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Abstract. In a string x on an alphabet Σ, a position i is said to be in-

determinate iff x[i] may be any one of a specified subset {λ1, λ2, . . . , λj}
of Σ, 2 ≤ j ≤ |Σ|. A string x containing indeterminate positions is there-
fore also said to be indeterminate. Indeterminate strings can arise in
DNA and amino acid sequences as well as in cryptological applications
and the analysis of musical texts. In this paper we describe fast algo-
rithms for finding all occurrences of a pattern p = p[1..m] in a given
text x = x[1..n], where either or both of p and x can be indeterminate.
Our algorithms are based on the Sunday variant of the Boyer-Moore
pattern-matching algorithm, one of the fastest exact pattern-matching
algorithms known. The methodology we describe applies more generally
to all variants of Boyer-Moore (such as Horspool’s, for example) that de-
pend only on calculation of the δ (“rightmost shift”) array: our method
therefore assumes that Σ is indexed (essentially, an integer alphabet),
a requirement normally satisfied in practice.

1 Introduction

Driven by applications to computational biology, cryptanalysis, musicol-
ogy, and other areas, there has been recent interest in strings that con-
tain letters that are not uniquely defined. In computational biology, DNA
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sequences may still be considered to match each other if letter A (respec-
tively, C) is juxtaposed with letter T (respectively, G); analogous juxtapo-
sitions may count as matches in protein sequences, and in fact the FASTA
format [6] specifically includes indeterminate letters. In cryptanalysis, so
far undecoded symbols may be known to match one of a specific set of
letters in the alphabet. In music, single notes may match chords, or notes
separated by an octave may match.

We refer to a letter x[i] in x that is not uniquely defined as inde-

terminate, and we use the same term to refer to the position i at which
it occurs. A string x that may possibly contain indeterminate letters is
also called indeterminate. The simplest form of indeterminate string
is one in which indeterminate positions can contain only a don’t-care

letter — that is, a letter ∗ that matches any letter in the alphabet Σ on
which x is defined. In 1974 an algorithm was described [7] for computing
all occurrences of a pattern p in a text string x, where both p and x

are defined on the alphabet Σ ∪ {∗}, but although efficient in theory, the
algorithm was not useful in practice. In 1987 [1] for the first time consid-
ered pattern-matching on indeterminate strings in our sense (“generalized
pattern-matching”), but the algorithms again were not efficient in prac-
tice. In 1992 the bit-mapping technique for pattern-matching (often called
the ShiftOr method) was reinvented [5, 2, 26] and applied (among several
other applications) to finding matches for an indeterminate pattern p in
a string x. Since that time, the resulting agrep utility [25] has, with its
variants [20–22], been virtually the only practical algorithm available for
indeterminate pattern-matching.

Recently, an easily-implemented average-case O(n) time algorithm
was proposed [15] for computing all the periods of every prefix of a string
x = x[1..n] on Σ ∪{∗}. In [11] this work was extended in two ways: first,
by distinguishing two distinct forms of indeterminate match (“quantum”
and “deterministic”) on Σ ∪ {∗}; second, by refining the definition of in-
determinate letters so that they can be restricted to matching only with
specified subsets of Σ rather than with every letter of Σ (a case already
considered in agrep). (Roughly speaking, a “quantum” match allows an
indeterminate letter to match two or more distinct letters during a sin-
gle matching process; a “determinate” match restricts each indeterminate
letter to a single match.)

In this paper we present efficient practical algorithms for pattern-
matching on indeterminate strings, where indeterminacy may be inter-
preted in any of the ways described in [11]. Since difficulties arise in
efficiently implementing pattern-matching algorithms on indeterminate



strings that are based on some form of period [19, 16], we do not there-
fore pursue the ideas of [15, 11], but turn rather to the variants of the
Boyer-Moore algorithm [3], such as [12, 24], that require only knowledge
of the rightmost occurrence of each letter in the pattern p (the δ array).
As documented in [14, 17] and more recently in [18, 8], these algorithms
are in fact among the fastest available for exact pattern-matching on
determinate strings, and as we shall see, these benefits extend also to
indeterminate strings.

We begin with an alphabet Σ = {λ1, λ2, . . . , λk} that is finite and
moreover, as required by all Boyer-Moore-like algorithms, indexed —
that is, with the property that each λj , 1 ≤ j ≤ k, can be used as an
index (or position) in an array, say δ = δ[λ1..λk], allowing δ[λj ] to be
accessed in constant time. Thus without loss of generality we suppose
that λj = j, so that Σ = {1, 2, . . . , k} is an integer alphabet.

In order to model indeterminate letters, we define an extended al-

phabet

Σ′ = {1, 2, . . . , k, k+1, . . . ,K},

where to every j ∈ k+1..K we associate a unique nonempty subset Σj of Σ,
|Σj | ≥ 2; for j ∈ 1..k it is convenient to define Σj = {j}. (Throughout, for
integers i, j ≥ i, we use the notation i..j to denote the range of integers
i, i+1, . . . , j.) Thus, in general, K−k ∈ 0..2k−k−1. Note that if all letters
are determinate, then K = k and Σ ′ = Σ; while if only the don’t-care
letter occurs, then K = k+1 and ΣK = Σ. It should normally be true in
practice that K−k is “not too large” — perhaps

K−k ≤ d (1)

for some small fixed integer d. Note that (1) will always be satisfied for
k = 4 (the DNA alphabet) if we merely choose d = 11.

Our problem in its most general form then becomes the following:

Compute all occurrences of a pattern p = p[1..m] in a text string
x = x[1..n], where both p and x are defined on Σ ′, and where
every j ∈ 1..K matches any element of Σj.

In fact we consider three pattern-matching models in increasing order
of sophistication (and processing time requirements), of which only the
third is the general form:

(M1) The only indeterminate letter is the don’t-care ∗, whose occur-
rences may be in either p or x, or both.



(M2) Arbitrary indeterminate letters can occur, but only in p (like
agrep).

(M3) Indeterminate letters can occur in both p and x.

In Section 2 we describe the basic algorithms to solve these three prob-
lems, all based on Sunday’s variant [24] of Boyer-Moore. Then in Section 3
we discuss refinements of these algorithms, based on the ideas of quantum
and deterministic matching mentioned above. Section 4 gives experimen-
tal results, and we conclude in Section 5 with an outline of future work.

2 The Basic Algorithm

The original BM algorithm [3] computes an array δ = δ[1..k], where
k = |Σ|, as follows:

For every j ∈ 1..k, δ[j] = m−`, where ` is the rightmost position
in p at which j occurs; if no such ` exists, δ[j] = m.

Then for every partial match

x[i+1..i+h] = p[m−h+1..m] (2)

with a mismatch x[i] 6= p[m−h] for some h ∈ 0..m, a shift of p along x

is implemented by next comparing p[m] with

x
[

i+δ
[

x[i]
]

]

.

In order to ensure that p is always shifted right along x, BM needs
to use another array. But Horspool [12] recognized that after a partial
match (2) followed by a mismatch, p[m] could be compared instead with

x
[

i0+δ
[

x[i0]
]

]

,

provided a slight change were made to the δ array:

For every j ∈ 1..k, compute δ as for BM except when j = p[m]: in
that case set δ[j] = m if j occurs only at m; otherwise, let ` be the
rightmost position left of m at which j occurs, and set δ[j] = m−`.

Finally Sunday [24] proposed use of a modified array ∆[1..m], where
∆[j] = δ[j]+1 (the original BM δ) for every j ∈ 1..m, combined with a
strategy that, after a partial match (2) and then a mismatch, compares
p[m] with

x
[

i0+∆
[

x[i0+1]
]

]

,



where i0 is defined by the requirement that the previous iteration of the
algorithm began with a comparison of p[m] against x[i0].

Sunday’s algorithm (BMS) is probably the fastest in practice among
this subfamily of algorithms [14, 18, 8]. In this section, we describe variants
of BMS adapted to the three models of indeterminate strings. For further
discussion of the underlying exact pattern-matching algorithms, see [23].

Find all occurrences of p = p[1..m] in x = x[1..n]

if m < 1 then return

i0 ← m; m′ ← m−1
while i0 ≤ n do

`← hctam(i0, m)
if ` = 0 then output i0−m′

i0 ← i0+∆
ˆ

x[i0+1]
˜

Fig. 1. Algorithm BMS

BMS is shown in its entirety in Figure 1, where of course the function
hctam (right-to-left matching of p with x[i0−m′..i0], hence right-to-left
spelling of match) and the preprocessing of the array ∆ remain to be
specified. In fact, the only differences between BMS on determinate strings
and BMS on indeterminate strings reside in the details of hctam and the
preprocessing of ∆. Thus the algorithm of Figure 1 is formally correct in
both cases.

hctam

The function hctam returns either the rightmost position ` in p of mis-
match between p and x[i0−m′..i0] or, if p = x[i0−m′..i0], then ` = 0. For
indeterminate strings, two kinds of match between individual letters p[`]
and x[i] are possible:

∗ p[`] ≤ k, x[i] ≤ k: the regular determinate case, compare p[`] = x[i].
∗ At least one of p[`], x[i] exceeds k: we need to determine whether or

not Σp[`] ∩Σx[i] = ∅.

Clearly an appropriate implementation of hctam will depend on circum-
stances. For example, if as in Model M1 only don’t-care letters can occur
(K = k+1), then code such as the following will suffice:

if p[`] = x[i] or p[`] > k or x[i] > k then
LETTERS MATCH



else

NO MATCH

In more complex cases (Models M2 & M3), it is generally convenient to
implement each subset Σj as a linked list of integers, but as we shall see, it
may also be efficient to implement a bit array to deal with indeterminate
letters j > k. The following approach will handle all cases in a time-
efficient manner at an additional cost of Kdk/we words of storage, where
w is the computer word length:

Precompute for each j ∈ 1..K a bit array bj [1..k] where

– for j ≤ k, bj [j
′] = 1 ⇐⇒ j′ = j;

– for j > k, bj [j
′] = 1 ⇐⇒ j′ ∈ Σj.

Then p[`] and x[i] match if and only if bp[`] ∧ bx[i] 6= 0.

For j ≤ k, all the bj can be computed in total time O
(

kdk/we+k
)

, while
for j > k, computation of each bj requires time O

(

dk/we+|Σj |
)

. Thus in
the worst case the total time is O

(

Kdk/we+(K−k+1)k
)

. For example,
if K−k ≤ d, k ≤ w (for protein sequences, k = 20), this total reduces to
O(dk).

We discuss hctam further in Section 3.

Computing ∆

In all cases the ∆ array needs to be initialized to zero. There will of
course be only k entries in ∆ in the determinate case, but it is important
to observe that this will also be true using model M2, since ∆ is accessed
in BMS using letters from x only:

for j ← 1 to (k or K) do

∆[j]← 0

For determinate matching K = k, the calculation of the rightmost posi-
tion of each letter in p is straightforward:

for `← 1 to m do

∆
[

p[`]
]

← `

In all cases a final loop computes the skip:

for j ← 1 to (k or K) do
∆[j]← m−∆[j]+1

The preprocessing of ∆ is complicated in the indeterminate models M1–
M3 essentially by the requirement to determine for each letter in p, not



only its rightmost position, but also the rightmost position with which
it may match. Thus, for example, if the rightmost don’t-care occurs at
position `′ in p, then every letter j ∈ Σ ′ has a rightmost match in p of at
least `′; if in particular p[m] = ∗ (`′ = m), we must set ∆[j]← m for every
j, and only very small skips will be possible for indeterminate versions
of BMS. (We can alleviate this problem to some extent by removing all
trailing don’t-cares from p.)

We consider below the calculation of the rightmost matching position
for each of the three models:

(M1) As remarked above, we may suppose without loss of generality
that p[m] 6= ∗. Since both p and x can contain don’t-cares, we need
to compute ∆[1..K] = ∆[1..k+1]; the calculation of rightmost match
can then be implemented as follows:

right∗ ← 0; ∆[K]← m

for `← 1 to m do

if p[`] 6= K then

∆
[

p[`]
]

← `

else

right∗ ← `

if right∗ 6= 0 then

for j ← 1 to k do

if right∗ > ∆[j] then

∆[j]← right∗

If ∗ occurs in p, Θ(m+k) time is required; if not, then Θ(m) time.

(M2) As noted earlier, here only k entries in ∆ need to be computed. A
natural approach is as follows:

for `← 1 to m do

∀ j ∈ Σp[`] do

∆[j]← `

In order to implement this processing efficiently, we assume as noted
above that each Σj′ is specified as a linked list of letters j ∈ Σj′, thus
allowing all such j to be identified in O(|Σj′ |) time. Therefore this
preprocessing will require Θ(S1) time, where

S1 =
m

∑

`=1

|Σp[`]|, m ≤ S1 ≤ km.



If m is large with respect to K−k, the following routine can be sub-
stituted (now making temporary use of entries ∆(k+1..K)):

for `← 1 to m do
∆

[

p[`]
]

← `
for j′ ← k+1 to K do

if ∆[j′] 6= 0 then
∀ j ∈ Σj′ do

if ∆[j] < ∆[j ′] then
∆[j]← ∆[j ′]

The modified preprocessing requires O(m+S2) time, where

S2 =
K

∑

j′=k+1

|Σj′ |, K−k ≤ S2 ≤ k(K−k).

(M3) In this model ∆[1..K] needs to be computed, and two options
analogous to those for M2 can be used, now depending on the relative
sizes of m and K:

for `← 1 to m do
j′ ← p[`]

∀ j ∈ Σj′ do
∆[j]← `

for j ← k+1 to K do
if bj ∧ bj′ 6= 0 then

∆[j]← `

Note that in this preprocessing, it will be convenient as in case M2
to suppose that Σj′ is available as a linked list, but also, for j > k,
to make use of the bit arrays bj . Using, for all j, the encoding bj of
Σj , the time requirement is O

(

S1+mk(K−k)/w
)

. For m large with
respect to K (as may arise, for example, in applications to computa-
tional biology), the following, more complicated, preprocessing may
be preferable:

for `← 1 to m do
∆

[

p[`]
]

← `
for j′ ← 1 to K do

∆0[j
′]← ∆[j′]

for j′ ← k+1 to K do

for j ← 1 to K do
if bj ∧ bj′ 6= 0 then



if ∆[j] < ∆0[j
′] then

∆[j]← ∆0[j
′]

elsif ∆0[j] > ∆[j′] then

∆[j′]← ∆0[j]

Here an auxiliary array ∆0[1..K] has been introduced to store the
initial values of ∆ computed in the first loop; the time requirement is
now O

(

m+Kk(K−k)/w
)

.

3 Constrained & Unconstrained Matching

In [11] a distinction was drawn between “quantum” and “deterministic”
indeterminate letters in a string. An indeterminate letter j > k was said
to be quantum if it could simultaneously match more than one letter
of Σj . For example, if Σ5 = {1, 2}, the string 152 would have border

(both proper prefix and suffix) 12, even though this would require 5 to
simultaneously match both 1 and 2. In the deterministic case, however,
either prefix 15 or suffix 52 could match 12, but not both at the same
time: thus 152 would in fact have only the empty border.

In Section 2 we have implicitly assumed that indeterminate letters
are quantum; for example, the algorithm described there would find two
occurrences of p = 152 in x = 1122, even though this would require 5 to
match both 1 and 2. This situation appears to be acceptable, since we are
effectively allowing 5 to match 1 in one interpretation and 2 in another.
More problematic however would be allowing a match between 551 and
121, where we let the first 5 match 1, while at the same time the second
5 matches 2.

We can exclude such possibilities by requiring that when two strings
are compared, matches of letters j > k cannot be inconsistent. We call
such a match constrained. For example, a constrained match of u =
512, v = 115 would fail (5 cannot match both 1 and 2), while one of
u = 512, v = 515 would yield u = v. If we take instead Σ5 = {1, 2, 3},
Σ6 = {2, 3, 4}, then a constrained match of u = 515, v = 611 would fail
(Σ5 ∧ Σ6 = {2, 3} is not consistent with Σ5 ∧ {1} = {1}), while on the
other hand u = 515, v = 613 yields a match.

We identify three constraint types: no constraint which is equivalent
to the above-mentioned quantum case, local constraint where matches
of letters j > k must be consistent within each match of the pattern in
the text, and global constraint where matches of letters j > k must be
consistent for all pattern matches within the entire text.



Note that a set of occurrences of locally constrained matches is a
subset of unconstrained matches and a set of globally constrained matches
is a subset of locally constrained matches.

The distinction between locally constrained (deterministic) and un-
constrained (quantum) matching is a fundamental one in the design of
hctam. Also, as discussed earlier, hctam is also determined by the pattern-
matching model M1, M2, or M3. There are thus six variants of hctam that
need to be specified:

M1q, M1d, M2q, M2d, M3q, M3d. (3)

j ← p[`]; j′ ← x[i]
if j > k and mark[j] 6= 0 then

B1 ← current[j]
else

B1 ← bj

if j′ > k and mark[j′] 6= 0 then

B2 ← current[j′]
else

B2 ← bj′

vector← B1 ∧B2

if vector 6= 0 then

if j > k then

mark[j]← 1; current[j]← vector

if j′ > k then

mark[j′]← 1; current[j′]← vector

MATCH
`

p[`], x[i]
´

else

NO MATCH
`

p[`], x[i]
´

Fig. 2. Handling constrained matches

We describe first a general strategy for deterministic matching that
will handle all three models M1d, M2d and M3d. We maintain in hctam
a bit vector mark[k +1..K] in which mark[j] = 1 if and only if the
indeterminate letter j has been encountered (either as p[`] or as x[i] or
both) during the current match of p against x[i0−m+1..i0]. Thus mark
needs to be cleared at each invocation of hctam. Also required is an array
current[k+1..K] of bit vectors [1..k]: if mark[j] = 1, current[j] stores
the bit vector most recently computed as a match for bj. Figure 2 shows
the processing required to compare two letters p[`] and x[i], as well as to
update mark and current in case of a match.



The storage required for mark and current is d(K−k)/we+(K−
k)dk/we words. The time required to initialize mark at each invocation
of hctam is Θ

(

(K−k)/w
)

, and the total time requirement of the processing
shown in Figure 2 is Θ(k/w) to compare two letters. Thus if an invocation
of hctam performs m′ ≤ m matches before exit from the routine, the total
time requirement will be Θ

(

(K+m′k)/w
)

. As in Section 2, we remark that
special cases can be handled more simply and efficiently; for example, if
only don’t-care letters occur (model M1d), or if indeterminate letters
occur in p but not in x (model M2d).

Another option is to replace the bit array mark[k +1..K] with an
integer array M [k+1..K] — working storage is increased but processing
time is decreased, as we now explain. The idea is to replace the tests

mark[j] 6= 0 and mark[j ′] 6= 0

by

M [j] = i0 and M [j′] = i0,

respectively, in Figure 2, while also replacing the assignments

mark[j]← 1 and mark[j ′]← 1

by

M [j]← i0 and M [j′]← i0,

respectively. Thus the current position i0 in x is used to indicate whether
or not an indeterminate letter has been referenced during the current
invocation of hctam; time requirement is reduced to O(m′k/w), while
additional storage space increases slightly to (K−k)(dk/we+1) words.

Globally constrained matching is an optimization problem that has to
be handled in a different way, as yet apparently unstudied. For example,
suppose that in the string

x = abcabadbcabcaba

we look for a pattern p = ∗b[a, c], where the indeterminate letters ∗ and
[a, c] are constrained to match in only one way across all occurrences in
x. We would find two matches with abc, two with aba, and one with dbc
— possibly all of these would be interesting to the user, possible only the
most frequent matches. This is a topic for future research.



4 Experimental Results

The bit-mapping algorithm ShiftOr (the underlying algorithm of agrep)
and its improvement BNDM [20, 21] (the underlying algorithm of Nrgrep)
are both extendible to indeterminate pattern-matching. In [21] variants
of ShiftOr and BNDM that handle “classes in the text/pattern” are de-
scribed. Viewed in this context, they correspond to our M2q and M3q
models.

A strong point of ShiftOr and BNDM is that for large values of n (long
text strings), they depend only slightly on pattern length and alphabet
size: they both preprocess a two-dimensional bit array of size K × m,
but normally Km � n. On the other hand, ShiftOr needs to process
every position of x, something that in most cases indeterminate versions
of BMS (and BNDM) would be able to avoid.

Some factors likely to be of interest in experiments on the compara-
tive running times of algorithms are as follows: text and pattern length;
frequency of occurrence of pattern in text; nature of the text, especially
alphabet size (for example, DNA, natural language, random string); fre-
quency of indeterminate letters in p and x, and in the alphabet.

In our tests we try to determine the effects of specific factors on the be-
haviour of the algorithms, recognizing that in some cases there may be un-
expected interactions among them. Above all, we try to devise tests that
are “realistic” — that correspond to pattern-matching problems likely to
arise in practice.

4.1 Testing Details

Although we have implemented all six models (3) of BMS, there do not
as yet exist determinate models (1d, 2d, 3d) of other algorithms to test
against them. The implementation of such models for BNDM should be
possible, and is left for future work. Thus in this paper, most of our testing
is confined to quantum models (q-variants) of both BMS and BNDM (1q,
2q, 3q). In many cases we have found that q-variants of BNDM behave
almost identically so for clarity sometimes we use one of them to represent
them collectively. We do not include the original ShiftOr, because in our
test cases BNDM is almost always faster.

We performed tests on an application server machine with an In-
tel Xenon 2.4GHz PU running GNU/Linux. We also performed tests on
other platforms such as Microsoft Windows: the results across these plat-
forms are consistent. We use the C++ standard library function Clock()
to time the consumption of processor time of different algorithms. Each



test was repeated 20 times and the minimum was taken as the final result.
All preprocessing time was included. In order to eliminate the effect of
function call overhead, all function calls were moved inline or declared as
inline functions. The main corpus of this project was taken from Project
Gutenberg [10], which has a collection of more than 15,000 eBooks pro-
duced by hundreds of volunteers. Ten of them in different lengths were
selected at random as the testing text. Another corpus of data was taken
from The Human Genome Project as an auxiliary corpus. The DNA files
downloaded from [13] contain header information and some extra alpha-
bet letters and these were filtered out so that only characters from the
nucleotide alphabet {A,C,G, T} remained. Protein files are downloaded
from [4].

To properly generate indeterminate letters in our tests we use a handy
“Matching Table” MT. This K×k table contains entries of boolean value 0
and 1. MT[i][j] = 1 if and only if j ∈ Σi. At the beginning each algorithm
reads from table MT to conduct preprocessing properly (e.g. to generate
∆ and b array for BMS-derived algorithms and B array (see [21]) for
BNDM-derived algorithms). An affiliating K × 1 table IT with boolean
value is also used to indicate whether a letter is an indeterminate letter or
not. Namely IT[i] = 1 indicate that i > k. Therefore by modifying table
MT and IT we can easily control the indeterminacy of any ASCII symbols.
For example, we can define the symbol ‘∗’ so that it can match either all
or only half the letters of the alphabet.

4.2 Test Results

There are many factors that could affect the execution time of the algo-
rithms. In this subsection we present our test results and analyze these
factors separately. We plot graphs to demonstrate the execution time
against different factors such as text/pattern length, alphabet size etc.
We label names of algorithms being tested on the right of every graph.
For clarity reason they are listed in the same order as their order of per-
formance in the last data points.

Text Length As discussed above, for most of our testing we consider
only the q-variants of BMS. For this first test only, however, in order
to establish a rough pecking order among the algorithms, as well as to
demonstrate the linearity of all of them in text length n, we include
in addition the original BMS together with BMS 2d and BMS 3d. We
use only normal texts and patterns without indeterminate letters. We



Fig. 3. Execution time against text length on high-frequency pattern set

used English texts (ASCII alphabet with about 85 symbols actually used)
obtained from [10] and a high-frequency pattern set from [8]. The pattern
set consisted of 7 patterns of length 6:

of th of the f the that , and this n the

These were selected by finding the seven most frequent substrings of
length six in a random sample of 200 texts from our primary corpus.
Further discussion of these choices can be found in [8].

The results are shown in Figure 3. All algorithms are linear in text
length. BMS has the best performance, followed by BMS 1q, BMS 1d,
BMS 2q, BMS 2d, BMS 3q, BMS 3d, BNDM(original, 1q and 2q) and
finally BNDM 3q.

In these tests BNDM and its q-variants (BNDM 1q and BNDM 2q)
have almost identical performance so they are represented collectively
here by BNDM. We can see that in this test BNDM and its q-variants are
all slower than their corresponding BMS variants. In particular, BNDM 3q
is about 25% slower than BMS 3d. Observe, however, that the time range
for BMS variants is larger than that for BNDM variants.



Frequency of Occurrence In this test we replace the high-frequency
pattern set with a moderate-frequency pattern set (also from [8]), and
run it on the same texts as in the previous test. The pattern set used in
this test, still of length 7, is as follows:

better enough govern public someth system though

The frequency of occurrence (Occurrences/Text Length) of the moder-
ate frequency pattern set (0.05% – 0.09%) is about 1/10 of the occurrence
rate of the high-frequency pattern set (0.62% – 0.92%).

The relative performances of the algorithms in this test are virtu-
ally identical to those in the previous test (Figure 3), and so are not
shown here. BMS-derived algorithms actually perform slightly better on
the moderate-frequency pattern set, because the letters in these pat-
terns are usually rarer than those in high-frequency patterns; thus longer
shifts tend to occur. In general we conclude that, at least for fairly short
non-indeterminate patterns on a fairly large alphabet, BMS-derived al-
gorithms are preferable over a wide range of pattern frequency in the
text.

Fig. 4. Execution time against pattern length



Pattern Length Here we attempt to assess the impact of variation in
pattern length on the relative efficiency of the algorithms studied. In this
test all BNDM variants have almost identical performance therefore we
represent them here all by BNDM 3q. We again make use of English
texts and patterns with no indeterminate letters. Since in practice there
is an inverse relationship between pattern length and frequency of pat-
tern occurrence in the text, this experiment is a generalization of those
performed above, making use of variable pattern lengths: ten groups of 9
equal-length patterns, ranging from 3 to 100 letters.

We have implemented the BNDM-derived algorithms so that, when
handling patterns of length greater than the system word size (32 in this
case), they use just the 32-character-long prefix of the pattern, and check
for a full match only when a match of the prefix is found. This method
was described in [20] and appears to speed up BNDM significantly.

The results in Figure 4 demonstrate that along with the increase of
pattern size, execution time of both BMS-derived algorithms and BNDM-
derived dropped steadily. This is because the average shift when a mis-
match occurs for BMS-derived algorithms is greater when the pattern
length is large. So the longer the pattern, the longer the shift when a
mismatch occurs, thus the faster the algorithm. Same for BNDM-derived
algorithms. It also demonstrates that at least within a realistic pattern
size (less than 50 letters) BMS-derived algorithms seem to have an ad-
vantage.

Alphabet Size (Type of Texts) Here we attempt to assess the effect
of alphabet size on the four main algorithms being tested. We test against
files whose effective alphabet size ranges from 4 (DNA sequences), through
20 (protein sequences) and 85 (English texts), to 250 or so (object files).
We use pattern sets of length six, randomly selected from text (DNA) files.
Since in practice a larger alphabet necessarily implies fewer occurrences
of patterns of whatever length m, the frequencies of patterns chosen in
these experiments satisfy this inverse relationship.

Again BNDM 1q and BNDM 2q here are represented by BNDM. We
can see from the results that except for a few cases (very small alphabet)
BMS-derived algorithms remain advantageous over their corresponding
BNDM variants.

Frequency of Indeterminate Letters To test how frequency of in-
determinate letters in input affects the speed of different algorithms, we



Fig. 5. Execution time against alphabet size

conducted tests with increasing frequencies of indeterminate letters in
pattern, text and alphabet respectively.

First we tested algorithms able to handle M2 matching on patterns
with variable frequency of indeterminate letters. We used the high-frequency
pattern sets described earlier, modified by randomly substituting indeter-
minate letters for determinate ones in various positions. In this test we
define the letter ‘∧’ to be the only kind of indeterminate letter, matching
half of the lower case English letters. As shown in Figure 6, in this test
if up to about 12% of the letters in the pattern are indeterminate, BMS-
derived algorithms are faster than BNDM-derived ones. As noted earlier,
the execution time of BMS-derived can also be affected by the size of Σj

and the locations (left or right) at which the indeterminate letter occurs
in the pattern.

Next we tested BMS 3q and BNDM 3q against frequency of indeter-
minate letters in the text. These are algorithms that have the capability
of handling indeterminate letters in both text and pattern. Indeterminate
letters in this test appear in the text only. We define these indeterminate
letters to match 1/4 of the lower case English letters and increase their
frequency in the text. The results are shown in Figure 7. As expected,



Fig. 6. Execution time against percentage of indeterminate letters in pattern

Fig. 7. Execution time against percentage of indeterminate letters in text



Fig. 8. Execution time against percentage of indeterminate letters in alphabet

execution time of BMS-derived algorithms increases with increasing fre-
quency, because more computation is required, both in preprocessing and
in hctam.

Finally we test BMS 2q, BMS 3q BNDM 2q and BNDM 3q based on
various frequencies of indeterminate letters in the alphabet. Because in
general increasing the frequency of indeterminate letters in the alphabet
will also cause an increase in the indeterminate letters in both text and
pattern, which will have compound effects on the running time, we there-
fore conduct the tests in such a way that newly introduced indeterminate
letters will neither appear in the text nor in the pattern. In other words,
the frequency of indeterminate letters in both text and pattern is con-
stant, only the size of the alphabet is changed. The results are shown
in Figure 8. We see none of the algorithms are affected by increased fre-
quency in the alphabet, an expected result, since the ratio (K − k)/K
only affects preprocessing time slightly.

4.3 Conclusions from Experiments

We have tested indeterminate pattern-matching algorithms based on BMS,
together with BMS itself, against equivalent BNDM-derived algorithms.



Our test results agree with the result from [21] that BMS, one of the
fastest exact pattern-matching algorithms, performs well on large-alphabet
texts such as English text. BMS-derived indeterminate pattern-matching
algorithms however are affected somewhat more by the percentage of
indeterminate letters in both text and pattern than BNDM-derived al-
gorithms. With a relatively small level of indeterminacy (about 12% of
indeterminate letters in pattern/text in our tests), the BMS variants seem
to have an advantage.

5 Future Work

In this paper we have described efficient algorithms for pattern-matching
on indeterminate strings, including the case of constrained matching, de-
rived from Sunday’s adaptation of the Boyer-Moore algorithm. Our imple-
mentations are not the only ones possible, and we wonder whether faster
approaches can be found. In particular, we would like to investigate the
following possible improvements to the BMS-derived algorithms:

∗ a modified matching strategy for d-variants that avoids some of the
heavy matching overheads by first performing quantum matching,
then checking only in case of a match to see whether indeed a de-
terminate match has been achieved;

∗ a strategy similar to the BNDM strategy in the case that pattern
length exceeds computer word length.

Also we intend to implement the d-variants of BNDM matching. We hope
to be able to apply these results to similar extensions of Algorithm FJS as
described in [8], also to the exact pattern-matching algorithms described
in [9]. And we anticipate further study of the global constraint problem
mentioned in Section 3.
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