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Abstract

A simple undirected graph G is called a sum graph if there exists a

labelling L of the vertices of G into distinct positive integers such that

any two distinct vertices u and v of G are adjacent if and only if there is
a vertex w whose label L�w� � L�u��L�v�� It is obvious that every sum

graph has at least one isolated vertex� namely the vertex with the largest

label� The sum number ��H� of a connected graph H is the least number

r of isolated vertices Kr such that G � H�Kr is a sum graph� It is clear

that if H is of size m� then ��H� � m� Recently Harts�eld and Smyth

showed that for wheelsWn of order n�	 and sizem � 
n� ��Wn� � ��m��

that is� that the sum number is of the same order of magnitude as the size

of the graph� In this paper we re�ne these results to show that for even

n � � ��Wn� � n�
� 
� while for odd n � � we disprove a conjecture of

Harts�eld and Smyth by showing that ��Wn� � n� Labellings are given

that achieve these minima�

� Introduction

Since the introduction of sum graphs by Harary ���� there have been several
papers specifying or bounding the sum number of particular classes H of graphs�
complete graphs ���� complete bipartite graphs �	�� complete multipartite graphs
�
�� and trees ���� In all of these cases� ��H � ��m�n� where n is the order
�number of vertices and m the size �number of edges of H� that is� the order
of magnitude of the sum number is at most the order of the graph� It is known
however ��� that there exist classes H of graphs such that ��H � ��n�� even
though no such graphs have yet been constructed� A step in the direction of
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constructing such graphs was taken by Harts�eld and Smyth ���� who showed
that for wheels Wn� ��Wn � ��m� Wheels are thus graphs of some interest in
this context� and in this paper we extend the results of ��� to give labellings for
all wheels that achieve the minimum sum number�

In Section � of this paper we show that for even n � �� ��Wn �
n
�
� �� thus

correcting an error in ���� In Section � we show that for odd n � 	� ��Wn � n�
disproving the conjecture in ��� that ��Wn � n� �� This latter result depends
on a recent paper ��� that deals with a closely�related problem� the �integral
sum number� of cycles�

� Even Wheels

For every integer n � �� a wheel Wn is the graph de�ned by a pair of sets �V�E�
where V � fc� v�� v	� ���� vn�	g and E � f�c� vi� �vi� vi
	ji � �� �� ���� n��g� The
vertex c is called the centre of the wheel� each edge �c� vi� for i � �� �� ���� n� ��
is called a spoke� and the cycle Cn � Wn � c is called the rim� To simplify
presentation� arithmetic on the indices of the vertices is interpreted modulo n�
and we suppose that the vertices of V are already identi�ed by their labels�

In a sum graph G� a vertex w is said to label an edge �u� v if and only if
w � u� v� The multiplicity of w� denoted by ��w� is de�ned to be the number
of edges which are labelled by w� If ��w � �� then w is called a working
vertex� If G � H � Kr and H contains no working vertices� then G is said to
be exclusive� otherwise� G is said to be inclusive� One of the interesting results
of Harts�eld and Smyth ��� is that for n odd every sum graph G � Wn �Kr is
exclusive� while for n even every sum graph G � Wn �Kr is inclusive�

The following lemmas will be useful for determining the sum number of even
wheels� Proofs may be found in ����

Lemma � Suppose that G � Wn � Kr is a sum graph� If for some integer i
satisfying � � i � n� �� c� vi � V � then

�a� n is even�

�b� the vertices of the rim consist of n
�
working vertices c � uj� � � j � n

�
�

which label spokes� alternating with n
�
vertices uk� � � k � n

�
� which do

not label spokes� �

Lemma � Suppose that G � Wn � Kr is a sum graph� Then no edge of the
rim is labelled by a vertex of V � �
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Lemma � There are at least three distinct edge labels on the rim of Wn� �

The �rst lemma allows us to label the vertices on the rim of Wn� for n even�
alternating n

�
working vertices with n

�
nonworking vertices� The second and

third lemmas imply that there are at least n
�
� � isolated vertices required for

G �Wn�Kr to be a sum graph unless there exists an isolated vertex that labels
both a spoke and an edge of the rim� The following theorem shows that no more
than two such isolated vertices can exist in G if a minimum sum number is to
be achieved�

Theorem � For n even� ��Wn �
n
�
� �� �

Proof Consider a vertex t which labels both a spoke �u� c and an edge �v	� v�
of the rim� Then t � v	 � v� � u� c and by Lemma �� t is isolated� Since G is
inclusive� it follows from Lemma � that the vertices on the rim are alternately
working and nonworking� So without loss of generality we may consider v�
to be a working vertex� i�e�� v� � v�� � c where v�� is a nonworking vertex on
the rim� We note also that u is a working vertex �else u � c would be on the
rim and may thus be expressed u�� c� It follows from the expression for t that
u � u��c � v	�v��� This seems to indicate that v	 is adjacent to both v� and v

�

��
in contradiction to the condition of alternating working and nonworking vertices�
The only labelling that manages to avoid such a contradiction is v	 � v��� so
that v� � v	 � c and �v	� v	 � c is an edge of the rim�

Now let us rede�ne v� to be the other nonworking vertex v� �� v	 adjacent
to v	 � c� Then from the de�nition of a sum graph� v� � c is adjacent to
v	� Similarly� the nonworking vertex v� �� v	 adjacent to v� � c implies the
existence of a working vertex v� � c adjacent to v�� We see that if � divides
n� the rim vertices break down into two paths �v	� v� � c� v�� � � � � vn�� � c and
�v	� c� v�� v�� c� � � � � vn��� while otherwise the paths are �v	� v�� c� v�� � � � � vn��
and �v	 � c� v�� v� � c� � � � � vn�� � c� Such labellings are called contrary� We
see that a contrary labelling includes exactly two nonworking vertices v	 and
vn�� that are adjacent to their corresponding working vertices� and that these
adjacent pairs are antipodal�

So far we have shown that it may be possible to reduce the sum number of G
by one �to n

�
� � by introducing the vertex t� It is clear that there can exist

no more than two isolated vertices that label both spokes and edges of the rim�
We show now that introducing a second such isolated vertex cannot reduce the
sum number any further�

Suppose that there exists a second vertex s that labels both a spoke and an
edge of the rim� Then since t � �v	 � c� it follows that s � �vn�� � c� and so
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there exist two rim vertices �v	 and �vn��� It follows that n � �� Now let x �� v	
and y �� vn�� denote the two other nonworking vertices adjacent to v	 � c and
vn��� c respectively� In order to label the edges of the rim� there must therefore
exist vertices that are labelled with at least the following four sums�

�v	 � c� v	 � x � c� �vn�� � c� vn�� � y � c�

Further� in order to reduce the number of distinct sums to three� and so to
achieve sum number n

�
� �� at least one pair of these sums must be identical�

The only possibilities are �v	 � c � vn�� � y� c and �vn�� � c � v	 � x� c� But
the �rst of these implies that �v	 � vn�� � y and so� since �v	 is a vertex� we
conclude that �vn��� y is an edge� an impossibility� Similarly the second case is
impossible� and it follows therefore that there must exist at least four isolated
vertices corresponding to edges of the rim� Thus the sum number of G cannot
be reduced below �n� � by introducing s� �

We use the ideas in this result to construct a labelling for Wn� n even� that
achieves ��Wn �

n
�
� �� Letting n � �l� we consider the vertices around the

rim as two disjoint paths of length l� �� P	 and P� � one clockwise in direction
and the other counterclockwise� The centre is labelled by c� while the two paths
are labelled as shown below with the parameters c� x and d� all arbitrary at this
stage� Later we will formulate x in terms of d and c and give conditions under
which these labels will provide a sum numbering� Let

P	 � �x� �x� x� d� c� �x� d� c� x� �d� �c� �x� �d� �c� ���� y�

P� � �x � c� �x� c� x� d� �c� �x� d� �c� x� �d� �c� �x� �d� �c� ���� z�

where for l even

y � �x �
�
l � �

�

�
d�

�
l � �

�

�
c�

z � �x �
�
l � �

�

�
d�

�
l

�

�
c�

while for l odd

y � x�
�
l � �

�

�
d�

�
l � �

�

�
c�

z � x�
�
l � �

�

�
d�

�
l � �

�

�
c�

Alternatively�

P	 �

��
� � ���m

�

�
x� ���m

��
m

�

�
� �

�
d� ���m

��
m

�

�
� �

�
c

�l

m�	

�

P� �

��
� � ���m

�

�
x� ���m

��
m

�

�
� �

�
d� ���m

��
m

�

��
c

�l

m�	

�
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In each path� each pair of adjacent vertices sum to� alternately� �x and �x�d�c
constributing � isolates to the sum number� Note that when l is even� �x appears
l
�
times in each path� while �x � d � c appears l��

�
times� indicating that the

�nal sum is �x� When l is odd� both sums appear l�	
�

times and the �nal sum
is �x� d� c� We now construct the rim by connecting the two paths in a way
that does not require the inclusion of any extra isolates�

Joining the two initial vertices in each path requires a vertex �x � c taking
advantage of an already existing isolate that corresponding to the the spoke
��x� c� When joining the �nal vertices� we note that the induced sum must be
di�erent to the �nal sums in each path� So for l even� this �nal sum must be
�x� d� c� while for l odd it is �x� Therefore for l even we have�

�x�
�
l � �

�

�
d�

�
l � �

�

�
c

�
�

�
�x �

�
l � �

�

�
d�

�
l

�

�
c

�
� �x� d� c

or
�x� �l � �d� �l � �c � �x� d� c

that is�
x � lc� �l � �d�

while for l odd we have�
x�

�
l � �

�

�
d�

�
l � �

�

�
c

�
�

�
x�

�
l � �

�

�
d�

�
l � �

�

�
c

�
� �x

or
�x� �l � �d� lc � �x

again yielding�
x � lc� �l � �d�

The construction above provides at most l � � isolated vertices�

Kr � fx� �c� �x� c� x� d� �c� �x� d� x� �d� �c� �x� �d� c� ���� wg

� f�x� d� c� �xg

where

w �

�
�x� � l��

�
d� � l��

�
c� for l even�

x� � l�	
�
d� � l
�

�
c� for l odd�

Alternatively�

Kr �

��
� � ���m

�

�
x � ���m

��
m

�

�
� �

�
d�

����m��� �dm
�
e � �

�

�
c

�l

m�	

� f�x� d� c� �xg�

	



We observe further that by choosing x � lc � �l � �d� c � �� and d � �l� we
can easily ensure that the construction gives a sum graph whose sum number
is at most n

�
� �� By Theorem � the sum number is at least n

�
� � and so we

have established

Theorem � For n even� ��Wn �
n
�
� �� �

� Odd Wheels

In this section we disprove the conjecture of Harts�eld and Smyth ��� that for
odd n � 
� ��Wn � n�� by showing that for odd n � 	� ��Wn � n� We begin
by noting once again the result ��� that for odd n� every sum graph G � Wn�Kr

is exclusive� This obviously implies that at least n isolated vertices are required
for G � Wn�Kr to be a sum graph� To achieve the minimum sum numbering�
we construct the labelling ofWn for n odd based on a recent paper ��� that deals
with a closely related problem� the integral sum number of cycles�

A simple undirected graph G is called an integral sum graph if there exists a
labelling � of the vertices of G into distinct integers such that any two distinct
vertices u and v of G are adjacent if and only if there is a vertex w whose label
��w � ��u � ��v� Thus the main di�erence between the integral sum graph
and the sum graph is that the integral sum graph uses distinct integers for
labelling� whereas the sum graph uses distinct positive integers� The integral
sum number 	�H is the least number of isolated vertices Kr such that G �
H �Kr is an integral sum graph�

In ��� Sharary showed that the integral sum number of cycles is given by

	�Cn �

�
� if n �� �
� if n � ��

To obtain 	�Cn � � for odd n� the vertices of the cycle Cn can be labelled as
follows�

n � � � V � f��� �� �g�
n � 	 � V � f�� ����� ����g�
n � 
 � V � f�� �� �� ���	� 
���g�
n � � � V � f��������� ����	� ���
� �	����g�
n � �� � V � f��� �� �� ������ �	���� 
���� ������g�
n � �� � V � fb	� b�� ���� bn��� dn�	� dng�
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where
b	 � ��
b� � ��
bi � bi�� � bi�	 for i � �� �� ���� n� ��
dn�	 � b	 � b� � bn�� � 	� bn��� and
dn � bn�� � b	 � bn�� � ��

Lemma � Let ai� i � �� �� � � � � n� denote the labels of the vertices under the
integer sum labelling � that achieves 	�Cn � �� Then L � � � c where c �
�jminni�	faigj�� is a sum labelling of Wn for odd n � 	 with n isolated vertices�

Proof Let vi� for every i � �� �� ���� n� be the labels of vertices around the
rim of Wn and c be the label of the centre of Wn� Let vi � �ai � c� for every
i � �� �� ���� n� Then

vi � c � �ai � �c� and
vi � vi
	 � ��ai � ai
	 � �c�

Let R be the set of isolated vertices which label the spokes and S be the set of
isolated vertices which label the rim� Then

R � f�ai � �cji � �� �� ���� ng� and
S � f��ai � ai
	 � �cji � �� �� ���� ng�

For n � f	� 
� �� ��g� we can see that S � R and so that S � R � R� Therefore

Kn � R � f�ai � �cji � �� �� ���� ng�

Similarly� for odd n � �� this construction gives

R � f�ai � �cji � �� �� ���� ng�

The set S can be obtained in the following way�

For i � �� �� ���� n� ��
vi�	 � vi � �ai�� � �c

while
vn�� � vn�	 � �a � �c�
vn�	 � vn � �a� � �c�
vn � v	 � �an�� � �c�
v	 � v� � �a � �c�

Then
S � f�ai � �cji � �� �� ���� n� �g � f�an�� � �cg�






Note that S � R� Therefore

Kn � R � f�ai � �cji � �� �� ���� ng� �

We note that for n � � any minimal integral labelling of C� must contain � as
a label which means that using the above construction for W� would result in
one of the vertices on the rim having the same label as the centre which is not
allowed� In fact� W�

	� K� and so ��W� � ��K� � 	�

We have established

Theorem � For odd n � 	� ��Wn � n� �
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