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Abstract

A graph G is called a sum graph if there exists a labelling of the vertices of G by

distinct positive integers such that the vertices labelled u and v are adjacent if and

only if there exists a vertex labelled u� v� If G is not a sum graph� adding a �nite

number of isolated vertices to it will always yield a sum graph� and the sum number

��G� of G is the smallest number of isolated vertices that will achieve this result�

A labelling that realizes G �K�G� as a sum graph is said to be optimal� In this

paper we consider G � Hm�n� the complete n	partite graph on n � 
 sets of m � 


nonadjacent vertices� We give an optimal labelling to show that ��H��n� � �n� ��

and in the general case we give constructive proofs that ��Hm�n� � �mn� and

��Hm�n� � O�mn��� We conjecture that ��Hm�n� is asymptotically greater than

mn� the cardinality of the vertex set� if so� then Hm�n is the �rst known graph with

this property� We also provide for the �rst time an optimal labelling of the complete

bipartite graph Km�n whose smallest label is ��

�



� Introduction

Since the introduction of sum graphs by Harary ���� a number of easily�stated but tanta�

lizingly di	cult problems have emerged


�� Do there exist graphs G � �V�E such that ��G � ��jV j�� This question was

answered in the a	rmative by Gould � R�odl ���� but their methods provide no

means of constructing such graphs� In fact� the only known class of graphs G that

even achieves as much as ��G � ��jEj is the class of wheels Wn with n spokes
 as

shown in ��� and ����

��Wn � n�� � � for n even�

� n for n odd�

With the possible exception of the graphs considered in this paper� no graphs are

known whose sum number exceeds jV j in an asymptotic sense�

�� E�orts to �nd graphs of large sum number have of course led to a consideration of

graphs with many edges� for example� complete graphs Kn and complete bipartite

graphs Km�n� But for these graphs it turns out that ��G � ��jV j
 Bergstrand et

al� showed ��� that for n � �� ��Kn � �n� �� while Harts�eld and Smyth showed

��� that for n � m � �� ��Km�n � d��m � n� ���e�

�� Attention has also been directed toward graphs of small sum number� in particular

toward unit graphs
 graphs G such that ��G � �� Ellingham showed ��� that for

every forest F � ��F  � �� and Smyth showed ��� that for all integers n � � and

m � n����bn���c� there exists a unit graph with n vertices and m edges� Further

e�orts to characterize unit graphs have so far been unsuccessful�

�� In a labelling of a sum graph� vertices whose label corresponds to an edge �u� v are

said to be working vertices� It has been realized that certain graphs can only be

labelled in such a way that all the working vertices are also isolates� such graphs

are called exclusive� Exclusive graphs are of interest for two reasons
 they may be

easier to label optimally� and they may be more likely to have a large sum number�

It turns out that Kn and Wn are exclusive� while F and Km�n are not� We show in

this paper that Hm�n also is exclusive� but the characterization of exclusive graphs

remains an open problem�
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�� Optimal labellings that include � as the least label are called minimal labellings� It

is not known whether or not every graph G has at least one minimal labelling� The

labellings presented in this paper� for Hm�n and Km�n� are either minimal or have

equivalent minimal labellings�

�� The number of di�erent edges �u� v to which a vertex label corresponds is called the

multiplicity ��� of the vertex� Thus nonworking vertices have zero multiplicity� For

certain graphs � notably Kn and Km�n � the multiplicity pattern of the vertices

is the same for every optimal labelling� Thus �nding a means of specifying the

multiplicity pattern for these kinds of graphs would eliminate the need to exhibit

a speci�c labelling� No general results for identifying multiplicity patterns have so

far been discovered� though the concept is useful in this paper� as in others� for

establishing other properties of sum graphs�

In his original paper ���� Harary mentions the curious case of the cycle Cn� n � �
 for

n �� �� ��Cn � �� while ��C� � �� In a recent paper ���� Sharary �nds C� also to be

an anomaly for �integral� sum graphs� In this paper� we describe a minimal labelling for

H��n �sometimes called the �cocktail party graph� that achieves ��H��n � �n��� n � ��

Since H��� is isomorphic to C� and ��H��� � �� it appears that as a component of a sum

graph� C� is more naturally regarded as a cocktail party graph than as a cycle� More

generally� we give a lower bound for Hm�n and show also that ��Hm�n � O�mn�� Finally�

we extend our discussion of bipartite graphs by exhibiting for the �rst time a minimal

labelling for Km�n�

� The Working Vertices

Throughout this paper we refer to vertices by their labels� usually of the form vi� If two

vertices are not adjacent� we say that they are independent� For Hm�n we use the symbol

fig to denote the independent set fvi�� vi
�� � � � � vi

mg� that is� the set of all vertices that

are independent of a speci�ed vertex vi� Note that this set includes vi itself� The vertex

vi�vj is said to correspond to the edge �vi� vj� and we write vi�fjg to denote the set of

distinct vertices corresponding to the edges joining vi to fjg�

Theorem ��� Hm�n is exclusive�

�



Proof Let Hm�n � �V�E� Assume that Hm�n is not exclusive and let vk � vi�vj denote

the largest working vertex in V � Without loss of generality� suppose that vi � vj � vk�

This leads to two cases


�� vk is adjacent to both vi and vj�

�� vk is adjacent to exactly one of vi�vj �assumed without loss of generality to be vi�

Case �� vk �� fig � fjg�

In this case the vertices vk�v
�
j � � � � � vk�v

m
j all exist� Then since for every h � ���m�

vk � vj
h � �vi�vj

h � vj�

it follows that all the vertices vi�fjg � V � Similarly� vj�fig � V � Setting V � �

�vj�fig � �vi�fjg� we see that m � jV �j � �m� ��

If jV �j � m� there is at least one vertex in V � not contained in fkg� which means that at

least one of the vertices in V � must be adjacent to vk� Then either there exists p � ���m

such that �vi�vj
p� vk � E� or there exists q � ���m such that �vj�vi

q� vk � E� This

implies that either vi�vk � V or vj�vk � V � contradicting the original assumption that

vk is the largest working nonisolate� We conclude that jV �j � m� hence that V � � fkg�

Let vi
�� vj

� and vk
� �� vk denote the smallest vertices in fig� fjg and fkg� respectively�

Then

vk
� � vi�vj

� � vi
��vj�

and it is clear that vi
� �� vi and vj

� �� vj� Now consider the edge �vk
�� vj

� to which the

vertex

vk
��vj

� � �vi
��vj

� � vj

corresponds� This tells us that vi
��vj

� is a working vertex in V that is however not in

fkg� Hence vk�vi
��vj

� is a working vertex� so that �vk�vi
�� vj

� � E and vk�vi
� � V �

Since vk�vi
� � vk� this contradicts the assumption that vk is the largest working vertex

in V � and so we conclude that Case � is impossible�

Case �� vk � fjg�

Suppose there exists q � ���m such that vi
q�vj �� fjg� But since vi

q�vk � �vi
q�vj � vi

must exist� it follows that vi
q�vj � V � Hence �vi

q�vj� vk is an edge� so that �vi
q�vk� vj

is a vertex� revealing vi
q�vk as a working nonisolate greater than vk� a contradiction�

�



We conclude then that vi
q�vj � fjg for all q � ���m� That is� each element of vj�fig

is contained in fjg� But since there are m elements in each set� it therefore follows

that vj�fig � fjg� an impossibility since vj �� vj�fig� Thus Case � is also impossible�

completing the proof� �

For n � � note that Hm�� � Km�m� The complete bipartite graph is not generally

exclusive ��� but the symmetric complete bipartite graph Km�m is exclusive� suggesting

that for the purposes of sum graphs it more naturally resides in Hm�n than in Km�n�

� The Sum Number of Hm�n

��� Lower � Upper Bounds for ��Hm�n�

Theorem ��� ��Hm�n � �mn� �m� ��

Proof Let v� and v� denote the smallest and largest labels in V � respectively� under some

labelling of Hm�n� Consider the sets of vertices

V � � fv��vi 
 �v�� vi � Eg�

V � � fvi�v
� 
 �vi� v

� � Eg�

Observe that jV �j � jV �j � mn�m� Observe also that if �v�� v� � E� then v��v� is both

the greatest element in V � and the least element in V �� otherwise� V � � V � � �� Thus

�mn� �m � jV � � V �j � �mn� �m� ��

from which the result follows� �

Theorem ���

��Hm�n � ��m�
�

�
n� �

�n

�
� ���� n even�

� ��m�
�

�
�n� �� � ��m�

�

�
�n� � � ���� n odd�

�



Proof We exhibit labellings of Hm�n that yield the sum numbers speci�ed�

For even n � �l� number the vertices of pairs H i of independent sets as follows


H i � fk � �i � f�� �� � � � � �m� �gg � fk � �i � f�� �� � � � � �mgg�  � i � l � ��

where �i � ��m � ���i � � and k is chosen su	ciently large to avoid any accidental

additional edges �say k � �l�

For the isolates� let Ii be the set of isolates arising from edges between the two independent

sets in H i and let Iij be the set of isolates arising from edges between H i and Hj �i �� j�

Then

Ii � f�k � ��i � f�� �� � � � � �m� �gg and Iij � f�k � ��i � �j � f�� �� � � � � �mgg�

Simple counting yields jIij � �m� � and jIijj � �m� �� If we further let

I� �
�
i

Ii and I� �
�
i�j

Iij

and denote the set of isolates by I� then

I � I� � I�

and jIj � jI�j� jI�j � jI� � I�j

� l��m� � �

�
l

�

�
��m� �� jI� � I�j�

It remains to calculate jI� � I�j�

By virtue of the numbering� we have maxIi � minI�i���� i �  � � � � � l � � along with

minI� � maxI�� accounting for l repetitions� Further repetitions stem from noting that

the two greatest terms in I�i are duplicated� as are the two least terms in I�i� accounting

for two repetitions from each of l � � sets� Totalling gives jI� � I�j � �l � �� so we have

jIj � l��m� � �

�
l

�

�
��m� �� ��l � �

� �l�m�
�

�
�l� � �l � ��

For n � �l � � label the �rst independent set J as

k � f�� �� � � � � mg

�



and the remaining �l sets in a way similar to the even case


H i � fk � �i � f�� �� � � � � �m� �gg � fk � �i � f�� �� � � � � �mgg�  � i � l � ��

where �i � �i��m� � � ��i � ���m� � and k � �l�

This time the set of isolates are considered as a union of three sets


Ii accounting for edges between vertices in H i�

IJi accounting for edges between J and H i�

Iij accounting for edges between H i and Hj� i �� j�

where

Ii � f�k � ��i � f�� �� � � � � �m� �gg�

IJi � f�k � �i � f�� �� � � � � �mgg�

Iij � f�k � ��i � �j � f�� �� � � � � �mgg�

Let

I� �
�
i

Ii� I� �
�
i

IJi� I� �
�
i�j

Iij�

and� similar to the case of even n� we have I � I� � I� � I�� In this case� jIij �

�m� �� jIJij � �m� � and jIijj � �m� � and as before

jIj � jI�j� jI�j� jI�j � jI� � I�j � jI� � I�j � jI� � I�j� jI� � I� � I�j

� jI�j� jI�j� jI�j � j duplicates j

� l��m� � � l��m� � �

�
l

�

�
��m� �� j duplicates j�

where as above it remains to calculate the duplicates�

In a similar manner to the even case we have maxIi � minIJi���� i �  � � � � � l � �

along with minI� � maxIJ� accounting for l repetitions �ie jI�� I�j � l� Again the two

greatest terms in IJi are duplicated� as are the two least terms in I�i� accounting for two

repetitions in each of l� � sets
 jI�� I�j � ��l� �� Since jI�� I�j � jI�� I�� I�j �  �

totalling gives the number of repetitions as �l � �� so we have

jIj � l��m� � � l��m� � �

�
l

�

�
��m� �� ��l � �

� �l�m� �ml �
�

�
�l� � �l � ��

�



Expressing l in terms of n and doing some manipulation yields the forms given in the

statement of the theorem� �

We conjecture that in fact ��Hm�n � ��mn� in general� even though� as the next

section shows� a better result holds for m � ��

��� The Sum Number of H��n

Substituting m � � into Theorem ��� yields ��H��n � �n��� We now present a labelling

of the vertices of H��n that achieves ��H��n � �n� ��

This labelling is also based on the labelling for the complete graph K�n as presented

in ���� Note that

��H��n � �n� �

� �n� �� �

� ��K�n� ��

We construct H��n by considering K�n and removing n independent edges with just two

isolates� By labelling K�n according to

vi � � � ��i� �� i � �� � � � � �n�

we induce a labelling on the isolates according to

vj � � � ��i� �� i � �� � � � � �n� ��

To apply this labelling to H��n


	 When n is even� remove the smallest and largest isolates with multiplicity n�� and

the corresponding edges from the graph�

	 For n odd� remove the smallest isolate with multiplicity �n � ��� and the largest

isolate with multiplicity �n� ���� Remove the corresponding edges�

In both cases we have removed � isolates from the sum graph for K�n and n corresponding

nonadjacent edges�

�



� A Minimal Labelling for Km�n

As stated in the Introduction� a minimal labelling is an optimal sum graph labelling in

which the smallest label is �� In ��� Harts�eld and Smyth gave a labelling for Km�n which�

in most cases� was not minimal� We present a minimal labelling for all complete bipartite

graphs�

Throughout we assume m � n� and label the partite sets Vm and Vn of cardinality m

and n respectively� In keeping with the manner of ���� we �rst consider the case where

m � n is odd and denote Vn as the non intersecting union of two sets of vertices Q� and

Q� with cardinalities respectively q� and q��� n� q�� R refers to the set of isolates� The

labelling is as follows�

Number Vm � � ix i �  � �� � � � � m� � x � max�m� q�� q�

Number Q� y � jx j �  � �� � � � � q� � � q� �
n�m��

�

Number Q� y � kx � � k �  � �� � � � � n� q� � � x� � � y � �x� �

Number R y � lx � � l �  � �� � � � � ��Km�n� �

Selecting y in the interval �x� �� �x� � removes the possibility of vertices in Vm and Vn

having the same label�

The following lemma shows that we have accounted for all edges�

Lemma ��� Suppose that a � Vm� Then

�i� for b � Q�� a � b � Q��

�ii� for b � Q�� a� b � R�

Proof �i

a � � � ix i �  � �� � � � � m� �

b � y � jx j �  � �� � � � � q� � �

a� b � y � �i � jx� � i� j �  � �� � � � � m� � � q� � �

Note that m� � � q� � � � m� n�m��
�

� � � n�m��
�

� n� q� � �� So

fa� b 
 a � Vm� b � Q�g � Q��

�ii

�



a � � � ix i �  � �� � � � � m� �

b � y � kx � � k �  � �� � � � � n� q� � �

a� b � y � �k � ix� � k � i �  � �� � � � � m� � � n� q� � �

where m� � � n� q� � � � m� � � n� n�m��
�

� � � �m�n��
�

� � � ��Km�n� �� So

fa� b 
 a � Vm� b � Q�g � R�

�

As in ��� the case m� n even follows by labelling Km�n�� as above and removing one

vertex �and incident edges from Q� leaving a labelling for Km�n�
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