl1, 1, 1, 1, 21(£)(0, 0, 0)
+ 1/3 +
2 12 2
hi h2 , hi h2
Fal1, 1, 2, 21(£)(0, 0, 0) Fd[1, 1, 1, 21(£)(0, 0, 0)
- 1/2 -
2 2
hi h2 hi h2
Fal1, 1, 1, 2, 21(£)(0, 0, 0)
+1/2 s
2
hi h2
Falt, 1, 3]1(£)(o, 0, 0)
1, 31(£)(0, 0, 0) =
2
hi h3
Fd[1, 1, 3, 31(£)(0, 0, 0) Fd[1, 1, 3, 3, 31(£)(0, 0, 0)
- 1/2 + 1/3
2 2
hi h3 : hi h3
Fdft, 1, 1, 3]1(f£)(0, 0, 0) 11 Fdl1, 1, 1, 1, 3]1(£)(0, 0, 0)
- + ;
2 12 2
hi h3 hi h3
Fdl1, 1, 1, 3, 31(£)(0, 0, 0)
+ 1/2 ’
2
hi h3
Fal1, 2, 21(£)(o, 0, 0)
2, 21(£)(0, 0, 0) =
2
hi h2
11 Fal1, 2, 2, 2, 21(£)(0, 0, 0) 1 Fal1, t, 1, 2, 21(£)(0, 0, 0)
+ + -
12 2 3 2
hi h2 hi h2
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Fdl1, 1, 2, 2](£)(0, 0, 0) Fdl1, 2, 2, 21(£)(0, 0, 0)

- 1/2 -
2 2
hil h2 hil h2
Fdl1, 1, 2, 2, 2](f)(0, 0, 0)
+ 1/2 )
2
hl h2

Fdl1, 2, 31(£)(0, 0, 0)
D[1, 2, 31(£)(0, 0, 0) =

hi h2 h3
Fd[1, 2, 3, 31(£)(0, 0, 0) Fdl1, 1, 2, 3, 31(£)(0, 0, 0)
~1/2 + 1/4
hi h2 h3 h1 h2 h3
Fdl1, 2, 2, 3, 3](£)(0,0,0) Fd[1, 2, 3, 3, 3]1(£)(0, 0, 0)
+ 1/4 + 1/3
hi h2 h3 hi h2 h3
Fdl1, 1, 2, 31(f)(0, 0, 0) Fdl1, 1, 1, 2, 31(£)(0, 0, 0)
- 1/2 +1/3
hi h2 h3 h1 h2 h3
Fdal1, 2, 2, 31(£)(0, 0, 0) Fd[1, 1, 2, 2, 31(£)(0, 0, 0)
-1/2 -+ 1/4
hi h2 h3 hi h2 h3
Fd[1, 2, 2, 2, 31(£)(0, 0, 0)
+ 1/3 s
h1 h2 h3

Fd[1, 3, 31(£)(0, 0, 0) Fal1, 3, 3, 31(£)(0,0,0)
pl1, 3, 31(£)(0, 0, 0) =

2 2

hi h3 hi h3
11 Fdl1, 3, 3, 3, 31(£)(0, 0, 0) Fa[1, 1, 3, 3, 31(£)(0,0,0)

+ + 1/2
12 2 2
hi h3 hi h3
Fdl1, 1, 3, 31(£)(0, 0, 0) Fdl1, 1, 1, 3, 3](£)(o, 0, 0)
- 1/2 + 1/3 ’
2 2
hi h3 hi h3

Fdl2, 2, 21(£)(0, 0, 0)

pl2, 2, 21(£)(0, 0, 0) =
3
h2
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Fd[2, 2, 2, 21(£)(0, 0, 0) Fdal2, 2, 2, 2, 21(£)(0, 0, 0)

- 3/2 —- + 7/4 »
3 3
h2 h2

Fal2, 2, 31(£)(o, 0, 0)

pl2, 2, 31(£)(0, 0, 0) =
2
h2 h3

11 Fal2, 2, 2, 2, 31(£)(0, 0, 0) Fal2, 2, 3, 3, 31(£)(0,0,0)

+ + 1/3
12 2 2

' h2 h3 h2 h3

Falz, 2, 2, 31(£)(0, 0, 0) Fal2, 2, 2, 3, 31(£)(0, 0, 0)

- + 1/2
2 2

h2 h3 h2 h3

Fdl2, 2, 3, 31(£)(0, 0, 0)
- 1/2 ,
2
h2 h3

Fd[2, 2, 2, 2, 31(£)(0, 0, 0)
pl2, 2, 2, 2, 3]1(£)(0, 0, 0) = ,
4
h2 h3

Fals, 3, 31(£)(o0, 0, 0)

D[31 3; 3](f)(09 O: 0) =

3
h3
Fd[3, 3, 3, 31(£)(0, 0, 0) Fd[3, 3, 3, 3, 31(£)(0, 0, 0)
- 3/2 + 7/4 >
3 3
h3 h3
pl1, 1, 1, 11(£)(0, 0, 0) =
Faf1, 1, 1, 11(£)(o, 0, 0) Fal1, 1, 1, 1, 11(£)(0, 0, 0)
-2 s
4 4
hi ht

Faf1, 1, 1, 21(£)(0, 0, 0)

pli, 1, 1, 21(£)(0, 0, 0) =
3
hi h2
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pl1, 1

Dl1, 1

D[1, 1

D[1, 1, 3, 3]1(£)(0, 0, 0) =

Fal1, 1, 1, 2

, 21(£) (0, 0, 0) Fdl1, 1, 1, 1, 21(£)(0,0,0)

1/2 -3/2 -- -
3 3
hi h2 hi h2
Fa[1, 1, 1, 31(£)(o, 0, 0)
, 1, 3]1(£)(0, 0, 0) =
3
hi h3
Fal1, 1, 1, 1, 31(£)(0, 0, 0) Fd[1, 1, 1, 3, 31(£)(0,0,0)
3/2 -1/2 —
.3 3
hi h3 ni h3
Falt, 1, 2, 21(£)(0, 0, 0)
, 2, 21(£)(0, 0, 0) =
2 2
hi h2

Fd[1, 1, 2, 2, 2]

(£)(0, 0, 0) Fal1, 1, 1, 2, 21(£)(0, 0, 0)

2
hi h2

, 2, 31(£)(0, 0, 0

Fdft, 1, 2, 3

2 2 2
hi h2

b

Fal1, 1, 2, 31(£)(0, 0, 0)
) = -

2
hi h2 h3

, 31(£)(0, 0, 0) Fdal1, 1, 1, 2, 31(£)(0, 0, 0)

2
h2 h3 hi h2 h3

» 31(£)(0, 0, 0)

1/2
2
hi
Fd[t, 1, 2, 2
1/2
2
hi

Fdli, 1, 3, 3, 3]

h2 h3

Fdl1, 1, 3, 3]1(£)(0, 0, 0)

2 2
hi h3

(£)(0, 0, 0) Fdl1, 1, 1, 3, 31(£)(0, 0, 0)

2
hi h3

2 2 2
hi h3
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Fd[1, 2, 2, 21(£)(0, 0, 0)

D[1, 2, 2, 21(£)(0, 0, 0) =
3
hi h2

Fali, 2, 2, 2, 21(£)(o0, 0, 0) Fd[1, 1, 2, 2, 21(£)(0,0,0)

- 3/2 - 1/2 : s
3 3
hi h2 hl h2

Fdl1, 2, 2, 31(£)(o0, 0, 0)
pl1, 2, 2, 31(£)(0, 0, 0) =

2
hi h2 h3

Fdl1, 2, 2, 3, 31(£)(0, 0, 0) Faft, 1, 2, 2, 31(£)(o0, 0, 0)

1/2 - 1/2
2 2
hi h2 h3 hi h2 h3

Fal1, 2, 2, 2, 3](£)(0, 0, 0)

2

2
hi h2 h3

rdl1, 2, 3, 31(£)(0, 0, 0)

nl1, 2, 3, 31(£)(0, 0, 0) =
2
hi h2 h3

Fdf1, 1, 2, 3, 31(£)(0, 0, 0) Fdal1, 2, 2, 3, 31(£)(0, 0, 0)
1/2 —- -1/2
2 2

hi h2 h3 hi h2 h3

Fali, 2, 3, 3, 31(£)(0, 0, 0)

bl

2
hi h2 h3

Fdl1, 3, 3, 31(£)(0, 0, 0)
b1, 3, 3, 31(f)(0, 0, 0) =

3
hi h3

Fdl1, 3, 3, 3, 31(£)(0, 0, 0) Fdl1, 1, 3, 3, 31(£)(0,0,0)
3/2 -1/2 ,
3 3
hi h3 hil h3

pl2, 2, 2, 21(£)(0, 0, 0) =
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Fa[2, 2, 2, 2]1(£)(0, 0, 0)

Fal2,

2, 2, 2, 2](£)(0, 0, 0)

-2
4
h2

4
h2

Fd[2, 2, 2, 31(£)(0, 0, 0)

p[2, 2, 2, 31(£)(0, 0, 0) =

h2 h3

Fd[2, 2, 2, 2, 31(£)(0, 0, 0)

- 3/2
3
h2 h3

Fdl2, 2, 2, 3, 31(£)(0,0,0)
- 1/2 ,
3
h2 h3

Fdl[2, 2, 3, 31(£)(0, 0, 0)

pl2, 2, 3, 31(£)(0, 0, 0) =

2

h2 h3

Fd[2, 2, 3, 3, 31(£)(0, 0, 0)

Fd[2, 2, 2, 3, 31(£)(0, 0, 0)

2 2
h2 h3

3

2 2
h2 h3

Fd[2, 3, 3, 31(£)(0, 0, 0)

pl2, 3, 3, 31(£)(0, 0, 0) =

3

h2 h3

Fdl2, 2, 3, 3, 31(£)(0, 0, 0)

-1/2
3
h2 h3
i3, 3, 3, 3]1(£)(0, 0, 0) =

Fa[3, 3, 3, 31(£)(0, 0, 0) Fdl3,

Fa[2, 3, 3, 3, 3]1(£)(0, 0, 0)

- 3/2
3
h2 h3

3, 3, 3, 31(£)(0, 0, 0)

-2
4
h3

4
h3

Fdl1, 1, 1, 1, 11(£)(0, 0, 0)

D[1, 1, 1, 1, 11(£)(0, 0, 0)

5
hi

Fdl1, 1, 1, 1, 21(£)(0, 0, 0)

pl1, 1, 1, 1, 21(¢)(0, 0, 0)
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Fd[2, 3, 3](£)(0, 0, 0)

p[2, 3, 31(£)(0, 0, 0) =

2
h2 h3 ’
11 Faf2, 3, 3, 3, 31(£)(0, 0, 0) Fd[2, 2, 2, 3, 3]1(£)(0,0,0)
+ + 1/3
i2 2 2
h2 h3 h2 h3
Fdl2, 2, 3, 31(£)(0, 0, 0) Fdl2, 3, 3, 3](£)(0, 0, 0)
- 1/2 -
2 2
h2 h3 h2 h3
Fd[2, 2, 3, 3, 31(£)(o, O, 0)
+1/2 s
’ 2
h2 h3

7 4.2 Newton’s Forward Difference Formula in Three Dimensions

Note that the finite difference forms have been now been written with Fd[1,1,2,2,2] =
Dzzyyy for sorting purposes and to conserve space. This is a simple exten-

sion of the difference form used in Sections 2, 3, and 4, (Dzt = Dzy = Fdl1)

to allow for multiple dimensions and avoid confusion with the D operator.

£(p1 hi, p2 hi, p3 h3) :=
2

pl Fdi + p2 FA2 + p3 FdA3 + (- 1/2 p1 + 1/2 p1 ) Fdil + p1 p2 Fdi2 +

2 2
(1/2 p2 - 1/2 p2) Fd22 + p2 p3 Fd23 + (- 1/2 p3 + 1/2 p3 ) Fd33 +
2 3 2
(1/3 pt - 1/2 p1 + 1/6 p1 ) Fd111 + (- 1/2 p1 p2 + 1/2 p1 p2) Fd112 +
2 2 3
(1/2 p1 p2 - 1/2 pt p2) Fd122 + (- 1/2 p2 + 1/3 p2 + 1/6 p2 ) Fd222 +
2 2
(- 1/2 p2 p3 + 1/2 p2 p3) Fd223 + (- 1/2 p2 p3 + 1/2 p2 p3 ) Fd233 +
2 3
(1/3 p3 - 1/2 p3 + 1/6 p3 ) Fd333 +
/ 11 2 4 3\
|- 1/4 pt + ———— p1 + 1/24 p1 - 1/4 p1 | Fd1111 +
\ 24 /
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2 3
(-1/2p1 p2+1/6 p1 p2 + 1/3 p1 p2) Fdi1112 +

2 2 2 2
(-1/4p1 p2+1/4p1 p2 - 1/a Pl p2 + 1/4 p1 p2) Fd1122 +
2 3
(-1/2p1 p2 +1/6 p1 p2 + 1/3 Pl p2) Fd1222 +
/ 3 4 11 2\
|- 1/4 p2 - 1/4 p2 + 1/24 p2 + ——— P2 | Fd2222 +
\ 24 /
3 2
(1/3 p2 p3 + 1/6 p2 p3 - 1/2 p2 P3) Fd2223 +
2 2 2 2
(1/4p2 p3 + 1/4p2 p3 - 1/4 p2 p3 - 1/4 P2 p3 ) Fd2233 +
3 2
(1/3 p2 p3 + 1/6 p2 p3 - 1/2 p2 p3 ) Fd2333 +
/ 4 11 2 3 \
11/24 p3 + --—— p3 - 1/4 p3 - 1/4 P3| Fd3333 +
\ 24 /
2 4 5 3

(- 8/12 p1 - 1/12 p1 + 1/120 p1 + 7/24 pl + 1/5 p1) Fdi1111 +

/ 11 2 3 4 \
--—-=p1 p2 -~ 1/4 p1 p2 + 1/24 p1 P2 - 1/4 p1 p2| Fd11112 +
\ 24 /
2 3 2 2 3 2 2
(1/4 p1 p2 - 1/12 p1 p2 - 1/4 p1 P2 +1/12 p1 p2 + 1/6 p1 p2 - 1/6 p1 p2
) Fd11122 +
2 2 2 2 2 3 3
(1/6 p1 p2 - 1/4 p1 p2 + 1/4 p1 p2 + 1/12 P1 p2 - 1/12 p1 p2 - 1/6 p1 p2
) Fd11222 +
/ 4 11 2 3\

11/24 p1 p2 + --— p1 p2 - 1/4 p1 P2 - 1/4 p1 p2 | Fd12222 +
\ 24 /

3 5 2 4
(1/5 p2 + 7/24 p2 + 1/120 p2 - §/12 p2 - 1/12 p2 ) Fd22222 +

/ 4 3 11 2\
[~ 1/4 p2 p3 + 1/24 p2 p3 - 1/4 p2 p3 + ~——- p2 p3| Fd22223 +
\ 24 /
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e e e e e e

3 2 3 2 2
(- 1/6 p2 p3 + 1/12 p2 p3 - 1/12 p2 p3 + 1/4 p2 p3 + 1/6 p2 p3

2 2
- 1/4 p2 p3 ) Fd22233 +

2 2 3 3 2 2 2
(1/4 p2 p3 - 1/6 p2 p3 + 1/12 p2 p3 - 1/12 p2 p3 - 1/4 p2 p3 + 1/6 p2 p3
) Fd22333 +
/11 2 4 3\
|---- p2 p3 - 1/4 p2 p3 + 1/24 p2 p3 - 1/4 p2 p3 } Fd23333 +
\ 24

5 3 2 4
(1/5 p3 + 1/120 p3 + 7/24 p3 - 5/12 p3 - 1/12 p3 ) Fd33333

7 4.3 Central Differences-Derivative Formulas

Faf11(£) (o, 0, 0) Fdl1, 1, 1, 1, 11(£)(0, 0, 0)
[p[11(£)(0, 0, 0) = - + 3/640
hi hi
Fd[1, 1, 11(£)(0, 0, 0)
- 1/24 s
hi
Fd[21(£)(0, 0, 0) Fdaf2, 2, 2, 2, 21(£)(0, 0, 0)
p[2]1(£)(0, 0, 0) = + 3/640
h2 h2
Fd[2, 2, 21(£)(0, 0, 0)
- 1/24 s
h2
Fd[3](£) (o, 0, 0) Fd[3, 3, 3, 3, 31(£)(0, 0, 0)
p[31(£)(0, 0, 0) = + 3/640
h3 h3
Fd[3, 3, 31(£)(0, 0, 0)
- 1/24 )
h3
Fdal1, 11(£)(0, 0, 0) Fd[1, 1, 1, t1(£)(0, 0, 0)
pfi, 131(£)(0, 0, 0) = -~ - 1/12 -—
2 2
hi hi
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Fdal1, 21(£)(o, 0, 0) Fd[1, 2, 2, 21(£)(0, 0, 0)

D1, 2]1(£)(o0, 0, 0) = - 1/24 -
hi h2 hi h2
Fdl1, 1, 1, 21(£)(0, 0, 0)
- 1/24 )
hi h2
Fd[1, 31(f)(0, 0, 0) Fdli, 3, 3, 31(£)(0, 0, 0)
D[1, 31(£)(0, 0, 0) = - 1/24 —-
hi h3 hi h3
Fdal1, 1, 1, 3]1(£)(0, 0, 0)
- 1/24 ,
hi h3
Fdl[2, 21(£)(0, 0, 0) Fal2, 2, 2, 21(£)(0, 0, 0)
D[2’ 2](f)(os 0, 0) = - 1/12 ]
2 2
h2 h2
Fd[2, 31(f£)(0, 0, 0) Fd[2, 2, 2, 31(£)(o, 0, 0)
D[2, 3](£)(0, 0, 0) = - 1/24
h2 h3 h2 h3
Fa[2, 3, 3, 3](£)(0, 0, 0)
- 1/24 ,
h2 h3
Fda[3, 31(£)(0, 0, 0) Fa[3, 3, 3, 3]1(£)(o, 0, 0)
DI3, 31(£)(0, 0, 0) = - 1/12 s
2 2
h3 h3

DI1, 1, 11(£)(0, 0, 0) =

Fal1, 1, 11(£)(0, 0, 0) Fdl1, 1, 1, 1, 11(£)(0, 0, 0)

-1/8 ,
3 3

hi hi

[y

Falt, 1, 21(£)(o0, 0, 0)

pl1, 1, 21(£)(0, 0, 0) =
2
hi h2

Fdl1, 1, 2, 2, 21(f)(0, 0, 0) Fali, 1, 1, 1, 2]1(£)(0, 0, 0)
- 1/24 - 1/12 ’
2 2
hil h2 hi h2
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Fdl1, 1, 31(£)(o, 0, 0)

p[1, 1, 31(£)(0, 0, 0) =
2
hi h3

Fd[i’ 15 3; 39 3](f)(0’ 09 0) Fd[ls 19 1’ 1: 3](1)(09 0, 0)
- 1/24 - 1/12 )
2 2
hi h3 hi h3

Fd[1, 2, 21(£)(0, 0, 0)

pl1, 2, 21(£)(0, 0, 0) =
2
hi h2

Fdf1, 1, 1, 2, 21(£)(0, 0, 0) Fdf1, 2, 2, 2, 21(£)(0, 0, 0)

- 1/24 - 1/12
2 2

hi h2 hil h2

Fdl1, 2, 31(£)(0, 0, 0)

Dl1, 2, 31(£)(0, 0, 0) =

hi h2 h3
Fd[1, 2, 2, 2, 31(£)(0, 0, 0) Fd[t, 2, 3, 3, 31(£)(0, 0, 0)
- 1/24 --- - 1/24
hi h2 h3 hi h2 h3
Fal1, 1, 1, 2, 31(£)(o, 0, 0)
- 1/24 s
hi h2 h3

Fd[1, 3, 31(£)(o, 0, 0)

D[1, 3, 31(f£)(0, 0, 0) =

2
hi h3
Fdl1, 1, 1, 3, 31(£)(0, 0, 0) Fd[1, 3, 3, 3, 31(f)(0, 0, 0)
- 1/24 - 1/12 )
2 2
hi h3 hi h3
p[2, 2, 2J1(£)(0, 0, 0) =
Fal2, 2, 21(£)(o, 0, 0O) Fdl[2, 2, 2, 2, 21(£)(0, 0, 0)
-— - 1/8 s
3 3
h2 h2
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Fd[2, 2, 31(£)(0, 0, 0)

pl2, 2, 31(£)(0, 0, 0) =
2
h2 h3

Fda[z, 2, 3, 3, 31(£)(0, 0, 0) Fa[2, 2, 2, 2, 31(£)(0, 0, 0)
- 1/24 - 1/12 -,
2 2
h2 h3 h2 h3

Fd[2, 3, 3](£)(0, 0, 0)

pl[2, 3, 31(£)(0, 0, 0) =

2
h2 h3
Fd[2, 2, 2, 3, 31(£)(0, 0, 0) Fd[2, 3, 3, 3, 3](£)(0, 0, 0)
- 1/24 —- ~ 1/12 ’
2 2
h2 h3 h2 h3
D[3, 3, 3]1(£)(0, 0, 0) =
Fda[3, 3, 31(£)(0, 0, 0) Fals, 3, 3, 3, 31(£)(o, 0, 0)
- 1/8
3 3
h3 h3

7.4.4 Newton/Everett Formula for Three Dimensions

£(p1 hi, p2 hi, p3 h3) :=

pl Fdl + p2 Fd2 + p3 Fd3 + 1/2 p1 Fdi1 + p1 p2 Fdi12 + 1/2 p2 Fd22

2 3 2
* P2 p3 Fd23 + 1/2 p3 Fd33 + (1/6 p1 - 1/24 p1)Fd111 +1/2 p1 p2 Fdi12

2 3 2
*+1/2 p1 p2 Fd122 + (1/6 p2 - 1/24 p2) Fd222 + 1/2 p2 p3 Fd223

2 3 4 2
+ 1/2 p2 p3 Fd233 + (1/6 P3 - 1/24 p3) FA333 + (1/24 pl - 1/24 p1 ) Fdi111

3 2 2
+ (- 1/24 p1 p2 + 1/6 p1 p2) Fd1112 + 1/4 p1 p2 Fd1122

3 2 4
+ (- 1/24 p1l p2 + 1/6 p1 p2 ) FA1222 + (- 1/24 p2 + 1/24 p2 ) Fd2222
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3 2 2
+ (1/6 p2 p3 - 1/24 p2 p3) Fd2223 + 1/4 p2 p3 Fd2233

3 2 4
+ (1/6 p2 p3 - 1/24 p2 p3) Fd2333 + (- 1/24 p3 + 1/24 p3 ) Fd3333

3 5
+ (3/640 p1 - 1/48 p1 + 1/120 p1 ) Fdi1111

4 2 3 2 2
+ (1/2¢ p1 p2 - 1/24 p1 p2) FA11112 + (1/12 p1 p2 - 1/48 p1 p2 ) Fd11122

2 3 2 4 2
+ (1/12 pt p2 - 1/48 p1 p2) Fd11222 + (1/24 p1 p2 - 1/24 pi p2 ) Fd12222

3 5
+ (- 1/48 p2 + 1/120 p2 + 3/640 p2) Fd22222

4 2
+ (1/24 p2 p3 - 1/24 p2 p3) Fd22223

2 3 2
+ (- 1/48 p2 p3 + 1/12 p2 p3 ) Fd22233

2 3 2 4 2
+ (1/12 p2 p3 - 1/48 p2 p3) Fd22333 + (1/24 p2 p3 - 1/24 p2 p3 ) Fd23333

5 3
+ (1/120 p3 - 1/48 p3 + 3/640 p3) Fd33333
Note that this form, again, has far fewer terms then the forward difference
form.

7.5 Navier-Stokes Equations

Of course, this general expansion analysis has broad application. One in-
tended use involves the Navier-Stokes Equations. In their usual form, they
are highly non-linear but, by collecting terms, they can be organised into a
linear set of first order partial derivatives with complex dependent variables.
Here we write the set vertically and presume that we are interested in cal-
culating the time dependence of the flows. With three dimensions, there are
four simultaneous equations to be solved, including the equation of continu-
ity. Here we display one of the equations vertically.
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( 94 ) ( D¢ ( Dty ( Dieer (
ot ht *ht -ht
[ | I I
3B Dy Deze Dayoee
J 8z 4 he 1 J he 3 J hz 5 J
o _1-22 BCER TS G- B S v2
8y hy hy hy
+ + + +
4D QLJ D.;, J Dyyzsy
A \ Tz y k

\ 8z / \ hz z J

Noteatha,t in these equations we have used the facththat the expan-
sions have no cross terms and the differences of any one dependent variable
(A,B,C, or D) are only with respect to one argument, respectively, (¢,z,y
or z). The concept is this: The finite difference equations shown to the
right of the equal sign are solutions to linear problems that have no direct
relevence to the problem. However, they are linear equations; this is a linear
system. When added together (and weighted following the given coeflicients,
above) they produce the desired solution. We obtain the spatial differences
(Dsy Dy, D, and D,,, etc.), add them appropriately, and obtain the time dif-
ferences (D, Dy, Dysser and Dygeysss, etc.). These are weighted with the above
coefficents and added. Of course, the dependent variables are complex funec-
tions of velocity(squared), pressure, and shear stresses, but the A variables
can always be organised so they are something like the momentum. This
being so, it is also possible to allow that the last terms (or any terms) are
closed with some sort of turbulence closure scheme. One of the usual forms,
the eddy K scheme, however, might introduce non-linear forms. It might
even be appropriate to allow that the last order determines the averaging
required in this turbulent, stochastic flow problem.

96

Deseeeee

ete.




8 Closing

Presented is a general technique for handling differential equations applied
to the specialised non-linear problem of phosphorus movement in soils. The
technique is not new and was mostly worked out by Newton and others[4].
The size of terms that can be considered is now almost unlimited. General
extensions are possible without the drugery of hand calculations. This has
lead to equations for the nt* term in an expansion and calculations in more
than one dimension. The symbolic manipulator allows a number of unique
opportunities for analysis and solution of partial differential equations. This
document is offered as a working example for further exploitation of the
technique.
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