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ABSTRACT

Let G � �V�E� denote a �nite simple undirected connected graph of order n �
jV j and diameter D� For any integer k � ��� D	
 a proper k�colouring of G is a
labelling of the vertices V such that no two distinct vertices at distance k or less
have the same label� We let �

k
�G�
 the k�chromatic number of G
 denote the least

number of labels required to achieve a proper k�colouring of G� In this paper we
show that there exists an in�nite class G� of graphs of order n and diameter D � �
such that
 over all graphs G � G�
 �

D��
�G� � 

�p
Dn

�
� Constructions are speci�ed

for graphs in the class G��

� INTRODUCTION

Let G � �V�E� denote a �nite simple undirected connected graph of order n �
jV j and diameter D � �� For any integer k � ��� D	
 a proper k�colouring of G
is a labelling of the vertices V such that no two distinct vertices at distance k or
less have the same label� For given G
 we let �

k
�G�
 the k�chromatic number of G


denote the least number of labels required to achieve a proper k�colouring of G�

Problems associated with the estimation of the k�chromatic number were sur�
veyed some years ago by Gionfriddo �G��	� A common approach has been to de�ne
the k�density �

k
�G� to be the maximum order over all subgraphs of G with diameter

k� �For example
 if k � � and G is triangle�free
 then �
�
�G� � ��� The nonnegative

quantity
��
k
�G� � �

k
�G�� �

k
�G�

is then considered� in particular
 attention focusses on small values of k and small
values of ��

k
�G� � that is
 cases in which the k�density is close to the k�chromatic

number� Now let vk�h� denote the least integer such that there exists a graph G of
order vk�h� for which ��

k
�G� � h� �For example
 if k � � and h � �
 then v���� � �

corresponding to G � P�
 the path of length ��� Some progress has been made
establishing bounds on vk�h� in more general cases �GV��	
 but exact calculation
seems to be very di�cult
 even for k � � and small values of h�

In this paper
 a di�erent approach is adopted� bounds for �
k
�G� are related to

the diameter of G� It turns out that
 for k � D � �
 it is possible to determine
quite sharp bounds which correspond to interesting constructions�
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Thus
 for each choice D � �� �� � � � � and for every integer n � D
 let G
D�n

denote
the class of all graphs G of diameter D and order n� Then
 over all graphs G � G

D�n



let �
D�n�k

�respectively
 �
D�n�k

� denote the minimum �respectively
 maximum� value
attained by �

k
�G�� As Theorem ��� shows
 the upper bound is easy to determine�

Theorem ��� �
D�n�k

� n�D � k�

Proof We look for the greatest number of labels that can possibly be used in a
minimum proper k�colouring of G� Observe �rst that there exists a shortest
path P

D��
in G of length D� Then a minimum proper k�colouring of P

D��

requires k�� distinct labels� If the remaining n�D� � vertices of G must
all be given labels distinct from the k� � labels used in P

D��

 then a total

of n�D�k labels will be used to colour G� Thus this total is the maximum
possible value that �

k
�G� could take� But this value is actually attained for

the graph G formed by joining one end vertex of a path P
D
of length D� �

to every vertex of a complete graph K
n�D

� the resulting graph G then has
n vertices
 diameter D
 and k�chromatic number n�D � k� �

As a special case of this result
 we see that �
D�n�D

� n� since also �
D�n�D

� n
 it
follows that

�
D
�G� � n

for any given graph G� At the other extreme
 for k � �
 Theorem ��� tells us that
�
D�n��

� n �D � �� To determine �
D�n��


 consider the graph G formed by joining

n�D isolated vertices K
n�D

to one end of a path P
D
of length D��� The resulting

graph G has n vertices
 diameter D
 and ��chromatic number �� �Indeed
 G may
be any tree on n vertices with diameter D�� Since for any k � �
 �

D�n�k
� �
 it

follows that �
D�n��

� �
 so that
 for any given graph G


� � �
�
�G� � n�D � ��

For � 	 k 	 D
 the value of �
D�n�k

is more di�cult to determine� In the
remainder of this article
 we consider the case k � D � �� to simplify notation
 we
write �

D��
� �

D�n�D��
�

For the estimation of �
D��


 the �rst interesting case that arises is D � �
 which
we now begin to consider� It follows from Theorem � of �BRZ��	 that if D � � for
a graph G
 then the diameter of the complement graph G is D � �� �This result
was later rediscovered in �HR��	�� Recall now the result of Bloom
 Kennedy and
Quintas �BKQ��	 that G has diameter � if and only if G is not empty and G is not
spanned by a double star� �A spanning double star of G is a spanning tree of G
which consists of two stars with centres u and v joined by the edge uv�� Thus for
D � � there are exactly two possibilities�

��� D � �
 in which case G is spanned by a double star�
��� D � �
 in which case G is NOT spanned by a double star�

In this section we deal with the �rst and more straightforward of these possibilities�

Theorem ��� Let G�
��n

denote the set of all graphs G � G
��n

with complements

G � G
��n

� Denote by ��
�
the restriction of �

�
to G�

��n
� Then



�

��
�
� dn
�e � ��

Proof Since G is spanned by a double star
 we may divide the vertices V into three
non�empty sets U 
 S and T � U consists of the centres of the two spanning
stars
 S consists of the radial vertices of one star
 T the radial vertices of
the other� Without loss of generality
 suppose that jSj � jT j� Now consider
a proper ��colouring of G� We see that all labels in S �U must be distinct

as so also must all labels in T �U � Then
 for given n
 a minimum number of
labels will be used if and only if the following two conditions are satis�ed�

��� every label used in S is also used in T �
��� jT j � jSj � ��

When n is even
 so that jT j � jSj
 we have n � �jSj � � and �
�
�G� �

n
� � �� For odd n
 we have similarly jT j � jSj � �
 n � �jSj � �
 and
�
�
�G� � �n���
���� Thus a double star which satis�es condition ��� can

be labelled to yield a minimum ��colouring using dn
�e � � labels� From
this fact the result follows� �

As we shall see below
 the lower bound of Theorem ��� is exceptional� It appears
that for other classes of graphs
 �

D��
� O�

p
Dn�� We begin our consideration of

these graphs in Section �
 by investigating the graphs of diameter � whose comple�
ments have diameter �� In Section � we look in detail at constructions for graphs
of even diameter D � �
 and then in Section � we indicate how these constructions
may be extended to graphs of odd diameter D � ��

� DIAMETER D � �

In this section we study graphs G � G��
��n


 where G��
��n

denotes the set of all graphs
of G

��n
whose complements are in G

��n
� In particular
 we display an in�nite subclass

G�
��n

� G��
��n

of graphs G whose ��chromatic number

�
�
�G� �

p
�n� �� ��

The graphs in this subclass are constructed based on an integer parameter � �
�� �� � � � �
 and so we denote them G�� We shall see that G� has order n � �������

size m � ���� � ��
 and of course diameter D � ��

To construct the G�
 we begin with two copies of the complete graph K���


which we call K
���
��� and K

���
���� Corresponding to each i � �� �
 we introduce � � �

disjoint sets of � isolated vertices K� 
 which we call K
�i���
� �K

�i���
� � � � � �K

�i�����
� �

Let U �i� � fu�i�� � u
�i�
� � � � � � u

�i�
���g denote the vertices of K

�i�
���
 and for each j �

�� �� � � � � ���
 let V �i�j� � fv�i�j�� � v
�i�j�
� � � � � � v

�i�j�
� g denote the vertices of K�i�j�

� � We

now introduce two sets of edges �beyond those already found in the K
�i�
�����

��� For every i � �� �� j � �� �� � � � � � � �� h � �� �� � � � � �� u�i�j v
�i�j�
h is an edge�

�This joins each vertex of K
�i�
��� to each of � vertices in one of the sets V �i�j���

��� For every j � �� �� � � � � � � �� j� � �� �� � � � � � � �� h � �� �� � � � � �� v���j�h v
���j��
h�

is an edge if and only if h� is computed by the following algorithm�



�

h� 	� j � j� � h � ��
if h� � � then

fh� 	� h� � ��
if j � j� � � � � then

h� 	� h� � �g�
�This joins each vertex of V ���j� to a single vertex in each of V ���j��
 j� �

�� �� � � � � � � �
 in such a way that v
���j�
h v

���j��
h is never an edge for any choice

of j
 j� and h��

To the vertices of G� we now assign labels L as follows� for every i � �� � and
for every j � �� �� � � � � � � � set

L�u
�i�
j �	� j� and


h � �� �� � � � � � � L�v
�i�j�
h � 	� � � h� ��

Thus a total of �� � � distinct labels are assigned� we claim that �
�
�G�� � �� � ��

To prove this claim
 we �rst show that in fact G� has diameter D � �� Consider

�rst the edges v
���j�
h v

���j��
h� and observe that
 for �xed j and j�
 as h assumes the

values �� �� � � � � �
 h� assumes distinct values in the cyclic permutation of �� �� � � � � �

which begins at one of fj � j�� j� j�� �� j� j� � � ��g� thus every vertex of K���j�
�

is adjacent to a single distinct vertex of K���j��
� � Clearly this statement is true also

when the superscripts � and � are interchanged� It follows then that every vertex of

K
�i�
��� is distance exactly � from every vertex ofK

���i�j�
� for every j � �� �� � � � � ���


and hence distance exactly � from every vertex of K
���i�
��� � Furthermore
 we see that

whenever v
�i�j�
h v

���i�j��
h� is an edge
 then v

�i�j�
h is distance exactly � from every vertex

v
���i�j��
h�� 
 where h�� � ��� �	 and h�� �� h�� Finally
 observe that v�i�j�h is distance

exactly � from every vertex v�i�j�h� 
 h� �� h
 and distance exactly � from every vertex

v
�i�j��
h� 
 j� �� j� We conclude that D � � and note that
 moreover
 every vertex of
G� is peripheral� Note also that G� is not spanned by a double star�

To show that the labelling speci�ed yields a proper ��colouring
 it is necessary
to show that all vertices with the same label are distance � from each other� This
is clearly true for the vertices of K

�i�
���� To prove this result for the labels �� � �

�� � � � � �� � �
 it su�ces to show that

� v
�i�j�
h v

���i�j��
h is never an edge�

� v
�i�j�
h is always adjacent to � � � vertices with distinct labels�

The �rst of these propositions is a direct consequence of the method of calculation
of h� speci�ed in ��� above� if h� � h then either j � j�� � � �
 an impossibility
 or
j�j��� � �
 in which case the value of h� is incremented by one
 so as to be no longer
equal to h� To prove the second proposition
 consider �rst the edges joining a vertex

v
���j�
h to V �����
 for every h � �� �� � � � � �� These edges will be v

���j�
h v

�����
h�


 where h�
is one element of the set H

�
� fj � h� j� h� �� j� h� � � �g� More generally
 the

vertices v
�����
h�

� v
�����
h�

� � � � � v
�������
h���

of V ������ V ������ � � � � V �������
 respectively
 which



�

are adjacent to v
���j�
h are identi�ed by the cyclic permutation �h�� h�� � � � � h���� of

�� �� � � � � � which begins at the element of H
�
speci�ed by ��� and omits h� These

vertices will have � � � distinct labels � � h� � �� � � h� � �� � � � � � � h��� � �� A

similar argument establishes also that vertices v�����h�
� v

�����
h�

� � � � � v
�������
h���

adjacent to

a given vertex v
���j�
h all have distinct labels� We conclude that �

�
�G�� � �� � �
 as

required� We state this result formally as follows�

Theorem ��� For every integer � � �
 the graphs G� of order n � ���� � �� and
diameter � have ��chromatic number

p
�n� �� �� Thus

�
�
� O�

p
n�� �

Finally
 we remark that for � � � a slight improvement can be made to the above
construction
 yielding n � ��� � �� and �

�
�G�� �

p
�n� � � ��

� EVEN DIAMETER D � �

In this section we �rst present a construction for graphs G � G
��n

for which the
�D����chromatic number

�
D��

�G� �
l
�
p
n� �

m
�

We then show how to generalize this construction to graphs G � G
�d�n

of arbitrary
even diameter D � �d
 where d � �� �� � � � �

We note in passing the result of Bos�ak
 Rosa and Zn�am �BRZ��	 �later rediscov�
ered in �S��	� that for graphs G of diameter D � �
 the complement graph G must
have diameter D � �� Thus the special case dealt with in Theorem ��� does not
arise for D � ��

Consider a graph G � �V�E� � G
��n

� There exists a shortest path s�u�uu�s� in
G joining peripheral vertices s� and s�� Let U � fu� u�� u�g
 and for j � �� � let Sj
denote the set of all vertices v�j� �� u such that ujv�j� � E� Then
 in particular

sj � Sj � Observe that a proper �D � ���colouring of G requires that all the labels
assigned to U � Sj be distinct� that is


�
�
�G� � max

j����
jSj j� ��

The lower bound can of course be attained by a graph G whose every shortest path
from S� to S� is of length D�

Suppose nowmore generally that V contains p � � distinct subsets S�� S�� � � � � Sp
such that every shortest path from one subset to another

� is of length D�
� passes through u�

Then the graph G of least order n satisfying these conditions has vertex set V �
U � ��p

j��Sj
�

 where U � fu� u�� u�� � � � � upg and

�
�
�G� � max

��j�p
jSjj� �p � ���



�

Let s� denote the average order of the Sj � that is
 s
� � �jS�j� jS�j� � � �� jSpj�
p�

Then
n � ps� � p � �� � � � �����

Observe now that �
�
can be minimized by imposing the further condition on G that

bs�c � jSjj � bs�c � �� � � � �����

for every j � �� �� � � � � p� Then
 using �����


�
�
�G� � ds�e � p� �

� d�n � ��
pe� p�

an expression which achieves its minimum value for

p �
lp

n� �
m
� � � � �����

Thus
 if the subsets of V are chosen to satisfy ����� and �����
 then

�
�
�G� �

�
�n� ��

�lp
n� �

m�
�
lp

n� �
m
� � � � �����

We now state three noteworthy identities �left as exercises for the reader�� For any
positive real number x
 let

C�x� �
�
x
�lp

x
m�

�
lp

x
m
�

For x � �
 let

F �x� �
�
x
�jp

x
k�

�
jp

x
k
�

Then
C�x� �

l
�
p
dxe

m
� � � � ����a�

F �x� �
l
�
p
dxe

m
� � � � ����b�

if there exists no integer N such that N� � � 	 x 	 N�� and

F �x� �
l
�
p
dxe

m
� �� � � � ����c�

otherwise� Thus
 in view of ����a�
 ����� becomes

�
�
�G� �

l
�
p
n� �

m
� � � � �����

A graph G which satis�es ����� may be characterized as a graph of diameter D �

�
 radius d � �
 a single centre u
 and n�
lp

n� �
m
�� peripheral nodes divided as



	

equally as possible into
lp

n� �
m
mutually peripheral subsets� An example of such

a graph is formed by
lp

n� �
m
complete graphs Ks
 where ds�e�� � s � ds�e��


each with a single vertex adjacent to u�

Consider now a graph G � G
D�n


 where D � �d for some integer d � �
 and
suppose as before that the vertex set V contains p � � distinct subsets S�� S�� � � � � Sp
as de�ned above� De�ning s� as before
 we �nd

n � ps� � p�d� �� � �� � � � �����

analogous to ������ Then
 applying ����� and �����
 we �nd that

�
D��

�G� � ds�e� p�d� �� � �

� d�n � ��
pe� �d� ���p� �� � ��
� � � �����

Now consider the function ���p� � �n � ��
p� �d� ���p� �� � �
 di�erentiable in
any interval not containing p � �� This function attains its minimum for

d��

dp
� ��n� ��
p� � �d� �� � ��

that is
 for p �
q

n��
d�� � Then ����� is minimized by choosing either p � p� ��q

n��
d��

�
or p � p� �

�q
n��
d��

�
� To estimate the minimum value of �����
 consider

�rst

���p�� � �d� ��

�	n� �

d� �


��rn� �

d� �

�
�

�r
n� �

d� �

�
� �


� ��

We see that

�d� ��
	
C
	n� �

d� �



� �



� ���p�� � �d� ��

	
C
	n� �

d� �



� �



�

where C
	
n��
d��



is given by ����a�� From ����b� and ����c�
 it follows then that

���p�� � ���p�� � ���p�� � ��

and since
 for every positive value of p


� � �
D��

�G�� ���p� � ��

we have the main result of this section�

Theorem ��� For every even integer D � �d
 d � �
 and for every integer n � D

there exists a graph G � G

D�n
such that

�d� ��

��
�

s�
n � �

d� �

��
� �

�
� �

D��
�G�� � � �d� ��

��
�

s�
n� �

d� �

��
� �

�
�






Hence �
D��

� O
�p

Dn
�
� �

As in the special case d � �
 a graph G which satis�es Theorem ��� is character�
ized by radius d
 a single centre u
 and n � �d� ��p� � � peripheral nodes divided

as equally as possible into p� mutually peripheral subsets
 where p� �

�q
n��
d��

�
�

� ODD DIAMETER D � �

Here we consider graphs G � G
�d���n

of odd diameter D � �d � �
 d � �� The
construction is similar to the construction for even diameter �d� the main di�erence
is that the centre u is replaced by a complete subgraph Kp
 which thus increases
the diameter by one� The results apply also to the case D � � �d � ���

As before
 we suppose that V contains p � � mutually peripheral subsets
S�� S�� � � � � Sp such that every shortest path from one subset to another passes
through at least two vertices of the �central� complete subgraph Kp� If as before
s� denotes the average size of jSjj
 j � �� �� � � � � p
 then
 analogous to �����


n � p�s� � d�� � � � �����

By choosing the orders of the Sj to be as nearly equal as possible
 we can make

�
D��

�G� � s� � pd

� n
p� �p� ��d�
� � � �����

from ������ We �nd then that �
D��

�G� is minimized for p �
jp

n
d
k
or
lp

n
d
m
�

Substituting these values into ����� and applying ����a������c�
 we �nd

Theorem ��� For every odd integer D � �d � �
 d � �
 and for every integer
n � D
 there exists a graph G � G

D�n
such that

d
	l

�
p
dn
de

m
� �



� �

D��
�G� � d

	l
�
p
dn
de

m
� �



�

Hence �
D��

� O
�p

Dn
�
� �

Note that in the special case D � �
 the construction of Section � yields a lower
�D � ���chromatic number than the construction given here� More generally
 it is
not known whether the constructions given in this paper are best possible
 in the
sense of yielding
 for given D and n
 the least possible value of �

D��
�
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