
Some Restrictions on Periodicity in Strings �

Simon J. Puglisi1, W. F. Smyth1,2, and Andrew Turpin3

1 Department of Computing, Curtin University, GPO Box U1987
Perth WA 6845, Australia

puglissj@computing.edu.au

2 Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton ON L8S 4K1, Canada

smyth@mcmaster.ca

www.cas.mcmaster.ca/cas/research/groups.shtml

3 School of Computer Science & Information Technology
RMIT University, GPO Box 2476V

Melbourne V 3001, Australia
aht@cs.rmit.edu.au www.seg.rmit.edu.au

Abstract. Given a string x = x[1..n], a repetition of period p in x is a
substring ur = x[i..i+rp−1], p = |u|, r ≥ 2, where neither u = x[i..i+p−1]
nor x[i..i+(r+1)p−1] is a repetition. The maximum number of repetitions
in any string x is well known to be Θ(n log n). A run or maximal
periodicity of period p in x is a substring urt = x[i..i+rp+ |t|−1] of
x, where ur is a repetition, t a proper prefix of u, and no repetition
of period p begins at position i−1 of x or ends at position i+rp+ |t|.
In 2000 Kolpakov & Kucherov showed that the maximum number ρ(n)
of runs in any string x is O(n), but their proof was nonconstructive
and provided no specific constant of proportionality. At the same time,
they presented experimental data strongly suggesting that ρ(n) < n.
that the maximum any string x again encourages the belief that in fact
σ(n) < n. Recently, Fan et al.(“A new periodicity lemma”, Sixteenth
Annual Symp. Combin. Pattern Matching, 2005) took a first step toward
proving these conjectures, by presenting results that establish limitations
on the number of squares of a specified range of periods that can occur
over a specified range of positions in x. In this paper, we further tighten
these restrictions by showing how the existence of two squares u and
v (v longer than u) at the same position i in x limits the occurrence
of smaller squares with period w ∈ (|v| − |u|, |u|) in the neighborhood
around i.

1 Introduction

Repetitions and other forms of periodicity have long been considered fun-
damental characteristics of strings. In fact, the work often cited as having
� Supported in part by grants from the Natural Sciences & Engineering Research

Council of Canada.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/77136071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

founded stringology [21], is an investigation of the periodicity properties
of infinite strings. Today, the detection of repetitions has become of prac-
tical interest, primarily in the field of bioinformatics, with algorithms for
the task a standard part of any software for whole genome analysis.

In this paper we extend recent results of Fan et al. [4] that specify
restrictions on the nature and extent of periodic behaviour in strings.
It is our hope that these theoretical results will eventually lead to more
straightforward algorithms for detecting repetitions than those currently
available.

Throughout we use boldface to represent strings, and italics to specify
their lengths. For instance, the string under consideration is denoted x =
x[1..n], and its length is x = |x|. We will also use n to refer to the
length of x as is customary. We write uk to represent a concatenation of
k occurrences of the string u.

A repetition in x is a substring ur = x[i..i+ru−1], r ≥ 2, where
neither x[i..i+u−1] nor x[i..i+(r+1)u−1] is a repetition. We call u
the generator, u the period of the repetition, and r the exponent. We
refer to a repetition where k = 2, u2, as a square. A repetition can be
encoded as an integer triple (i, u, r). In order to compute all repetitions
efficiently Main [16] introduced a run or maximal periodicity of period
u in x is a substring urt = x[i..i+ru+t−1], where ur is a repetition, t a
proper prefix of u, and no repetition of period u begins at position i−1
of x or ends at position i+ru+t. u is called the generator of the run,
t its tail, and a run is economically represented by a 4-tuple (i, u, r, t).
The critical observation that a run encapsulates t adjacent repetitions all
having the same period implies that there are at most as many runs as
repetitions. Further, by computing all runs we are implicitly computing
all repetitions.

Kolpakov & Kucherov [13] describe an algorithm to compute all the
runs (hence all the repetitions) in x in Θ(n) time. Their algorithm is essen-
tially an extension of an earlier algorithm by Main [16] which guaranteed
only computation of the “leftmost” runs. The complexity of Kolpakov &
Kucherov’s algorithm hinges on a lengthy and technical proof [13] that the
maximum number ρ(n) of runs that could exist in any string x satisfies:

k1n − k2 log2 n
√

n, (1)

where k1 and k2 are positive constants.
Remarkable though it is, there is a problem with (1): the proof is

nonconstructive, providing no information about the magnitude of the

constants k1 and k2. Nevertheless Kolpakov & Kucherov provide experi-
mental evidence to prompt the following conjectures [20]:

∗ ρ(n) < n;
∗ ρ(n) is achieved by a cube-free string x on alphabet {a, b};
∗ ρ(n + 1) ≤ ρ(n)+2.

These questions of periodicity seem fundamental yet, so far, progress
toward answering them has been scant. Franek et al. [8] bolster the first
conjecture by the construction of an infinite family of strings which is
very “run-rich” but always has ρ(n) < n.

In order to show that in general ρ(n) < n, it seems to be necessary to
establish restrictions on the squares (with which runs must begin) that
can occur in the neighbourhood of positions in a string at which one or
two squares already appear. Very recently, Fan et al [4] proved several
results in this direction, culminating in the following Lemma.

Definition 1 A square u2 is said to be regular if no prefix of u is a
square.

Definition 2 A square v2 is said to be irreducible if v is not a repeti-
tion.

Lemma 3 [4, New Periodicity Lemma] If x has regular prefix u2 and
irreducible prefix v2, u < v < 2u, then for every w ∈ (u, v) and for every
k ∈ [0, v−u), x[k+1..k+2w] is not a square.

The lemma essentially restricts the occurrence of squares (or runs)
having period between u and v. The results we present in Section 2 are
an extension of this result for periods between v − u and u.

We make use of two further lemmas from Fan et al. [4].

Lemma 4 [4, Lemma 8] If v2 is irreducible with regular proper prefix u2,
then

v > max{u+1, 3u/2}.
Lemma 5 [4, Lemma 9] If x = v2 is irreducible with regular proper prefix
u2, v < 2u, then

x = u1u2u1u1u2u1u2u1u1u2,

where u1 = 2u−v, u2 = 2v−3u (depicted in Figure 1).

The following terminology is also helpful. A substring of a given string
x is said to be internal if and only if it is neither a prefix nor a suffix of
x. And if x = x1x2, x2 nonempty, then x2x1 = Rx1(x) is said to be the
xth

1 rotation of x.

2 Restricting Occurrence of Smaller Periods

As in Fan et al. [4] we consider the situation in which a regular square
u2 and an irreducible square v2 occur at the same position. Our main
result restricts squares with period w ∈ (v−u, u) from occurring in a
range about the center of the first occurrence of u.

Lemma 6 If x has a regular prefix of u2 and an irreducible prefix of v2,
u < v < 2u, then for every period w ∈ (v−u, u) and for every starting
position k ∈ [u1, v−u), x[k+1..k+2w] is not a square.

Proof. The proof is by contradiction. Suppose that for u1 ≤ k < v−u and
v−u < w < u, the square w2 occurs at x[k+1..k+2w]. Making use of the
notation of Lemma 5, we consider two main cases, when k is small and
when k is large, and show that in both cases the suffix of w that is also a
prefix of u contains a square, violating the restriction that u is regular.

Case I, k+w is small: k+w < u+u1

u1 u2 u1 u1 u2 u1 u2 u1 u1 u2

� �u
� �v

w1 w2� �� �� k �
p1 p2

Fig. 1. Case I: when k+w is small

Figure 1 shows the string x split into u1 and u2 substrings as stated
in Lemma 5. Also shown are the first and second copy of w, labeled
w1 and w2 respectively. As u1 ≤ k, the first copy of w must begin
somewhere in the first copy of u2. As w < u = 2u1 + u2, w1 must
finish somewhere in the third copy of u1. This is drawn in Figure 1.
Also shown is the suffix of w1 that begins in the third copy of u1,
which is labeled p1.
As a result, the second copy of w, w2, must begin in the third u1

and finish somewhere in the third u1u2 substring. Let p2 be the
prefix of u that is occupied by the suffix of w2 as shown in Figure 1.
From the restrictions mentioned, we can see that the length of w2

is such that w2 = (u1−p1)+u2 +p2. Seeing as u1 +u2 < w, then
u1+u2 < (u1−p1)+u2+p2, hence p1 < p2.

This implies w ends with two distinct prefixes of u1u2 — p1 and p2.
Now, p1 = k+w − u and p2 = k+2w − v and so

p2

p1
=

k+2w−v

k+w−u
≥ k+2w−(2u−k)

k+w−u
= 2

so p1 ≥ p2/2.

Case II, k+w is large: u+u1 < k+w < u+u1+u2

u1 u2 u1 u1 u2 u1 u2 u1 u1 u2

� �u
� �v

w1 w2� �� �� k �
p1 p2

Fig. 2. Case II: when k+w is large

Similar to Case I, we split w2 into w1 and w2, defining p1 and p2 as
their respective suffixes that are also prefixes of u1u2; see Figure 2.
As before, p1 = k+w − u and p2 = k+2w − v and so

p2 = k + 2w − 2u + u1 = 2p1 + u1 − k < 2p1.

In both cases p1 is both a prefix and suffix of p2, and p2/2 ≤ p1 < p2.
If p1 = p2/2, then p2 = p1p1, and u begins with a square, contradicting
the assumption that u is regular. If p1 > p2/2 then a suffix of p1 is also a
prefix of p1 (the end of the first p1 must overlap the second p1 in p2), say
p3, and so p2 = p3yp3yp3, for some substring y. Again, p2 commences
with a square, (p3y)2, contradicting the assumption that u is regular. �

Lemma 7 If x has a regular prefix of u2 and an irreducible prefix of v2,
u < v < 2u, then for every w ∈ (3u1/2+u2, u) and for every k ∈ [0, u1/2],
x[k+1..k+2w] is not a square.

Proof. Suppose that for k ≤ u1/2 and w ∈ (3u1/2+u2, u), the square w2

occurs at x[k+1..k+2w].
See Figure 3. Let s = k + w − u < k. Observe that

w2 = x[w+k..2w + k]
= x[u + s..u + s + w]
= x[u + s..2u]u2[1..K]
= x[s..u]u2[1..K]

u1 u2 u1 u1 u2 u1 u2 u1 u1 u2

� �u
� �v

w1 w2s

w[1..u − s]s

Fig. 3. Position of w2 in Lemma 7

So x[s..u] consists of two overlapping prefixes of w, namely

x[s..u] = w2[1..u − s],
x[k..u] = w1[1..w − s]

Therefore x[s..u] has period z = k − s < u1/2. Because u1 is an internal
substring of x[k..] and u1 ≥ 2z, u1 = R(z)rR(z)∗, r ≥ 2 and so u begins
with a square, a contradiction to u being regular. We therefore conclude
that such a w2 cannot exist. �

Note that the above results are directly applicable to runs. Observe
first that by definition every run is irreducible. Observe also that if a run
of period u and tail t occurs at position i in x, no run of the same period
can occur at any position j ∈ [i, i+u+t]. Thus, if we define a regular run
to be a run of generator u where u2 is a regular square, we can state an
equivalent of Lemma 6 and Lemma 7 for runs.

3 Discussion

We have proved two lemmata (6 and 7) that extend the results of Fan et
al. [4] and restrict the periods w of squares that can occur at positions
i+k in x when at position i two squares are known to occur. It is our
hope that these results will be of some help in making progress with the
three conjectures arising out of Kolpakov & Kucherov’s work [13].

The Main/Kolpakov-Kucherov algorithm [13, 16] is the only known
linear-time algorithm for computing all the runs in a given string x. It is
complex and, until recently, depended for its worst-case linear behaviour
on the use of Farach’s algorithm [5], also complex and not space-efficient,
for linear-time computation of suffix trees. Since 2003 three worst-case
linear-time suffix array construction algorithms [10–12] have been avail-
able for use in the computation of the LZ factorization [1], but even after
the substitution of suffix arrays for suffix trees in the all-runs algorithm,
significant complications remain. For instance, the algorithm still requires
at least 13n bytes of space. Further, it appears that due to their recursive

nature the linear-time algorithms are not in practice the fastest suffix
array construction algorithms available [19]. We expect that, with a more
precise understanding of the periodicity of runs, it will become possible
to design simpler algorithms that will compute all the runs in a string in
a more direct and more efficient manner.

References

1. M. ABOUELHODA, S. KURTZ & E. OHLEBUSCH, Replacing Suffix Trees with
Enhanced Suffix Arrays, J. Discrete Algorithms 2–1 (2004) pp. 53–86.

2. A. APOSTOLICO & F. P. PREPARATA, Optimal off-line detection of repetitions
in a string, Theoret. Comput. Sci. 22 (1983) pp. 297–315.

3. M. CROCHEMORE, An optimal algorithm for computing the repetitions in a
word, Inform. Process. Lett. 12–5 (1981) pp. 244–250.

4. K. FAN, W. F. SMYTH & R. J. SIMPSON, A new periodicity lemma, Sixteenth
Annual Symp. Combin. Pattern Matching (2005) to appear.

5. M. FARACH, Optimal suffix tree construction with large alphabets, Proc. 38th

IEEE Symp. Found. Comput. Sci. (1997) pp. 137–143.
6. N. J. FINE & H. S. WILF, Uniqueness theorems for periodic functions, Proc.

Amer. Math. Soc. 16 (1965) pp. 109–114.
7. A. S. FRAENKEL & R. J. SIMPSON, How many squares can a string contain?,

J. Combin. Theory Ser. A 82 (1998) pp. 112–120.
8. F. FRANEK, R. J. SIMPSON & W. F. SMYTH, The maximum number of runs in

a string, Proc. 14th Australasian Workshop on Combin. Algorithms, Mirka Miller
& Kunsoo Park (eds.) (2003) pp. 26–35.

9. L. ILIE, A simple proof that a word of length n has at most 2n distinct squares,
J. Combin. Theory Ser. A (2005) to appear.

10. J. KÄRKKÄINEN & P. SANDERS, Simple linear work suffix array construction,

Proc. 30th Internat. Colloq. Automata, Languages & Programming (2003) pp.
943–955.

11. D. K. KIM, J. S. SIM, H. PARK & K. PARK, Linear-time construction of suffix

arrays, Proc. 14th Annual Symp. Combin. Pattern Matching, R. Baeza-Yates, E.
Chávez & M. Crochemore (eds.), LNCS 2676, Springer-Verlag (2003) pp. 186–199.

12. P. KO & S. ALURU, Space efficient linear time construction of suffix arrays, Proc.

14th Annual Symp. Combin. Pattern Matching, R. Baeza-Yates, E. Chávez & M.
Crochemore (eds.), LNCS 2676, Springer-Verlag (2003) pp. 200–210.

13. R. KOLPAKOV & G. KUCHEROV, On maximal repetitions in words, J. Discrete
Algorithms 1 (2000) pp. 159–186.

14. A. LEMPEL & J. ZIV, On the complexity of finite sequences, IEEE Trans. Infor-
mation Theory 22 (1976) pp. 75–81.

15. M. LOTHAIRE, Algebraic Combinatorics on Words, Cambridge University Press
(2002) 504 pp.

16. M. G. MAIN, Detecting leftmost maximal periodicities, Discrete Applied Maths.
25 (1989) pp. 145–153.

17. M. G. MAIN & R. J. LORENTZ, An O(n log n) algorithm for finding all repetitions
in a string, J. Algs. 5 (1984) pp. 422–432.

18. E. M. MCCREIGHT, A space-economical suffix tree construction algorithm, J.
Assoc. Comput. Mach. 32–2 (1976) pp. 262–272.

19. S. J. PUGLISI, W. F. SMYTH & A. TURPIN, The performance of linear time
suffix sorting algorithms, Proc. Data Compression Conf., J. Storer & M. Cohn
(eds.) (2005) pp. 358–367.

20. B. SMYTH, Computing Patterns in Strings, Pearson Addison-Wesley (2003) 423
pp.

21. A. THUE, Über unendliche zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl.
Christiana 7 (1906) pp. 1-22.

22. P. WEINER, Linear pattern matching algorithms, Proc. 14th Annual IEEE Symp.
Switching & Automata Theory (1973) pp. 1–11.

