AKCE J. Graphs. Combin., 3, No. 1 (2006), pp. 45-57

On Optimum Summable Graphs

K. M. KOH
Department of Mathematics
National University of Singapore
10 Kent Ridge Crescent, Singapore
E-mail: matkohkm@nus.edu.sg
Mirka Miller
School of Information Technology \& Mathematical Sciences
University of Ballarat
VIC 3353, Australia.
E-mail : m.miller@ballarat.edu.au
W. F. SmYth
Algorithms Research Group
Department of Computing \& Software
McMaster University
Hamilton, Ontario L8S 4K1, Canada
and
Yan Wang
Department of Mathematical Sciences
The University of Alabama in Huntsville
Huntsville, Alabama 35899, USA
E-mail: wangy2@email.uah.edu

Communicated by: G.S. Bloom
Received 06 February 2006; accepted 13 May 2006

Abstract

For a graph G, let $\sigma(G)$ and $\delta(G)$ denote, respectively, its sum number and minimum degree. Trivially, $\sigma(G) \geq \delta(G)$. A nontrivial connected graph G is called a k-optimum summable graph, where $k \geq 1$, if $\sigma(G)=\delta(G)=k$. In this paper, we show that if G is a k-optimum summable graph of order $n, k \geq 3$, then (1) $n \geq 2 k ;(2)$ the complete bipartite graph $K_{k, n-k}$ is not a spanning subgraph of G. We also describe new families of k-optimum summable graphs for $k \geq 1$.

Keywords: Sum graph, Sum number, Sum labeling, Minimum degree
Optimum summable graph, Unit graph.
2000 Mathematics Subject Classification: 05C

1. Introduction

All graphs considered here are finite simple graphs. For a graph $G, V(G)$ will denote its vertex set and $E(G)$ its edge set, while $n(G)$ and $e(G)$ respectively denote the order and size of G; that is, $n=n(G)=|V(G)|$ and $e(G)=|E(G)|$. A graph G is nontrivial if $n(G) \geq 2$. For other standard notation and terminology not explained here, refer to [1].

Let \boldsymbol{N} denote the set of positive integers. Following Harary [2], the sum graph $G^{+}(S)$ of a finite subset $S \subset \boldsymbol{N}$ is the graph with vertex set S and edge set E such that for distinct $u, v \in S, u v \in E$ if and only if $u+v \in S$. By extension a graph G is called a sum graph if it is isomorphic to the sum graph $G^{+}(S)$ of $S \subset \mathbf{N}$.

The notion of sum graph can be defined equivalently as follows. For a graph G with minimum degree $\delta(G) \geq 1$ and a positive integer k, we write G_{k} for $G \cup \overline{K_{k}}$, the disjoint union of G and k isolated vertices. Then the graph G_{k} is a sum graph if there exists an injective labeling $L: V\left(G_{k}\right) \longrightarrow \boldsymbol{N}$ such that for any two distinct vertices u, v of $G_{k}, u v \in E\left(G_{k}\right)$ iff there exists $w \in V\left(G_{k}\right)$ with $L(w)=L(u)+L(v)$. In this case, L is called a sum labeling of G_{k}. Observe that, by definition, the vertex with the largest label in a sum graph cannot be adjacent to any other vertex. Thus, if G_{k} is a sum graph, then $k \geq 1$. For a connected graph G, its sum number, denoted by $\sigma(G)$, is defined as the smallest k for which G_{k} is a sum graph. Since the vertex with the largest label in G is adjacent to at least $\delta(G)$ vertices, we have $\sigma(G) \geq \delta(G)$. Motivated by this relation, we define a nontrivial connected graph G to be k-optimum summable, where $k \geq 1$, if $\sigma(G)=\delta(G)=k$. Following Harary [2], a nontrivial connected graph G is called a unit graph if G_{1} is a sum graph. Thus, G is a unit graph iff it is 1 -optimum summable.

The problem of characterizing k-optimum summable graphs (even when $k=1$) is believed to be very difficult. In this paper, we shall first show in the next section that if G is a k-optimum summable graph of order $n, k \geq 3$, then (1) $n \geq 2 k$; (2) the complete bipartite graph $K_{k, n-k}$ is not a spanning subgraph of G. In the remaining sections we describe new families of k-optimum summable graphs for $k \geq 1$.

2. Necessary Conditions

Let K_{n} denote the complete graph of order n. We have $\sigma\left(K_{2}\right)=1, \sigma\left(K_{3}\right)=2$ and so K_{2} is 1-optimum summable and K_{3} is 2-optimum summable. However, it is known [3] that $\sigma\left(K_{n}\right)=2 n-3$ for $n>4$, and therefore K_{n} is not ($n-1$)-optimum summable.

For the rest of this paper, let G be a k-optimum summable graph. Let L be a sum labeling of G_{k}. For convenience, throughout this paper, we shall refer to the vertices of G_{k} by their sum labels.

Let u be the largest vertex in $V(G)$. Since G is a k-optimum summable graph, we have $\operatorname{deg}(u) \geq k$. But since u is the vertex with the largest label, $\operatorname{deg}(u) \leq k$, and so $\operatorname{deg}(u)=k$. Denoting by $N(x)$ the set of vertices adjacent to a given vertex x, let
$A=N(u)=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, where $a_{1}<a_{2}<\cdots<a_{k}$. Then

$$
C=\left\{u+a_{1}, u+a_{2}, \ldots, u+a_{k}\right\}=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}
$$

is the set of the k isolated vertices in G_{k}, where $c_{1}<c_{2}<\cdots<c_{k}$. Let $B=V(G) \backslash(A \cup\{u\})=\left\{b_{1}, b_{2}, \ldots, b_{n-k-1}\right\}$, where $b_{1}<b_{2}<\cdots<b_{n-k-1}$.

Lemma 2.1. $\quad a_{i}+a_{j} \notin A$ for $1 \leq i<j \leq k$.
Proof. Suppose that there exist i, j with $1 \leq i<j \leq k$ such that $a_{i}+a_{j} \in A$. Then $k \geq 3$ and $a_{i}+a_{j}=a_{p}$ for some $p \in j+1$.. k. As $u+a_{p} \in V\left(G_{k}\right), u+a_{i}$ is adjacent to a_{j}, contradicting the fact that $u+a_{i}$ is an isolated vertex.

Lemma 2.2. $\quad b_{i}+a_{j} \notin A$ for every $1 \leq i \leq n-k-1$ and $1 \leq j \leq k$.
Proof. Suppose that $b_{i}+a_{j} \in A$ for some $j \in j+1$.. k. Then $k \geq 2$ and $u+b_{i}+a_{j} \in$ $V\left(G_{k}\right)$. Hence $u+a_{j}$ is adjacent to b_{i}, a contradiction.

Now let $X=N\left(a_{1}\right) \backslash\{u\}=\left\{x_{1}, x_{2}, \ldots, x_{k^{\prime}-1}\right\}$, where $x_{1}<x_{2}<\cdots<x_{k^{\prime}-1}$ and $k^{\prime} \geq k$. Obviously, $X \subset A \cup B$.

Lemma 2.3. $x_{i}+a_{1} \notin C$ for every $i \in 1 . . k^{\prime}-1$.
Proof. Obvious since $x_{i}+a_{1}<u+a_{1}$ for $1 \leq i \leq k^{\prime}-1$.
Recall that for $k \geq 3$ a k-optimum summable graph G cannot be a complete graph, and so $n(G) \geq \delta(G)+2$. However, as the next theorem shows, we can find a much better general lower bound on the order of a k-optimum summable graph.

Theorem 2.1. If G is a k-optimum summable graph for $k \geq 3$, then $n(G) \geq 2 k$.
Proof. Let G be a k-optimum summable graph with $V(G)=\{u\} \cup A \cup B$ and $V\left(G_{k}\right)=$ $V(G) \cup C$ as described above.

Consider the edges between a_{1} and its neighbours $x_{i}, i=1, \ldots, k^{\prime}-1$, other than u. By Lemma 2.1 and Lemma 2.2, $a_{1}+x_{i} \notin A$ for every $i \in 1 . . k^{\prime}-1$; by Lemma 2.3, $a_{1}+x_{i} \notin C$ for every $i \in 1 . . k^{\prime}-1$. Hence, for every $i \in 1 . . k^{\prime}-1, a_{1}+x_{i} \in B \cup\{u\}$. Since a_{1} is also adjacent to u, this tells us that $\operatorname{deg}\left(a_{1}\right)=k \leq|B|+2$, hence that $|B| \geq k-2$. Since $|B|=n-k-1$, it follows that $n \geq 2 k-1$.

Next we show that $|B| \neq k-2$, thus proving that $n \geq 2 k$. If on the contrary we suppose that $|B|=k-2$, then
(1) Every $a_{i} \in A$ is adjacent to at least one other $a_{j} \in A$.
(2) Every $a_{i} \in A$ is adjacent to some $x \neq u$ such that $a_{i}+x \notin B$.
(3) If $u=a_{i}+x$ for some $x \in A \cup B$, then by Lemma 2.3 for every $i^{\prime} \in i+1 . . k$, $\left(a_{i^{\prime}}, x\right) \notin E$.

The edges involving a_{1} can only sum to $b_{1}, b_{2}, \ldots, b_{k-2}, u$ or $c_{1}=u+a_{1}$ which implies that $\operatorname{deg}\left(a_{1}\right)$ is at most k, hence exactly k. Thus there exists some $x \in A \cup B$ such that $\left(a_{1}, x\right) \in E(G)$ and $a_{1}+x=u$. Two cases then arise, depending on whether $x \in A$ or $x \in B$:

Case $1 x \in A$
Suppose $x=a_{j}$ for some $j \in 2 . . k$. Denoting by $x_{i}, 1 \leq i \leq k$, the vertices adjacent to a_{1} in ascending order, and recalling that the vertices of A and B are also listed in ascending order, we must have

$$
a_{1}+x_{1}=b_{1}, a_{1}+x_{2}=b_{2}, \ldots, a_{1}+x_{k-2}=b_{k-2}, a_{1}+a_{j}=u, a_{1}+u=c_{1}
$$

where $x_{k-1}=a_{j}$ and $x_{k}=u$. Thus for some $m \geq 2$ we may arrange the vertices in ascending sequence as follows:

$$
a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{k-2}, a_{j}
$$

Now consider a_{j}. From (3) we know that for every $j^{\prime}>1,\left(a_{j^{\prime}}, a_{j}\right) \notin E$. Thus a_{j} can be adjacent only to $a_{1}, b_{1}, b_{2}, \ldots, b_{k-2}$ and u, where $a_{j}+a_{1}=u$; therefore, for $y \in B \cup\{u\}, a_{j}+y \in C$. Since $a_{j}+u=c_{j}$, it follows that $j=k-1$ or k.
(a) Suppose $j=k-1$.

Here for every $i \in 1 . . k-2$,

$$
c_{i}=b_{i}+a_{k-1}=a_{i}+u=\left(a_{i}+a_{1}\right)+a_{k-1},
$$

from which $b_{i}=a_{1}+a_{i}$. Thus a_{1} is adjacent to $a_{2}, a_{3}, \ldots, a_{k-2}$ as well as to a_{k-1} and u, but by (3) not to a_{k}. Hence a_{1} must be adjacent to one vertex, say b_{r}, in B, and further, by Lemmas 2.1-2.3, $a_{1}+b_{r}=b_{q}$ for some $q \in r+1 . . k-2$.
At the same time $b_{q}=a_{1}+a_{s}$ for some a_{s} so that $a_{s}=b_{r}$, giving duplicate labels in G. Therefore $j \neq k-1$.
(b) Suppose $j=k$.

We conclude as in (a) that a_{1} is adjacent to $a_{2}, a_{3}, \ldots, a_{k-2}$, and in addition to a_{k} and u. Suppose that $\left(a_{1}, a_{k-1}\right) \in E(G)$. But then $a_{1}+a_{k} \in B$, as in (a) an impossibility since $b_{i}=a_{1}+a_{i}$ for every $i \in 1$.. $k-2$. Thus $j \neq k$.

We have shown that Case 1 is impossible.

Case $2 x \in B$
Suppose $x=b_{j}$ for some $j \in 1 . . k-2$. Then $u=a_{1}+b_{j}$, so that for every $i \in 1 . . k$, $c_{i}=a_{1}+\left(a_{i}+b_{j}\right)$. Since $a_{i}+b_{j}>u$ for every $i>1$, it follows that vertices $a_{i}+b_{j}$ cannot exist. Thus b_{j} is not adjacent to any of $a_{2}, a_{3}, \ldots, a_{k}$, and so has degree at most $k-2$, contradicting the requirement that $\delta=k$. Thus $u \neq a_{1}+b_{j}$ and Case 2 is impossible.

On the assumption that $|B| \leq k-2$, we have shown that $a_{1}+x \neq u$ for any x. Hence $|B| \geq k-1$, as required.

The next result gives us more insight into the structure of a k-optimum summable graph.

Theorem 2.2. If G is a k-optimum summable graph, $k \geq 3$, then $K_{k, n-k}$ is not a spanning subgraph of G.

Proof. Suppose to the contrary that there exists a k-optimum summable graph G such that G contains $K_{k, n-k}$ as a spanning subgraph. As before, let $V(G)=\{u\} \cup A \cup B$ and $V\left(G_{k}\right)=\{u\} \cup A \cup B \cup C$, where u is the largest label in G and $|A|=k$. As we have seen, u must have degree exactly k. If we suppose that u is in the bipartite set S_{k} of order k, then since u must be adjacent to every vertex in the bipartite set S_{n-k}, it follows that $n-k \leq k$. But since by Theorem 2.1, $n-k \geq k$, therefore $k=n-k$. Thus without loss of generality we may assume that u is a vertex of S_{n-k}, and so we may assume that $S_{k}=A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, where $a_{i}>a_{j}$ whenever $i>j$, and $S_{n-k}=B \cup\{u\}=\left\{b_{1}, b_{2}, \ldots, b_{n-k-1}, u\right\}$, where $b_{i}>b_{j}$ whenever $i>j$.

From Lemma 2.2 we have $a_{i}+b_{j} \in B \cup C \cup\{u\}$ for every $i \in 1 . . k, j \in 1 . . n-k-1$. From Lemmas 2.2 and 2.3 it follows that $a_{1}+b_{j} \in B \cup\{u\}$ for every $j \in 1$..n-k-1. Since $b_{1} \neq a_{1}+b_{j}$, we must have $a_{1}+b_{j}=b_{j+1}$ for every $j \in 1 . . n-k-2$ and $a_{1}+b_{n-k-1}=u$. But then

$$
u=a_{1}+b_{n-k-1}<a_{2}+b_{n-k-1}<a_{2}+u
$$

which implies $a_{2}+b_{n-k-1}=a_{1}+u$.
However, since $u=a_{1}+b_{n-k-1}$, it follows that $a_{2}=2 a_{1}$, an impossibility as it would imply an edge between vertex a_{1} and the isolate $u+a_{1}$.

Observe that for $k=1, K_{2}=K_{1,1}$, while for $k=2, K_{3}$ contains $K_{2,1}$. Thus Theorem 2.2 is sharp. On the other hand, we shall see in Section 5 that the lower bound for $n(G)$ in Theorem 2.1 is not sharp.

Remark 2.1. Let $d_{1}, d_{2}, \ldots, d_{n}$ be the degree sequence of a connected graph G of order $n \geq 2$, where $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. It was shown in [4] that $\sigma(G)>\max _{1 \leq i \leq n}\left(d_{i}-i\right)$. As a direct consequence of this result, we have another necessary condition, namely $d_{i}-i \leq k-1$ for each $i=1,2, \ldots, n$, for G to be a k-optimum summable graph.

3. Unit Graphs

It was pointed out in Section 1 that unit graphs and 1-optimum summable graphs are identical. Smyth [5] showed that if G is a unit graph of order n, then $e(G) \leq\left\lfloor n^{2} / 4\right\rfloor$; he established further that for all integers m and n with $1 \leq n-1 \leq m \leq\left\lfloor n^{2} / 4\right\rfloor$, there exists a unit graph of order n and size m. Ellingham [6] proved that any nontrivial tree is a unit graph, a conjecture of Harary [2]. Until now, however, the problem of characterizing unit graphs remains open. In this section, we describe a new family of unit graphs.

Given integers $p \geq 3$ and $q \geq 2$, let $Q(p, q)$ denote the graph obtained from the union of the cycle C_{p} of order p and the path P_{q} of order q by identifying one end-vertex of P_{q} with a vertex of C_{p} (see Figure 3.1). $Q(p, q)$ is called a tadpole.

Figure 3.1. The tadpole $Q(p, q)$
Our aim in this section is to show that every tadpole is a unit graph. The following observation on a generalized Fibonacci sequence will be useful.

Lemma 3.1. If an integer sequence $\left\{a_{i} \mid i=1,2, \cdots\right\}$ satisfies the following condition ($*$):

$$
\left\{\begin{array}{l}
a_{2}>a_{1}>0 \\
a_{i}=a_{i-1}+a_{i-2} \quad \text { for } \quad i \geq 3
\end{array}\right.
$$

then

$$
a_{k}+a_{j}<a_{j+1} \quad \text { for } \quad j-k \geq 2 \quad \text { and } \quad k \geq 1 .
$$

Proof. Since $j-k \geq 2$ and $k \geq 1, a_{k} \leq a_{j-2}$. Now $a_{j+1}-a_{j}=a_{j-1}$. Thus, $a_{k}+a_{j}<a_{j+1}$.

It follows from this result that if the label sequence $\left\{a_{i} \mid i=1,2, \cdots, p\right\}$ satisfies $(*)$, then $G^{+}\left(\left\{a_{i} \mid i=1,2, \cdots, p\right\}\right) \cong P_{p-1} \cup \overline{K_{1}}$.

Theorem 3.1. \quad The tadpole $Q(p, q)$ is a unit graph for all $p \geq 3$ and $q \geq 2$.

Proof. Since $\delta(Q(p, q))=1, \sigma(Q(p, q)) \geq 1$. Let $G=Q(p, q)$, where $V(G)=A \cup$ $B, A=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}, B=\left\{v_{1}, v_{2}, \ldots, v_{q-1}\right\}$, and the subgraph induced by A is isomorphic to C_{p}. Let $V\left(G_{1}\right)=V(G) \cup\left\{w_{1}\right\}$. We consider two cases.

Case 1. $p=3$ and $q \geq 2$.
Consider a labeling g of G_{1} as follows:

$$
\left\{\begin{array}{l}
g\left(u_{1}\right)=1, g\left(u_{2}\right)=2, g\left(u_{3}\right)=3, g\left(v_{1}\right)=4 ; \\
g\left(v_{2}\right)=5 \text { for } q \geq 3 ; \\
g\left(v_{i}\right)=g\left(v_{i-1}\right)+g\left(v_{i-2}\right) \text { for } 3 \leq i \leq q-1 ; \\
g\left(w_{1}\right)=\left\{\begin{array}{cr}
5 & \text { when } q=2 \\
g\left(v_{q-1}\right)+g\left(v_{q-2}\right) & \text { when } q>2
\end{array}\right.
\end{array}\right.
$$

Let $H=G^{+}\left(\left\{g(x) \mid x \in V\left(G_{1}\right)\right\}\right)$. We wish to prove that $H \cong G_{1}$.
Let $Y=\left\{g\left(v_{i}\right) \mid i=1,2, \ldots, q-1\right\}$. Since $Y \cup\left\{g\left(u_{1}\right)\right\}$ satisfies the condition $(*)$ in Lemma 3.1, $G^{+}\left(Y \cup\left\{g\left(u_{1}\right)\right\}\right) \cong P_{q-1} \cup \overline{K_{1}}$. This, together with the value of $g\left(w_{1}\right)$, implies that $H\left[Y \cup\left\{g\left(w_{1}\right)\right\}\right] \cong P_{q}$. Clearly, $H\left[\left\{g\left(u_{1}\right), g\left(u_{2}\right), g\left(u_{3}\right)\right\}\right] \cong C_{3}$. It is now easy to see that $H \cong G_{1}$, as asserted. Hence $\sigma(Q(3, q))=1$ for $q \geq 2$.

Case 2. $p \geq 4$ and $q \geq 2$.
Consider a labeling g of G_{1} as follows:

$$
\left\{\begin{array}{l}
g\left(u_{1}\right)=1, g\left(u_{2}\right)=3 ; \\
g\left(u_{i}\right)=g\left(u_{i-1}\right)+g\left(u_{i-2}\right) \quad \text { for } \quad 3 \leq i \leq p-1 ; \\
g\left(u_{p}\right)=g\left(u_{p-1}\right)+g\left(u_{1}\right), g\left(v_{1}\right)=g\left(u_{p}\right)+g\left(u_{p-2}\right) ; \\
g\left(v_{2}\right)=g\left(u_{p}\right)+g\left(u_{p-1}\right) \quad \text { for } \quad q \geq 3 ; \\
g\left(v_{i}\right)=g\left(v_{i-1}\right)+g\left(v_{i-2}\right) \quad \text { for } \quad 3 \leq i \leq q-1 ; \\
g\left(w_{1}\right)=\left\{\begin{array}{rrr}
g\left(u_{p}\right)+g\left(u_{p-1}\right) & \text { when } \quad q=2 ; \\
g\left(v_{q-1}\right)+g\left(v_{q-2}\right) & \text { when } \quad q>2 .
\end{array}\right.
\end{array}\right.
$$

Let $J=G^{+}\left(\left\{g(x) \mid x \in V\left(G_{1}\right)\right\}\right)$. We wish to prove that $J \cong G_{1}$.
The strictly increasing sequence

$$
g\left(u_{1}\right), g\left(u_{2}\right), \cdots, g\left(u_{p-2}\right), g\left(u_{p}\right), g\left(u_{p-1}\right), g\left(v_{1}\right), g\left(v_{2}\right), \cdots, g\left(v_{q-1}\right), g\left(w_{1}\right)
$$

has subsequence $X=\left\{g\left(u_{1}\right), g\left(u_{2}\right), \cdots, g\left(u_{p-2}\right), g\left(u_{p-1}\right)\right\}$. Since X satisfies the condition $(*)$ in Lemma 3.1, $G^{+}(X) \cong P_{p-2} \cup \overline{K_{1}}$. This, together with the values of $g\left(u_{p}\right)$, $g\left(v_{1}\right)$ and $g\left(v_{2}\right)\left(\right.$ or $\left.g\left(w_{1}\right)\right)$, ensures that $J\left[X \cup\left\{g\left(u_{p}\right)\right\}\right] \cong C_{p}$.

Consider the sequence $Y=\left\{g\left(u_{p-3}\right), g\left(v_{j}\right) \mid j=1,2, \ldots, q-1\right\}$. Note that Y satisfies the condition $(*)$ in Lemma 3.1, so that $G^{+}\left[\left\{g\left(u_{p-3}\right)\right\} \cup Y\right] \cong P_{q-1} \cup \overline{K_{1}}$. This, together with the value of $g\left(w_{1}\right)$, ensures that $J\left[\left\{g\left(u_{p-3}\right)\right\} \cup Y\right] \cong P_{q}$.

It is clear from the definition of g that $g\left(u_{p-3}\right)$ is a vertex of degree 3 in J. Next we assert that no other adjacencies between $g\left(u_{i}\right)$ with $i \neq p-3$ and $g\left(v_{j}\right)$ exist. Suppose
that there exist i, j with $i \neq p-3$ such that $g\left(u_{i}\right)+g\left(v_{j}\right) \in V\left(G_{1}\right)$. Then either $g\left(u_{i}\right)+g\left(v_{j}\right)=g\left(v_{k}\right)$ with $k>j$ or $g\left(u_{i}\right)+g\left(v_{j}\right)=g\left(w_{1}\right)$. For $q>2$, however, $g\left(w_{1}\right)-g\left(v_{j}\right) \geq g\left(v_{q-2}\right)>g\left(u_{p}\right)$. Thus, $g\left(u_{i}\right)+g\left(v_{j}\right)=g\left(v_{k}\right)$ for some $k>j$. If $k>2$, then $g\left(v_{k}\right)-g\left(v_{j}\right) \geq g\left(v_{k-2}\right) \geq g\left(v_{1}\right)>g\left(u_{p}\right)$, a contradiction. Thus $k \leq 2$, and we have $k=2$ and $j=1$. Hence $g\left(u_{i}\right)=g\left(u_{p-3}\right)$ and so $i=p-3$, a contradiction.

It follows from the above discussion that $J\left[X \cup Y \cup\left\{g\left(u_{p}\right)\right\}\right] \cong G$. Clearly, $g\left(w_{1}\right)$ is isolated in J. Hence $J \cong G_{1}$, as required.

This completes the proof of Theorem 3.1.

4. 2-Optimum Summable Graphs

It is known [2] that $\sigma\left(C_{4}\right)=3$ and $\sigma\left(C_{n}\right)=2$ for all $n \geq 3$ with $n \neq 4$. Thus $\left\{C_{n} \mid n \geq 3, n \neq 4\right\}$ is a family of 2 -optimum summable graphs. In this section we introduce two new families of 2 -optimum summable graphs.

Consider two tadpoles $Q=Q(p, q)$ and $Q^{\prime}=Q^{\prime}\left(p^{\prime}, q^{\prime}\right)$ with isolated vertices w_{1} and w_{1}^{\prime}, respectively. We first sum-label $Q \cup\left\{w_{1}\right\}$ and $Q^{\prime} \cup\left\{w_{1}^{\prime}\right\}$ as described in Section 3, using a labelling g. Observe that since under g each edge is represented by a unique vertex, we can multiply the labels by any positive integer and still retain a sum labeling. Now form a single graph $B=B\left(p, q, p^{\prime}, q^{\prime}\right)$ from Q and Q^{\prime} by adding the edge $\left(v_{q-1}, v_{q^{\prime}-1}^{\prime}\right)$. We multiply all the original labels of $Q^{\prime} \cup\left\{w_{1}^{\prime}\right\}$ by $g\left(w_{1}\right)$, yielding a sum labeling h, and then reassign $h\left(w_{1}\right) \leftarrow g\left(w_{1}\right) g\left(v_{q^{\prime}-1}^{\prime}\right)+g\left(v_{q-1}\right)$ to represent the new edge. Since $h\left(u_{1}^{\prime}\right)=g\left(w_{1}\right), B \cup\left\{w_{1}, w_{1}^{\prime}\right\}$ now has a sum labeling. We have proved

Theorem 4.1. $B\left(p, q, p^{\prime}, q^{\prime}\right), p, p^{\prime} \geq 3, q, q^{\prime} \geq 2$, is 2-optimum summable.
We now construct another 2-optimum summable graph. Given integers p, q, r with $p \geq q \geq r \geq 2$ and $q \geq 3$, let $\theta(p, q, r)$ denote the graph obtained by connecting two vertices via three internally disjoint paths P_{r}, P_{q} and P_{p} as shown in Figure 4.1. We call the graph $\theta(p, q, r)$ a generalized θ-graph.

Figure 4.1. The generalized θ-graph $\theta(p, q, r)$

Theorem 4.2. The generalized θ-graph $\theta(p, q, r)$ is a 2 -optimum summable graph for all p, q, r with $p \geq q \geq r \geq 2$ and $q \geq 3$ except when $(p, q, r)=(3,3,2)$ or when $(p, q, r)=(3,3,3)$.

Proof. Let $G=\theta(p, q, r)$ for $p \neq 3$ or $q \neq 3$. Let $V(G)=A \cup B$, where $A=$ $\left\{u_{1}, u_{2}, \ldots, u_{q+r-2}\right\}, B=\left\{v_{1}, v_{2}, \ldots, v_{p-2}\right\}$ and the subgraphs induced by A and B are respectively isomorphic to C_{q+r-2} and P_{p-2}. Since $\delta(G)=2, \sigma(G) \geq 2$. Let $V\left(G_{2}\right)=V(G) \cup\left\{w_{1}, w_{2}\right\}$.

Case 1. $r=2, q=3$ and $p \geq 6$.
Consider a labeling h of G_{2} as follows:

$$
\left\{\begin{array}{l}
h\left(u_{1}\right)=1, h\left(u_{2}\right)=2, h\left(u_{3}\right)=3 \\
h\left(v_{1}\right)=4, h\left(v_{2}\right)=5 ; \\
h\left(v_{i}\right)=h\left(v_{i-1}\right)+h\left(v_{i-2}\right) \quad \text { for } \quad 3 \leq i \leq p-2 \\
h\left(w_{1}\right)=h\left(v_{p-2}\right)+h\left(u_{2}\right) ; \\
h\left(w_{2}\right)=h\left(v_{p-2}\right)+h\left(v_{p-3}\right) .
\end{array}\right.
$$

Let $H=G^{+}\left(\left\{h(x) \mid x \in V\left(G_{2}\right)\right\}\right)$.
Clearly, u_{1} and u_{2} are two vertices of degree 3 in H. Since $p \geq 6, h\left(v_{p-3}\right)-h\left(u_{2}\right)>$ $h\left(v_{p-4}\right)$. Thus, $h\left(w_{1}\right)$ is isolated in H. By means of an argument similar to that given in Case 1 of the proof of Theorem 3.1, it is not difficult to verify that $H \cong G_{2}$. The result thus follows.

Case 2. $q+r \geq 6$ and $p \geq 6$.
Consider a labeling h of G_{2} as follows:

$$
\left\{\begin{array}{l}
h\left(u_{1}\right)=1, h\left(u_{2}\right)=3 ; \\
h\left(u_{i}\right)=h\left(u_{i-1}\right)+h\left(u_{i-2}\right) \quad \text { for } \quad 3 \leq i \leq q+r-3 ; \\
h\left(u_{q+r-2}\right)=h\left(u_{q+r-3}\right)+h\left(u_{1}\right) ; \\
h\left(v_{1}\right)=h\left(u_{q+r-2}\right)+h\left(u_{q+r-4}\right), h\left(v_{2}\right)=h\left(u_{q+r-2}\right)+h\left(u_{q+r-3}\right) ; \\
h\left(v_{i}\right)=h\left(v_{i-1}\right)+h\left(v_{i-2}\right) \quad \text { for } \quad 3 \leq i \leq p-2 ;
\end{array}\right\} \begin{array}{lll}
h\left(v_{p-2}\right)+h\left(u_{q-2}\right) & \text { when } \quad r=2, \\
h\left(v_{p-2}\right)+h\left(u_{q+1}\right) & \text { when } \quad r=3,4 \\
h\left(v_{p-2}\right)+h\left(u_{q-4}\right) & \text { when } \quad r \geq 5
\end{array}, \begin{aligned}
& h\left(w_{1}\right)= \begin{cases} \\
h\left(w_{2}\right)=h\left(v_{p-2}\right)+h\left(v_{p-3}\right) .\end{cases}
\end{aligned}
$$

Let $J=G^{+}\left(\left\{h(x) \mid x \in V\left(G_{2}\right)\right\}\right)$.
Clearly, the degree of u_{q+r-5} is 3 and $u_{1} u_{2} \cdots u_{q+r-5} u_{q+r-4} u_{q+r-2} u_{q+r-3} u_{1}$ is a cycle of order $q+r-2$ in J. Since $p \geq 6$,

$$
h\left(v_{p-3}\right)-\max \left\{h\left(u_{q-2}\right), h\left(u_{q+1}\right), h\left(u_{q-4}\right)\right\}>h\left(v_{p-4}\right) .
$$

Thus, $h\left(w_{1}\right)$ is isolated in J. By means of an argument similar to that given in Case 2 of the proof of Theorem 3.1, it is not difficult to verify that $J \cong G_{2}$. The result thus follows.

Case 3. $p \leq 5$.
The following labeling-induced sum graphs show that this case is also covered.

$$
\begin{aligned}
& G^{+}(\{1,3,4,7,11,18,29,30,48,59,107 ; 108,166\}) \cong \theta(5,5,5) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,7,11,18,19,30,37,67 ; 68,104\}) \cong \theta(5,5,4) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,7,11,12,19,23,42 ; 43,65\}) \cong \theta(5,5,3) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,7,8,12,15,27 ; 31,42\}) \cong \theta(5,5,2) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,7,11,18,19,30,37 ; 38,67\}) \cong \theta(5,4,4) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,7,11,18,19,30 ; 31,37\}) \cong \theta(5,4,3) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,5,8,9,17 ; 20,26\}) \cong \theta(5,4,2) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,7,11,12,19 ; 23,31\}) \cong \theta(5,3,3) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,7,8,12 ; 13,15\}) \cong \theta(5,3,2) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,7,11,12,19,23 ; 34,42\}) \cong \theta(4,4,4) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,7,8,12,15 ; 22,27\}) \cong \theta(4,4,3) \cup \overline{K_{2}} \\
& G^{+}(\{7,8,11,15,19,23 ; 30,34\}) \cong \theta(4,4,2) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,7,8,12 ; 15,20\}) \cong \theta(4,3,3) \cup \overline{K_{2}} \\
& G^{+}(\{1,3,4,7,8 ; 9,11\}) \cong \theta(4,3,2) \cup \overline{K_{2}}
\end{aligned}
$$

This completes the proof of Theorem 4.2.
Remark 4.1. The two generalized θ-graphs not included in Theorem 4.2 are $\theta(3,3,2)$ and $\theta(3,3,3)$. They are, as a matter of fact, not 2 -optimum summable graphs. Indeed, by Theorem 2.2, we have $\sigma(\theta(3,3,2)) \geq 3$ and $\sigma(\theta(3,3,3)) \geq 3$. These, together with the two labeling-induced sum graphs

$$
\begin{aligned}
G^{+}(\{2,4,7,9 ; 6,11,16\}) & \cong \theta(3,3,2) \cup \overline{K_{3}}, \\
G^{+}(\{1,2,3,8,10 ; 4,11,18\}) & \cong \theta(3,3,3) \cup \overline{K_{3} .} .
\end{aligned}
$$

show that $\sigma(\theta(3,3,2))=\sigma(\theta(3,3,3))=3$.

5. k-Optimum Summable Graphs, $k \geq 3$

In this final section we shall establish two existence results, one for 3 -optimum summable graphs and one for k-optimum summable graphs, where $k \geq 4$.

Theorem 5.1. For each $l \geq 1$, there exists a 3 -optimum summable graph of order $4 l+3$.

Proof. Given $l \geq 1$, our aim is to construct a subset S^{l} of N such that $G^{+}\left(S^{l}\right) \cong G_{3}$ and to show that G is a 3 -optimum summable graph of order $4 l+3$.

Let $A_{i}=\left\{a_{i 1}, a_{i 2}, a_{i 3}\right\}$ for $1 \leq i \leq l+2$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$, where

$$
\left\{\begin{array}{l}
a_{11}=1, a_{12}=4 \quad \text { and } a_{13}=7 ; \\
a_{i j}=\sum_{p=1}^{3} a_{(i-1) p}-a_{(i-1) j} \text { for } 2 \leq i \leq l+2 \quad \text { and } 1 \leq j \leq 3 ; \\
b_{i}=\sum_{p=1}^{3} a_{i p} \text { for } 1 \leq i \leq l .
\end{array}\right.
$$

Let $S^{l}=\left(\cup_{i=1}^{l+2} A_{i}\right) \cup B$ and $H=G^{+}\left(S^{l}\right)$. Clearly, $v(H)=4 l+6$.
For $i \geq 3$ and $1 \leq j \leq 3$, observe that

$$
\begin{align*}
a_{i j} & =\sum_{p=1}^{3} a_{(i-1) p}-a_{(i-1) j} \\
& =2 \sum_{p=1}^{3} a_{(i-2) p}-\left(\sum_{p=1}^{3} a_{(i-2) p}-a_{(i-2) j}\right) \\
& =\sum_{p=1}^{3} a_{(i-2) p}+a_{(i-2) j}>a_{(i-1) j} .
\end{align*}
$$

Clearly, $\min \left\{a_{(l+2) 1}, a_{(l+2) 2}, a_{(l+2) 3}\right\}>b_{i}$ for $1 \leq i \leq l$. Thus, the three vertices in A_{l+2} are the three largest vertices in H. For $1 \leq j_{1} \leq 3,1 \leq j_{2} \leq 3$ and $j_{1} \neq j_{2}$,

$$
a_{(l+2) j_{1}}-a_{(l+2) j_{2}}=a_{(l+1) j_{2}}-a_{(l+1) j_{1}}=\cdots=(-1)^{l+1}\left(a_{1 j_{1}}-a_{1 j_{2}}\right) .
$$

Now $A_{2}=\{5,8,11\}$ and $a_{1 j_{1}}-a_{1 j_{2}}$ can only take one of the two positive integers 3 and 6. Thus $a_{1 j_{1}}-a_{1 j_{2}} \notin S^{l}$, and so the three vertices in A_{l+2} are isolated in H.

It follows from the values of the three integers in A_{i+1} that $H\left[A_{i}\right] \cong C_{3}$ for $1 \leq i \leq$ $l+1$. Notice that

$$
a_{i j}+a_{(i-1) j}=\left(\sum_{p=1}^{3} a_{(i-1) p}-a_{(i-1) j}\right)+a_{(i-1) j}=\sum_{p=1}^{3} a_{(i-1) p}=b_{i-1}
$$

for $1 \leq i \leq l+1$. This implies that $a_{i j}$ is adjacent to $a_{(i-1) j}$. Thus the degree of any vertex in $\cup_{i=1}^{l+1} A_{i}$ is at least 3 .

For $1 \leq i \leq l$ and $1 \leq j \leq 3$, by (\#), we have

$$
a_{(i+2) j}=\sum_{p=1}^{3} a_{i p}+a_{i j}=b_{i}+a_{i j} .
$$

Thus b_{i} is adjacent to $a_{i 1}, a_{i 2}, a_{i 3}$ for $1 \leq i \leq l$, and so the degree of any vertex in B is at least 3 .

Let $G=H\left[S^{l} \backslash A_{l+2}\right]$. It follows from the above discussion that G is connected and $\delta(G)=3$. Thus G is a 3 -optimum summable graph of order $4 l+3$. The proof is thus complete.

As an illustration of the construction used in the above proof, we present the graph $G^{+}\left(S^{2}\right)$ in Figure 5.1.

Figure 5.1
Finally, we have:
Theorem 5.2. For each $k \geq 4$, there exists a k-optimum summable graph.

Proof.

Given $k \geq 4$, our aim is to construct a subset $S^{(k)}$ of N such that $G^{+}\left(S^{(k)}\right) \cong G_{k}$ and to show that G is a k-optimum summable graph.

Let $I=\{1,2, \ldots, k\}$ and $a_{i}=10^{i-1}$ for $i \in I$. Define

$$
\left\{\begin{array}{l}
A_{j}=\left\{\sum_{p \in D} a_{p} \mid D \subseteq I \quad \text { and } \quad|D|=j\right\} \quad \text { for } \quad 1 \leq j \leq k ; \\
B=\left\{a_{i}+\sum_{p=1}^{k} a_{p} \mid i \in I\right\} .
\end{array}\right.
$$

Let $S^{(k)}=\left(\cup_{j=1}^{k} A_{j}\right) \cup B$ and $H=G^{+}\left(S^{(k)}\right)$.
Clearly, the k vertices of B are the k largest vertices in H. Since $u-v \notin S^{(k)}$ for any pair of distinct vertices $u, v \in B$, the k vertices in B are isolated in H.

It is obvious that $\left|A_{k}\right|=1$ and the vertex in A_{k} is adjacent to all the k vertices of A_{1}. For any vertex $w \in A_{j}$, where $1 \leq j<k$, there exists a subset D of I with $|D|=j$ such that $w=\sum_{p \in D} a_{p}$. Clearly, w is adjacent to a_{p} for $p \in I \backslash D$. For a fixed $\alpha \in D$, by the fact that $w+\left(\sum_{p \in I \backslash D} a_{p}+a_{\alpha}\right)=\sum_{p \in I} a_{p}+a_{\alpha}, w$ is adjacent to $\sum_{p \in I \backslash D} a_{p}+a_{\alpha}$ which is a vertex of A_{k-j+1}. Thus, $d(w) \geq|I \backslash D|+|D|=k$. Let $G=H\left[S^{(k)} \backslash A_{k}\right]$. It follows from the above discussion that G is connected and $\delta(G)=k$. Hence G is a k-optimum summable graph.

References

[1] J.A. Bondy and U.S.R. Murty, Graph theory with applications, MacMillan 1976.
[2] F. Harary, Sum graphs and difference graphs, Congressus Numerantium, 72 (1990) 101-108.
[3] D. Bergstrand, F. Harary, K. Hodges, G. Jennings, L. Kuklinski and J. Wiener, The sum number of a complete graph, Bull. Malaysian Math. Soc., 12 (1989) 25-28.
[4] Hao Tianbao, On sum graphs, Journal of Combinatorial Mathematics \& Combinatorial Computing, 6 (1989) 207-212.
[5] W. F. Smyth, Sum graphs of small sum number, Colloquia Mathematica Societatis János Bolyai, 60 (1991) 669-678.
[6] Mark N. Ellingham, Sum graphs from trees, Ars Combinatoria, 35 (1993) 335-349.

