Murdoch

UNIVERSITY

MURDOCH RESEARCH REPOSITORY

Authors Version

Smyth, W.F. (1998) Graphs with small generalized chromatic number. Utilitas Mathematica, 53.pp. 167-177.
http://researchrepository.murdoch.edu.au/27558/

Copyright: © 1998 Utilitas Mathematica Publishing Inc
It is posted here for your personal use. No further distribution is permitted.

GRAPHS WITH SMALL GENERALIZED CHROMATIC NUMBER

W. F. Smyth
Department of Computer Science \& Systems
McMaster University
Hamilton, Ontario L8S 4K1 Canada
School of Computing
Curtin University of Technology
Perth WA 6001 Australia

Abstract

Let $G=(V, E)$ denote a finite simple undirected connected graph of order $n=$ $|V|$ and diameter D. For any integer $k \in[1, D]$, a proper k-colouring of G is a labelling of the vertices V such that no two distinct vertices at distance k or less have the same label. We let $\gamma_{k}(G)$, the k-chromatic number of G, denote the least number of labels required to achieve a proper k-colouring of G. In this paper we show that there exists an infinite class \mathcal{G}^{*} of graphs of order n and diameter $D \geq 3$ such that, over all graphs $G \in \mathcal{G}^{*}, \gamma_{D-1}(G) \in \Theta(\sqrt{D n})$. Constructions are specified for graphs in the class \mathcal{G}^{*}.

1 INTRODUCTION

Let $G=(V, E)$ denote a finite simple undirected connected graph of order $n=$ $|V|$ and diameter $D>0$. For any integer $k \in[1, D]$, a proper k-colouring of G is a labelling of the vertices V such that no two distinct vertices at distance k or less have the same label. For given G, we let $\gamma_{k}(G)$, the k-chromatic number of G, denote the least number of labels required to achieve a proper k-colouring of G.

Problems associated with the estimation of the k-chromatic number were surveyed some years ago by Gionfriddo [G87]. A common approach has been to define the k-density $\rho_{k}(G)$ to be the maximum order over all subgraphs of G with diameter k. (For example, if $k=1$ and G is triangle-free, then $\rho_{1}(G)=2$.) The nonnegative quantity

$$
\gamma_{k}^{\prime}(G)=\gamma_{k}(G)-\rho_{k}(G)
$$

is then considered; in particular, attention focusses on small values of k and small values of $\gamma_{k}^{\prime}(G)$ - that is, cases in which the k-density is close to the k-chromatic number. Now let $v_{k}(h)$ denote the least integer such that there exists a graph G of order $v_{k}(h)$ for which $\gamma_{k}^{\prime}(G)=h$. (For example, if $k=1$ and $h=0$, then $v_{1}(0)=2$ corresponding to $G=P_{2}$, the path of length 1.) Some progress has been made establishing bounds on $v_{k}(h)$ in more general cases [GV85], but exact calculation seems to be very difficult, even for $k=2$ and small values of h.

In this paper, a different approach is adopted: bounds for $\gamma_{k}(G)$ are related to the diameter of G. It turns out that, for $k=D-1$, it is possible to determine quite sharp bounds which correspond to interesting constructions.

Thus, for each choice $D=1,2, \ldots$ and for every integer $n>D$, let $\mathcal{G}_{D, n}$ denote the class of all graphs G of diameter D and order n. Then, over all graphs $G \in \mathcal{G}_{D, n}$, let $\alpha_{D, n, k}$ (respectively, $\beta_{D, n, k}$) denote the minimum (respectively, maximum) value attained by $\gamma_{k}(G)$. As Theorem 1.1 shows, the upper bound is easy to determine:
Theorem $1.1 \beta_{D, n, k}=n-D+k$.
Proof We look for the greatest number of labels that can possibly be used in a minimum proper k-colouring of G. Observe first that there exists a shortest path P_{D+1} in G of length D. Then a minimum proper k-colouring of P_{D+1} requires $k+1$ distinct labels. If the remaining $n-D-1$ vertices of G must all be given labels distinct from the $k+1$ labels used in P_{D+1}, then a total of $n-D+k$ labels will be used to colour G. Thus this total is the maximum possible value that $\gamma_{k}(G)$ could take. But this value is actually attained for the graph G formed by joining one end vertex of a path P_{D} of length $D-1$ to every vertex of a complete graph K_{n-D} : the resulting graph G then has n vertices, diameter D, and k-chromatic number $n-D+k$.

As a special case of this result, we see that $\beta_{D, n, D}=n$; since also $\alpha_{D, n, D}=n$, it follows that

$$
\gamma_{D}(G)=n
$$

for any given graph G. At the other extreme, for $k=1$, Theorem 1.1 tells us that $\beta_{D, n, 1}=n-D+1$. To determine $\alpha_{D, n, 1}$, consider the graph G formed by joining $n-D$ isolated vertices \bar{K}_{n-D} to one end of a path P_{D} of length $D-1$. The resulting graph G has n vertices, diameter D, and 1-chromatic number 2. (Indeed, G may be any tree on n vertices with diameter D.) Since for any $k \geq 1, \alpha_{D, n, k}>1$, it follows that $\alpha_{D, n, 1}=2$, so that, for any given graph G,

$$
2 \leq \gamma_{1}(G) \leq n-D+1
$$

For $1<k<D$, the value of $\alpha_{D, n, k}$ is more difficult to determine. In the remainder of this article, we consider the case $k=D-1$; to simplify notation, we write $\alpha_{D-1} \equiv \alpha_{D, n, D-1}$.

For the estimation of α_{D-1}, the first interesting case that arises is $D=3$, which we now begin to consider. It follows from Theorem 5 of [BRZ68] that if $D \geq 3$ for a graph G, then the diameter of the complement graph \bar{G} is $\bar{D} \leq \mathbf{3}$. (This result was later rediscovered in [HR85].) Recall now the result of Bloom, Kennedy and Quintas [BKQ87] that G has diameter 2 if and only if \bar{G} is not empty and \bar{G} is not spanned by a double star. (A spanning double star of G is a spanning tree of G which consists of two stars with centres u and v joined by the edge $u v$.) Thus for $D=3$ there are exactly two possibilities:
(1) $\bar{D}=3$, in which case G is spanned by a double star;
(2) $\bar{D}=2$, in which case G is NOT spanned by a double star.

In this section we deal with the first and more straightforward of these possibilities:
Theorem 1.2 Let $\mathcal{G}_{3, n}^{\prime}$ denote the set of all graphs $G \in \mathcal{G}_{3, n}$ with complements $\bar{G} \in \mathcal{G}_{3, n}$. Denote by α_{2}^{\prime} the restriction of α_{2} to $\mathcal{G}_{3, n}^{\prime}$. Then

$$
\alpha_{2}^{\prime}=\lceil n / 2\rceil+1
$$

Proof Since G is spanned by a double star, we may divide the vertices V into three non-empty sets U, S and $T: U$ consists of the centres of the two spanning stars, S consists of the radial vertices of one star, T the radial vertices of the other. Without loss of generality, suppose that $|S| \leq|T|$. Now consider a proper 2-colouring of G. We see that all labels in $S \cup U$ must be distinct, as so also must all labels in $T \cup U$. Then, for given n, a minimum number of labels will be used if and only if the following two conditions are satisfied:
(1) every label used in S is also used in T;
(2) $|T|-|S| \leq 1$.

When n is even, so that $|T|=|S|$, we have $n=2|S|+2$ and $\gamma_{2}(G)=$ $n / 2+1$. For odd n, we have similarly $|T|=|S|+1, n=2|S|+3$, and $\gamma_{2}(G)=(n+1) / 2+1$. Thus a double star which satisfies condition (2) can be labelled to yield a minimum 2 -colouring using $\lceil n / 2\rceil+1$ labels. From this fact the result follows.

As we shall see below, the lower bound of Theorem 1.2 is exceptional. It appears that for other classes of graphs, $\alpha_{D-1} \in O(\sqrt{D n})$. We begin our consideration of these graphs in Section 2, by investigating the graphs of diameter 3 whose complements have diameter 2. In Section 3 we look in detail at constructions for graphs of even diameter $D \geq 4$, and then in Section 4 we indicate how these constructions may be extended to graphs of odd diameter $D \geq 5$.

2 DIAMETER $D=3$

In this section we study graphs $G \in \mathcal{G}_{3, n}^{\prime \prime}$, where $\mathcal{G}_{3, n}^{\prime \prime}$ denotes the set of all graphs of $\mathcal{G}_{3, n}$ whose complements are in $\mathcal{G}_{2, n}$. In particular, we display an infinite subclass $\mathcal{G}_{3, n}^{*} \subset \mathcal{G}_{3, n}^{\prime \prime}$ of graphs G whose 2 -chromatic number

$$
\gamma_{2}(G)=\sqrt{2 n+4}-1
$$

The graphs in this subclass are constructed based on an integer parameter $\nu=$ $3,4, \ldots$, and so we denote them G_{ν}. We shall see that G_{ν} has order $n=2\left(\nu^{2}-1\right)$, size $m=\nu\left(\nu^{2}-1\right)$, and of course diameter $D=3$.

To construct the G_{ν}, we begin with two copies of the complete graph $K_{\nu-1}$, which we call $K_{\nu-1}^{(1)}$ and $K_{\nu-1}^{(2)}$. Corresponding to each $i=1,2$, we introduce $\nu-1$ disjoint sets of ν isolated vertices \bar{K}_{ν}, which we call $\bar{K}_{\nu}^{(i, 1)}, \bar{K}_{\nu}^{(i, 2)}, \ldots, \bar{K}_{\nu}^{(i, \nu-1)}$. Let $U^{(i)}=\left\{u_{1}^{(i)}, u_{2}^{(i)}, \ldots, u_{\nu-1}^{(i)}\right\}$ denote the vertices of $K_{\nu-1}^{(i)}$, and for each $j=$ $1,2, \ldots, \nu-1$, let $V^{(i, j)}=\left\{v_{1}^{(i, j)}, v_{2}^{(i, j)}, \ldots, v_{\nu}^{(i, j)}\right\}$ denote the vertices of $\bar{K}_{\nu}^{(i, j)}$. We now introduce two sets of edges (beyond those already found in the $K_{\nu-1}^{(i)}$):
(1) For every $i=1,2 ; j=1,2, \ldots, \nu-1 ; h=1,2, \ldots, \nu: u_{j}^{(i)} v_{h}^{(i, j)}$ is an edge. (This joins each vertex of $K_{\nu-1}^{(i)}$ to each of ν vertices in one of the sets $V^{(i, j)}$.)
(2) For every $j=1,2, \ldots, \nu-1 ; j^{\prime}=1,2, \ldots, \nu-1 ; h=1,2, \ldots, \nu: v_{h}^{(1, j)} v_{h^{\prime}}^{\left(2, j^{\prime}\right)}$ is an edge if and only if h^{\prime} is computed by the following algorithm:

$$
\begin{aligned}
& h^{\prime} \longleftarrow j+j^{\prime}+h-1 \\
& \text { if } h^{\prime}>\nu \text { then } \\
& \quad\left\{h^{\prime} \longleftarrow h^{\prime}-\nu ;\right. \\
& \quad \text { if } j+j^{\prime}-1=\nu \text { then } \\
& \left.\quad h^{\prime} \longleftarrow h^{\prime}+1\right\}
\end{aligned}
$$

(This joins each vertex of $V^{(1, j)}$ to a single vertex in each of $V^{\left(2, j^{\prime}\right)}, j^{\prime}=$ $1,2, \ldots, \nu-1$, in such a way that $v_{h}^{(1, j)} v_{h}^{\left(2, j^{\prime}\right)}$ is never an edge for any choice of j, j^{\prime} and h.)
To the vertices of G_{ν} we now assign labels L as follows: for every $i=1,2$ and for every $j=1,2, \ldots, \nu-1$ set

$$
\begin{gathered}
L\left(u_{j}^{(i)}\right) \longleftarrow j ; \text { and } \\
\forall h=1,2, \ldots, \nu: \quad L\left(v_{h}^{(i, j)}\right) \longleftarrow \nu+h-1 .
\end{gathered}
$$

Thus a total of $2 \nu-1$ distinct labels are assigned; we claim that $\gamma_{2}\left(G_{\nu}\right)=2 \nu-1$.
To prove this claim, we first show that in fact G_{ν} has diameter $D=3$. Consider first the edges $v_{h}^{(1, j)} v_{h^{\prime}}^{\left(2, j^{\prime}\right)}$ and observe that, for fixed j and j^{\prime}, as h assumes the values $1,2, \ldots, \nu, h^{\prime}$ assumes distinct values in the cyclic permutation of $1,2, \ldots, \nu$ which begins at one of $\left\{j+j^{\prime}, j+j^{\prime}-\nu, j+j^{\prime}-\nu+1\right\}$; thus every vertex of $K_{\nu}^{(1, j)}$ is adjacent to a single distinct vertex of $K_{\nu}^{\left(2, j^{\prime}\right)}$. Clearly this statement is true also when the superscripts 1 and 2 are interchanged. It follows then that every vertex of $K_{\nu-1}^{(i)}$ is distance exactly 2 from every vertex of $\bar{K}_{\nu}^{(3-i, j)}$ for every $j=1,2, \ldots, \nu-1$, and hence distance exactly 3 from every vertex of $K_{\nu-1}^{(3-i)}$. Furthermore, we see that whenever $v_{h}^{(i, j)} v_{h^{\prime}}^{\left(3-i, j^{\prime}\right)}$ is an edge, then $v_{h}^{(i, j)}$ is distance exactly 3 from every vertex $v_{h^{\prime \prime}}^{\left(3-i, j^{\prime}\right)}$, where $h^{\prime \prime} \in[1, \nu]$ and $h^{\prime \prime} \neq h^{\prime}$. Finally, observe that $v_{h}^{(i, j)}$ is distance exactly 2 from every vertex $v_{h^{\prime}}^{(i, j)}, h^{\prime} \neq h$, and distance exactly 3 from every vertex $v_{h}^{\left(i, j^{\prime}\right)}, j^{\prime} \neq j$. We conclude that $D=3$ and note that, moreover, every vertex of G_{ν} is peripheral. Note also that G_{ν} is not spanned by a double star.

To show that the labelling specified yields a proper 2-colouring, it is necessary to show that all vertices with the same label are distance 3 from each other. This is clearly true for the vertices of $K_{\nu-1}^{(i)}$. To prove this result for the labels $\nu, \nu+$ $1, \ldots, 2 \nu-1$, it suffices to show that

* $v_{h}^{(i, j)} v_{h}^{\left(3-i, j^{\prime}\right)}$ is never an edge;
* $v_{h}^{(i, j)}$ is always adjacent to $\nu-1$ vertices with distinct labels.

The first of these propositions is a direct consequence of the method of calculation of h^{\prime} specified in (2) above: if $h^{\prime}=h$ then either $j+j^{\prime}-1=0$, an impossibility, or $j+j^{\prime}-1=\nu$, in which case the value of h^{\prime} is incremented by one, so as to be no longer equal to h. To prove the second proposition, consider first the edges joining a vertex $v_{h}^{(1, j)}$ to $V^{(2,1)}$, for every $h=1,2, \ldots, \nu$. These edges will be $v_{h}^{(1, j)} v_{h_{1}}^{(2,1)}$, where h_{1} is one element of the set $H_{0}=\{j+h, j+h-\nu, j+h-\nu+1\}$. More generally, the vertices $v_{h_{1}}^{(2,1)}, v_{h_{2}}^{(2,2)}, \ldots, v_{h_{\nu-1}}^{(2, \nu-1)}$ of $V^{(2,1)}, V^{(2,2)}, \ldots, V^{(2, \nu-1)}$, respectively, which
are adjacent to $v_{h}^{(1, j)}$ are identified by the cyclic permutation $\left(h_{1}, h_{2}, \ldots, h_{\nu-1}\right)$ of $1,2, \ldots, \nu$ which begins at the element of H_{0} specified by (2) and omits h. These vertices will have $\nu-1$ distinct labels $\nu+h_{1}-1, \nu+h_{2}-1, \ldots, \nu+h_{\nu-1}-1$. A similar argument establishes also that vertices $v_{h_{1}}^{(1,1)}, v_{h_{2}}^{(1,2)}, \ldots, v_{h_{\nu-1}}^{(1, \nu-1)}$ adjacent to a given vertex $v_{h}^{(2, j)}$ all have distinct labels. We conclude that $\gamma_{2}\left(G_{\nu}\right)=2 \nu-1$, as required. We state this result formally as follows:

Theorem 2.1 For every integer $\nu \geq 3$, the graphs G_{ν} of order $n=2\left(\nu^{2}-1\right)$ and diameter 3 have 2 -chromatic number $\sqrt{2 n+4}-1$. Thus

$$
\alpha_{2} \in O(\sqrt{n})
$$

Finally, we remark that for $\nu=3$ a slight improvement can be made to the above construction, yielding $n=2 \nu^{2}=18$ and $\gamma_{2}\left(G_{3}\right)=\sqrt{2 n}-1=5$.

3 EVEN DIAMETER $D \geq 4$

In this section we first present a construction for graphs $G \in \mathcal{G}_{4, n}$ for which the (D-1)-chromatic number

$$
\gamma_{D-1}(G)=\lceil 2 \sqrt{n-1}\rceil
$$

We then show how to generalize this construction to graphs $G \in \mathcal{G}_{2 d, n}$ of arbitrary even diameter $D=2 d$, where $d=2,3, \ldots$.

We note in passing the result of Bosák, Rosa and Znám [BRZ68] (later rediscovered in [S86]) that for graphs G of diameter $D \geq 4$, the complement graph \bar{G} must have diameter $\bar{D}=2$. Thus the special case dealt with in Theorem 1.2 does not arise for $D \geq 4$.

Consider a graph $G=(V, E) \in \mathcal{G}_{4, n}$. There exists a shortest path $s_{1} u_{1} u u_{2} s_{2}$ in G joining peripheral vertices s_{1} and s_{2}. Let $U=\left\{u, u_{1}, u_{2}\right\}$, and for $j=1,2$ let S_{j} denote the set of all vertices $v^{(j)} \neq u$ such that $u_{j} v^{(j)} \in E$. Then, in particular, $s_{j} \in S_{j}$. Observe that a proper $(D-1)$-colouring of G requires that all the labels assigned to $U \cup S_{j}$ be distinct; that is,

$$
\gamma_{3}(G) \geq \max _{j=1,2}\left|S_{j}\right|+3
$$

The lower bound can of course be attained by a graph G whose every shortest path from S_{1} to S_{2} is of length D.

Suppose now more generally that V contains $p \geq 2$ distinct subsets $S_{1}, S_{2}, \ldots, S_{p}$ such that every shortest path from one subset to another

* is of length D;
* passes through u.

Then the graph G of least order n satisfying these conditions has vertex set $V=$ $U \cup\left(\cup_{j=1}^{p} S_{j}\right)$, where $U=\left\{u, u_{1}, u_{2}, \ldots, u_{p}\right\}$ and

$$
\gamma_{3}(G)=\max _{1 \leq j \leq p}\left|S_{j}\right|+(p+1) .
$$

Let s^{*} denote the average order of the S_{j}; that is, $s^{*}=\left(\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{p}\right|\right) / p$. Then

$$
\begin{equation*}
n=p s^{*}+p+1 \tag{3.1}
\end{equation*}
$$

Observe now that γ_{3} can be minimized by imposing the further condition on G that

$$
\begin{equation*}
\left\lfloor s^{*}\right\rfloor \leq\left|S_{j}\right| \leq\left\lfloor s^{*}\right\rfloor+1 \tag{3.2}
\end{equation*}
$$

for every $j=1,2, \ldots, p$. Then, using (3.1),

$$
\begin{aligned}
\gamma_{3}(G) & =\left\lceil s^{*}\right\rceil+p+1 \\
& =\lceil(n-1) / p\rceil+p
\end{aligned}
$$

an expression which achieves its minimum value for

$$
\begin{equation*}
p=\lceil\sqrt{n-1}\rceil . \tag{3.3}
\end{equation*}
$$

Thus, if the subsets of V are chosen to satisfy (3.2) and (3.3), then

$$
\begin{equation*}
\gamma_{3}(G)=\lceil(n-1) /\lceil\sqrt{n-1}\rceil\rceil+\lceil\sqrt{n-1}\rceil . \tag{3.4}
\end{equation*}
$$

We now state three noteworthy identities (left as exercises for the reader). For any positive real number x, let

$$
C(x) \equiv\lceil x /\lceil\sqrt{x}\rceil\rceil+\lceil\sqrt{x}\rceil .
$$

For $x \geq 1$, let

$$
F(x) \equiv\lceil x /\lfloor\sqrt{x}\rfloor \mid+\lfloor\sqrt{x}\rfloor .
$$

Then

$$
\begin{align*}
& C(x)=\lceil 2 \sqrt{\lceil x\rceil}\rceil \tag{3.5a}\\
& F(x)=\lceil 2 \sqrt{\lceil x\rceil}\rceil \tag{3.5b}
\end{align*}
$$

if there exists no integer N such that $N^{2}-1<x<N^{2}$; and

$$
\begin{equation*}
F(x)=\lceil 2 \sqrt{\lceil x\rceil}\rceil+1 \tag{3.5c}
\end{equation*}
$$

otherwise. Thus, in view of (3.5a), (3.4) becomes

$$
\begin{equation*}
\gamma_{3}(G)=\lceil 2 \sqrt{n-1}\rceil \tag{3.6}
\end{equation*}
$$

A graph G which satisfies (3.6) may be characterized as a graph of diameter $D=$ 4 , radius $d=2$, a single centre u, and $n-\lceil\sqrt{n-1}\rceil-1$ peripheral nodes divided as
equally as possible into $[\sqrt{n-1}\rceil$ mutually peripheral subsets. An example of such a graph is formed by $\lceil\sqrt{n-1}\rceil$ complete graphs K_{s}, where $\left\lceil s^{*}\right\rceil+1 \leq s \leq\left\lceil s^{*}\right\rceil+2$, each with a single vertex adjacent to u.

Consider now a graph $G \in \mathcal{G}_{D, n}$, where $D=2 d$ for some integer $d \geq 2$, and suppose as before that the vertex set V contains $p \geq 2$ distinct subsets $S_{1}, S_{2}, \ldots, S_{p}$ as defined above. Defining s^{*} as before, we find

$$
\begin{equation*}
n=p s^{*}+p(d-1)+1 \tag{3.7}
\end{equation*}
$$

analogous to (3.1). Then, applying (3.2) and (3.7), we find that

$$
\begin{align*}
\gamma_{D-1}(G) & =\left\lceil s^{*}\right\rceil+p(d-1)+1 \tag{3.8}\\
& =\lceil(n-1) / p\rceil+(d-1)(p-1)+1
\end{align*}
$$

Now consider the function $\gamma^{*}(p)=(n-1) / p+(d-1)(p-1)+1$, differentiable in any interval not containing $p=0$. This function attains its minimum for

$$
\frac{d \gamma^{*}}{d p}=-(n-1) / p^{2}+(d-1)=0
$$

that is, for $p=\sqrt{\frac{n-1}{d-1}}$. Then (3.8) is minimized by choosing either $p=p_{1} \equiv$ $\left\lceil\sqrt{\frac{n-1}{d-1}}\right\rceil$ or $p=p_{2} \equiv\left\lfloor\sqrt{\frac{n-1}{d-1}}\right\rfloor$. To estimate the minimum value of (3.8), consider first

$$
\gamma^{*}\left(p_{1}\right)=(d-1)\left\{\left(\frac{n-1}{d-1}\right) /\left\lceil\sqrt{\frac{n-1}{d-1}}\right\rceil+\left\lceil\sqrt{\frac{n-1}{d-1}}\right\rceil-1\right\}+1
$$

We see that

$$
(d-1)\left(C\left(\frac{n-1}{d-1}\right)-2\right) \leq \gamma^{*}\left(p_{1}\right) \leq(d-1)\left(C\left(\frac{n-1}{d-1}\right)-1\right)
$$

where $C\left(\frac{n-1}{d-1}\right)$ is given by (3.5a). From (3.5b) and (3.5c), it follows then that

$$
\gamma^{*}\left(p_{1}\right) \leq \gamma^{*}\left(p_{2}\right) \leq \gamma^{*}\left(p_{1}\right)+1 ;
$$

and since, for every positive value of p,

$$
0 \leq \gamma_{D-1}(G)-\gamma^{*}(p) \leq 1
$$

we have the main result of this section:
Theorem 3.1 For every even integer $D=2 d, d \geq 2$, and for every integer $n>D$, there exists a graph $G \in \mathcal{G}_{D, n}$ such that

$$
(d-1)\left(\left\lceil 2 \sqrt{\left\lceil\frac{n-1}{d-1}\right\rceil}\right\rceil-2\right) \leq \gamma_{D-1}(G)-1 \leq(d-1)\left(\left\lceil 2 \sqrt{\left\lceil\frac{n-1}{d-1}\right\rceil}\right\rceil-1\right)
$$

Hence $\alpha_{D-1} \in O(\sqrt{D n})$.
As in the special case $d=2$, a graph G which satisfies Theorem 3.1 is characterized by radius d, a single centre u, and $n-(d-1) p_{1}-1$ peripheral nodes divided as equally as possible into p_{1} mutually peripheral subsets, where $p_{1}=\left\lceil\sqrt{\frac{n-1}{d-1}}\right\rceil$.

4 ODD DIAMETER $D \geq 5$

Here we consider graphs $G \in \mathcal{G}_{2 d+1, n}$ of odd diameter $D=2 d+1, d \geq 2$. The construction is similar to the construction for even diameter $2 d$; the main difference is that the centre u is replaced by a complete subgraph K_{p}, which thus increases the diameter by one. The results apply also to the case $D=3(d=1)$.

As before, we suppose that V contains $p \geq 2$ mutually peripheral subsets $S_{1}, S_{2}, \ldots, S_{p}$ such that every shortest path from one subset to another passes through at least two vertices of the "central" complete subgraph K_{p}. If as before s^{*} denotes the average size of $\left|S_{j}\right|, j=1,2, \ldots, p$, then, analogous to (3.1),

$$
\begin{equation*}
n=p\left(s^{*}+d\right) \tag{4.1}
\end{equation*}
$$

By choosing the orders of the S_{j} to be as nearly equal as possible, we can make

$$
\begin{align*}
\gamma_{D-1}(G) & =s^{*}+p d \\
& =n / p+(p-1) d \tag{4.2}
\end{align*}
$$

from (4.1). We find then that $\gamma_{D-1}(G)$ is minimized for $p=\lfloor\sqrt{n / d}\rfloor$ or $\lceil\sqrt{n / d}\rceil$. Substituting these values into (4.2) and applying (3.5a)-(3.5c), we find

Theorem 4.1 For every odd integer $D=2 d+1, d \geq 1$, and for every integer $n>D$, there exists a graph $G \in \mathcal{G}_{D, n}$ such that

$$
d(\lceil 2 \sqrt{\lceil n / d\rceil}\rceil-2) \leq \gamma_{D-1}(G) \leq d(\lceil 2 \sqrt{\lceil n / d\rceil}\rceil-1)
$$

Hence $\alpha_{D-1} \in O(\sqrt{D n})$.
Note that in the special case $D=3$, the construction of Section 2 yields a lower ($D-1$)-chromatic number than the construction given here. More generally, it is not known whether the constructions given in this paper are best possible, in the sense of yielding, for given D and n, the least possible value of γ_{D-1}.

REFERENCES

[BKQ87] Gary S. Bloom, John W. Kennedy \& Louis V. Quintas, A characterization of graphs of diameter 2, Amer. Math. Monthly 94 (1987) 37-38.
[BRZ68] J. Bosák, A. Rosa \& Š. Znám, On decompositions of complete graphs into factors with given diameters, Theory of Graphs (Proc. Colloq. Tihany 1966 , eds. P. Erdős \& Gy. Katona), Akadémia Kiadó (1968) 37-56.
[G87] Mario Gionfriddo, A short survey on some generalized colourings of graphs, Ars Combinatoria 24B (1987) 155-163.
[GV85] Mario Gionfriddo \& Scott Vanstone, On L_{2}-colourings of a graph, J. Inf. Optim. Sci. 6 (1985) 243-246.
[HR85] Frank Harary \& Robert W. Robinson, The diameter of a graph and its complement, Amer. Math. Monthly 92 (1985) 211-212.
[S86] Philip D. Straffin Jr., letter to the editor, Amer. Math. Monthly 93 (1986) 76.

ACKNOWLEDGEMENT

This research was supported in part by Grant No. A8180 of the Natural Sciences \& Engineering Research Council of Canada. The author is indebted to Sin-Min Lee of San Jose State University for introducing him to the problem in the first place and for stimulating discussions.

