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Abstract

For a graph G , let σ(G) and δ(G) denote, respectively, its sum number and minimum
degree. Trivially, σ(G) ≥ δ(G) . A nontrivial connected graph G is called a k -optimum
summable graph, where k ≥ 1 , if σ(G) = δ(G) = k . In this paper, we show that if G
is a k -optimum summable graph of order n , k ≥ 3 , then (1) n ≥ 2k ; (2) the complete
bipartite graph Kk,n−k is not a spanning subgraph of G . We also describe new families of
k -optimum summable graphs for k ≥ 1 .
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1. Introduction

All graphs considered here are finite simple graphs. For a graph G , V (G) will denote
its vertex set and E(G) its edge set, while n(G) and e(G) respectively denote the order
and size of G ; that is, n = n(G) = |V (G)| and e(G) = |E(G)| . A graph G is nontrivial
if n(G) ≥ 2 . For other standard notation and terminology not explained here, refer to
[1].

Let N denote the set of positive integers. Following Harary [2], the sum graph G+(S)
of a finite subset S ⊂ N is the graph with vertex set S and edge set E such that for
distinct u, v ∈ S , uv ∈ E if and only if u + v ∈ S . By extension a graph G is called a
sum graph if it is isomorphic to the sum graph G+(S) of S ⊂ N .

The notion of sum graph can be defined equivalently as follows. For a graph G with
minimum degree δ(G) ≥ 1 and a positive integer k , we write Gk for G∪Kk , the disjoint
union of G and k isolated vertices. Then the graph Gk is a sum graph if there exists
an injective labeling L : V (Gk) −→ N such that for any two distinct vertices u , v of
Gk , uv ∈ E(Gk) iff there exists w ∈ V (Gk) with L(w) = L(u) + L(v) . In this case, L
is called a sum labeling of Gk . Observe that, by definition, the vertex with the largest
label in a sum graph cannot be adjacent to any other vertex. Thus, if Gk is a sum graph,
then k ≥ 1 . For a connected graph G , its sum number, denoted by σ(G) , is defined as
the smallest k for which Gk is a sum graph. Since the vertex with the largest label in G
is adjacent to at least δ(G) vertices, we have σ(G) ≥ δ(G) . Motivated by this relation,
we define a nontrivial connected graph G to be k -optimum summable, where k ≥ 1 , if
σ(G) = δ(G) = k . Following Harary [2], a nontrivial connected graph G is called a unit
graph if G1 is a sum graph. Thus, G is a unit graph iff it is 1 -optimum summable.

The problem of characterizing k -optimum summable graphs (even when k = 1 ) is
believed to be very difficult. In this paper, we shall first show in the next section that if G
is a k -optimum summable graph of order n , k ≥ 3 , then (1) n ≥ 2k ; (2) the complete
bipartite graph Kk,n−k is not a spanning subgraph of G . In the remaining sections we
describe new families of k -optimum summable graphs for k ≥ 1 .

2. Necessary Conditions

Let Kn denote the complete graph of order n . We have σ(K2) = 1, σ(K3) = 2 and
so K2 is 1-optimum summable and K3 is 2-optimum summable. However, it is known
[3] that σ(Kn) = 2n−3 for n > 4 , and therefore Kn is not (n−1) -optimum summable.

For the rest of this paper, let G be a k -optimum summable graph. Let L be a sum
labeling of Gk . For convenience, throughout this paper, we shall refer to the vertices of
Gk by their sum labels.

Let u be the largest vertex in V (G) . Since G is a k -optimum summable graph, we
have deg(u) ≥ k . But since u is the vertex with the largest label, deg(u) ≤ k , and
so deg(u) = k . Denoting by N(x) the set of vertices adjacent to a given vertex x , let
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A = N(u) = {a1, a2, . . . , ak} , where a1 < a2 < · · · < ak . Then

C = {u + a1, u + a2, . . . , u + ak} = {c1, c2, . . . , ck}

is the set of the k isolated vertices in Gk , where c1 < c2 < · · · < ck . Let
B = V (G)\(A ∪ {u}) = {b1, b2, . . . , bn−k−1} , where b1 < b2 < · · · < bn−k−1 .

Lemma 2.1. ai + aj /∈ A for 1 ≤ i < j ≤ k .

Proof. Suppose that there exist i, j with 1 ≤ i < j ≤ k such that ai + aj ∈ A . Then
k ≥ 3 and ai + aj = ap for some p ∈ j + 1..k . As u + ap ∈ V (Gk) , u + ai is adjacent
to aj , contradicting the fact that u + ai is an isolated vertex.

Lemma 2.2. bi + aj /∈ A for every 1 ≤ i ≤ n− k − 1 and 1 ≤ j ≤ k .

Proof. Suppose that bi + aj ∈ A for some j ∈ j + 1..k . Then k ≥ 2 and u + bi + aj ∈
V (Gk) . Hence u + aj is adjacent to bi , a contradiction.

Now let X = N(a1)\{u} = {x1, x2, . . . , xk′−1} , where x1 < x2 < · · · < xk′−1 and
k′ ≥ k . Obviously, X ⊂ A ∪B .

Lemma 2.3. xi + a1 /∈ C for every i ∈ 1..k′ − 1 .

Proof. Obvious since xi + a1 < u + a1 for 1 ≤ i ≤ k′ − 1 .

Recall that for k ≥ 3 a k -optimum summable graph G cannot be a complete graph,
and so n(G) ≥ δ(G)+2 . However, as the next theorem shows, we can find a much better
general lower bound on the order of a k -optimum summable graph.

Theorem 2.1. If G is a k -optimum summable graph for k ≥ 3 , then n(G) ≥ 2k .

Proof. Let G be a k -optimum summable graph with V (G) = {u}∪A∪B and V (Gk) =
V (G) ∪ C as described above.

Consider the edges between a1 and its neighbours xi , i = 1, . . . , k′ − 1 , other than
u . By Lemma 2.1 and Lemma 2.2, a1 + xi /∈ A for every i ∈ 1..k′ − 1 ; by Lemma 2.3,
a1+xi /∈ C for every i ∈ 1..k′−1 . Hence, for every i ∈ 1..k′−1 , a1+xi ∈ B∪{u} . Since
a1 is also adjacent to u , this tells us that deg(a1) = k ≤ |B|+2 , hence that |B| ≥ k−2 .
Since |B| = n− k − 1 , it follows that n ≥ 2k − 1 .

Next we show that |B| 6= k − 2 , thus proving that n ≥ 2k . If on the contrary we
suppose that |B| = k − 2 , then

(1) Every ai ∈ A is adjacent to at least one other aj ∈ A .

(2) Every ai ∈ A is adjacent to some x 6= u such that ai + x /∈ B .
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(3) If u = ai + x for some x ∈ A ∪ B , then by Lemma 2.3 for every i′ ∈ i + 1..k ,
(ai′ , x) /∈ E .

The edges involving a1 can only sum to b1, b2, . . . , bk−2, u or c1 = u+a1 which implies
that deg(a1) is at most k , hence exactly k . Thus there exists some x ∈ A∪B such that
(a1, x) ∈ E(G) and a1 + x = u . Two cases then arise, depending on whether x ∈ A or
x ∈ B :

Case 1 x ∈ A

Suppose x = aj for some j ∈ 2..k . Denoting by xi , 1 ≤ i ≤ k , the vertices
adjacent to a1 in ascending order, and recalling that the vertices of A and B are
also listed in ascending order, we must have

a1 + x1 = b1, a1 + x2 = b2, . . . , a1 + xk−2 = bk−2, a1 + aj = u, a1 + u = c1,

where xk−1 = aj and xk = u . Thus for some m ≥ 2 we may arrange the vertices
in ascending sequence as follows:

a1, a2, . . . , am, b1, b2, . . . , bk−2, aj .

Now consider aj . From (3) we know that for every j′ > 1 , (aj′ , aj) /∈ E . Thus aj

can be adjacent only to a1, b1, b2, . . . , bk−2 and u , where aj +a1 = u ; therefore, for
y ∈ B ∪ {u} , aj + y ∈ C . Since aj + u = cj , it follows that j = k − 1 or k .

(a) Suppose j = k − 1 .

Here for every i ∈ 1..k − 2 ,

ci = bi + ak−1 = ai + u = (ai + a1) + ak−1,

from which bi = a1 + ai . Thus a1 is adjacent to a2, a3, . . . , ak−2 as well as
to ak−1 and u , but by (3) not to ak . Hence a1 must be adjacent to one
vertex, say br , in B , and further, by Lemmas 2.1–2.3, a1 + br = bq for some
q ∈ r + 1..k − 2 .
At the same time bq = a1 + as for some as so that as = br , giving duplicate
labels in G . Therefore j 6= k − 1 .

(b) Suppose j = k .

We conclude as in (a) that a1 is adjacent to a2, a3, . . . , ak−2 , and in addition
to ak and u . Suppose that (a1, ak−1) ∈ E(G) . But then a1 + ak ∈ B , as in
(a) an impossibility since bi = a1 + ai for every i ∈ 1..k − 2 . Thus j 6= k .

We have shown that Case 1 is impossible.
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Case 2 x ∈ B

Suppose x = bj for some j ∈ 1..k−2 . Then u = a1 +bj , so that for every i ∈ 1..k ,
ci = a1 +(ai + bj) . Since ai + bj > u for every i > 1 , it follows that vertices ai + bj

cannot exist. Thus bj is not adjacent to any of a2, a3, . . . , ak , and so has degree
at most k − 2 , contradicting the requirement that δ = k . Thus u 6= a1 + bj and
Case 2 is impossible.

On the assumption that |B| ≤ k−2 , we have shown that a1 +x 6= u for any x . Hence
|B| ≥ k − 1 , as required.

The next result gives us more insight into the structure of a k -optimum summable
graph.

Theorem 2.2. If G is a k -optimum summable graph, k ≥ 3 , then Kk,n−k is not a
spanning subgraph of G .

Proof. Suppose to the contrary that there exists a k -optimum summable graph G such
that G contains Kk,n−k as a spanning subgraph. As before, let V (G) = {u} ∪ A ∪ B
and V (Gk) = {u} ∪ A ∪ B ∪ C , where u is the largest label in G and |A| = k . As
we have seen, u must have degree exactly k . If we suppose that u is in the bipartite
set Sk of order k , then since u must be adjacent to every vertex in the bipartite set
Sn−k , it follows that n − k ≤ k . But since by Theorem 2.1, n − k ≥ k , therefore
k = n − k . Thus without loss of generality we may assume that u is a vertex of Sn−k ,
and so we may assume that Sk = A = {a1, a2, . . . , ak} , where ai > aj whenever i > j ,
and Sn−k = B ∪ {u} = {b1, b2, . . . , bn−k−1, u} , where bi > bj whenever i > j .

From Lemma 2.2 we have ai + bj ∈ B ∪ C ∪ {u} for every i ∈ 1..k , j ∈ 1..n− k − 1 .
From Lemmas 2.2 and 2.3 it follows that a1+bj ∈ B∪{u} for every j ∈ 1..n−k−1 . Since
b1 6= a1 +bj , we must have a1 +bj = bj+1 for every j ∈ 1..n−k−2 and a1 +bn−k−1 = u .
But then

u = a1 + bn−k−1 < a2 + bn−k−1 < a2 + u

which implies a2 + bn−k−1 = a1 + u .

However, since u = a1 + bn−k−1 , it follows that a2 = 2a1 , an impossibility as it would
imply an edge between vertex a1 and the isolate u + a1 .

Observe that for k = 1 , K2 = K1,1 , while for k = 2 , K3 contains K2,1 . Thus
Theorem 2.2 is sharp. On the other hand, we shall see in Section 5 that the lower bound
for n(G) in Theorem 2.1 is not sharp.

Remark 2.1. Let d1, d2, . . . , dn be the degree sequence of a connected graph G of order
n ≥ 2 , where d1 ≤ d2 ≤ · · · ≤ dn . It was shown in [4] that σ(G) > max1≤i≤n(di−i) . As a
direct consequence of this result, we have another necessary condition, namely di−i ≤ k−1
for each i = 1, 2, . . . , n , for G to be a k -optimum summable graph.
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3. Unit Graphs

It was pointed out in Section 1 that unit graphs and 1 -optimum summable graphs are
identical. Smyth [5] showed that if G is a unit graph of order n , then e(G) ≤ bn2/4c ;
he established further that for all integers m and n with 1 ≤ n− 1 ≤ m ≤ bn2/4c , there
exists a unit graph of order n and size m . Ellingham [6] proved that any nontrivial tree is
a unit graph, a conjecture of Harary [2]. Until now, however, the problem of characterizing
unit graphs remains open. In this section, we describe a new family of unit graphs.

Given integers p ≥ 3 and q ≥ 2 , let Q(p, q) denote the graph obtained from the union
of the cycle Cp of order p and the path Pq of order q by identifying one end-vertex of
Pq with a vertex of Cp (see Figure 3.1). Q(p, q) is called a tadpole.
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Figure 3.1. The tadpole Q(p, q)

Our aim in this section is to show that every tadpole is a unit graph. The following
observation on a generalized Fibonacci sequence will be useful.

Lemma 3.1. If an integer sequence {ai|i = 1, 2, · · · } satisfies the following
condition ( ∗ ): {

a2 > a1 > 0
ai = ai−1 + ai−2 for i ≥ 3,

then
ak + aj < aj+1 for j − k ≥ 2 and k ≥ 1.

Proof. Since j − k ≥ 2 and k ≥ 1 , ak ≤ aj−2 . Now aj+1 − aj = aj−1 . Thus,
ak + aj < aj+1 .

It follows from this result that if the label sequence {ai|i = 1, 2, · · · , p} satisfies ( ∗ ),
then G+({ai|i = 1, 2, · · · , p}) ∼= Pp−1 ∪K1 .

Theorem 3.1. The tadpole Q(p, q) is a unit graph for all p ≥ 3 and q ≥ 2 .
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Proof. Since δ(Q(p, q)) = 1 , σ(Q(p, q)) ≥ 1 . Let G = Q(p, q) , where V (G) = A ∪
B , A = {u1, u2, . . . , up} , B = {v1, v2, . . . , vq−1} , and the subgraph induced by A is
isomorphic to Cp . Let V (G1) = V (G) ∪ {w1} . We consider two cases.

Case 1. p = 3 and q ≥ 2 .

Consider a labeling g of G1 as follows:
g(u1) = 1, g(u2) = 2, g(u3) = 3, g(v1) = 4;
g(v2) = 5 for q ≥ 3;
g(vi) = g(vi−1) + g(vi−2) for 3 ≤ i ≤ q − 1;

g(w1) =
{

5 when q = 2;
g(vq−1) + g(vq−2) when q > 2.

Let H = G+({g(x)|x ∈ V (G1)}) . We wish to prove that H ∼= G1 .

Let Y = {g(vi)|i = 1, 2, . . . , q − 1} . Since Y ∪ {g(u1)} satisfies the condition ( ∗ )
in Lemma 3.1, G+(Y ∪ {g(u1)}) ∼= Pq−1 ∪K1 . This, together with the value of g(w1) ,
implies that H[Y ∪{g(w1)}] ∼= Pq . Clearly, H[{g(u1), g(u2), g(u3)}] ∼= C3 . It is now easy
to see that H ∼= G1 , as asserted. Hence σ(Q(3, q)) = 1 for q ≥ 2 .

Case 2. p ≥ 4 and q ≥ 2 .

Consider a labeling g of G1 as follows:

g(u1) = 1, g(u2) = 3;
g(ui) = g(ui−1) + g(ui−2) for 3 ≤ i ≤ p− 1;
g(up) = g(up−1) + g(u1), g(v1) = g(up) + g(up−2);
g(v2) = g(up) + g(up−1) for q ≥ 3;
g(vi) = g(vi−1) + g(vi−2) for 3 ≤ i ≤ q − 1;

g(w1) =
{

g(up) + g(up−1) when q = 2;
g(vq−1) + g(vq−2) when q > 2.

Let J = G+({g(x)|x ∈ V (G1)}) . We wish to prove that J ∼= G1 .

The strictly increasing sequence

g(u1), g(u2), · · · , g(up−2), g(up), g(up−1), g(v1), g(v2), · · · , g(vq−1), g(w1)

has subsequence X = {g(u1), g(u2), · · · , g(up−2), g(up−1)} . Since X satisfies the condi-
tion ( ∗ ) in Lemma 3.1, G+(X) ∼= Pp−2 ∪K1 . This, together with the values of g(up) ,
g(v1) and g(v2) (or g(w1) ), ensures that J [X ∪ {g(up)}] ∼= Cp .

Consider the sequence Y = {g(up−3), g(vj)|j = 1, 2, . . . , q − 1} . Note that Y satisfies
the condition ( ∗ ) in Lemma 3.1, so that G+[{g(up−3)} ∪ Y ] ∼= Pq−1 ∪K1 . This, together
with the value of g(w1) , ensures that J [{g(up−3)} ∪ Y ] ∼= Pq .

It is clear from the definition of g that g(up−3) is a vertex of degree 3 in J . Next we
assert that no other adjacencies between g(ui) with i 6= p− 3 and g(vj) exist. Suppose
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that there exist i, j with i 6= p − 3 such that g(ui) + g(vj) ∈ V (G1) . Then either
g(ui) + g(vj) = g(vk) with k > j or g(ui) + g(vj) = g(w1) . For q > 2 , however,
g(w1)− g(vj) ≥ g(vq−2) > g(up) . Thus, g(ui) + g(vj) = g(vk) for some k > j . If k > 2 ,
then g(vk)− g(vj) ≥ g(vk−2) ≥ g(v1) > g(up) , a contradiction. Thus k ≤ 2 , and we have
k = 2 and j = 1 . Hence g(ui) = g(up−3) and so i = p− 3 , a contradiction.

It follows from the above discussion that J [X ∪ Y ∪ {g(up)}] ∼= G . Clearly, g(w1) is
isolated in J . Hence J ∼= G1 , as required.

This completes the proof of Theorem 3.1.

4. 2 -Optimum Summable Graphs

It is known [2] that σ(C4) = 3 and σ(Cn) = 2 for all n ≥ 3 with n 6= 4 . Thus
{Cn|n ≥ 3, n 6= 4} is a family of 2 -optimum summable graphs. In this section we
introduce two new families of 2 -optimum summable graphs.

Consider two tadpoles Q = Q(p, q) and Q′ = Q′(p′, q′) with isolated vertices w1

and w′
1 , respectively. We first sum-label Q ∪ {w1} and Q′ ∪ {w′

1} as described in
Section 3, using a labelling g . Observe that since under g each edge is represented by
a unique vertex, we can multiply the labels by any positive integer and still retain a sum
labeling. Now form a single graph B = B(p, q, p′, q′) from Q and Q′ by adding the edge
(vq−1, v

′
q′−1) . We multiply all the original labels of Q′ ∪ {w′

1} by g(w1) , yielding a sum
labeling h , and then reassign h(w1)← g(w1)g(v′q′−1)+g(vq−1) to represent the new edge.
Since h(u′1) = g(w1) , B ∪ {w1, w

′
1} now has a sum labeling. We have proved

Theorem 4.1. B(p, q, p′, q′) , p, p′ ≥ 3 , q, q′ ≥ 2 , is 2-optimum summable.

We now construct another 2-optimum summable graph. Given integers p, q, r with
p ≥ q ≥ r ≥ 2 and q ≥ 3 , let θ(p, q, r) denote the graph obtained by connecting two
vertices via three internally disjoint paths Pr , Pq and Pp as shown in Figure 4.1. We
call the graph θ(p, q, r) a generalized θ -graph.
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Figure 4.1. The generalized θ -graph θ(p, q, r)
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Theorem 4.2. The generalized θ -graph θ(p, q, r) is a 2 -optimum summable graph
for all p, q, r with p ≥ q ≥ r ≥ 2 and q ≥ 3 except when (p, q, r) = (3, 3, 2) or when
(p, q, r) = (3, 3, 3) .

Proof. Let G = θ(p, q, r) for p 6= 3 or q 6= 3 . Let V (G) = A ∪ B , where A =
{u1, u2, . . . , uq+r−2} , B = {v1, v2, . . . , vp−2} and the subgraphs induced by A and B
are respectively isomorphic to Cq+r−2 and Pp−2 . Since δ(G) = 2 , σ(G) ≥ 2 . Let
V (G2) = V (G) ∪ {w1, w2} .

Case 1. r = 2 , q = 3 and p ≥ 6 .

Consider a labeling h of G2 as follows:
h(u1) = 1, h(u2) = 2, h(u3) = 3;
h(v1) = 4, h(v2) = 5;
h(vi) = h(vi−1) + h(vi−2) for 3 ≤ i ≤ p− 2;
h(w1) = h(vp−2) + h(u2);
h(w2) = h(vp−2) + h(vp−3).

Let H = G+({h(x)|x ∈ V (G2)}) .

Clearly, u1 and u2 are two vertices of degree 3 in H . Since p ≥ 6 , h(vp−3)−h(u2) >
h(vp−4) . Thus, h(w1) is isolated in H . By means of an argument similar to that given
in Case 1 of the proof of Theorem 3.1, it is not difficult to verify that H ∼= G2 . The result
thus follows.

Case 2. q + r ≥ 6 and p ≥ 6 .

Consider a labeling h of G2 as follows:

h(u1) = 1, h(u2) = 3;
h(ui) = h(ui−1) + h(ui−2) for 3 ≤ i ≤ q + r − 3;
h(uq+r−2) = h(uq+r−3) + h(u1);
h(v1) = h(uq+r−2) + h(uq+r−4), h(v2) = h(uq+r−2) + h(uq+r−3);
h(vi) = h(vi−1) + h(vi−2) for 3 ≤ i ≤ p− 2;

h(w1) =


h(vp−2) + h(uq−2) when r = 2,
h(vp−2) + h(uq+1) when r = 3, 4
h(vp−2) + h(uq−4) when r ≥ 5

h(w2) = h(vp−2) + h(vp−3).

Let J = G+({h(x)|x ∈ V (G2)}) .

Clearly, the degree of uq+r−5 is 3 and u1u2 · · ·uq+r−5uq+r−4uq+r−2uq+r−3u1 is a cycle
of order q + r − 2 in J . Since p ≥ 6 ,

h(vp−3)−max{h(uq−2), h(uq+1), h(uq−4)} > h(vp−4).
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Thus, h(w1) is isolated in J . By means of an argument similar to that given in Case 2
of the proof of Theorem 3.1, it is not difficult to verify that J ∼= G2 . The result thus
follows.

Case 3. p ≤ 5 .

The following labeling-induced sum graphs show that this case is also covered.

G+({1, 3, 4, 7, 11, 18, 29, 30, 48, 59, 107; 108, 166}) ∼= θ(5, 5, 5) ∪K2

G+({1, 3, 4, 7, 11, 18, 19, 30, 37, 67; 68, 104}) ∼= θ(5, 5, 4) ∪K2

G+({1, 3, 4, 7, 11, 12, 19, 23, 42; 43, 65}) ∼= θ(5, 5, 3) ∪K2

G+({1, 3, 4, 7, 8, 12, 15, 27; 31, 42}) ∼= θ(5, 5, 2) ∪K2

G+({1, 3, 4, 7, 11, 18, 19, 30, 37; 38, 67}) ∼= θ(5, 4, 4) ∪K2

G+({1, 3, 4, 7, 11, 18, 19, 30; 31, 37}) ∼= θ(5, 4, 3) ∪K2

G+({1, 3, 4, 5, 8, 9, 17; 20, 26}) ∼= θ(5, 4, 2) ∪K2

G+({1, 3, 4, 7, 11, 12, 19; 23, 31}) ∼= θ(5, 3, 3) ∪K2

G+({1, 3, 4, 7, 8, 12; 13, 15}) ∼= θ(5, 3, 2) ∪K2

G+({1, 3, 4, 7, 11, 12, 19, 23; 34, 42}) ∼= θ(4, 4, 4) ∪K2

G+({1, 3, 4, 7, 8, 12, 15; 22, 27}) ∼= θ(4, 4, 3) ∪K2

G+({7, 8, 11, 15, 19, 23; 30, 34}) ∼= θ(4, 4, 2) ∪K2

G+({1, 3, 4, 7, 8, 12; 15, 20}) ∼= θ(4, 3, 3) ∪K2

G+({1, 3, 4, 7, 8; 9, 11}) ∼= θ(4, 3, 2) ∪K2

This completes the proof of Theorem 4.2.

Remark 4.1. The two generalized θ -graphs not included in Theorem 4.2 are θ(3, 3, 2)
and θ(3, 3, 3) . They are, as a matter of fact, not 2 -optimum summable graphs. Indeed,
by Theorem 2.2, we have σ(θ(3, 3, 2)) ≥ 3 and σ(θ(3, 3, 3)) ≥ 3 . These, together with the
two labeling-induced sum graphs

G+({2, 4, 7, 9; 6, 11, 16}) ∼= θ(3, 3, 2) ∪K3,

G+({1, 2, 3, 8, 10; 4, 11, 18}) ∼= θ(3, 3, 3) ∪K3.

show that σ(θ(3, 3, 2)) = σ(θ(3, 3, 3)) = 3 .

5. k -Optimum Summable Graphs, k ≥ 3

In this final section we shall establish two existence results, one for 3 -optimum
summable graphs and one for k -optimum summable graphs, where k ≥ 4 .

Theorem 5.1. For each l ≥ 1 , there exists a 3 -optimum summable graph of order
4l + 3 .
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Proof. Given l ≥ 1 , our aim is to construct a subset Sl of N such that G+(Sl) ∼= G3

and to show that G is a 3 -optimum summable graph of order 4l + 3 .

Let Ai = {ai1, ai2, ai3} for 1 ≤ i ≤ l + 2 and B = {b1, b2, . . . , bl} , where
a11 = 1, a12 = 4 and a13 = 7;
aij =

∑3
p=1 a(i−1)p − a(i−1)j for 2 ≤ i ≤ l + 2 and 1 ≤ j ≤ 3;

bi =
∑3

p=1 aip for 1 ≤ i ≤ l.

Let Sl = (∪l+2
i=1Ai) ∪B and H = G+(Sl) . Clearly, v(H) = 4l + 6 .

For i ≥ 3 and 1 ≤ j ≤ 3 , observe that

aij =
3∑

p=1

a(i−1)p − a(i−1)j

= 2
3∑

p=1

a(i−2)p − (
3∑

p=1

a(i−2)p − a(i−2)j)

=
3∑

p=1

a(i−2)p + a(i−2)j > a(i−1)j . (#)

Clearly, min{a(l+2)1, a(l+2)2, a(l+2)3} > bi for 1 ≤ i ≤ l . Thus, the three vertices in Al+2

are the three largest vertices in H . For 1 ≤ j1 ≤ 3, 1 ≤ j2 ≤ 3 and j1 6= j2 ,

a(l+2)j1 − a(l+2)j2 = a(l+1)j2 − a(l+1)j1 = · · · = (−1)l+1(a1j1 − a1j2).

Now A2 = {5, 8, 11} and a1j1 −a1j2 can only take one of the two positive integers 3 and
6 . Thus a1j1 − a1j2 /∈ Sl , and so the three vertices in Al+2 are isolated in H .

It follows from the values of the three integers in Ai+1 that H[Ai] ∼= C3 for 1 ≤ i ≤
l + 1 . Notice that

aij + a(i−1)j = (
3∑

p=1

a(i−1)p − a(i−1)j) + a(i−1)j =
3∑

p=1

a(i−1)p = bi−1

for 1 ≤ i ≤ l + 1 . This implies that aij is adjacent to a(i−1)j . Thus the degree of any

vertex in ∪l+1
i=1Ai is at least 3 .

For 1 ≤ i ≤ l and 1 ≤ j ≤ 3 , by (#) , we have

a(i+2)j =
3∑

p=1

aip + aij = bi + aij .

Thus bi is adjacent to ai1, ai2, ai3 for 1 ≤ i ≤ l , and so the degree of any vertex in B is
at least 3.
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Let G = H[Sl\Al+2] . It follows from the above discussion that G is connected and
δ(G) = 3 . Thus G is a 3 -optimum summable graph of order 4l + 3 . The proof is thus
complete.

As an illustration of the construction used in the above proof, we present the graph
G+(S2) in Figure 5.1.
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Figure 5.1

Finally, we have:

Theorem 5.2. For each k ≥ 4 , there exists a k -optimum summable graph.

Proof.

Given k ≥ 4 , our aim is to construct a subset S(k) of N such that G+(S(k)) ∼= Gk

and to show that G is a k -optimum summable graph.

Let I = {1, 2, . . . , k} and ai = 10i−1 for i ∈ I . Define{
Aj = {

∑
p∈D ap|D ⊆ I and |D| = j} for 1 ≤ j ≤ k;

B = {ai +
∑k

p=1 ap|i ∈ I}.

Let S(k) = (∪k
j=1Aj) ∪B and H = G+(S(k)) .

Clearly, the k vertices of B are the k largest vertices in H . Since u − v /∈ S(k) for
any pair of distinct vertices u, v ∈ B , the k vertices in B are isolated in H .

It is obvious that |Ak| = 1 and the vertex in Ak is adjacent to all the k vertices of
A1 . For any vertex w ∈ Aj , where 1 ≤ j < k , there exists a subset D of I with |D| = j
such that w =

∑
p∈D ap . Clearly, w is adjacent to ap for p ∈ I\D . For a fixed α ∈ D ,

by the fact that w +(
∑

p∈I\D ap + aα) =
∑

p∈I ap + aα , w is adjacent to
∑

p∈I\D ap + aα

which is a vertex of Ak−j+1 . Thus, d(w) ≥ |I\D| + |D| = k . Let G = H[S(k)\Ak] .
It follows from the above discussion that G is connected and δ(G) = k . Hence G is a
k -optimum summable graph.
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