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Abstract. The most efficient methods currently available for the com-
putation of repetitions or repeats in a string x = x[1..n] all depend on the
prior computation of a suffix tree/array STx/SAx. Although these data
structures can be computed in asymptotic Θ(n) time, nevertheless in
practice they involve significant overhead, both in time and space. Since
the number of repetitions/repeats in x can be reported in a way that is at
most linear in string length, it therefore seems that it should be possible
to devise less roundabout means of computing repetitions/repeats that
take advantage of their infrequent occurrence. This survey paper pro-
vides background for these ideas and explores the possibilities for more
efficient computation of periodicities in strings.

1 Introduction

The mathematical study of strings (words) began with an investigation
of their periodicity properties [25], a focus that has been sustained over
the intervening 100 years. But in addition, periodicity has turned out to
be important from a computational/algorithmic point of view: in bioinfor-
matics (repeating subsequences of DNA or protein), for data compression,
in cryptanalysis, and in various other contexts. Thus algorithms to com-
pute or recognize periodicities in strings were among the earliest to be
developed when the importance of string processing was first recognized
about 35–40 years ago.
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This survey paper begins in Section 2 with an overview of the most
important kinds of periodicity and the algorithms that compute them.
Then in Section 3 a start is made on a “theory of periodicities” that may
provide clues about their more efficient computation. Finally, Section 4
briefly discusses future directions for research.

2 Periodicities

This section defines the most common and important kinds of periodic-
ity in strings and characterizes the algorithms that compute them. Es-
sentially, we discover that periodicities are in some sense infrequent (at
most linear in string length), but that the algorithms that compute them,
though asymptotically efficient, are also rather complex, perhaps more
complex than they need to be. Terminology and notation generally follow
[24].

Suffix Structures

Since existing algorithms almost always use suffix structures to achieve
effectiveness and efficiency, we briefly define them here.

A suffix tree STx of a given string x is a compacted trie on the
nonempty suffixes of x [26, 22], in which every terminal node identifies
a suffix and every internal node I identifies the least common prefix
(LCP) of all the terminal nodes of the subtree rooted at I. Terminal nodes
are labelled i, identifying suffix x[i..n], and internal nodes are labelled
lcp = |LCP|, the length of the LCP of the terminal nodes in that subtree.
Thus the terminal nodes of each subtree identify suffixes whose prefixes
of length lcp are repeating substrings in x. Figure 1 shows the suffix tree
of x = abaababa. As is usual with suffix trees, the terminal nodes of
STabaababa taken in left-to-right order give the suffixes in lexicographic
order; however, for the calculation of periodicities, this property is not
necessary.

The suffix array SAx is just the array of the suffixes i of x read off
from STx in a preorder (left-to-right) traversal. Sometimes also used in
conjunction with STx is an lcp array lcpx in which, for every j ∈ 2..n,

lcpx[j] = lcp
(
SAx[j−1],SAx[j]

)
.



The lcp array can also be read off from STx in a preorder traversal. For
example:

1 2 3 4 5 6 7 8

x = a b a a b a b a
SAx = 8 3 6 1 4 7 2 5
lcpx = − 1 1 3 3 0 2 2
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Fig. 1. STabaababa

Repetitions

A repetition in a string x = x[1..n] is a substring x[i..i+pe−1] = ue,
where |u| = p and e ≥ 2. If moreover u itself is not a repetition, then ue

is said to be irreducible ; and if neither x[i−p..i−1] nor x[i+pe..i+p(e+
1)−1] equals u, then ue is said to be maximal. Unless specifically stated
otherwise, all repetitions referred to in this paper are both irreducible
and maximal.

We call u the generator, p the period, and e the exponent of the
repetition ue. Note that a repetition is completely specified by the triple
(i, p, e). In the string

1 2 3 4 5 6 7 8

x = a b a a b a b a,

the repetitions are (1, 3, 2) = (aba)2, (3, 1, 2) = a2, (4, 2, 2) = (ab)2, and
(5, 2, 2) = (ba)2. Since in each case e = 2, all of these are squares.



About a quarter-century ago, three algorithms were discovered [4, 2,
21] that employed widely different approaches to compute all the repeti-
tions in a given string x[1..n] in O(n log n) time; of these algorithms, two
were based on a form of suffix tree calculation ([2] explicitly, [4] implic-
itly), while the third used a divide-and-conquer technique. In [4] it was
moreover shown that the Fibonacci string fK :

f0 = b, f1 = a; fk = fk−1fk−2, k = 2, 3, . . . ,K

actually contains Θ
(
|fK | log |fK |

)
repetitions. Hence these algorithms

were regarded as asymptotically optimal, a concept that as we shall see
depends heavily on what is accepted as a sufficient specification of a
repetition.

Runs

It was mentioned above that the maximum number of repetitions in a
string x = x[1..n] is Θ(n log n). But this is a count of repetitions that
are both maximal and irreducible. If instead we were asked to output the
distinct squares u2 without these restrictions, we would find that x = an,
for example, would require dn2/4e — that is, Θ(n2) — outputs to specify
squares x[1..2],x[2..3], . . . ,x[n−1..n],x[1..4],x[2..5], . . . ,x[n−3..n], and
so on. Thus in restricting the output to maximal irreducible repetitions,
we encode the output, by tacit agreement with the user, so as to reduce
its quantity, hence the asymptotic complexity of the algorithm. For x =
an, this encoding dramatically reduces the output to a single repetition
(1, 1, n).

We now describe another encoding of repetitions that further re-
duces the quantity of output required to Θ(n). We say that a repetition
(i, p, e) = ue is left-extendible (LE) if there exists a repetition at po-
sition i−1 of x that is also of period p. If no such repetition exists, we
say that (i, p, e) is NLE. Given an NLE repetition (i, p, e), denote by t
the greatest integer such that, for every j ∈ 0..t, (i+j, p, e) is a repeti-
tion. Note that since (i, p, e) is maximal, therefore t ∈ 0..p−1. We call
t the tail of (i, p, e). Then a run (maximal periodicity) is a 4-tuple
(i, p, e, t), where (i, p, e) is an NLE repetition of tail t.

The idea of a run was first introduced by Main in [20], where also
an algorithm was proposed to compute the leftmost occurrence of every
distinct run in x[1..n]. Given the suffix tree STx and the Lempel-Ziv
decomposition [18] of x (computable in linear time from STx), Main’s
algorithm computes all the leftmost runs in Θ(n) time. In [17] Kolpakov



& Kucherov showed that the maximum number ρ(n) of runs in any string
of length n satisfies

ρ(n) < k1n−k2

√
n log2 n (1)

for some pair of universal positive constants k1 and k2. They also extended
Main’s algorithm to compute all the runs in x in time proportional to
their number; thus by (1), given STx, all the runs in x, and so in effect
all the repetitions, could be computed in Θ(n) time.

Repeats

A repeat in x is a tuple

Mx,u = (p; i1, i2, . . . , ie),

where e ≥ 2, 1 ≤ i1 < i2 < · · · < ie ≤ n, and

u = x[i1..i1+p−1] = x[i2..i2+p−1] = · · · = x[ie..ie+p−1].

Note that it may happen, for some j ∈ 1..e−1, that ij+1−ij = p or that
ij+1−ij < p — that is, the substrings of a repeat may form a repetition
or even overlap. Analogous to a repetition, we call u the generator, p
the period, and e the exponent of Mx,u; also, Mx,u is called a square
if e = 2. We say that Mx,u is maximal if for every

i ∈ 1..n and i /∈ {i1, i2, . . . , ie},

we are assured that x[i..i+p−1] 6= u. Again analogous to runs, we say
that Mx,u is left-extendible (LE) if

(p; i1−1, i2−1, . . . , ie−1)

is a repeat; in this case, (p+1; i1−1, i2−1, . . . , ie−1) is a repeat whose suffixes
of length p are specified by Mx,u. Similarly, Mx,u is right-extendible
(RE) if

(p; i1+1, i2+1, . . . , ie+1)

is a repeat; in this case, (p+1; i1, i2, . . . , ie) is a repeat whose prefixes of
length p are specified by Mx,u. If Mx,u is neither LE nor RE, we say that
it is nonextendible (NE). Unless explicitly stated otherwise, all repeats
discussed in this paper are both maximal and NE.

In x = abaababa, the repeats are

Mx,a = (1; 1, 3, 4, 6, 8) and Mx,aba = (3; 1, 4, 6);



since every occurrence of b is both preceded and followed by a, there are
no others.

Of particular interest are repeating substrings u such that Mx,v1uv2

is a repeat if and only if v1 = v2 = ε, the empty string — in other words,
u is not a proper substring of any other repeating substring. We call such
repeats supernonextendible (SNE). The repeating substring u in an
SNE repeat Mx,u is in some sense the longest in a class of nested repeat-
ing substrings that are substrings of u. In the above example, (3; 1, 4, 6)
is the unique SNE repeat.

In [11, p. 147] an algorithm is described that, given the suffix tree STx
of x, computes all the NE squares (whether maximal or not) in x in time
O(n+q), where q is the number of squares output. [3] uses similar methods
to compute all NE squares (p; i1, i2) such that i2−i1 ≤ g for some user-
defined gap g. [1] shows how to use the suffix array SAx of x to compute
the NE squares and the SNE squares, both in time O(n+q). [10] uses either
the suffix trees of both x and its reversed string x = x[n]x[n−1] · · ·x[1],
or alternatively the suffix arrays of both, to compute all the (maximal
and NE) repeats in x in Θ(n) time. Thus the number of repeats in x is
linear in string length.

There is a noteworthy distinction between the reporting of repeti-
tions/runs on the one hand and repeats on the other. Suppose

i1 i2

x = · · · abababab · · · abababab · · · ,

where neither a nor b occurs elsewhere in x. Then two separate repetitions
(i1, 2, 4) = (i2, 2, 4) = (ab)4 will be reported in x, whereas a single SNE
repeat (8; i1, i2) = abababab will be reported. The period of the repetition
or run is reduced as much as possible, while the period of the SNE repeat
is extended as much as possible.

Summary

We have seen in this section that the cardinality of the basic periodic-
ities in a string (repetitions/runs and repeats) is in some sense linear
in string length; further that, using suffix trees, these periodicities can
be computed in linear time. Since every computation using a suffix tree
STx can be replaced by an equivalent computation using a suffix array
SAx with no sacrifice in asymptotic complexity [1], and since SAx can
be computed in guaranteed Θ(n) time [14–16], it follows that the total
time requirement for the computation of periodicities is Θ(n). This is a



significant achievement, but, as we discuss in the next section, there is
some reason to believe that even “better” (that is, faster and simpler)
algorithms can be found.

3 A Theory of Periodicities?

It turns out that the linear-time suffix array construction algorithms
(SACAs) are not the fastest in practice! As shown in [23], there are sev-
eral other SACAs with supralinear worst-case behaviour that, over a wide
range of frequently-occurring strings, require less than half of both the
time and the space used by their linear-time cousins. Even so, the space
requirements in particular are substantial: at least 5 bytes per symbol.
This means that for a large string (n ≥ 109, say), most computers would
need to use secondary storage for an additional 5n bytes, a requirement
that would have a disastrous effect on the speed of the algorithm. Thus
it becomes of interest to seek ways of avoiding suffix array construction
altogether.

Since as we have seen runs and repeats can both be reported in linear
time, and are therefore in some sense infrequent in strings, an alternate
approach to their calculation is not a priori absurd. For repeats no such
approach as to my knowledge been studied, but for runs theoretical ques-
tions arise whose resolution could plausibly lead to new methods, as we
now explain.

The result (1) is flawed in a certain sense: its proof is nonconstructive,
and so the magnitude of the constants k1 and k2 is completely unknown.
At the same time, [17] provides convincing experimental evidence that
the following statements are true:

(a) ρ(n) < n;
(b) ρ(n+1)−ρ(n) ≤ 2;
(c) there exists a cube-free string x[1..n] on {a, b} that contains ρ(n)

runs.

These conjectures are fundamental ones about periodicity in strings, yet
they have scarcely been studied.

Conjecture (a) relates to the well-known conjecture that

σ(n) < n, (2)

where σ(n) is the maximum number of distinct squares that can occur
in any string of length n. Since every run must begin with a square, it
follows that σ(n) ≤ ρ(n), so that a proof of (a) would establish (2). In



fact, it has been shown that σ(n) ≤ 2n−2 [8, 12], more recently that
σ(n) ≤ 2n−Θ(log n) [13].

[9] identifies an infinite family of strings x[1..n] containing a number
r(n) of runs, where

lim
n→∞

r(n)
n

=
3
2φ

and φ = (1+
√

5)/2 is the golden mean. It is conjectured that this limit
is a maximum over all infinite families of strings. In the same paper the
following theorem is proved (a string is said to be run-maximal if it
contains ρ(n) runs):

Theorem 1 Let x = x[1..n] be a run-maximal string that contains α ≥ 3
distinct letters. Suppose that one of these letters λ occurs fewer than three
times. Then there exists a run-maximal string of length n that contains
α−1 distinct letters. 2

This result, not easy to prove, succeeds only in establishing conjecture (c)
in the very special case that all letters except two occur at most twice.

In order to establish conjecture (a), one needs to somehow limit to
less than one the average number of runs that begin at the positions of x.
This requirement draws attention to positions i where two or more runs
begin: one hopes to be able to show that at positions “neighbouring” to
i, no runs can begin. To date, the most famous and important theorem
restricting periodicity is the “periodicity lemma” [7]:

Theorem 2 Let p and q be two periods of x = x[1..n] and let d =
gcd(p, q). If p+q ≤ n+d, then d is also a period of x. 2

Unfortunately this theorem is silent on the case of most interest to us:
two squares occurring at the same position. A more relevant result is the
“three squares lemma” [5, 19] which we now state using the convention
that the length of string x is denoted by x:

Theorem 3 Suppose u2 is irreducible, and suppose w 6= uk for any
k ≥ 1. If u2 is a prefix of w2, in turn a proper prefix of v2, then w ≤ v−u.
2

This result tells us that, given two squares u2 and v2 of periods u < v
occurring at some position i in x, any third square w2 whose period
w ∈ u+1..v−1 must satisfy w ≤ v−u. Thus the existence of two squares
at i imposes restrictions on the period of any third square at i. Since as
already observed a run begins with a square, this imposes corresponding
restrictions on runs. A recent result, that we call the “new periodicity



lemma” [6, 23] substantially generalizes Theorem 3. Let us say that a
square u2 is regular if no prefix of u is a square.

Theorem 4 Suppose that x has regular prefix u2 and irreducible prefix
v2, u < v.

(a) v > max{u + 1, 3u/2};
(b) if v < 2u, then for every w ∈ u+1..v−1 and for every k ∈ 0..v−u−1,

x[k+1..k+2w] is not a square;
(c) if v < 2u, then for every w ∈ v−u+1..u−1 and for every k ∈

2u−v..v−u−1, x[k+1..k+2w] is not a square. 2

This result tells us that if there exists “small” v < 2u, then strict re-
strictions apply to the period w of any other square that might occur
close to the start (at position k+1, in fact) of x. Theorem 3 actually
states the special case k = 0 of Theorem 4(b). Figure 2 shows the ex-
cluded values of w corresponding to the overlapping zones specified by k
in Theorem 4(b)-(c).

u u

v vx:

v−u

2u−v

�

�
w 6∈ u..v

w 6∈ v−u+1..v

v−u 2u−v

6 6
2u−v+1 v−u

Fig. 2. Exclusion zones for u2 and v2

It should be remarked that Theorem 4 holds only trivially for u < 3,
since for u ≤ 2, we must have v > 2u:

– for u = 1, u2 = λ2 for some letter λ, and the minimum v = 3 corre-
sponds to v2 = (λ2µ)2, µ 6= λ;

– for u = 2, u2 = (λµ)2, and the minimum v = 5 corresponds to
v2 =

(
(λµ)2ν

)2.

Thus the occurrence of small regular squares u2 can be analyzed as special
cases giving rise to “large” v, while for u ≥ 3, squares v2 satisfying v < 2u
(“small” v) can always be formed and are covered by Theorem 4.



4 Future Work

In this paper I have described three important kinds of periodicity in
strings — repetitions, runs, repeats — and the algorithms currently avail-
able for computing them. Generally speaking, these algorithms depend on
the time- and space-consuming construction of suffix arrays/trees.

I have put forward conjectures and theoretical results that may facil-
itate — at least for the calculation of runs — a more direct approach.

This is very much work-in-progress. For example, it is not yet clear
whether Theorem 4 is optimal: it is possible that the values of k and w
for which x[k+1..k+w]2 is impossible can be extended. It is also not clear
how Theorem 4 can be used to prove conjecture (a), still less how it might
be used algorithmically, so as to avoid testing for the existence of certain
squares in a certain neighbourhood of a position where two squares are
already known to exist.

Proof of conjecture (c) is also an important and largely untouched
objective: if (c) holds, then ρ(n) must depend also on alphabet size α,
and so the properties of a function ρ(n, α) become an interesting object
of research, both from theoretical and algorithmic points of view.
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