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Abstract

In this paper we consider the disjoint union of graphs as sum graphs. We provide an

upper bound on the sum number of a disjoint union of graphs and provide an application

for the exclusive sum number of a graph. We conclude with some open problems.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. A graph G is called a sum

graph if there exists a labelling of the vertices of G by distinct positive integers such that the

vertices labelled u and v are adjacent if and only if there exists a vertex labelled u + v. If G is

not a sum graph, adding a finite number of isolated vertices to G will always yield a sum graph,

and the sum number σ(G) of G is the smallest number of isolated vertices that will achieve this

result. A labelling that realises G ∪ Kσ(G) as a sum graph is said to be optimal.

Vertices whose label equals the sum of the labels of two adjacent vertices are called working

vertices. All connected graphs (except K1) require additional isolates in order to support a sum
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labelling. Graphs for which the working vertices are confined to these extra isolates are called

exclusive graphs.

Since the introductopn of sum graphs by Harary [4], optimal sum labellings have been described

for many classes of graphs including complete graphs [1], complete bipartite graphs [5, 7, 12, ?],

trees [2], cycles [4], wheels [6, 9], as well as partial results on more complex graphs such as

multipartite graphs [11]. Many of these results (in particular cycles and trees) make use of a

property stated in [8] that the minimum degree provides a lower bound for the sum number.

Ellingham ([2]) showed that all trees are unit graphs, that is, have sum number 1. He went on

to show that any forest with all components greater than order 1 is also a unit sum graph ie

can sustain a sum labelling with the addition of no more than 1 isolate. Motivated by this we

investigate the disjoint union of more general graphs.

2 The Sum Labelling of a Disjoint Union of Graphs

Let G1 be a um graph bearing a labelling

L = {l1, l2, . . . , lm}, i < j → li < lj

and let G2 be a sum graph with a labelling

K = {k1, k2, . . . , kn}, i < j → ki < kj .

Assume first that at least one of the labels from the labelling L is relatively prime to kn. That

is (lj , kn) = 1 for some lj . Now multiply labelling L by kn and K by lj.

If z is a label in L (respectively K) then denote by z′ the corresponding label in knL (respectively

ljK). Clearly if u, v,w are labels in L (respectively K) with u + v = w then

knu + knv = knw (respectively lju + ljv = ljw)

so that any edges in the original disjoint union are preserved under the multiplication. Our first

result is a proof of the converse.

Theorem 1 If u, v,w ∈ L ∪ K and u′, v′, w′ ∈ knL ∪ ljK with (lj , kn) = 1 then any working

vertex w′ (as in u′ + v′ = w′) represents and edge in the original disjoint union.



Proof Clearly for u′, v′, w′ ∈ knL (respectively ljK)

u′ + v′ = w′ → u + v = w

Therefore we need only consider cases in which u′, v′ and w′ are in different labellings. There

are four such cases;

CASE 1: u′, v′ ∈ knL, w′ ∈ ljK.

u′ + v′ = w′ becomes knu + knv = ljw

indicating that kn divides w, but since kn is the largest label in the set containing w, then

w = kn. Dividing the equation by kn yields u + v = lj corresponding to an edge in the original

graph G1.

CASE 2: u′, v′ ∈ ljK, w′ ∈ knL.

u′ + v′ = w′ becomes lju + ljv = knw

giving that lj divides w. Putting w = mlj gives the equation u + v = mkn forcing m to be

1 (since u and v are less than or equal to kn) and reflecting that u and v are adjacent in the

original graph G2.

CASE 3: u′, w′ ∈ knL, v′ ∈ ljK.

u′ + v′ = w′ becomes knu + ljv = knw

so kn divides v, hence v = kn. Dividing by kn gives u + lj = w which indicates an edge in the

original graph G1.

CASE 4: v′, w′ ∈ ljK, u′ ∈ knL. This case does not occur since

u′ + v′ = w′ becomes knu + ljv = ljw

and lj divides u. So let u = mlj and the equation becomes mkn + v = w which is impossible

since kn > w. �

The advantage of this labelling is the repeated use of the label ljkn which occurs as a label in

both sets thus reducing the cardinality of the union by 1. Since kn is the largest label in the

labelling set K, this reduction is of an isolate of G2. So we have



Theorem 2 σ(G1 ∪G2) ≤ σ(G1)+ σ(G2)− 1 provided that there exists labellings of G1 and G2

such that there is an element of one labelling that is relatively prime to the largest element of

the other labelling.

The condition of finding an element of one labelling that is relatively prime to the largest element

of the other labelling is fulfilled if 1 is an element of either labelling. In particular we have,

Corollary 1

σ(∪p
i=1Gi) ≤

p∑

i−1

σ(Gi) − (p − 1)

provided that at least none of the p disjoint graphs has 1 as an element of its labelling.

The concept of a sum labelling containing the label 1 was introduced in [11] and such a labelling

was given the name a minimal labelling. The importance of a minimal labelling is reflected in

the existance of the bound in Corollary 1. To date the question of whether all sum graphs bear

a minimal labelling is open and while many labellings are not minimal, no graph has been found

to be unable to bear such a labelling. One class of summable graphs known to always support

a minimal labelling are the exclusive graphs. A labelling that restricts working vertices to the

isolates is thus called a exclusive sum labelling.

In [10] it was shown that exclusive sum labellings are invariant under a linear transformation

with integer coefficients. This means that the minimal label of any exclusive sum graph may be

set to 1, so we have

Corollary 2

σ(∪p
i=1Gi) ≤

p∑

i=1

σ(Gi) − (p − 1)

provided at least one of the p disjoint graphs is an exclusive sum graph.

The authors of [10] looked at exclusively labelling graphs whose optimal sum labelling is not

exclusive. For this purpose they defined the exclusive sum number ε(G) of a graph as the

minimum number of isolates for a graph to bear an exclusive sum labelling. Clearly ε(G) ≥ σ(G)

which leads to
Corollary 3

σ(∪p
i=1Gi) ≤

p∑

i�=j

(Gi) − (p − 1) + ε(Gj) for any j ∈ {1, . . . , p}.



3 Open Problems

1. Find the exclusive sum number for certain classes of graphs such as trees, complete bipar-

tite graphs.

2. Find the sum number of disjoint families of graphs.

3. Find the exclusive sum number of disjoint families of graphs.

4. Gould & Rödl ([3]) showed that there exist graphs that require a number of isolates of the

order of n2 in order to support a sum labelling. Are there graphs that require fewer than

order n2 isolates to support a sum labelling but need order n2 isolates to bear an exclusive

sum labelling?
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