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GRAPHS WITH SMALL GENERALIZED CHROMATIC NUMBER

W. F. Smyth

Department of Computer Science & Systems
McMaster University
Hamilton, Ontario L8S 4K1 Canada

School of Computing
Curtin University of Technology
Perth WA 6001 Australia

ABSTRACT

Let G = (V, E) denote a finite simple undirected connected graph of order n =
|V| and diameter D. For any integer k € [1, D], a proper k-colouring of G is a
labelling of the vertices V such that no two distinct vertices at distance k or less
have the same label. We let «, (G), the k-chromatic number of G, denote the least
number of labels required to achieve a proper k-colouring of G. In this paper we
show that there exists an infinite class G* of graphs of order n and diameter D > 3
such that, over all graphs G € %, v,_,(G) € @(\/ Dn). Constructions are specified
for graphs in the class G*.

1 INTRODUCTION

Let G = (V, E) denote a finite simple undirected connected graph of order n =
|V| and diameter D > 0. For any integer k € [1, D], a proper k-colouring of G
is a labelling of the vertices V' such that no two distinct vertices at distance k or
less have the same label. For given G, we let v, (G), the k-chromatic number of G,
denote the least number of labels required to achieve a proper k-colouring of G.

Problems associated with the estimation of the k-chromatic number were sur-
veyed some years ago by Gionfriddo [G87]. A common approach has been to define
the k-density p, (G) to be the maximum order over all subgraphs of G with diameter
k. (For example, if k = 1 and G is triangle-free, then p,(G) = 2.) The nonnegative
quantity

7.(G) =7.(G) — p.(G)

is then considered; in particular, attention focusses on small values of k and small
values of v, (G) — that is, cases in which the k-density is close to the k-chromatic
number. Now let vi(h) denote the least integer such that there exists a graph G of
order vy (h) for which v, (G) = h. (For example, if k = 1 and h = 0, then v;(0) = 2
corresponding to G = P,, the path of length 1.) Some progress has been made
establishing bounds on v (k) in more general cases [GV85], but exact calculation
seems to be very difficult, even for £ = 2 and small values of h.

In this paper, a different approach is adopted: bounds for v, (G) are related to
the diameter of G. It turns out that, for k¥ = D — 1, it is possible to determine
quite sharp bounds which correspond to interesting constructions.
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Thus, for each choice D =1,2,.... and for every integer n > D, let G,  denote
the class of all graphs G of diameter D and order n. Then, over all graphs G € G, ,
let a,, ., (respectively, 8, ) denote the minimum (respectively, maximum) value

attained by v, (G). As Theorem 1.1 shows, the upper bound is easy to determine:

Theorem 1.1 3, , ., =n— D +k.

Proof We look for the greatest number of labels that can possibly be used in a
minimum proper k-colouring of G. Observe first that there exists a shortest
path P, , in G of length D. Then a minimum proper k-colouring of P,_,
requires k + 1 distinct labels. If the remaining n — D — 1 vertices of G must
all be given labels distinct from the k + 1 labels used in P, then a total
of n— D+k labels will be used to colour G. Thus this total is the maximum
possible value that v, (G) could take. But this value is actually attained for
the graph G formed by joining one end vertex of a path P, of length D —1
to every vertex of a complete graph K __: the resulting graph G then has
n vertices, diameter D, and k-chromatic number n — D + k. O

As a special case of this result, we see that 3, . , = n; since also «
follows that

D,n,p — 1t

75(G) =n

for any given graph G. At the other extreme, for £ = 1, Theorem 1.1 tells us that
Bp... =mn— D+ 1. To determine o, , ,, consider the graph G formed by joining
n— D isolated vertices K,__ to one end of a path P, of length D — 1. The resulting
graph G has n vertices, diameter D, and 1-chromatic number 2. (Indeed, G may
be any tree on n vertices with diameter D.) Since for any k£ > 1, o, ., > 1, it
follows that o, , , = 2, so that, for any given graph G,

2<y,(G)<n—-D+1.

For 1 < k < D, the value of « , , is more difficult to determine. In the
remainder of this article, we consider the case k = D — 1; to simplify notation, we

write o, |, = o, 5.

For the estimation of a,_,, the first interesting case that arises is D = 3, which
we now begin to consider. It follows from Theorem 5 of [BRZ68] that if D > 3 for
a graph G, then the diameter of the complement graph G is D < 3. (This result
was later rediscovered in [HR85].) Recall now the result of Bloom, Kennedy and
Quintas [BKQ87] that G has diameter 2 if and only if G is not empty and G is not
spanned by a double star. (A spanning double star of G is a spanning tree of G
which consists of two stars with centres » and v joined by the edge uv.) Thus for
D = 3 there are exactly two possibilities:

(1) D = 3, in which case G is spanned by a double star;

(2) D =2, in which case G is NOT spanned by a double star.
In this section we deal with the first and more straightforward of these possibilities:

Theorem 1.2 Let G denote the set of all graphs G € G, , with complements
G €G, . Denote by o/ the restriction of a, to G/ . Then



al = [n/2] +1.

Proof Since G is spanned by a double star, we may divide the vertices V into three
non-empty sets U, S and T: U consists of the centres of the two spanning
stars, S consists of the radial vertices of one star, T the radial vertices of
the other. Without loss of generality, suppose that |S| < |T'|. Now consider
a proper 2-colouring of G. We see that all labels in SUU must be distinct,
as so also must all labels in TUU. Then, for given n, a minimum number of
labels will be used if and only if the following two conditions are satisfied:

(1) every label used in S is also used in T}

) |IT|- 1Sl < 1.

When n is even, so that |T| = |S|, we have n = 2|S| + 2 and +,(G) =
n/2 4+ 1. For odd n, we have similarly |T'| = |S| + 1, » = 2|S| + 3, and
v,(G) = (n+1)/2+ 1. Thus a double star which satisfies condition (2) can
be labelled to yield a minimum 2-colouring using [n/2] + 1 labels. From
this fact the result follows. O

As we shall see below, the lower bound of Theorem 1.2 is exceptional. It appears
that for other classes of graphs, a,_, € O(\/D_) We begin our consideration of
these graphs in Section 2, by investigating the graphs of diameter 3 whose comple-
ments have diameter 2. In Section 3 we look in detail at constructions for graphs
of even diameter D > 4, and then in Section 4 we indicate how these constructions
may be extended to graphs of odd diameter D > 5.

2 DIAMETER D =3

In this section we study graphs G € G!' , where G!' denotes the set of all graphs
of G, . whose complements are in G, . In particular, we display an infinite subclass
Gr C @Gl of graphs G whose 2-chromatic number

’yz(G) =+2n+4-—1.

The graphs in this subclass are constructed based on an integer parameter v =
3,4,...., and so we denote them G,. We shall see that G, has order n = 2(v? —1),
size m = v(v% — 1), and of course diameter D = 3.

To construct the G, we begin with two copies of the complete graph K, _1,

which we call Kl(ll_)1 and Kl(lz_)1 Corresponding to each ¢ = 1,2, we introduce v — 1

disjoint sets of v isolated vertices K,, which we call f,(,i’l),f,(j’z), . ,f,(,i’u_l).
Let U®) = {u&l),ugl), . ,u,(,lzl} denote the vertices of K,(,l_)l, and for each j =

1,2,...,v—1,1et V(3 = {vgi’j), vgi’j), . ,v,(,i’j)} denote the vertices off,(j’j). We
now introduce two sets of edges (beyond those already found in the K,(,_)l):
1) Forevery i = 1,2; j = 1,2,..., v — 1 h = 1,2,...,v: uDo{) is an edge.
( y ) ) J ) ) ) ) ) ) ) 7 h g
(This joins each vertex of K,(,l_)1 to each of v vertices in one of the sets V(i’j).)

(2) Forevery j=1,2,...,v—1;7=1,2,...,v—1; h =1,2,...,1: v,(bl’j)v,(bz,’jl)
is an edge if and only if k' is computed by the following algorithm:



We—j+5+h—-1
if ' > v then
{h — b —v;
if 74+ 7 —1=v then
h — h' + 1}_
(This joins each vertex of V(i) to a single vertex in each of V(z’jl), 7 =
1,2,...,v—1, in such a way that v’(Ll:J)v’(LZJ )

of j, 7/ and h.)

is never an edge for any choice

To the vertices of G, we now assign labels L as follows: for every ¢ = 1,2 and
for every 7= 1,2,...,v — 1 set

L(u(»i)) «—— 7; and

Yh=1,2,...,v: L(v,(j’j)) —v+h-1.
Thus a total of 2v — 1 distinct labels are assigned; we claim that v,(G,) = 2v — 1.

To prove this claim, we first show that in fact G, has diameter D = 3. Consider
first the edges v,(bl’j)v,(bz,’jl) and observe that, for fixed j and j', as h assumes the
values 1,2,...,v, h' assumes distinct values in the cyclic permutation of 1,2,...,v
which begins at one of {j +j',7+ 7 —v,j+ 7 — v+ 1}; thus every vertex of K9

is adjacent to a single distinct vertex of K,(,z’j ). Clearly this statement is true also
when the superscripts 1 and 2 are interchanged. It follows then that every vertex of

5y . g —(3
K,(,l_)1 is distance exactly 2 from every vertex of K,(,

i) forevery 7 =1,2,...,v—1,
and hence distance exactly 3 from every vertex of K,(,?’__ll)
,(Ll’J)v,(L?,’_l’J )is an edge, then v,(bm) is distance exactly 3 from every vertex

. Furthermore, we see that
whenever v

v,(ﬁ,_i’jl), where A" € [1,v] and A" # h'. Finally, observe that v,(j’j) is distance
exactly 2 from every vertex v,(;,’J), h' # h, and distance exactly 3 from every vertex
(¢

vh,’j ), j' # j. We conclude that D = 3 and note that, moreover, every vertex of
G, is peripheral. Note also that G, is not spanned by a double star.

To show that the labelling specified yields a proper 2-colouring, it is necessary
to show that all vertices with the same label are distance 3 from each other. This
is clearly true for the vertices of K,(,l_)l. To prove this result for the labels v, v +
1,...,2v — 1, it suffices to show that

i,5) (8—4,5") -
* v,(L ’J)v,(L 7 is never an edge;

i)

% (
Vp,

is always adjacent to v — 1 vertices with distinct labels.

The first of these propositions is a direct consequence of the method of calculation
of h' specified in (2) above: if ' = h then either 7+ 7' — 1 = 0, an impossibility, or
j+j'—1 = v, in which case the value of A’ is incremented by one, so as to be no longer
equal to h. To prove the second proposition, consider first the edges joining a vertex
v,(bl’j) to V1), for every h = 1,2,...,v. These edges will be v,(bl’j)v,(:’l), where h;
is one element of the set H, = {j +h,j+h —v,j+h— v+ 1}. More generally, the
vertices v,(:’l), v,(i’z), ... ,v,(bzy’:_l) of V(21) v(22) yv(2r-1) respectively, which



are adjacent to v,(Ll’j) are identified by the cyclic permutation (hq, ha,...,h,_1) of

1,2,...,v which begins at the element of H, specified by (2) and omits k. These
vertices will have v — 1 distinct labels v+ Ay — 1, v+ hy —1,...,v+h,_1 — 1. A
Wy 0. Gw-1)

similar argument establishes also that vertices v adjacent to

.
a given vertex v,(bz’j) all have distinct labels. We conclude that v,(G,) = 2v —1, as
required. We state this result formally as follows:

Theorem 2.1 For every integer v > 3, the graphs G, of order n = 2(v2 — 1) and
diameter 3 have 2-chromatic number /2n 4+ 4 — 1. Thus

a, €0(y/n). O

Finally, we remark that for v = 3 a slight improvement can be made to the above
construction, yielding n = 2% = 18 and v,(G3) = vV2n— 1 =5.

3 EVEN DIAMETER D >4

In this section we first present a construction for graphs G € G, , for which the
(D-1)-chromatic number

o (G) = [zm]

We then show how to generalize this construction to graphs G € G
even diameter D = 2d, where d = 2,3,....

2a.» Of arbitrary

We note in passing the result of Bosédk, Rosa and Zndm [BRZ68] (later rediscov-
ered in [S86]) that for graphs G of diameter D > 4, the complement graph G must
have diameter D = 2. Thus the special case dealt with in Theorem 1.2 does not
arise for D > 4.

Consider a graph G = (V, E) € G, .- There exists a shortest path s;ujuussz in
@ joining peripheral vertices s; and s3. Let U = {u, u1, us}, and for j = 1,2 let S;
denote the set of all vertices v\¥) # u such that ujv(j) € E. Then, in particular,
s; € Sj. Observe that a proper (D — 1)-colouring of G requires that all the labels
assigned to U U S; be distinct; that is,

12(G) > max |5, + 5.
7=1,2

The lower bound can of course be attained by a graph G whose every shortest path
from S; to Sy is of length D.

Suppose now more generally that V' contains p > 2 distinct subsets S1,53,...,5;

such that every shortest path from one subset to another

* is of length D;
* passes through u.

Then the graph G of least order n satisfying these conditions has vertex set V =
Uvu (U§:1Sj)a where U = {u, u1,us,...,up} and

G) = S; 1).
7,(G) = max |55+ (p+1)
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Let s* denote the average order of the S;; that is, s* = (|S1| + |Sa|+-- -+ |Sp])/p.
Then

n=ps +p+1. ...(8.1)

Observe now that v, can be minimized by imposing the further condition on G that
') < IS < 18] + 1, . (32)
for every j = 1,2,...,p. Then, using (3.1),

7,(G)=[s"]+p+1
=[(n—-1)/p] +p,

an expression which achieves its minimum value for

pz[vn—q. ...(3.3)
Thus, if the subsets of V are chosen to satisfy (3.2) and (3.3), then
7.(G) = [(n—l)/[\/n—l-l-‘—l—[\/n—l-l. ...(34)

We now state three noteworthy identities (left as exercises for the reader). For any
positive real number z, let

o) = [o/[va]| + [va].
For & > 1, let
P = [o/|va] | + [ va].
Then
C(z) = [2@]; ...(3.5a)

F(z) = [wm] ...(3.5b)

if there exists no integer N such that N2 — 1 < z < N?; and

F(z) = [2¢/Te]] + 1, .. (3.5¢)

otherwise. Thus, in view of (3.5a), (3.4) becomes
7,(6) = [2va—1]. ...(3.6)

A graph G which satisfies (3.6) may be characterized as a graph of diameter D =
4, radius d = 2, a single centre u, and n— [\/n — 1-| — 1 peripheral nodes divided as
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equally as possible into [\/n — 1-| mutually peripheral subsets. An example of such
a graph is formed by [\/n — 1-| complete graphs K, where [s*]+1 < s < [s*]+2,
each with a single vertex adjacent to wu.

Consider now a graph G € G, ., where D = 2d for some integer d > 2, and
suppose as before that the vertex set V contains p > 2 distinct subsets S1, Sa,...,5;
as defined above. Defining s* as before, we find

n=ps" +p(d-—1)+1, ...(8.7)
analogous to (3.1). Then, applying (3.2) and (3.7), we find that

Yo (G)=[s"T+p(d—-1)+1
=[(n=1)/pl+(d-1D)(p-1)+ 1

Now consider the function v*(p) = (n — 1)/p+ (d — 1)(p — 1) + 1, differentiable in
any interval not containing p = 0. This function attains its minimum for

...(3.8)

dvy* 2
=—(n—-1 d—1)=0;

= - )/ 4 (A=) =0
that is, for p = ,/%. Then (3.8) is minimized by choosing either p = p; =
’71 / %-‘ orp=py = {, / %J . To estimate the minimum value of (3.8), consider
first

N n—1 n—1 n—1
7(p1):(d_1){<d—1>/[ d—1}+[ d—1}_1}+1'

We see that

n—1

- 0(e(3=1) -2 s = - n(e(=t) ),

where C’(%) is given by (3.5a). From (3.5b) and (3.5¢), it follows then that

7 (p1) <7 (p2) <Y (P1) + 1
and since, for every positive value of p,
0 S 7D—1(G) - 7*(]-7) S 17

we have the main result of this section:

Theorem 3.1 For every even integer D = 2d, d > 2, and for every integer n > D,
there exists a graph G € G, , such that

(d—l)([z [’;jH—z)s%_xG)—ls(d—l)([z [’;jH—l)-




Hence o,,_, € O(\/Dn). d

As in the special case d = 2, a graph G which satisfies Theorem 3.1 is character-
ized by radius d, a single centre u, and n — (d — 1)p; — 1 peripheral nodes divided

as equally as possible into p; mutually peripheral subsets, where p; = ’V %-‘

4 ODD DIAMETER D >5

Here we consider graphs G € G,,,, . of odd diameter D = 2d + 1, d > 2. The
construction is similar to the construction for even diameter 2d; the main difference
is that the centre u is replaced by a complete subgraph K,, which thus increases
the diameter by one. The results apply also to the case D = 3 (d = 1).

As before, we suppose that V contains p > 2 mutually peripheral subsets
S1,849,...,5p such that every shortest path from one subset to another passes
through at least two vertices of the “central” complete subgraph K,. If as before
s* denotes the average size of |S;|, j = 1,2,...,p, then, analogous to (3.1),

n=p(s" +d). ...(4.1)
By choosing the orders of the S; to be as nearly equal as possible, we can make

Yo-:(G) = 8" +pd

—njpt (p—1)d, ...(4.2)

from (4.1). We find then that v,_, (G) is minimized for p = [\/n/dJ or [ n/d-l
Substituting these values into (4.2) and applying (3.5a)-(3.5¢), we find

Theorem 4.1 For every odd integer D = 2d + 1, d > 1, and for every integer
n > D, there exists a graph G € G_ _ such that

D,n

a([2vTn/dl| = 2) <75.(@) < d([2v/n/d]| — 1).

Hence o, _, € O( Dn). O

Note that in the special case D = 3, the construction of Section 2 yields a lower
(D — 1)-chromatic number than the construction given here. More generally, it is
not known whether the constructions given in this paper are best possible, in the
sense of yielding, for given D and n, the least possible value of v, _,.
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