
Computing the Minimum k-Cover of a String

Rihard Cole

1x

, Costas S. Iliopoulos

2y

, Manal Mohamed

2z

,

W. F. Smyth

3{

and Lu Yang

4

1

Computer Siene Department, Courant Institute of Mathematial Sienes,

New York University, New York, NY 10012-1185 U.S.A.

ole�s.nyu.edu

2

Algorithm Design Group, Department of Computer Siene,

King's College London, London WC2R 2LS, England

{si,manal}�ds.kl.a.uk

3

Algorithms Researh Group, Department of Computing & Software,

MMaster University, Hamilton ON L8S 4K1, Canada &

Shool of Computing, Curtin University, Perth WA 6845, Australia

smyth�mmaster.a

4

IBM Canada Limited, 8200 Warden Avenue, Markham ON L6G 1C7, Canada

luyang�a.ibm.om

Abstrat. We study the minimum k-over problem. For a given string x of

length n and an integer k, the minimum k-over is the minimum set of k-

substrings that overs x. We show that the on-line algorithm that has been

proposed by Iliopoulos and Smyth [IS92℄ is not orret. We prove that the

problem is in fat NP-hard. Furthermore, we propose two greedy algorithms

that are implemented and tested on di�erent kind of data.

Keywords: string algorithm, k-over, data ompression, NP-omplete, greedy algo-

rithm.

1 Introdution

The minimum k-over problem is to ompute, for a given string x and an integer

k < jxj, a set U = fu

1

; u

2

; : : : ; u

m

g of substrings of x suh that:

(i) every u

i

is of length k;

(ii) the set U overs the string x;

(iii) the number m = jU j of suh substrings is the smallest possible.

x

Work supported in part by NSF grant CCR-0105678.

y

Partially supported by a Marie Curie fellowship,Wellome and Royal Soiety grants.

z

Supported by an EPSRC studentship.

{

Supported by a grant from the Natural Sienes & Engineering Researh Counil of Canada.

51

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/77135909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proeedings of the Prague Stringology Conferene '03

This problem was studied by Iliopoulos and Smyth [IS92℄, where they designed an

O(n

2

(n� k)) on-line algorithm. The idea of a k-over is a generalization of the idea

of a over, where a string w is alled a over of a string x if x an be onstruted

by onatenations and superpositions of w. For example, if x = ababaaba, then aba

and x are the overs of x. If w 6= x overs x then w is alled a proper over of a

overable string x. The notion of a over was introdued by Apostolio et al. [AFI91℄,

where they gave a linear time algorithm for the shortest overs problem. Breslauer

[B92℄ presented an on-line algorithm for the same problem. Moore and Smyth [MS94℄

presented a linear time algorithm to ompute all the overs of every pre�x of a string.

An on-line algorithm for the same problem was developed by Li and Smyth [LS02℄.

Two O(n logn) algorithms for omputing all maximal overable substrings of a given

string were also presented, one by Iliopoulos and Mouhard [IM93℄ and the other by

Brodal and Pederson [BP00℄. A lot of work has been done on parallel omputation

of overs; see for example [B94℄ and [IP94℄.

A minimum k-over provides a theoretial lassi�ation of strings aording to

approximate periodiity. For every k, some strings have a minimum k-over of ar-

dinality 1, some a minimum k-over of ardinality 2, and so on. Thus for a range of

k, a minimum k-over an provide a measure of how lose to periodi every string

x is. Pratially, a minimum k-over has a potential appliation in data ompres-

sion of nonrandom strings. A minimum k-over may also be useful in DNA sequene

analysis. A DNA sequene is based on a four-letter alphabet for example fa; ; g; tg.

Hene, �nding the k-over of a DNA sequene ould be helpful for the analysis of its

struture.

In this paper, we brie�y present Iliopoulos and Smyth's on-line algorithm. Their

algorithm omputes the minimum k-overs for all pre�xes of a given string x in

O(n

2

(n� k)) time. We show why the algorithm does not work orretly (Setion 3).

In the rest of the paper we onsider two losely-related problems:

(Problem 1) for given x, k and m, deide whether there exists a k-over of x of

ardinality m;

(Problem 2) ompute a minimum k-over of x.

For m = 1, Problem 1 an be solved in �(n) time simply by omputing all

the overs of x [MS94, MS95, LS02℄ while at the same time testing to determine

whether or not eah one is of length k. For m > 1 we show by redution to 3-SAT

that Problem 1 is NP-hard (Setion 4). We then desribe two e�ient algorithms

that yield approximate solutions to Problem 2 (Setion 5). These approximation

algorithms have been tested and shown to provide good results (Setion 6). More

approximation algorithms were proposed in [Y00℄.

2 Preliminaries

A string is a sequene of zero or more symbols drawn from an alphabet �. The set

of all strings over � is denoted by �

�

. The string of length zero is the empty string �;

a string x of length n > 0 is represented by x

1

x

2

� � �x

n

, where x

i

2 � for 1 � i � n.

A string w is a substring of x if x = uwv for u; v 2 �

�

. More preisely, let i � n and

j � n denote nonnegative integers: if 1 � i � j, x[i::j℄ denotes the substring of x

52

Computing the Minimum k-Cover of a String

that starts at position i and has length j � i+ 1; otherwise, x[i::j℄ = �. A string w is

a pre�x of x if x = wu for some u 2 �

�

. Similarly, w is a su�x of x if x = uw for

some u 2 �

�

.

The string xy is a onatenation of two strings x and y. The onatenation of k

opies of x is denoted by x

k

. For two strings x = x

1

� � �x

n

and y = y

1

� � �y

m

suh

that x

n�i+1

� � �x

n

= y

1

� � � y

i

for some i � 1 (that is, suh that x has a su�x equal to

a pre�x of y), the string x

1

� � �x

n

y

i+1

� � � y

m

is said to be a superposition of x and y.

Alternatively, we may say that x overlaps with y.

A substring w is said to be a over of a given string x if every position of x lies

within an ourrene of a string w within x. Additionally, if jwj < jxj then w is alled

a proper over of x. For example, x is always a over of x, and w = aba is a proper

over of x = abaababa.

For a given a nonempty string x of length n and a set

U = fu

1

; u

2

; : : : ; u

m

g

of m strings eah of length k, we say that U is a k-over of x if and only if every

position of x lies within an ourrene of some u

i

, 1 � i � m. If m is the minimum

integer for whih suh a set U exists, then U is said to be a minimum k-over of x. To

avoid trivialities we suppose throughout that 1 < k < n=2. Note that 1 � m � dn=ke.

Next we state some basi fats about the minimum k-over.

Fat 1 The pre�x x[1::k℄ and the su�x x[n� k+1::n℄ are both neessarily elements

of every minimum k-over of x.

Fat 2 The ardinality of a minimum k-over of a string of length n is at most dn=ke.

Fat 3 A minimum k-over of a string x is not unique.

For example, if x = abdefg, then the sets

fab; bd; efgg; fab; de; efgg; fab; def; efgg

are all minimum 3-overs of x.

In [IS92℄, the number of distint minimum k-overs of a given string x of length

n has been proved to be exponential in n. This is a major ompliating fator in the

design of polynomial time algorithm for omputing the minimum k-overs of a given

string.

3 Iliopoulos & Smyth On-Line Algorithm

Reall that in [IS92℄, Iliopoulos and Smyth designed an O(n

2

(n � k)) time on-line

algorithm for omputing a minimum k-over of a given string x of length n. Their

algorithm sans a given string x from left to right and iteratively alulates a minimum

k-over for every pre�x of x. The algorithm is based upon the following two main

ideas:

1. Fat 1 states that a minimum k-over of x[1::i + 1℄ must inlude the su�x

x[i� k + 2::i+ 1℄. This is used as a yardstik to �nd a minimum k-over.

53

Proeedings of the Prague Stringology Conferene '03

2. For i � k, a minimum k-over of x[1::i + 1℄ depends only on the minimum

k-overs of the previous k positions; that is, the minimum k-over of x[1::i �

k + 1℄; : : : ; x[1::i� 1℄; x[1::i℄.

To ahieve e�ieny, the algorithm stores for eah positions i in x an array whih

identi�es all the k-substrings that our in at least one of the minimum k-overs.

Let

i

be the ardinality of this set. At step i + 1, the algorithm heks for eah

position j 2 i�k+1::i, whether the urrent su�x x[i�k+2::i+1℄ has already been

inluded in the stored minimum k-over of x[1::j℄. If so then the set overs x[1::i+1℄,

otherwise the urrent su�x has to be added to the set. Among these k andidates,

the algorithm hooses a set with the smallest ardinality as a minimum k-over of

x[1::i + 1℄. For more details see [IS92℄.

Lemma 3.1 For i � 2k and l; l

0

= 1; 2; : : :, let U

i;l

denotes the distint minimum

k-over for x[1::i℄. Then every minimum set U

i+1;l

is a superset of some minimum set

U

j;l

0

, i� k + 1 � j � i.

The above lemma is stated in [IS92℄ and it follows diretly from the two ideas

stated at the beginning of this setion. The algorithm as we brie�y desribed also

relies on the orretness of the lemma. In the next example we will show that the

lemma is not orret and onsequentially nor is the algorithm. The following example

illustrates just one of the situations where the algorithm fails to ompute a minimum

k-over.

Example: If x = baaababbaaaaabbabbbaaaa and k = 3 then when i + 1 = 27,

j 2 24::26, and position 27 should form its minimum k-over from position 24 beause

24

= min(

j

); j 2 24::27. The minimum k-overs of position 24 are as follows:

U

24;1

= fba; aab; abb; baa; ag;

U

24;2

= fba; aab; abb; baa; ag:

Neither of them ontains the su�x aa, so we get

27

=

24

+ 1 = 6, and aordingly

the minimum k-overs of position 27 are as follows:

U

27;1

= fba; aab; abb; baa; a; aag;

U

27;2

= fba; aab; abb; baa; a; aag:

But we an �nd at least one minimum k-over that is di�erent from U

27;1

and U

27;2

;

namely:

U

27;3

= fba; aab; abb; baa; aa; aag:

U

27;3

is a k-over of position 24, but not the minimum. However it will ontribute to

the minimum when position 27 is reahed. There is a potential problem for future

alulations if we lose U

27;3

at position 27; for example if we extend x by adding aa to

the end. As we an see, U

27;3

an be a minimum k-over of x[1::29℄. Without keeping

U

27;3

, we shall get

29

= 7, one greater than the minimum.

The above suggests that in order to ompute a minimum k-over of the urrent

position, we have to refer to every single k-over of the previous positions. Sine

the number of minimum k-overs of a string may be exponential, we doubt that the

problem of omputing a minimum k-over an be solved in polynomial time.

54

Computing the Minimum k-Cover of a String

4 Problem 1 and NP-Completeness

The k-over problem is to �nd a set over of minimum size for a given string. Restating

this optimization problem as a deision one, we wish to determine whether a given

string has a k-over of a given size m.

k

m

-COVER = fhx; k;mi : string x has a k-over of size mg.

The following theorem shows that this problem is NP-omplete.

Theorem 4.1 The k

m

-COVER 2 NP.

Proof. To show that k

m

-COVER 2 NP, for a given string x, we use the set U

m

of m

substrings all of length k as a erti�ate for x. Cheking whether U

m

is a k-over an

be aomplished in O(n logn) time by heking whether, for eah position 1 � i � n,

i is overed by at least one of the k-substrings in U

m

.

We next prove that 3-SAT �

p

k

m

-COVER, whih shows that a minimum k-over

problem is NP-hard. 3-SAT is well-known to be NP-omplete [C71℄. We transform 3-

SAT to k

m

-COVER. Let V = fv

1

; v

2

; : : : ; v

p

g be a set of variables, C = f

1

;

2

; : : : ;

q

g

be the set of lauses and F =

1

^

2

^ : : :^

q

be a 3-SAT formula with

i

= `

i

1

_`

i

2

_`

i

3

,

1 � i � q.

We shall show how to onstrut from F a string x suh that x will have a k-over

of size m if and only if F is satis�able. We hoose k = 3 and note that there is an

easy redution to 2-CNF for k = 2. The string x is build of substrings separated by

sequenes of sssss; hene sss is one of the hosen overing k-strings, and thus we an

fous on the individual substrings. The onstrution will be made up of truth-setting

omponents, and satisfation testing omponents.

Variable Choie

For eah variable v 2 V , we onstrut the following 6 substrings (eah substring is

proeeded and followed by sssss); eah harater is indexed by v:

(i) #

a

r r $ v � � r r #

a

(ii)#

b

t t $ �v � � t t #

b

(iii)#

a

(iv) #

b

(v)#

a

#

b

(vi)#

b

#

a

The only ways to over the above strings with 9 or fewer length 3 strings, are one of

the following (notie the uninteresting �exibility in (v) and (vi)):

1. fss#

a

; rr$; v��; rr#

a

;#

b

tt; $�v�; �tt;#

b

ssg and one of fs#

b

#

a

;#

b

#

a

sg.

2. f#

a

rr; $v�; �rr;#

a

ss; ss#

b

; tt$; �v��; tt#

b

g and one of fs#

a

#

b

;#

a

#

b

sg.

To see this, onsider overing string (iii). It an be done by one of ss#

a

, #

a

ss,

s#

a

s, but only the �rst two ould be used elsewhere, so one of them may as well be

hosen. Clearly, 8 strings at least are needed to over (i) and (ii) as they have no

length 3 substring in ommon. Thus, to use only 1 additional string to over (v) and

(vi) we need to hoose either ss#

a

;#

b

ss or #

a

ss; ss#

b

.

The hoie v�� and $�v� (given by hoosing ss#

a

) orresponds to v = T while the

hoie �v�� and $v� (given by hoosing #

a

ss) orresponds to v = F .

55

Proeedings of the Prague Stringology Conferene '03

Clause Satis�ability

For eah lause 2 C, where = `

1

_`

2

_`

3

, the following substrings are reated, again

preeded and followed by sssss. The haraters, exept for $

i

; �

i

; �

i

; `

i

; i = 1; 2; 3 are

indexed by also; $

i

; �

i

; �

i

; `

i

arry the index for the literal.

(i)$

1

`

1

�

1

�

1

h

1

(ii) $

2

`

2

�

2

�

2

h

2

(iii) $

3

`

3

�

3

�

3

h

3

(iv)$

1

(v)$

2

(vi)$

3

(vii)h

1

(viii)h

2

(ix)h

3

(x)�

1

�

1

h

1

d

1

�

2

�

2

h

2

(xi)�

2

�

2

h

2

d

2

�

3

�

3

h

3

(xii)�

3

�

3

h

3

d

3

�

1

�

1

h

1

(xiii)�

1

(xiv)�

2

(xv)�

3

To over (iv)-(ix) and (xiii)-(xv) we may as well hoose ss$

i

; h

i

ss and ss�

i

as these

are the only reusable substrings.

If `

i

is true, then `

i

�

i

�

i

was already hosen; otherwise $

i

`

i

�

i

was hosen. Thus, if

`

i

is false; in (i)-(iii), �

i

remains to be overed. The only reusable overing string is

�

i

�

i

h

i

.

Consider strings (x)-(xii) and suppose at least one `

i

is true. Without loss of

generality let it be `

1

. Then it is not hard to see that 5 more strings that inlude

�

2

�

2

h

2

and �

3

�

3

h

3

thereby overing �

2

in (ii) and �

3

in (iii) su�e. We hoose:

�

2

�

2

h

2

; �

3

�

3

h

3

; �

1

h

1

d

1

; d

2

�

3

�

3

and d

3

�

1

�

1

. It is not hard to see that 5 overing strings

are needed: 3 to over d

1

; d

2

and d

3

, but this an only ompletely over one of �

1

; �

2

and �

3

as eah ours twie, and hene two more overing strings are needed for the

remaining pair among �

1

; �

2

and �

3

.

If no `

i

is true, we are obliged to hoose �

1

�

1

h

1

; �

2

�

2

h

2

and �

3

�

3

h

3

as well as 3

strings to over d

1

; d

2

and d

3

. At least 6 overing strings in all are needed. Thus, if

F is satis�able then the full string an be overed by

m = 9p+ 6p+ 3q + 5q + 1 = 15p+ 8q + 1

overing strings, where p is the number of variables in F and q is the number of

lauses. Otherwise, it needs at least 15p+ 8q + 2 overing strings. 2

5 Approximate Minimum k-Cover

In this setion we introdue two greedy algorithms to ompute a minimum k-over.

The greedy method works by piking, at eah stage, the k-substring whih overs the

greatest number of unovered positions. The �rst algorithm works globally while the

seond algorithm follows a loal strategy. To alulate all possible k-substrings in a

given string x, both greedy algorithms use Crohemore's partitioning algorithm [C81℄

to preproess the input string x.

Originally, Crohemore's algorithm was designed to ompute the repetitions in a

string inO(n logn) time. A string has a repetition when it has at least two onseutive

equal substrings. For example, abab is a repetition in aababba = a(ab)

2

ba. We shall

use the algorithm in another way � to �nd the sets of the starting positions of all

the distint substrings of length k in a given string x. This idea an be expressed

more preisely as follows:

56

Computing the Minimum k-Cover of a String

Given a string x[1::n℄ and an integer k, Crohemore's algorithm is used to ompute

the equivalene lasses of all equal substrings of length k in x. We denote these equiv-

alene lasses by e

1

; e

2

; :::; e

m

, where the elements in e

i

are sorted integers denoting

starting positions of equal substrings, and m is the number of possible equivalene

lasses returned by the algorithm.

These elements are stored using a global array L[1::n℄, suh that L[i℄ is the next

position in the same equivalene lass of equal substrings of length k. That is, L[i℄ = j

if L[i::i+ k� 1℄ = x[j::j + k� 1℄ and the irular sequene i; L[i℄; L[L[i℄℄; : : : ; L

`

[i℄ = i

identi�es all ` k-substrings in x that are equal to x[i::i + k � 1℄.

For example, if x = abaababaabaab and k = 3 then e

1

= f3; 8; 11g; e

2

=

f1; 4; 6; 9g; e

3

= f2; 7; 10g; and e

4

= f5g are the equivalene lasses. Where aab; aba;

baa; bab are the orresponding 3-substrings. Hene, the value of array L is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13

x = a b a a b a b a a b a a b

L[i℄ 4 7 8 6 5 9 10 11 1 2 3

Eid[i℄ 2 3 1 2 4 2 3 1 2 3 1

In the above, Eid[i℄ identi�es the equivalene lass ontaining position i. In the

following subsetions, we shall present two approximation algorithms. We all the

�rst Global-Unovered and the seond Loal-Unovered.

5.1 Global-Unovered Algorithm

Reall that the greedy algorithmworks by seleting one k-substring at a time that ov-

ers the most positions among the unovered ones. Our greedy algorithm is omparable

to the greedy one [J74℄ to onstrut the minimum set over. The ost of a greedy

solution is known to ome always within a multipliative fator of H(max

j

jEC

j

j),

where EC

j

is the number of positions that ould be overed by the k-substring j.

Here, H(d) =

P

d

i=1

1

i

is the dth harmoni number and is bounded by 1 + log d. This

was shown by Johnson [J74℄ and Lovasz [L75℄ for the general SET COVER problem.

The key to Algorithm Global-Unovered is �nding the equivalene lass whih an

over the maximum number of so-far-unovered positions e�iently. The details of

the algorithm are provided in Figure 1. To ahieve e�ieny, the algorithm uses the

following data strutures:

1. An array Ebuket[1::n℄ indexed by the number of so-far-unovered positions

that ould be overed by a single equivalene lass. Eah element (buket) of

the array is doubly-linked list of the equivalene lasses that ould over equal

number of so-far-unovered positions. Thus, every element of the doubly linked

list ontains an index of an equivalene lass in addition to the left and the right

pointers to the adjaent elements.

2. A two dimensional array Eptr[1::m℄ indexed by the equivalene lass j. Where

Eptr[j℄[buket℄ identi�es the buket that inludes j in its doubly linked list.

In other words, equivalene lass j ould over Eptr[j℄[buket℄ so-far-unovered

positions. Additionally Eptr[j℄[ptr℄ is a pointer to the orresponding element

of the doubly linked list Ebuket[Eptr[j℄[buket℄℄. Thus, any elements of the

doubly linked lists an be referened in onstant time by using Eptr.

57

Proeedings of the Prague Stringology Conferene '03

Algorithm Global-Unovered(x; k)

Input: A string x of length n, an integer 0 < k < n

Output: An approximate minimum k-over U

g

1. (L[1::n℄; Eid[1::n℄; start[1::m℄;m) CrohemorePar(x; k)

2. over_so_far[1::n℄ F; F; : : : ; F

3. initialization:

4. U

g

 ;

5. for e 1 to m do

6. Eunov[e℄ 0 **number of positions that ould be overed by equivalene lass e**

7. for i 1 to n� k + 1

8. if i < L[i℄

9. then Eunov[Eid[i℄℄ + = min(k; L[i℄� i)

10. else Eunov[Eid[i℄℄ + = k

11. (Ebuket; Eptr) Buket-Sort(Eunov)

12. The algorithm:

13. k_prefix; k_suffix Eid[1℄; Eid[n� k + 1℄

14. GU-Cover(k_prefix; Ebuket; Eptr)

15. Add(U

g

; k_prefix)

16. if k_suffix 6= k_prefix

17. then GU-Cover(k_suffix; Ebuket; Eptr)

18. Add(U

g

; k_suffix)

19. e Head(Ebuket)

20. while e 6= 0

21. GU-Cover(e; Ebuket; Eptr)

22. Add(U

g

; e)

23. e Head(Ebuket)

24. return U

g

25. Funtion GU-Cover(e; Ebuket; Eptr)

26. i start[e℄ **the �rst element in the equivalene lass e**

27. repeat

28. for j 1 to k do

29. if over_so_far[i+ j � 1℄ = F then

30. over_so_far[i+ j � 1℄ T

31. for every l 2 Eid[(i+ j � 1)� k + 1℄; : : : Eid[i+ j � 1℄ do

32. Delete(Ebuket[Eptr[l℄[buket℄℄,Eptr[l℄[ptr℄)

33. if Eptr[l℄[buket℄ 6= 1

34. then Insert(Ebuket[Eptr[l℄[buket� 1℄℄,Eptr[l℄[ptr℄)

35. Eptr[l℄[buket℄ Eptr[l℄[buket℄� 1

36. i L[i℄

37. until (i = start[e℄)

Figure 1: Global-Unovered Algorithm.

58

Computing the Minimum k-Cover of a String

One Ebuket is established, the k-pre�x and the k-su�x are the �rst elements

to be inluded in the approximate minimum k-over. The algorithm then iteratively

hoose a head element of Ebuket as an element of the approximate minimum k-

over. The head element is an equivalene lass that overs the largest number of so

far unovered positions. Finding suh equivalene lasses osts O(n) time throughout

the alulations.

The algorithm requires O(n logn) time to run Crohemore's algorithm and an

additional O(n) time to onstrut and initialize Ebuket and Eptr. Note that a

linear time Buket-Sort has been used beause the number of positions that ould be

overed by any equivalene lass is bounded.

For eah position i, over_so_far[i℄ is initialized to F and set to T one during

the alulation. When over_so_far[i℄ is set from F to T , O(k) elements in Ebuket

may need to be deleted from the urrent buket and inserted to the next buket.

Eah rearrangement osts O(1) time. Thus, the total time required to maintain the

elements in Ebuket throughout the alulation is O(kn). Summing the above gives

the total running time: O(n logn) + O(n) + O(kn) = maxfO(n logn); O(kn)g time,

whih for a �xed k, asymptotially approahes O(n logn) as n inreases to 1.

5.2 Loal-Unovered Algorithm

Algorithm Loal-Unovered hooses its andidate element, of the approximate mini-

mum k-over, in a range of Eid[left_unover�k+1℄::Eid[left_unover℄; the integer

left_unover keeps trak of the leftmost so-far-unovered position. The algorithm

uses the array unover_no. The array unover_no[1::m℄ is indexed by the equiva-

lene lasses, where unover_no[j℄ is the number of positions orresponding to equiv-

alene lass j that have not been overed. Hene, the values of the array need to be

updated dynamially during the omputation. The details of the algorithm are pro-

vided in Figure 2.

The initialization is just the same as in Global-Unovered. However, we need to

update unover_no. As in Global-Unovered, the k-pre�x and the k-su�x are the

�rst two elements to be inluded in the approximate minimum k-over. The algorithm

then tries to over the leftmost unovered position with the k-substring orresponding

to the equivalene lass whih an over the maximum number of unovered positions.

That is, let j = left_unover if j < n, then the hosen k-substring is the one

orresponding to equivalene lass satisfying

maxfunover_no[Eid[j � k + 1℄; unover_no[j � k + 2℄; : : : ; unover_no[Eid[j℄℄g:

A brief analysis of the algorithm shows that the algorithm requires:

� O(n logn): to run Crohemore's algorithm;

� O(n): Step 2, the loop on (Steps 6-9), and the total time spent in Add();

� O(k): the loop on (Steps 19-23);

� O(kn): is the total time of the LU-Cover subroutine.

Summing the above gives the total running time O(n logn)+O(n)+O(k)+O(kn) =

maxfO(n logn); O(kn)g time.

59

Proeedings of the Prague Stringology Conferene '03

Algorithm Loal-Unovered(x; k)

Input: A string x of length n, an integer 0 < k < n

Output: An approximate minimum k-over U

l

1. (L[1::n℄; Eid[1::n℄;m) CrohemorePar(x; k)

2. over_so_far[1::n℄ F; F; : : : ; F

3. initialization:

4. U

l

 ;

5. left_unover 1

6. for i 1 to n� k + 1 do

7. if i < L[i℄

8. then unover_no[Eid[i℄℄ + = min(k; L[i℄� i)

9. else unover_no[Eid[i℄℄ + = k

10. The algorithm:

11. k_prefix; k_suffix Eid[1℄; Eid[n� k + 1℄

12. LU-Cover(k_prefix; 1; unover_no; left_unover)

13. Add(U

l

; k_prefix)

14. if k_suffix 6= k_prefix then

15. LU-Cover(k_suffix; n� k + 1; unover_no; left_unover)

16. Add(U

l

; k_suffix)

17. while left_unover < n do

18. max = 0

19. for j 1 to k do

20. if unover_no[Eid[left_unover � j + 1℄℄ > max then

21. max unover_no[Eid[left_unover � j + 1℄℄

22. e Eid[left_unover � j + 1℄

23. s left_unover � j + 1

24. LU-Cover(e; s; unover_no; left_unover)

25. Add(U

l

; e)

26. return U

l

27. Funtion LU-Cover(e; start; unover_no; left_unover)

28. i start

29. repeat

30. for j 1 to k do

31. if over_so_far[i+ j � 1℄ = F then

32. over_so_far[i+ j � 1℄ T

33. for every l 2 Eid[(i+ j � 1)� k + 1℄; : : : Eid[i+ j � 1℄ do

34. unover_no[l℄ � = 1

35. i L[i℄

36. until (i = start)

37. while left_unover � n and over_so_far[left_unover℄ do

38. left_unover ++

Figure 2: Loal-Unovered Algorithm.

60

Computing the Minimum k-Cover of a String

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

100 12 11 11 11 9.09 0 0

200 14 14 14 14 0 0 0

300 14 15 15 14 0 7.14 7.14

400 16 15 17 15 6.67 0 13.3

500 17 17 17 17 0 0 0

600 16 16 16 16 0 0 0

700 18 16 16 16 12.5 0 0

800 17 17 19 17 0 0 11.8

900 18 16 18 16 12.5 0 12.5

1000 18 17 16 16 12.5 6.25 0

Average (%) = / / / 5.33 1.34 4.47

Table 1: Pseudo-Random Strings on Alphabet fa; b; g, and k = 3

6 Experimental Results

We used four types of strings: sturmian strings, pseudo random strings on the al-

phabets: fa; bg, fa; b; g, fa; b; ; dg, DNA sequenes

�

, and English text. In order

to ompare our approximate methods in term of e�etiveness, we developed a naive

algorithm based on the Iliopoulos and Smyth algorithm. This naive algorithm �nds

the minimum k-over at position i+ 1 by testing eah position j 2 i� k + 1::i in the

same way as in Iliopoulos and Smyth's. However, the key di�erene is that the algo-

rithm stores not only the overs that are minimum but also those that are one more

than minimum at every position. Thus, the aim here is to store as muh informa-

tion as possible taking into onsideration the limitation of the omputer's resoures.

The implementation results show that the naive algorithm does not always yield the

best k-over - in most ases the two approximate algorithms yield better results. Let

U

min

be the minimum k-over of a string x, U

N

be the result omputed by our naive

method, U

GU

be the result omputed by Global-Unovered algorithm, and U

LU

be

the result omputed by Loal-Unovered algorithm. Then the following simplifying

assumption has been made:

jU

min

j � jU

best

j = minfjU

N

j; jU

GU

j; jU

LU

jg

Table 1, 2, 3 show that Algorithm Global-Unovered yields the best result in most

ases, the naive algorithm never exeed a deviation of 7:83%, and Algorithm Loal-

Unovered never exeed 6:24%. The following observations are also worth mentioning:

� The Sturmian strings are very well-strutured. For the tested Sturmian strings,

from length of 20 to 1000, for every k 2 3; 4; 5, jU

best

j = 2.

� For the tested pseudo-random strings and DNA sequenes, jU

best

j inreases as

the values of k, the length n, and the alphabet size are inreasing.

� Let jU

best�DNA

j denotes the ardinality of the approximate minimum k-over

of DNA sequene and jU

best�abd

j denotes the ardinality of the approximate

�

exerpted from www.bs.dtu.dk/databases/DNA2protSS/nuall.seq.

61

Proeedings of the Prague Stringology Conferene '03

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

100 19 19 19 19 0 0 0

200 25 26 27 25 0 4.00 8.00

300 32 29 29 29 10.3 0 0

400 37 34 36 34 8.80 0 5.88

500 36 36 35 35 2.86 2.86 0

600 37 36 37 36 2.78 0 2.78

700 37 35 38 35 5.71 0 8.57

800 42 37 39 37 16.2 0 5.41

900 42 35 42 35 20 0 20

1000 42 38 39 38 10.5 0 2.63

Average (%) / / / / 7.71 0.68 5.32

Table 2: Pseudo-Random Strings on Alphabet fa; b; ; dg, and k = 3

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

60 13 13 13 13 0 0 0

126 21 22 23 21 0 4.76 9.52

171 23 22 23 22 4.54 0 4.54

234 25 24 26 24 4.17 0 8.33

312 32 29 30 29 10.3 0 3.45

432 26 27 29 26 0 3.85 11.5

591 34 31 35 31 9.68 0 12.9

771 40 34 36 34 17.6 0 5.89

1233 43 38 37 37 24.3 2.70 0

Average (%) / / / / 7.83 1.26 6.24

Table 3: DNA Sequenes, and k = 3

62

Computing the Minimum k-Cover of a String

minimum k-over of pseudo-random strings on alphabet fa; b; ; dg. For the

same value of k and n, jU

best�DNA

j < jU

best�abd

j. We an make a onjeture

that DNA sequenes are better strutured than pseudo-random strings on an

alphabet of size 4.

Conlusions

We have shown that for k � 2, the k-over problem (Problem1) is NP-Complete. We

have then proposed two O(n logn) greedy algorithms that an be used to alulate an

approximate minimum k-over. The results obtained by the algorithms are believed

to ome within a multipliative fator of the minimum. Prove this has been left as

an open problem.

Referenes

[AFI91℄ A. Apostolio, M. Farah & C. S. Iliopoulos,Optimal superprimitivity

testing for strings, Information Proessing Letters 39-1 (1991) 17-20.

[B92℄ D. Breslauer, An on-line string superprimitivity test, Information

Proessing Letters 44 (1992) 345-347.

[B94℄ D. Breslauer, Testing string superprimitivity in parallel, Informa-

tion Proessing Letters 49-5 (1994) 235-241.

[BP00℄ G. S. Brodal & C. Pederson, Finding maximal quasiperiodiities in

strings. In Proeedings of the 11th Annual Symposium on Combinatorial

Pattern Mathing (CPM) (2000) 397-411.

[C71℄ Stephen A. Cook, The omplexity of theorem-proving proedures,

Pro. Third Annual ACM Symp. on Theory of Computing (1971) 151-158.

[C81℄ M. Crohemore, An optimal algorithm for omputing all the repe-

titions in a word, Information Proessing Letters 12-5 (1981) 244-248.

[IM93℄ C. S. liopoulos & L. Mouhard, An O(n logn) algorithm for omput-

ing all maximal quasiperiodiities in strings, Theoratial Computer

Siene 119-2 (1993) 247-265.

[IP94℄ C. S. Iliopoulos & K. Park, An optimal O(log logn)-time algorithm

for parallel superprimitivity testing, Journal of the Korea Informa-

tion Siene Soiety 21-8 (1994) 1400-1404.

[IS92℄ C. S. Iliopoulos & W. F. Smyth, An on-line algorithm of omputing

a minimum set of k-overs of a string, Pro. Ninth Australasian

Workshop on Combinatorial Algorithms (AWOCA), (1998) 97-106.

[J74℄ D. S. Johnson, Approximation algorithms for ombinatorial prob-

lems, Journal of Computer and System Siene 9 (1974) 256-278.

63

Proeedings of the Prague Stringology Conferene '03

[MS94℄ D. Moore & W. F. Smyth, An optimal algorithm to ompute all the

overs of a string, Information Proessing Letters 50-5 (1994) 239-246.

[MS95℄ D. Moore & W. F. Smyth, A orretion to: An optimal algorithm

to ompute all the overs of a string, Information Proessing Letters

54 (1995) 101-103.

[L75℄ L. Lovasz, On the ratio of optimal integral and frational overs,

Disrete Mathematis 13 (1975) 383-390.

[LS02℄ Y. Li & W. F. Smyth, Computing the over array in linear time,

Algorithmia 32-1, (2002) 95-106.

[Y00℄ Lu Yang, Computing the Minimum k-Cover of a String, M. S.

thesis, MMaster University, (2000).

64

